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Abstract: Cancer is a multigene and widespread disease. Increasing drug resistance leads to the development of new therapeutic targets.
Recent research indicates that various cellular components called stress granules (SGs) are engaged in the cancer-related signaling
pathway. The phosphoinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling, considered a master regulator in
cancer, has been shown through genomic profiling studies to play a key role in esophageal cancer (EC). In this study, we performed the
in silico analysis of an RNA sequencing dataset to investigate the effects of omipalisib, a PI3K/mTOR inhibitor, on EC cell lines. Our
objective was to identify novel molecular targets, particularly SG-related proteins, that contribute to drug resistance in EC. Using
computational approaches including differential gene expression analysis, pathway analysis, and functional enrichment, we examined the
transcriptomic changes in response to omipalisib treatment. Our analysis revealed downregulation of the PI3K/mTOR signaling pathway
and upregulation of compensatory pathways such as FOXO and JAK-STAT signaling in response to omipalisib. Notably, we identified
16 SG-related proteins that were significantly upregulated, suggesting their potential role in drug resistance mechanisms. These findings
provide new insights into the molecular mechanisms underlying drug resistance in EC and highlight potential novel targets for
therapeutic intervention. Currently, EC is limited by the number of potential drugs for treatment and poor prognosis and is prone to
chemotherapeutic resistance to existing clinically proven drugs. Our computational analysis offers valuable insights into targeting SGs
for cancer drug discovery, potentially enhancing the development of new therapeutic strategies for EC. These results provide a strong
foundation for future experimental validation and drug development efforts aimed at overcoming resistance to EC treatment.
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1. Introduction

Esophageal Cancer (EC) is the seventh most common
malignancy among all the known cancer types worldwide. With
approximately 500,000 new cases reported annually, EC ranks
sixth in terms of mortality, with a poor 5-year survival rate [1].
Adenocarcinoma and squamous cell carcinoma are the two
subtypes of EC. The status of EC indicates it to be one of the
various well-studied cancers with no known curative treatment.
Current standard therapies rely on surgery, chemotherapy, and
radiotherapy, highlighting the urgent need for newer strategies and
approaches to overcome drug resistance.

A central challenge in EC treatment is the development of drug
resistance, which significantly limits the long-term efficacy of
current therapies. Aberrant activation of the phosphatidylinositol 3
kinase pathway or PI3K pathway has been widely implicated in
many cancers, and increased activity of this pathway is often
implicated in resistance to cancer therapies [2]. This underscores
the urgent need for novel molecular targets that could lead to

more effective treatment strategies. The phosphoinositol-3-kinase
(PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling
pathway is a central regulator of cancer cell growth, survival, and
metabolism [3]. PI3K is a plasma membrane-associated lipid
kinase that, upon activation by growth factors or other
extracellular signals, initiates a cascade leading to the activation of
AKT and mTOR. Inhibitors targeting PI3K and mTOR, such as
omipalisib, have shown potential in preclinical studies by
disrupting critical signaling networks in cancer cells. However,
despite initial efficacy, cancer cells often develop resistance to
these inhibitors, limiting their long-term therapeutic benefits [4].

Inhibitors targeting PI3K and mTOR, such as omipalisib, have
shown promise in preclinical studies by disrupting critical signaling
networks in cancer cells. Omipalisib, a member of the quinolines, is
an ATP-competitive inhibitor that has sub-nanomolar action on
p110α, p110β, p110γ, and p110δ, as well as the mTOR1 and
mTOR2 complexes [5]. It inhibits PI3K in the PI3K/mTOR
signaling pathway and thus triggers apoptotic cell death [6].
Recent studies support the rationale for using omipalisib as a
therapeutic approach for ESCC patients [3]. However, despite
initial efficacy, cancer cells often develop resistance to these
inhibitors, limiting their long-term therapeutic benefits [4].

The complexity of the PI3K/AKT/mTOR signaling network is
substantial, and recent studies suggest several possible resistance
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mechanisms. One of the less explored resistancemechanisms in ES is
the involvement of stress granules (SGs) that is linked to the PI3K
pathway. SGs are a type of membrane-less organelle that arise
when cells are exposed to stress stimuli and help the cells cope
with the stress [7]. Their formation is critical for cell survival
because these block apoptosis by reducing reactive oxygen species,
sequestering signaling molecules, and stabilizing anti-apoptotic
factor mRNAs [8]. When translation initiation is halted, SGs form
in the cytoplasm and contain RNA-binding proteins, non translated
RNAs, several types of translation initiation factors, poly(A)-
binding proteins, and ribosomal subunits [9]. When stresses are
encountered, SGs instantly assemble and are cleaned up once the
stressors have passed [10]. Cancer cells exist in a complex
microenvironment that is characterized by high-stress stimuli like
oxidative stress, ER stress, hypoxia, and nutrient deprivation [11].

In the present study, we perform in silico analysis of an RNA
sequencing dataset obtained from an ESCC cell line in response to
omipalisib treatment. Our primary objective is to identify novel
molecular targets, specifically SG-related proteins, which
contribute to drug resistance in EC. We hypothesize the existence
of integrated stress response upon omipalisib drug action. We
infer from our analysis that novel molecular targets could serve as
strong predictors of poor prognosis and serve to be key targets for
further drug discovery against EC. By identifying these targets,
we also propose novel therapeutic strategies that could enhance
the effectiveness of PI3K/AKT/mTOR inhibitors in EC treatment.

2. Materials and Methods

TheGene ExpressionOmnibus (GEO) databasewas searched for
gene expression profiling studies related to drug resistance in EC.
Following a thorough review of the literature, we identified that a
study on the RNA sequencing dataset of esophageal tumor cell
line “KYSE150” (GEO_Accession “GSE143462”) is most suitable
to examine our hypothesis. Thus, we used this dataset for
computational analysis to gain further insights into novel molecular
targets for EC discovery [3] l.

The methodology adopted in the present study involves
various tools in a stepwise manner. The tools mainly include
the Short Read Archive (SRA) tool kit [12], RNASTAR [13],
FASTQC [14], MultiQC [15], RSeQC [16], Feature Counts
[17], and DESeq2 [18]. They represent a pipeline for analysis
of the RNA sequences for gene expression study of a specific
cancer type. These tools are present as a collection in the web-
based platform called RNA Galaxy suite. To utilize the above
bioinformatics tool to its maximum potential, we initially tried
to optimize the usage of each tool in the galaxy suite [19].

2.1. Differential gene expression analysis

GEO [20], a repository that contains microarray, next
generation sequencing, and other technologies, is archived and

publicly distributed datasets, used to analyze RNA-seq data from
esophageal tumor cell line “KYSE150” with two condition
control and treated with omipalisib (Table 1). Downloaded all
fastq files from the SRA data from the National Center for
Biotechnology Information (NCBI) using SRA toolkit-2.11.0
[12] after uploading the accession number text file on Galaxy
suite. The FastQC-0.11.8 [14] and MultiQC-1.11 [15] tools were
used to analyze the quality of the RNA-seq reads, and they
were aligned to the GRCh38 reference genome using the
STAR-2.78a tool [13]. STAR (Spliced Transcripts Alignment to
a Reference) is an RNA-seq read mapper that uses suffix arrays,
seed clustering, and stitching algorithms to locate and map
noncanonical splice sites, chimera sequences, and full-length
RNA sequences. RSeQC-2.6.4 [16] was used to assess the
quality of BAM files, featureConts-2.0.1 [17] was used to
quantify the transcripts, and the DESeq2-1.34.0 [18] program
was used to find differentially expressed genes.

2.2. Functional enrichment analysis

PathView web tool produces significant, hyperlinked pathway
graphs and allows for simple interactive access. PathView, a
Bioconductor package, was used to check if the genes detected
have a specific role in a pathway [21].

2.3. EGSEA

The ensemble of gene set enrichment analyses (EGSEA) is a
technique for RNA sequencing data that integrates the outcomes of
12 algorithms and produces collective gene set scores to increase
the biological relevance of the top-ranked gene sets. An input of
a count’s matrix (counts table) containing raw RNA-seq read
counts was used to generate outputs in various formats like Stats
table, Heatmap, Summary plots, Pathways, and GO (Gene
Ontology) graph [22]. GOseq was used to investigate the
biological functions of major differentially expressed genes in
the study using gene ontology enrichment analysis. It is
evaluated with the Wallenius P-value with the Benjamini-
Hochberg-corrected P-value default program [23].

3. Results

3.1. In silico analysis of transcriptome profiles
in response to omipalisib treatment

Examination of transcriptome profile in response to omipalisib-
treated “KYSE150” cell lines indicated that a total of 10003 genes
were differentially expressed. The highly upregulated gene with
the lowest p value of 5.91e-132 was MMPIO at 5.28 log2(FC)
whereas the highly downregulated gene with the lowest p-value of
5.48e-18 was CHACl at −3.19 log2(FC).

Table 1. The properties of the RNA-seq datasets used in this study

GEO_Accession Source_name Treatment

GSM4259875 KYSE150 is not treated by omipalisib Control
GSM4259876 KYSE150 is not treated by omipalisib (repeated) Control
GSM4259877 KYSE150 is not treated by omipalisib (repeated) Control
GSM4259878 KYSE150 is treated by omipalisib Omipalisib
GSM4259879 KYSE150 is treated by omipalisib (repeated) Omipalisib
GSM4259880 KYSE150 is treated by omipalisib (repeated) Omipalisib
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3.2. Quality control and differential expression
analysis

Sample-level quality check by principal component analysis
assures that how well do our replicates cluster together? and
whether experimental conditions represent the major source of
variation. We obtained an acceptable score showing the
experimental condition variance (PCl > 90%) and within-sample
variance (PC2 < 5%) (Figure 1). MA plot visualizes and
identifies gene expression changes from two different conditions.
Genes with similar expression values in both normal and
treated samples will cluster around the M = O value, i.e., no
significant difference, the gene is upregulated when M > O, and
it is downregulated when M < 0 (Figure 2). There are
2,522 upregulated genes (log2(FC) > 0; p-value 0.5) and
3036 downregulated genes (log2(FC) < 0; p-value 0.5 found
after DESeq2-output analysis. Table 2 lists the differentially
expressed genes that have been significantly upregulated and
downregulated.

3.3. Pathway analysis and functional enrichment

We performed comprehensive pathway analysis and
functional enrichment to move beyond the simple cataloging of
differentially expressed genes. Functional enrichment analysis
using Pathview indicates the mTOR signaling pathway to be the
most downregulated (Figure 3). According to previous research,
omipalisib therapy disrupted the activation of PI3K/AKT/mTOR
and ERK signaling by decreasing the expression of p-AKT,
p-4EBP1, p-p70S6K, p-S6, and p-ERK [3]. This result is
re-established in the present analysis. Apart from mTOR
signaling, we observed the FOXO signaling pathway upregulated
(Figure 4), and the JAK-STAT signaling upregulated (Figure 5).
As shown in Table 3, most genes were likewise discovered to be
downregulated and upregulated associated with their pathway
with log2(FC) and p-value.

Figure 1. Principal component analysis. A variation of 5% across sample clusters is acceptable, and a variance of 92% between
experiment conditions is expected

Figure 2. MA-d for Drug: resistant vs sensitive: Downregulated
genes are more than upregulated. M= 0: significant difference,
M> 0: gene is upregulated, M< 0: gene is downregulated

Table 2. Topmost significantly upregulated and downregulated
differentially expressed genes

Upregulated

Gene ID Gene symbol Log2(FC) P-adj

4319 MMP10 5.280233 4.10e−133

4322 MMP13 4.858445 2.98e−148

4321 MMP12 3.767515 7.57e−33

284029 LINC00324 3.454341 3.19e−27

8743 TNFSF10 3.441384 4.09e−26

9976 CLEC2B 3.321622 2.73e−47

1003 CDH5 3.127903 2.28e−15

4314 MMP3 3.119116 1.56e−26

3433 IFIT2 3.026504 5.25e−15

114907 FBXO32 2.964443 3.52e−111

Downregulated

Gene ID Gene symbol Log2(FC) P-adj

79094 CHAC1 −3.19259 2.88e−16

57103 TIGAR −2.55906 1.54e−41

57026 PDXP −2.37463 9.23e−36

29968 PSAT1 −2.37042 4.96e−53

84915 FAM222A −2.3621 1.86e−17

25907 TMEM158 −2.35788 2.76e−25

8862 APLN −2.34395 6.44e−24

993 CDC25A −2.2083 3.88e−44

122953 JDP2 −2.13486 3.05e−26

595 CCND1 −2.107 6.15e−30
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Figure 3. “mTOR signaling pathway” Upregulated genes are labeled red, whereas downregulated genes are colored green

Figure 4. “FoxO signaling pathway” Upregulated genes are labeled red, whereas downregulated genes are colored green. In the
orange box, the main genes are featured along with their notable works
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3.4. Gene set enrichment and ontology analysis

To further elucidate the biological significance of
the observed gene expression changes, we conducted
EGSEA and GOseq analyses. EGSEA functional enrichment
analysis indicated that the hallmark cancer gene set

TNFA_signalling_via_NFKB and KEGG pathway gene set
FOXO signaling pathway was observed to be upregulated in
response to the drug omipalisib. GOseq functional analysis
results indicate enrichment of gene ontology terms related to
RNA binding, mitochondria, and translation termination. Both
EGSEA and Goseq analysis led us to examine further the
involvement of SGs in response to the drug omipalisib.

3.5. Identification of novel SG-related proteins

Through our post-expression data mining, we observed the
enrichment of sixteen novel proteins involved in SG’s function
that are found to be highly upregulated with log2(FC)> 1, and
significant (P-adj< 0.05) and interpreted based on MSGP
database r271 as shown in (Table 4, Figure 6). The findings of
this study provide important insights into the molecular
mechanisms underlying drug resistance in EC. By performing a
detailed in silico analysis of RNA sequencing data from
omipalisib-treated EC cell lines, we identified key molecular
targets and pathways that may play crucial roles in mediating
resistance to PI3K/mTOR inhibition.

4. Discussion

The current research problem in cancer therapeutics is about
overcoming drug resistance. Studies on omipalisib are proven to
surmount this resistance to a certain extent when used as a dual
inhibitor of PI3K and mTOR signaling. Omipalisib is a dual
inhibitor medication, which means it has two inhibitory actions.
It is an ATP-competitive inhibitor with sub-nanomolar action
against p110α, p110β, p110γ, and p110δ, as well as the mTOR1
and mTOR2 complexes [5]. However, a recent review [10]
suggests that a chemotherapeutic resistance is conferred also in
the case of such dual inhibitors like omipalisib in response to
PI3K signaling pathway inhibition. This is reasoned, due to the
complexity of the PI3K/AKT/mTOR signaling network which
involves numerous feedback loops, extensive crosstalk nodes
with other signaling pathways, and compensatory pathways,
providing ample opportunities for circumventing the effects of
PI3K inhibition [10].

Figure 5. “JAK-STAT signaling pathway” Upregulated genes are labeled red, whereas downregulated genes are colored green

Table 3. Major pathway and their most significant enriched
genes

mTOR signaling pathway

GeneID Gene Log(2)FC P-value

207 AKT1 −0.3654 2.08e−03

2475 mTOR −0.4874 1.1e−04

9894 TELO2 −0.5489 5.74e−06

9675 TTI1 −0.7326 2.66e−11

1978 EIF4EBP1 (4E-BP1) −0.4348 4.08e−04

6199 RPS6KB2 (S6K) −0.6800 2.07e−08

1977 EIF4E −0.9605 2.86e−07

9470 EIF4E2 −0.4403 6.27e−05

FoxO signaling pathway

GeneID Gene Log(2)FC P-value

2308 FOXO1 0.71007 1.12e−06

2309 FOXO3 0.38522 4.075e−03

4303 FOXO4 1.16406 1.48e−15

23411 SIRT1 0.48297 1.97e−03

8743 TNFSF10 (TRAIL) 3.44138 2.27e−28

23710 GABARAPL1 (ATG8) 2.28403 7.56e−59

10018 BCL2L11 (BIM) 0.54143 1.134e−04

604 BCL6 0.77408 7.99e−05

9140 ATG12 0.44031 5.516e−03

472 ATM 0.57146 5.54e−05

JAK-STAT signaling pathway

GeneID Gene Log(2)FC P-value

3718 JAK3 1.55169 4.75e−08

6773 STAT2 1.05548 1.02e−15

6778 STAT6 0.76726 7.08e−10

9021 SOCS3 1.524316 1.08e−15
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Table 4. Highly unregulated stress granules

S. No GeneID log2fc Adjusted P-value Description Remark Reference

1. ACAPI 1.20 7.44e-08 ArfGAP With Coiled-Coil,
Ankyrin Repeat and PH
Domains 1

l) ACAP expression is suggested to predict
poor prognosis.

2) Expression and methylation strongly
correlated with immune infiltration,
regulated tumor microenvironment, and
cancer cell sternness.

[24]

2. ANG 1.00 0.002413 Angiogenin 1) Activate tumor angiogenesis.
2) ANG upregulation is associated with
metastasis in colorectal cancer patients.

[25]

3. DDX58 1.05 0.021888 DExD/H-Box Helicase 58 Immune surveillance protein is suggested to
have a role in activating autophagy and
protection from lipotoxicity.

The study indicates the regulation of the
autophagy receptor protein SQSTM1/p62
through DDX58.

Activated DDX58 increases a cytoprotective
autophagic response via SQSTM1/p62 and
this aids cell survival in prostate cancer.

[26, 27]

4. DST 2.26 4.43e−30 Dystonia Dystonia maintains focal adhesion integrity.
DST isoform promotes migration,
invasion, and tumorigenic potential in oral
squamous carcinoma cells.

[28]

5. DTX3L 1.25 7.64e−19 E3 ubiquitin-protein
ligase DTX3L

Deltex-3-like (DTX3L), also known as
B-lymphoma and BAL-associated protein
(BBAP), has been reported to play an
important role in the progression of many
tumors.

DTX3L is reported to be highly expressed in
the glioma tissues and its level was
correlated with the grade of malignancy.

Silencing of DTX3L improved sensitivity to
chemotherapy drugs in multiple myeloma
cell lines.

[29, 30]

6. EIF4E3 1.41 3.68e−08 Eukaryotic Translation
Initiation Factor 4E
Family Member 3

A family of translation initiation factors that
bind to mRNA 5' cap regulating the
proteome and cellular phenotype. EIF4E3
is suggested to act as the second branch of
integrated stress response reprograming the
translatome to promote stress resistance
and adaptation.

[31, 32]

7. GRB7 2.26 1.36e−44 Growth Factor Receptor
Bound Protein 7

An RNA-binding translation regulator.
Regulates the dynamics of SG formation
and assembly.

GRB7 plays a role in regulating angiogenesis
in ovarian cancer.

GRB7 is reported to be an oncogenic driver
in esophageal adenocarcinoma and a
potential therapeutic target.

[33–35]

8. IGF2BP3 1.10 0.000202 Insulin-like Growth Factor
2 mRNA-Binding Protein 3

Component of RNA granules.
Implicated to establish a complex positive
feedback loop that further facilitates tumor
cell growth and malignancy.

[36]

9. KIF13B 1.08 1.91e−13 Kinesin Family Member 13B The Kinesin superfamily is involved in
different types of cancer. They are
implicated in Triple Negative Breast
Cancer proliferation and metastasis.

[37]

10. OASL 1.43 0.002068 2'-5'-0ligoadenylate
Synthetase Like

Studies suggest suppression of OASLI
showed a synergistic effect on tumor
clearance with conventional cancer
therapies.

[38]

(Continued)
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4.1. Novel insights into resistance mechanisms

In the present study, we used RNA sequencing-based
computational analysis to provide insight into the association of
SG participants with previously dealt PB-Kinase pathway. Upon
computing differential gene expression using RNA-seq data and
interpreting the gene list, we discovered interesting pathways.
We observed the FoxO signaling pathway upregulated in

response to resistance to oxidative stress [44] and the JAK-
STAT signaling pathway upregulated in response to tissue stress
[45] in response to omipalisib drug action. In the FoxO
signaling pathway, the most upregulated genes are TNFSFIO,
GABARAPLI, and FOX04 with log2(FC) 3.44138, 2.28403,
and 1.16406 respectively and in the JAK-STAT signaling
pathway most upregulated genes JAK3, SOCS3, and STAT2
with 1.55169, 1.524316, and 1.05548.

Table 4. (Continued )

S. No GeneID log2fc Adjusted P-value Description Remark Reference

11. PARP14 1.32 2.21e−13 Poly (ADP-Ribose)
Polymerase
Family Member 14

PARPl 4 is an interferon-stimulated gene
(ISG) that is overexpressed in tumors
compared to normal tissues and has been
implicated by genetic knockout studies to
promote pro-tumor macrophage
polarization and suppress antitumor
inflammatory response due to its role in
modulating IL-4 and IFN-y signaling
pathways. Current literature considers
PARPI 4 as an intriguing drug target for
the treatment of tumors and allergic
inflammation. Utilizes nicotinamide
adenine dinucleotide (NAD+) as a
substrate to perform mono- or poly-ADP-
ribosylation modification on target proteins

[39]

12. PDCD4 1.50 3.4e−20 Programmed Cell
Death 4

Involved in the SG formation through its
RNA-binding activity. It is suggested to be
a potential target for mitigating SG-
associated stress responses in obesity and
related disease.

[40]

13. SERPIN
El

1.32 6.2e−17 Serpine Family
E Member 1

Upregulated in different types of cancer
including oral squamous cell carcinoma.

It is the cancer-promoting gene in gastric
adenocarcinoma that facilitate tumor cell
proliferation, migration, invasion, and
regulating EMT.

A high expression of these proteins increases
drug resistance.

[41]

14. SQSTMI 1.33 4.62e−26 Sequestosome 1 A multifunctional adaptor protein implicated
in selective autophagy, cell signaling
pathways, and tumorigenesis.

[27, 28]

15. TNKS 1.03 1.95e−12 Tankyrase Tankyrase, a member of the poly(ADP-
ribose)polymerase family, mediates Wnt
signal transduction and has emerged as a
new molecular target for the therapy of
different kinds of cancer.

It also catalyzes ADP ribosylation of the
target protein by moving a unit of
ADP-ribose moiety from the
NAD+ co-substrate.

[42]

16. UPF3B 1.01 5.94E-07 UPF3B, Regulator of
Nonsense
Mediated mRNA Decay

Tumors adjust NMD activity to adapt to their
microenvironment. Although they are
suggested to play a complex role in cancer.
Current literature considers PARPI 4 as an
intriguing drug target for the treatment of
tumors and allergic inflammation. Utilizes
nicotinamide adenine dinucleotide (NAD
+) as a substrate to perform mono- or
poly-ADP-ribosylation modification on
target proteins.

[43]
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Based on the analysis of pathways enrichment results, we
understand that the EC cell lines are subject to oxidative stress
and tissue stress in response to omipalisib treatment. We further
observed that a total of 16 proteins were highly expressed in
response to omipalisib. They are implicated in the regulation and
dynamics of SG assembly. Further, a detailed examination of
these proteins (Table 4) supports the role of these SGs in
promoting carcinogenesis and tumor growth. These results from
our analysis are novel findings in the present study, and we
report them to be useful therapeutic targets for further drug
discovery and development of prognostic markers for EC
treatment.

4.2. Autophagy and SGs in drug resistance

An earlier study on the omipalisib drug response to the EC cell
line did not identify any role of autophagic response [3]. However, in
our analysis, we find evidence for the role of autophagy. The signaling
pathways reported in our analysis support the role of autophagy. In
addition, the evaluation of SGs like DDX58 and SQSTMl plays a
role in selective and cytoprotective autophagy response resulting in
promoting tumorigenesis (Table 4). These results support the role of
these SGs in promoting features like epithelial-mesenchymal
transition (EMT), cancer cell sternness, and immune infiltration that
are resultant due to adaptation to stress resistance under drug
response and would lead to tumor growth and malignancy.

4.3. Corroboration with previous studies

Our results corroborate with earlier reports on the
drug resistance to PI3K/AKT inhibition in the following ways: (a)
Dual inhibition of PI3K and mTOR has been found to elicit a
positive feedback response and lead to increased activation of

JAK2/STAT5 and secretion of IL-8, thus contributing to drug
resistance [46]. (b) The IL-6-STAT3 loop is suggested to trigger
EMT [47]. The IL6 and STAT components are found to be
upregulated in our computational analysis. This correlates with
studies that show that EMT allows solid tumors to become more
malignant, increasing their invasiveness and metastatic activity
[48]. Hence, we suggest that the components of these pathways
are differentially expressed to counteract the response to
omipalisib drug action. Resistance to oxidative stress and tissue
stress is highlighted in these pathways. This contributes to anti-
apoptotic and cell survival features in cancer cells enhancing
tumorigenesis in addition to emerging drug resistance.

4.4. Future directions and limitations

While our in silico analysis has revealed promising targets and
pathways involved in drug resistance, it is important to note that these
findings require experimental validation. Future studies should focus
on validating the role of the identified SG-related proteins and
signaling pathways through functional assays, such as knockdown
or overexpression studies, and their impact on drug sensitivity in
EC cell lines and patient-derived xenografts.

5. Conclusion

In conclusion, the association of the signaling pathways such as
FoxO and JAK-STAT signaling observed in response to the
omipalisib drug is a novel finding in our study. Further insight
into the association of these pathways with SG formation is
required to validate these new molecular targets and support drug
design and discovery for the curative treatment of EC. Our study
provides a strong foundation for future experimental work aimed
at overcoming drug resistance in EC treatment.

Figure 6. Functional enrichment analysis. (A) Goseq result represents top overrepresented functional categories. (B) & (C) EGSEA
result representing summary plots of upregulated pathways highlighted in red circles
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Abbreviations

SGs Stress Granules
PI3K Phosphoinositol-3-kinase

mTOR Mammalian target of rapamycin
AC Adenocarcinoma
Sec Squamous cell carcinoma

GERD Gastroesophageal reflux disease
FoxO Fork-head box transcription factors
ROS Reducing reactive oxygen

mRNA Messenger Ribonucleic Acid
RBPs RNA-Binding Proteins
ER Endoplasmic reticulum

RNA-seq RNA sequencing
GEO Gene Expression Omnibus
SRA Short Read Archive

NCBI National Center for Biotechnology Information
QC Quality Check

STAR Spliced Transcripts Alignment to a Reference
RSeQC RNA-seq data Quality Check
BAM Binary Alignment Map

DESeq Differential Expression Sequence
DEGs Differentially expressed genes
logFC Log fold change

PC Principle Component
GO Gene ontology
MF Molecular function
BP Biological processes
CC Cellular component

KEGG Kyoto Encyclopedia of Genes and Genomes
ERK Extracellular signal-regulated kinases

JAK-STAT Janus kinase/signal transducers and activators of
transcription

MSGP Mammalian Stress Granules Proteome
EMT Epithelial-Mesenchymal Transition
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