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VSegNet –AVariant SegNet for Improving
Segmentation Accuracy in Medical Images
with Class Imbalance and Limited Data
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Abstract:Deep learning methods for many medical image segmentation task encounter challenges like smaller datasets and class imbalance.
This study proposes a variant SegNet (vSegNet) designed to deliver significantly accurate and reliable segmentation results on such datasets.
The novelty lies in designing encoder and decoder blocks with an appropriate number of convolution layers and using the Dice score and
Hausdorff distance (HD) as compound loss function in learning. This study used public datasets consisting of chest X-rays, axial CT slices,
foot ulcer images, and subset of SPIDER dataset to benchmark the segmentation task of the proposed neural network model with other popular
networks like U-Net, SegNet, DeepLabv3+, VGG16,MobileNetV2, and fully convolutional network (FCN). For the segmentation of lungs in
chest X-rays, vertebral body in CT, augmented data for the previous case, foot ulcer dataset, and segmentation of vertebrae, intervertebral
disks, and spinal canal in SPIDER dataset (MRI dataset) respectively, the proposed vSegNet performed with a Dice score of 0.96 ± 0.01, 0.90
± 0.20, 0.95 ± 0.02, 0.86 ± 0.07, and 0.95 ± 0.01 and the HD of 14.33 ± 7.74, 8.45 ± 7.08, 7.99 ± 6.05, 29.32 ± 25.64, and 8.45 ± 2.81 with
respect to the ground truth on the test dataset. These results highlight the effectiveness of the proposed model in delivering both higher
segmentation accuracy and improved boundary delineation. The proposed network, vSegNet, has been demonstrated as an effective
model for semantic segmentation on class-imbalanced smaller datasets, surpassing all other networks considered in this study in terms of
mIoU, BF score, Dice score, HD, accuracy, precision, recall, and F1 score on a variety of anatomical regions and medical imaging modalities.
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1. Introduction

Medical image segmentation is one of the essential steps for
accurate diagnosis and treatment planning, yet it faces several
challenges like class imbalance and limited data to name a few. For
instance, segmenting the foreground of different organs from
medical images often involves identifying smaller or less common
structures compared to larger, more prevalent ones. This imbalance
leads to models that may underperform in detecting these less
common regions. Additionally, creating large annotated datasets is
both challenging and time-consuming. Addressing class imbalance
and data scarcity is crucial for developing robust segmentation
models and improving diagnostic precision. However, traditional
handcrafted methods face challenges when applied on complex
segmentation tasks on images with varied illumination, making
them less adaptable to different applications [1, 2]. Neural networks
for image segmentation evolved from U-Net to DeepLab and Mask
R-CNN [3–5]. However, most architectures are developed and
evaluated on large datasets, overlooking the challenges of smaller
databases that commonly occur in many medical image
segmentation task. To address this, approaches like transfer learning
and domain adaptation are crucial [6–8].

Decoder structures have improved deep neural network
performance on new datasets with fewer training samples [9–11].
Preprocessing techniques can enhance image analysis, but
segmentation of smaller and infrequent objects remains challenging.
Atrous convolution and spatial pyramid pooling can extract features
for segmentation from image classification models [12, 13]. Current
medical image segmentation methods using deep learning face
challenges with organ deformations, weak edges, and limited
adaptability to diverse-scale regions [14–16]. Self-supervised
models encounter difficulties with inhomogeneous backgrounds and
distinguishing distinct regions within medical images [17].
Approaches like VLUU and DeepLABNet address partial labels
and stability but can cause over-segmentation [18, 19]. These
methods may also suffer from limitations such as blurry boundaries,
over-segmentation, prolonged training time, and reliance on prior
knowledge [20–23]. Due to class imbalance, traditional loss
functions like cross-entropy are not enough for medical image
segmentation [24–26]. Compound loss functions (CL) are necessary
to optimize the model’s performance across various objectives
[25, 27, 28]. Focal loss [29] can mitigate the impact of dominant
classes, but small databases remain a challenge.

Despite advancements in image segmentation, existing
methods struggle with complexities such as small datasets, class
imbalance, and issues like blurry boundaries and over-
segmentation as revealed by the comprehensive literature review.
Many methods often rely on large datasets and may not
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effectively handle these complexities. Thus, there is a need for new
architectures and loss functions that can address these limitations and
advance the effectiveness of segmentation methods for complex
medical images. Our study proposes a neural network and a CL
function to address class imbalance and limited data availability,
especially in the medical image segmentation. We demonstrate the
effectiveness of the proposed variant SegNet (vSegNet) for
segmentation tasks in multi-modal images consisting of both
grayscale and RGB images. We also present a comprehensive
comparative analysis with many state-of-the-art neural models and
discuss the prospects of the method.

2. Materials and Methods

This sectiondescribes theproposeddeep fully convolutional neural
network architecture with CL function, details of dataset used, and the
state-of-the-art networks chosen for performance comparison.

2.1. vSegNet model

This study proposes a novel deep fully convolutional neural
network architecture – vSegNet, shown in Figure 1, for semantic
segmentation and tested the same on four public image datasets. It
differs from regular SegNet in two ways.

1) vSegNet neural network model uses a varied number of
convolution layers, which distinguishes it from the SegNet
architecture [9] and Xavier initialization. Each encoder network
convolution layer extracts features using a 3-by-3 filter bank and
is followed by batch normalization and ReLU activation.
Encoder extracts hierarchical features from input images, which
are decoded to reconstruct segmented outputs with spatial
precision using indices from Maxpooling layers. Maxpooling
layers with stride 2 and kernel of 2 are used for all datasets.

2) To improve boundary precision and object localization, Dice loss
(DL) and two-sided Hausdorff distance loss function (HDL) as

given in the Equations (1) and (2) are combined to form a CL
function as in Equation (5). DL helps to delineate overlapping
structures, while HDL is useful when the region of interest
(ROI) has shape dissimilarity. The non-weighted loss function
combination helps to improve the efficiency in segmentation
tasks involving non-overlapping regions and boundaries. The
CL with the DL and the HDL addresses the challenges of class
imbalance and accurate boundary delineation. The DL, which
measures overlap, ensures robust segmentation of small or
irregularly shaped regions. The HDL, focusing on the
maximum boundary error, enhances the precision of the
segmented contours. This combination is especially required
for medical image segmentation, where accurate identification
of boundaries and balancing the classes are crucial for clinical
decision-making. By integrating these metrics, our approach
significantly improves segmentation performance, especially in
datasets with limited samples and pronounced class imbalance.

DL ¼ 1� 2
P

N
i pigiP

N
i p2i þ

P
N
i g2i

(1)

where pi is the values of predicted posterior probability and gi is that
of the ground truth of corresponding pixel.

HDL ¼ H A;Bð Þ ¼ max h A;Bð Þ; h B;Að Þf g (2)

where,

h A;Bð Þ ¼ max
x2X

min
y2Y

jj x � y jj2 (3)

h B;Að Þ ¼ max
y2Y

min
x2X

jj x � y jj2 (4)

Figure 1. Proposed vSegNetmodel. Input layer is placed before the first encoder convolution layer, and the pixel classification layer is
included after softmax layer.
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CL ¼ DLþHDL (5)

A deeper encoder in vSegNet enables the extraction of more complex
and detailed features from input images, which is particularly
beneficial for medical image segmentation tasks. The decoder
network in vSegNet mirrors the encoder’s structure but focuses on
up-sampling the feature maps to match the original image
resolution. The skip connections between the corresponding
encoder and decoder layers preserve fine-grained details that
might be lost during pooling operations. Improved encoder-
decoder connections and the proposed CL function ensure that the
feature maps are reconstructed with better resolution. This
enhances the model’s ability to accurately segment small or
intricate structures in medical images, which could address the
class imbalance challenge and provide improved segmentation in
the smaller dataset. Alongside the proposed loss function, we also
use the vSegNet with cross-entropy loss function to do a
comparison between the performance of the vSegNet with the
proposed loss function and the standard cross-entropy loss.

2.2. Dataset

vSegNet’s segmentation performancewas benchmarked using four
open-source datasets. Sample images and their ground truth label are
shown in Figure 2. The datasets are enumerated and described below.

1) Segmentation of lungs from the chest X-rays of Montgomery
County (MC) and Shenzhen X-ray sets (SC): MC dataset is a
deidentified chest X-rays repository and manual annotation for
lungs from the Department of Health and Human Services of
Maryland, USA, accessible for reference studies by the
National Library of Medicine (NLM). SC is a collection of
labeled chest X-rays for normal lungs and pulmonary TB
manifestations from Shenzhen No.3 hospital in Shenzhen,
China, and made publicly available by NLM [30–34]. Each of
the grayscale images is 256*256 pixel in.png format.

2) Vertebral body (VB) segmentation from computed tomography
(CT) images: CT axial slices of 5 patients with the annotation
for the VB from Computer vision and image processing lab,
university of Louisville (CVIP) [35, 36]. This dataset did not
stratify the samples based on patients. The dimension of the
2D axial slice is 512*512 in.bmp format. The ROI in the
image contains a significantly lesser number of pixels
compared to the background. Thus, we assessed the
performance of the networks on the class-imbalanced images
and augmented dataset by increasing the number of samples by
augmenting with rotation in the range of ±20°.

3) Foot ulcer (FU) dataset from Advancing the Zenith of Healthcare
Wound and Vascular Center [37]. Ground truth for the wound
area is marked and available along with the dataset. All the
samples are 512*512*3 pixels in dimension in.png format. The
ulcer is not always a single connected region, as can be seen in
the image Figure 2(C).

4) T2-weighted sagittal slices of lumbar spine magnetic resonance
imaging scans (MRI) images from SPIDER dataset (MRI dataset)
[38]: MRI images are available with annotation for vertebrae,
intervertebral disks, and spinal canal in each series. The annotated
regions are together combined as foreground. A total of 257
patients’ MRI series are used in the study, comprising 3,535
sagittal slices. Samples are resized to 256*256 in.png format. In
our study, the dataset includes three anatomical structures:
vertebrae, spinal canal, and intervertebral discs, each marked with
different labels. For our binary segmentation tasks, we unified these

labels by treating all three structures as a single foreground class,
while assigning the rest of the image a background. This
simplification was adopted to streamline the segmentation process
and concentrate on distinguishing the spinal structures from the
background. Combining these structures into a single class allows
us to enhance the model’s ability to detect and segment relevant
spinal anatomy without the added complexity of differentiating
between individual spinal components. This approach is
particularly advantageous when the primary objective is to isolate

Figure 2. Samples from datasets and the corresponding
label (segmentation ground truth) used in this study to
benchmark the proposed neural network model vSegNet for
segmentation. (A) X-ray image of chest: Sample image from
MC SC dataset. (B) CT image of vertebrae: Sample image
from CVIP dataset. (C) RGB image of foot ulcer: Sample
image from FU dataset. (D) MRI image of lumbar spine:
Sample image from SPIDER (MRI dataset).
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any spinal structure from the surrounding tissues, thus improving
segmentation accuracy and reducing computational complexity.
This dataset is also large and thus helped in evaluating the proposed
networks generality in segmentation in larger datasets as well.

For training, validating, and testing the performance, data in
each dataset are split as follows:

1) MC SC dataset: 197 images for training, 25 for validation, and 25
for testing

2) CVIP dataset: 279 samples for training, 35 for validation, and 35
for performance evaluation

3) FU dataset: 648 images for training, 81 samples for validation,
and 81 for testing

4) MRI dataset: 2829 images for training, 353 images for validation,
and 353 samples for testing

In this study, we did not apply any preprocessing techniques to the
images. This approach was chosen to evaluate the segmentation
performance of the proposed model without any potential bias due
to preprocessing steps.

2.3. Benchmarking networks

We compared vSegNet model with various state-of-the-art neural
networks on four public datasets as described in Section 2.2 and
evaluated the performance for two different loss functions. We utilized
U-Net [3], SegNet (without weights) [9], SegNet (with VGG16
pretrained weights from the ImageNet dataset) [9], VGG16 [6],
MobileNetV2 [39], Pretrained DeepLabv3+ with Resnet18 weights
[13], and Pretrained fully convolutional network (FCN) with VGG16
weights from ImageNet dataset [40] to benchmark and compare the
performance of vSegNet. In our study, we employed original weight
initialization methods for the networks, U-Net, SegNet, Decoder layers
of Pretrained SegNet used the He method, and models VGG16 and
MobileNetV2 used the Gloret method. As the original architectures of
U-Net, SegNet, VGG16, MobileNetV2, DeepLabv3+, and FCN
models use cross-entropy as their loss function, we have maintained

the same in this study. All models were trained for 100 epochs for all
datasets except the MRI dataset. Due to the larger training set in MRI
dataset, the number of epochs is reduced to 20 during training to
prevent overfitting and improve computational efficiency. The training
was end-to-end with a constant learning rate of 0.001 with mini-batch
size of 2. All computations were performed using MATLAB®

R2021a on NVIDIA® Titan Xp. Titan Xp GPU used had Pascal
architecture with memory speed 11.4 Gbps, boost clock 1582 MHz
and 12 GB standard memory configuration.

3. Results

For faster convergence and better generalization, mini-batch
size of 2 is used to train models considering image dimension and
GPU memory. Validation dataset is used for unbiased evaluation
and hyperparameter tuning. Stochastic Gradient Descent with
Momentum is used to optimize training process.

3.1. Overview of training and testing

Models are trainedwithout dropout and early stop and evaluated
using testing, and validation data. Convolution layers use 3*3
kernels. Training accuracy, number of weights learned, and size of
the models in MegaBytes are presented in Table 1 for
comparison. Forward and backward pass times are calculated as
the average of 10 iterations with a Minibatch size of 1. vSegNet
model has 18 convolution layers together in its encoder and
decoder, making it deeper than SegNet. However, it has fewer
learnable parameters resulting in a shorter training time and better
training accuracy. vSegNet shows training efficacy with minimal
loss of accuracy (less than 1% compared to the best training
efficiency), as presented in Table 1. Figure 3 shows the results of
computational efficacy of segmentation using 10 samples from the
test set. vSegNet model performed efficiently, while most time
expensive was for the pretrained SegNet. This is due to number of
learnable parameters and model size (see Table 1), which are the
lowest for vSegNet. FU dataset takes the longest test time for all
the models, due to the higher resolution images.

Figure 3. Comparison of testing time. vSegNet (both h and i) has notably lesser testing time. Model labels, a: U-Net,
b: Pretrained SegNet, c: SegNet, d: VGG16, e: MobileNetV2, f: Pretrained DeepLabv3+, g: Pretrained FCN, h: vSegNet
(cross-entropy), i: vSegNet (CL).
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3.2. Qualitative comparison of segmentation results

Figure 4 shows the segmentation performance of different
networks on one example from each dataset’s test group, with
ground truth and the segmentation done by the different
models. In each of the images, correctly segmented regions are
shown in white and the incorrect regions are shown in red
(background misclassified) and blue (foreground misclassified).
vSegNet with a combined loss function demonstrated good
performance in MC SC dataset, while the boundary errors are
particularly significant in segmentation done by other networks.

MobileNetV2 failed to segment vertebral bodies in the CVIP
dataset and U-Net in the FU dataset (refer Figure 4(E) and 4(I)).
U-Net segmented many unwanted features along with the label
in the CVIP datasets (refer Figure 4(E)). In the FU dataset,
vSegNet demonstrated superior segmentation quality compared
to U-Net, especially using the proposed combined loss function
compared to cross-entropy. The results clearly highlight
vSegNet’s ability to accurately delineate regions of interest,
showcasing superior performance in comparison to other
models and affirming its robustness in handling complex
medical image segmentation tasks.

Figure 4. Sample illustration of the performance of segmentation by different models considered in this study from each dataset,
showing true positives (white), true negatives (black), false positives (red), and false negatives (blue). Column 1 is a sample from
MC SC dataset. Columns 2 & 3 show a sample from the CVIP dataset without and with augmentation, respectively. Column 4 is
a sample from FU dataset. Column 5 is a sample from MRI dataset. (A) Input image. (B) Ground truth. (C) Segmentation by
vSegNet with CL. (D) Segmentation by vSegNet with cross-entropy as loss function. (E) Segmentation by U-Net. (F)
Segmentation by Pretrained SegNet. (G) Segmentation by SegNet. (H) Segmentation by VGG16. (I) Segmentation by
MobileNetV2. (J) Segmentation by Pretrained DeepLabv3+. (K) Segmentation by Pretrained FCN.
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3.3. Comparison based on evaluation metrics

We evaluated models for accurately segmenting foregrounds
using mean accuracy, mean Intersection of Union (IoU), and
mean BF score. The higher mean IoU values show better
segmentation accuracy, indicating regions of interest are
segmented more effectively. Similarly, the higher mean BF scores
ensure precise segmentation. The results are presented in

Tables 2, 3, and 4. They show that vSegNet model performed
better than other models consistently, with a higher mean IoU and
mean BF score. However, the performance of all networks is
generally poor in FU dataset as compared to other datasets, and
the variability in performance is also more for all models for this
dataset. Considering both Dice score (as shown in Figure 5) and
HD evaluation (given in Figure 6), vSegNet exhibits high Dice
scores and low HD, indicating excellent overlap with ground truth

Figure 4. (Continued)

Table 2. Performance metrics for different models onMC SC dataset andMRI dataset. Model labels, a: U-Net, b: Pretrained SegNet,
c: SegNet, d: VGG16, e: MobileNetV2, f: Pretrained DeepLabv3+, g: Pretrained FCN, h: vSegNet (cross-entropy), i: vSegNet (CL).

Models

MC SC dataset MRI dataset

Mean accuracy Mean IoU Mean BF score Mean accuracy Mean IoU Mean BF score

a 0.500 0.143 0.003 0.939 0.904 0.92
b 0.957 0.932 0.803 0.828 0.73 0.793
c 0.964 0.926 0.780 0.977 0.961 0.924
d 0.974 0.938 0.814 0.889 0.824 0.836
e 0.900 0.832 0.824 0.81 0.719 0.801
f 0.977 0.947 0.878 0.983 0.92 0.951
g 0.963 0.908 0.905 0.946 0.914 0.929
h 0.969 0.936 0.842 0.925 0.892 0.946
i 0.980 0.958 0.917 0.987 0.97 0.982
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and minimal boundary errors. This demonstrates the model’s
precision and reliability in segmentation tasks, providing accurate
and consistent results, for all the datasets considered in this study.
For each dataset, the quantitative metrics accuracy, precision,
recall, and F1 score are presented in Figure 7. The widespread
interquartile range (IQR) of Pretrained SegNet, VGG16 for CVIP
dataset in Figure 7(B) and wider IQR for models in Figure 7(D)
suggest higher variability in the prediction performance of these
models. MobileNetV2’s performance on the FU dataset exhibits
more outliers, indicating a tendency to produce unreliable
segmentation results. The compact IQR in these plots
corresponding to vSegNet suggests its consistent performance
across various datasets, with fewer outliers compared to other
models. This consistency highlights the robustness and reliability
of the proposed model and loss function. The whiskers of the
boxplot, representing the range of scores, are shorter and thus
further demonstrate vSegNet’s enhanced efficacy in delineation.

Table 3. Performance metrics for different models on CVIP and augmented CVIP dataset. Model labels, a: U-Net, b: Pretrained
SegNet, c: SegNet, d: VGG16, e: MobileNetV2, f: Pretrained DeepLabv3+, g: Pretrained FCN, h: vSegNet (cross-entropy),
i: vSegNet (CL).

Models

CVIP dataset Augmented CVIP dataset

Mean accuracy Mean IoU Mean BF score Mean accuracy Mean IoU Mean BF score

a 0.642 0.615 0.411 0.797 0.764 0.861
b 0.894 0.642 0.811 0.924 0.659 0.857
c 0.913 0.796 0.920 0.948 0.791 0.926
d 0.787 0.753 0.856 0.942 0.824 0.927
e 0.500 0.500 0.000 0.500 0.497 0.467
f 0.897 0.802 0.937 0.950 0.829 0.947
g 0.939 0.815 0.890 0.946 0.838 0.927
h 0.931 0.495 0.481 0.933 0.757 0.694
i 0.963 0.914 0.961 0.976 0.945 0.974

Figure 5. Comparison of Dice score for various models for different datasets given as box plot. The red line indicates the median and
the blue box represents the 25% and the 75% in the Dice score. Model labels, a: U-Net, b: Pretrained SegNet, c: SegNet, d: VGG16,
e: MobileNetV2, f: Pretrained DeepLabv3+, g: Pretrained FCN, h: vSegNet (cross-entropy), i: vSegNet (CL).

Table 4. Performance metrics for different models on FU
dataset. Model labels, a: U-Net, b: Pretrained SegNet,
c: SegNet, d: VGG16, e: MobileNetV2, f: Pretrained
DeepLabv3+, g: Pretrained FCN, h: vSegNet (cross-entropy),
i: vSegNet (CL).

Models Mean accuracy Mean IoU Mean BF score

a 0.500 0.007 0.000
b 0.875 0.804 0.791
c 0.780 0.724 0.726
d 0.813 0.749 0.800
e 0.685 0.655 0.802
f 0.868 0.845 0.849
g 0.887 0.841 0.850
h 0.799 0.725 0.792
i 0.889 0.851 0.852
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4. Discussion

This study presents a variant deep fully convolutional neural
network architecture – vSegNet aimed at enhancing medical image
segmentation performance in the presence of class-imbalanced limited
datasets. This architecture is coupled with a combined loss function to
significantly improve the model’s ability to accurately segment
minority classes. Additionally, in this work, we present segmentation
on X-rays, CT scans, MR images, and RGB images, demonstrating
the model’s applicability across various medical imaging modalities.
The analysis of segmentation accuracy with various qualitative and
quantitative metrics and performance comparisons with many state-of-
art networks collectively demonstrate a substantial improvement in
segmentation accuracy and robustness of the proposed model
vSegNet, providing a promising solution for medical practitioners
dealing with limited and imbalanced data.

Chest X-ray segmentation for normal lungs and pulmonary TB
manifestations have been demonstrated in some contemporary
works. In a work [41] that uses nn-UNET, segmentation accuracy
with Dice score and HD of 0.955 ± 0.068 and 44.79 ± 60.31 for
MC dataset, and 0.949 ± 0.055 and 61.31 ± 67.97 for SC dataset is
reported. In another work [42], region-based Fuzzy C-Means, and
Mean Shift models (Dice score 0.68) struggle with intensity
similarity, causing mixing of background and lung regions, making
them perform very poorly for limited datasets with class imbalance.
A saliency model, with a higher Dice score of 0.87, shows better
performance but not suitable for medical image segmentation tasks
where clinical decision is crucial [42]. Similarly, FractalCovNet,
U-Net, and 3D-CNN models show poor performance (accuracy:
65%, 76%, 85%; recall: 14%, 28%, 38%, respectively) [43]. Their
low precision (85%, 65%, 76%) and F1-scores (30%, 42%, 53%,
respectively) highlight their ineffectiveness in handling small,
imbalanced datasets due to poor positive sample identification and
low overlap between predicted and actual labels. In comparison, the
proposed model vSegNet achieved a Dice score of 0.96 ± 0.01 and
a HD of 14.33 ± 7.74 in this dataset showing considerable
improvement in the segmentation accuracy in this application.

Various level set methods have been used for vertebrae
segmentation from CT and MRI datasets and reported Dice scores

ranging from 68.53 ± 3.06 by the Chan-Veses model to 92.08 ±
2.37 by the automatic global level set approach method presented
in Li et al. [44]. The residual U-Net ensemble model achieves
Dice scores of 0.88 [45] and HDs of 11.7 [46] on this class of
segmentation task. The main challenges in this application include
the variability in spinal shapes, poor signal-to-noise ratios in MRI,
and difficulties in segmenting severely stenosed regions [45, 46].
These factors contribute to the lower scores and reduced reliability
for datasets with limited data and class imbalance. When using
vSegNet to delineate vertebrae, intervertebral disks, and spinal
canal in the MR images, we obtained Dice scores and HD of 0.95
± 0.01 and 8.45 ± 2.81, respectively. Our results highlight the
effectiveness of using CL function and data augmentation in
vertebrae segmentation in CT images, achieving a Dice score of
0.95 ± 0.02 and HD of 7.99 ± 6.05.

Wound and ulcer segmentation in RGB images is another
significant image processing task finding application in clinical
diagnosis. A study on wound segmentation using a deep learning
approach observed a mean IoU of 0.78 ± 0.02 [47]. A Detect-and-
Segment (DS) approach [47] improved segmentation metrics like
Matthews’ correlation coefficient from 0.77 to 0.85 and IoU from
0.63 to 0.75. But this approach could improve the IOU from 0.53
to 0.60 only on another dataset consisting of systemic sclerosis
digital ulcers. Thus, the DS method is poor in generalizing on
limited datasets with class imbalance as it cannot effectively
handle the heterogeneity in wound types and imaging conditions.
In a study on Diabetic FU Segmentation Challenge [48], various
models achieved a Dice score of 0.69, but this varied with dataset
size and quality. Higher HD was observed for complex wounds.
Precision ranged from 0.72 to 0.82. In comparison, when using
the proposed vSegNet on the FU delineation, we obtained
precision, Dice score, and HD of 0.89 ± 0.54, 0.86 ± 0.07, and
29.32 ± 25.64, respectively.

From the various extensive set of training and testing of
different model considered in this study, it is observed that
pretrained models like SegNet, DeepLabv3+, and FCN with more
learnable parameters converge faster but underperform on test data
showing high variability when compared to vSegNet due to
limited training samples. DeepLabv3+ excelled in capturing fine-

Figure 6. Comparison using Hausdorff distance. The red line indicates the median and the blue box represents the 25% and the 75%
in the Hausdorff distance. Model labels, a: U-Net, b: Pretrained SegNet, c: SegNet, d: VGG16, e: MobileNetV2, f: Pretrained
DeepLabv3+, g: Pretrained FCN, h: vSegNet (cross-entropy), i: vSegNet (CL).
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grained details and object boundaries in X-ray images. SegNet
performed well on MC SC and CVIP datasets, but its performance
was poor in FU dataset. U-Net performs generally well on
grayscale images but not on RGB images. MobileNetV2’s

performance is significantly poor in FU dataset. Unlike the MC
SC dataset, ROI in CVIP dataset has fewer foreground pixels than
the background. Augmentation did not improve the performance
of most models except U-Net, whose performance improved

Figure 7. Comparison using quantitative metrics. Model labels, a: U-Net, b: Pretrained SegNet, c: SegNet, d: VGG16, e:
MobileNetV2, f: Pretrained DeepLabv3+, g: Pretrained FCN, h: vSegNet (cross-entropy), i: vSegNet (CL). (A) MC SC dataset.
(B) CVIP dataset. (C) Augmented CVIP dataset. (D) FU dataset. (E) MRI dataset.

Medinformatics Vol. 2 Iss. 1 2025

45



significantly (refer Figure 4 and metrics from Table 3). Thus, we see
generalization remains a challenge for medical image segmentation
models when exposed to new and diverse imaging contexts.

Deeper neural networks often perform poorly on smaller datasets
with a class imbalance in image segmentation tasks due to their high
complexity and large number of parameters. These networks require
extensive data to learn effective feature representations. When data
are limited, they tend to overfit, capturing noise as features instead
of intricate features. Class imbalance further exacerbates this
challenge, as the networks may become biased towards the majority
class or background, leading to poor segmentation performance for
minority classes or ROI. Consequently, deeper networks have poor
generalization and cannot provide accurate and robust segmentation
results under constraints like class imbalance and limited datasets.
To summarize, selecting a neural network model for medical image
segmentation is not one-size-fits-all but requires careful
consideration of the task requirements and characteristics of dataset.
The findings of this study offer valuable insights into various
models’ performance for different medical imaging datasets, aiding
in decision-making for real-world medical applications. The
proposed vSegNet with CL function excels in intricate segmentation
tasks trained on a limited number of samples and/or with smaller ROI.

This study reported the performance of the neural network
models on segmenting ROI in different imaging modalities, by
training them individually on different modalities. One can extend
the method to train and evaluate the proposed model to handle
multi-modal inputs simultaneously. This shall enhance the
model’s versatility and applicability in different clinical scenarios.
Another improvement that can be implemented is adaptive
learning. This shall allow the model to continuously learn from
new data and adapt to changed scenarios in the clinical
application, thereby maintaining high performance over time.
Increasing the dataset diversity by including more images from
various demographics and clinical settings will help improve the
robustness and generalizability of the proposed model.

5. Conclusion

This work proposed a novel neural network architecture,
vSegNet, designed specifically for medical image segmentation in
the datasets that have challenges of limited samples and class
imbalance. This architecture features convolutional layers and a CL
function aimed at enhancing feature extraction and segmentation
performance in such datasets. The CL function involving Dice score
and HD balances precision and recall and provides a more
comprehensive evaluation of segmentation quality, which helps in
effectively segmenting smaller regions of interest with good
boundary delineation. The article also reports a comprehensive
comparison of the performance of the proposed model against
several state-of-the-art neural network architectures, namely U-Net,
Pretrained SegNet, SegNet, VGG16, MobileNetV2, Pretrained
DeepLabv3+, and Pretrained FCN, on four different datasets
namely, chest X-ray images, vertebral CT scans, RGB FU images,
and spine MRI scans. The choice of diverse imaging modalities and
anatomical features in the study enabled a comprehensive
performance analysis. The results reveal that the proposed model
vSegNet significantly performs better than the other models
considered in this study in terms of segmentation accuracy and
handling class imbalance, as demonstrated by improvements in the
mean IOU, mean accuracy, mean BF score, accuracy, precision,
recall, F1 score, Dice score, and HD. The proposed vSegNet
architecture and loss function provide effective solutions for
achieving high-quality segmentation in class-imbalanced medical

images. This improvement is crucial for accurate diagnosis and
treatment planning in many medical imaging applications.
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