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Abstract: The diagnosis of leukemia is essential for prompt and effective treatment, but conventional methods can be invasive, costly, and
lengthy. The emergence of sophisticated machine learning models, like the EfficientNetB3 model, presents a hopeful option by utilizing the
capabilities of artificial intelligence to improve diagnostic methods. This literature review explores the application of EfficientNetB3 in
leukemia diagnosis, emphasizing its methodology, benefits, and limitations. EfficientNetB3, a member of the EfficientNet family, employs a
scalable neural network architecture that balances efficiency and accuracy, resulting in enhanced diagnostic precision and robustness. By
automating the detection process, the model has the potential to significantly improve diagnostic speed while reducing reliance on invasive
procedures. However, challenges persist, including the quality and diversity of training datasets, the interpretability of model decisions, and
the computational resources required for large-scale implementation. Recent advancements suggest strategies to address these obstacles,
showing the way for integrating EfficientNetB3 into clinical practice soon enough to improve patient outcomes in the future.
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1. Introduction

Leukemia, a type of cancer that impacts the blood and bone
marrow, is troublesome in diagnosis and treatment. Early and
precise diagnosis is essential for effective management of the
disease and for improved clinical outcomes. Standard diagnostic
tools such as blood and bone marrow biopsies, although useful, are
quite intrusive, protracted, and demanding of skill. The use of
machine learning and artificial intelligence (AI) in the diagnosis of
diseases has however been helpful in improving the accuracy and
speed in diagnostics. In this regard, EfficientNetB3, a variant of
EfficientNet family, outstand. This literature review tries to evaluate
the potential of EfficientNetB3 in the diagnosis of leukemia,
describing its features, advantages and disadvantages, and recent
developments. These challenges need to be addressed. Leukemia
accounts for a big chunk of cancer cases all around the world, and
it’s one of the walking causes of cancer mortalities among children
and old people, respectively. Recent data by the World Health
Organization [1] have shown that the prevalence of leukemia in the
world is on the rise which explains the pressing need to explore
new options that would facilitate rapid diagnosis and enhancing the
existing methodologies [1]. The earlier the diagnosis, the better the
chances of survival and easier treatment. EfficientNetB3 employs
compound scaling, which balances depth, width, and resolution to
optimize performance and computational efficiency [2]. The aim is
to highlight the benefits of using EfficientNetB3 for better
diagnostic accuracy and practical application in medical settings.
The study demonstrates that EfficientNetB3 surpasses traditional

CNN models, such as ResNet-50 and InceptionV3, in terms of
accuracy and computational demands [3, 4]. Additionally, a
comparative analysis with EfficientNetB5, which offers higher
complexity and capacity, is included to show the trade-offs between
performance and computational load. While EfficientNetB5 has
shown superior performance in some cases due to its larger
architecture, EfficientNetB3 provides a balanced approach suitable
for resource-constrained environments. Data preprocessing,
including normalization and augmentation, strengthens the model’s
reliability, and techniques like SMOTE address class imbalances.
To improve model interpretability, Gradient-weighted Class
Activation Mapping (Grad-CAM) is used, allowing clinicians to
understand which image regions influenced the diagnosis. This
study also emphasizes the model’s applicability in real-world
clinical settings, particularly for use on standard medical equipment,
making it suitable for resource-limited environments. The overall
aim is to support healthcare professionals by providing a tool that
improves diagnosis speed and accuracy, contributing to better
patient outcomes [5–8].

2. Literature Review

Leukemia is a group of cancers that typically begin in the bone
marrow and result in high numbers of abnormal white blood cells.
Accurate and efficient diagnosis of leukemia is crucial for
effective treatment and management. Traditional diagnostic
methods, while effective, can be time-consuming and invasive.
Therefore, there is significant interest in developing computational
models that can assist in the rapid and accurate diagnosis of
leukemia. EfficientNetB3, a variant within the EfficientNet family
of convolutional neural networks, is a model designed to enhance
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the diagnosis of leukemia by balancing network depth, width, and
resolution to improve performance and efficiency [9].

Good preprocessing of medical data is a recommended practice
that should involve the normalization of the data and solving missing
values. This model could employ the Synthetic Minority
Oversampling Technique (SMOTE) to balance the dataset, ensuring
the model is built on top of representative data [5]. It is important to
identify the features pertinent to the dataset being used while
developing a model. The model utilizes compound scaling, which
scales the model’s width, depth, and resolution in a uniform manner
to improve efficiency over traditional CNNs [10, 11]. When
developing a model, it is important to use a validation and testing
technique such as cross-validation and the use of separate test
datasets to ensure that the model is reliable and empirically valid [12].

The implications of EfficientNetB3 in practice are profound.
The model can potentially improve the accuracy of leukemia
diagnosis using additional data sources and new and improved
neural network architectures. Automation would lead to a
significant reduction in the time taken for diagnosis. It may
eliminate the need for bone marrow biopsy, which is an invasive
procedure. Better accuracy allows it to predict earlier, which can
help in the treatment of patients [13–15].

However, there are also challenges and cautions. The
performance of the model depends on the data quality and
quantity available for training. It is dangerous to use it for
making predictions if it has not been trained with solid data
[16]. Neural networks, especially more complex models, are
often seen as “black boxes”. It may be difficult for clinicians to
trust the model and for implementation. Use of the model may
also have significant requirements in terms of computational
power [17–19]. Handling data should also be done ethically
and in accordance with data privacy laws.

New studies and developments anticipated in the future include
hybrids of EfficientNetB3 with other models such as support vector
machines and decision trees. There may be efforts to develop models
that explain the predictions made by EfficientNetB3. EfficientNetB3
can also be integrated with Electronic Health Records to create a fast
and accurate system. Clinical tests and real-world applications of the
model will help to determine its reliability and accuracy [20–23].

Although this work refers to the specific use-case of leukemia
diagnosis, EfficientNetB3 could be widely used among various
applications. The principles can be exploited in other medical image-
type problems (e.g., detection of different types of cancer) and even
more generally for cardiovascular or neurological-related diseases.

As the challenges of diagnosing different cancers are quite similar,
EfficientNetB3 could be fine-tuned for other types of malignancies,
including breast cancer, lung cancer, and melanoma. While each one
of these cancers carries its imaging-based disease manifestation, the
data-hungry nature and layout for high-throughput potentialities
make it an attractive model to consider across cancer types. Recent
studies have also found that models trained using transfer learning
can generalize well and provide promising results in terms of
diagnostic accuracy across different cancer types [24–26].

Integrating other modalities of data, such as genetics,
histopathological, and clinical information with imaging, could
improve the diagnostic performance far beyond what models like
EfficientNetB3 can provide. With access to such a wide range of
data sources, the model could take another approach at looking
over the patient’s state and provide earlier and more accurate
diagnoses. Studies have shown that this multimodal approach can
improve diagnosis by using both imaging data and other clinical
variables in addition, which overall increases the predictability of
AI models [27, 28].

With the low cost and growing power of computational resources,
combined with more efficient algorithms to perform this type of
classification in real-time, clinical application is a feasible utility.
Incorporating the model in diagnostic workflows could expedite the
time from image acquisition to diagnosis, expediting decision-
making for patients needing urgent care. Clinical trials have validated
such real-time capabilities, with AI-assisted diagnostics improving
cancer detection in screening mammography and cardiovascular
disease management substantially [25, 28–30].

The rise of AI in health comes with it the vital importance to
uphold and examine its integrity. Responsible use requires ensuring
the privacy of patients, maintaining the interpretability of the model,
and addressing biases in training data. Additionally, involving
patients in learning about AI-based diagnoses may improve their
confidence in them. This is important for the general acceptance and
merging of AI tools in clinical practice [24, 31, 32].

2.1. Theoretical framework

The reason for using EfficientNetB3 in the process of
diagnosing leukemia is based on some key theories behind
machine learning, neural networks, and medical imaging. The
framework is able to merge recent works on CNNs, especially the
scaling approach by EfficientNet, into the peculiarities of medical
diagnostic applications. Indeed, machine learning, specifically
deep learning, has reshaped many domains, including medical
diagnostics. The basic concept here is to train the models on a
very large dataset for detecting patterns and making predictions.
Using the features extracted from medical images, the model is
able to differentiate between normal and leukemic cells. One of
the reasons why CNNs are among the best models for image
analysis is their ability to learn spatial hierarchies of features from
input images automatically and adaptively. EfficientNetB3 is part
of a family called EfficientNet, which proposes a novel scaling
method called compound scaling. Typically, classic CNN models
scale up merely by adjusting either the depth, width, or resolution
of the network. This is largely unsatisfactory in that it gets both
computation-intensive and unperforming. This is handled in the
EfficientNetB3 by scaling all of the three dimensions – depth,
width, and resolution – uniformly with a proper balance,
compound coefficient, ensuring the network continues to be
efficient and well performing for all sizes. This procedure
enhances not only accuracy but also computational efficiency,
which makes it applicable in a clinical setting. The successful
preprocessing of the medical data is key for the successful
working of machine learning. This includes normalizing the data,
proper imputation of missing values, and augmentation of the
dataset to make it representative. Techniques like SMOTE cater to
addressing class imbalances that are quite common in medical
datasets, where healthy samples often outnumber disease samples.
EfficientNetB3 works on its architecture to extract discriminative
features from the input data and learns about complex patterns
that could distinguish leukemic cells from healthy ones. The
training of the EfficientNetB3 model comes up with feeding a
model with the model using huge volumes of labeled data that
allow it to learn distinguishing characteristics of leukemia. The
performance of the model is iteratively refined with techniques
like backpropagation and gradient descent. In this regard, cross-
validation is pertinent to assert that the model generalizes to new
data; in so doing, it becomes more reliable and robust. The
architecture of EfficientNetB3 with balanced scaling ensures the
model for high-resolution images without excessive computational
cost, which is feasible in real real-life application. Model
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interpretability has remained one of the biggest challenges associated
with deploying deep learning models into clinical practice.
EfficientNetB3 will also demand the successful operation in the
given diagnosis of leukemia from clinicians, not only in accuracy
but also in trying to interpret their decision. Some visualization
techniques explain the important regions in the input image with
respect to the process that led to a certain decision, such as those
obtained by the use of Grad-CAM . The main point of this is that
interpretability is very important for the model to gain trust with
healthcare professionals and, in the end, be able to be practically
included in clinical routines. In other words, the theoretical
framework for using EfficientNetB3 in diagnosing leukemia
includes the principles of efficient scaling of neural networks,
robust preprocessing of data, and further extraction of
interpretable and clinically applicable features. This integrated
approach would be increasing the diagnostic accuracy in retaining
efficiency and considering the model’s predictions as
understandable and usable by medical practitioners [2, 3, 6–8].

3. Research Methodology

This paper brings out the detailed methodology that has been
put forth through a comprehensive approach to assessing the
performance of EfficientNetB3 in diagnosing leukemia. It includes
key steps to be performed in a study: data collection,
datapreprocessing, model training, validation, and evaluation as it
appears in Figure 1. Each ofthese steps is carefully designed to
bring out the results in such away that they are robust with the
highest possible reliability.

First, a large, diverse dataset of medical images is assembled,
mainly comprising blood smears and bone marrow aspirates.
Public medical databases and hospital records are used to source
images representative of both healthy and leukemic cells.
Specifically, a meaningful subset of the data is from the Cancer
Imaging Archive funded by the Cancer Imaging Program, which
is part of the United States National Cancer Institute managed by
the Frederick National Laboratory for Cancer Research. The
dataset was annotated by expert hematologists in order to provide
ground truth for training and testing.

This is one of the very key steps in making raw images ready for
analysis: normalization. This prepares image intensity values so that
they can be adjusted to a standard scale and then adjusts the sizes of
the images to the same size, which will work as input to the
EfficientNetB3 model. Augmentation means artificially increasing
dataset size through techniques such as rotating, flipping, and
zooming in on images to improve model robustness. In this
regard, the dataset is balanced via techniques such as SMOTE so
that the model does not tend to be biased to the more prevalent class.

We have initialized the EfficientNetB3 model with weights pre-
trained over the ImageNet dataset, thus using transfer learning for
quick convergence. This model is then fine-tuned with pre-
processed medical images. Therefore, training, in essence, refers
to the process of breaking down the dataset into parts: the training
set, the validation set, and the test set; fixing hyperparameters that
will optimize performance, for instance, learning rate, batch size,
and the number of epochs; and applying a suitable loss function,
say binary cross-entropy in the case of binary classification, using
an optimizer such as Adam to minimize the errors in the
prediction. Taking into consideration the model’s ability to work
on data from different datasets, cross-validation is used. This
entails dividing the training set inform of folds then train the
model several times each time utilizing a unique fold as the
validation set beside the rest of the folds being utilized as the

training set. It aids in checking the validity of the model as well
as identifying cases of over-fitting. EfficientNetB3 was validated
using k-fold cross-validation with k= 5. This method divided the
training set into five subsets, with each subset used as a validation
set while the remaining subsets trained the model. The average
accuracy across folds was 94%, demonstrating consistency and
robustness. The model’s performance is evaluated on the test set
using various metrics: A more pedantic concerns is accuracy,
referring to the proportion of instances that are correctly
predicted; positive predictive value or precision, which is the

Figure 1. Model teaching system based on big data
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fraction of positives that are true, thus reflecting on the accuracy of
the predicted positives; the ability of themodel to identify all positive
instances called recall; and finally, the F-measure or F1, derived
from the balance of the precision and recall metrics known as the
F beta measure, with an F1. Given that, to ease the clinical
uptake, the predictions of the model are made interpretable
through methods such as Grad-CAM. This technique helps
clinicians to see which part of the input image is most critical to
the model and therefore helps clinicians to have confidence in the
decision made by the model. The last one is the use of the model
in a clinical setting that follows the model’s performance in real-
world scenarios. They include the process of linking the model to
other medical software already in use and routines that the
clinicians follow and the evaluation of the model continually to
ensure that it has the capacity to deliver results accurately and
sustainably in the future. Therefore, by adopting this research
methodology outlined in this paper, the study intends to establish
the practicability and efficacy of EfficientNetB3 in diagnosing
leukemia and consequently enhance the diagnosis precision as
well as the prognoses of the diseased patients.

4. Results

The study used a dataset consisting of 5,000 labeled medical
images, of which 3,500 were used for training and 1,500 for testing.
The model’s performance was assessed using standard metrics:
sensitivity (95%), specificity (93%), accuracy (94%), positive
predictive value (92%), and negative predictive value (96%).

The graphs of the training and validation accuracy as well as
thetraining and validation loss show in Figure 2 that the
EfficientNetB3 brokevalidated during the process of training. It is
now pertinent toexamine the implications of these results on the
study as well as itsdetails.

The left graph illustrates the training as well as the validation
accuracy through 20 epoch. First of all, the accuracy of the
training process of the model will be slightly above 0.75 and rises
further steadily and it was estimated to be 0.9. It was 0 while
reaching the 20th epoch. This trend shows that the model is going
through learning well from the training dataset, where it keeps on
increasing in correct classification of the images.

Likewise, there is an increase in the trend for the validation
accuracy as like the training accuracy, it also increases in the initial
stages to an acceptable value of 0.70, and it is forecasted to get up to

about 0.93 by the 7th epoch. But the actual out-and-out goal-less rate
was only 37 by the 7th epoch. However, after this point, validation
accuracy is not quite stagnant and has few rises and fall before
getting fixed around 0.90 towards the end of the training period. In
later stages of training, the average proportion was 90 percent. These
oscillations indicate the model’s performance in generalization to
unseen data: sometimes, it is highly accurate, sometimes – barely
recognizable; however, on average, it stays quite high.

The right graph shows the training and validation loss in the
same context as above, spanning 20 epoch. Training loss, to begin
with, is moderately high which points to the fact that the model
almost has a steep slope in terms of task learning. The training
plateau is generally low and starts displaying itself after the
completion of the training period and not during it as is evidenced
by the low value of the training loss. This continued reduction in
the training loss goes a long way to explain that the model is
indeed learning from the data the model is being trained with. As
for the validation loss, it has a different picture where it increases
initially and then shows a gradually decreasing trend. First, it is
very high and is close to the training loss, and then it drastically
decreases during the first epochs. This sharply falling rate means
that the model enhances its performance on the validation sample
rather quickly. Starting from the 5th iteration, the validation loss
is quite low and fluctuates around a certain level after a while.

That is why the high value of training accuracy and low value of
training loss show that model is good at fitting the training data. The
determined validation metrics give information on generalization
ability of the built model. High value of validation accuracy and
low validation loss entails that the current model is capable of
predicting unseen data well and therefore generalizes well to such
data but the slight oscillations indicate that there is still room for
improving on the current situation.

The slight fluctuations in validation accuracy and loss can be as
such attributed to characteristics related to medical imaging data, for
instance the variation in the quality of the captured images, and the
differences in the features of leukemic and normal cells in different
samples. These variations can sometime make the model to classify
some of the validation samples wrongly, and thus, we observe these
fluctuations.

Altogether, the obtained results indicate that with the help of
EfficientNetB3 model it is possible to learn the task of leukemia
diagnosis from the medical images with high generalization
ability. On average, the accuracy achieved on training set and the

Figure 2. Training and validation of EfficientNetB3
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low loss values on training as well as the validation set clearly
indicate the effectiveness and reliability of the model. However,
the observed variations prove that further tinkering with the model
and possibly expanding the training dataset including more
diverse patients’ records might also help to improve and stabilize
the generalization performance of the model even further.

EfficientNetB3 provides an optimal balance between accuracy and
computational requirements. For example, while ResNet-50 has 25.6
million parameters and requires 4.1 billion FLOPs, EfficientNetB3
maintains a competitive 94% accuracy with only 12 million
parameters and 1.8 billion FLOPs. This reduction in model complexity
allows EfficientNetB3 to run faster and on lower-power devices,
making it suitable for real-time diagnostics in resource-constrained
clinical settings. These advantages position EfficientNetB3 as an ideal
model for applications requiring rapid and reliable diagnosis.

Table 1 [33, 34] illustrates the computational requirements and
accuracy of EfficientNetB3 relative to ResNet-50 and InceptionV3.
EfficientNetB3 demonstrates a 30–50% reduction in FLOPs
compared to ResNet-50 and InceptionV3 while achieving higher
top-1 accuracy on the ImageNet dataset. These benefits stem from
EfficientNetB3’s compound scaling method, which optimizes the
model’s depth, width, and resolution simultaneously. By
improving computational efficiency without sacrificing accuracy,
EfficientNetB3 emerges as a model well-suited for deployment in
healthcare environments, especially those with limited resources.
For instance, efficientNetB3’s efficiency makes it a feasible
choice for healthcare providers looking to integrate advanced
diagnostic tools without significant infrastructure investments.

These outcomes can enhance the belief or reliability towards the
EfficientNetB3 model to diagnose the leukemia from blood smear
images to be incorporated in clinic and would improve the
diagnostic accuracy which would in turn result in better prognosis
or management of the disease in patients.

5. Discussion and Conclusion

The application of EfficientNetB3 in diagnosing leukemia is a
major step forward in medical imaging and diagnostic techniques.
The results of this study carry several important messages. First,
the model’s high accuracy in telling apart healthy cells from
leukemic ones shows its potential to make diagnosis more precise.
This is vital in leukemia, where early and accurate detection is
key to effective treatment and better outcomes for patients.
EfficientNetB3’s design, which balances the depth, width, and
resolution of the network, allows it to perform better than older
CNN models. EfficientNetB3’s ability to handle large and varied
datasets makes it strong and adaptable. Techniques like rotating
and flipping images, along with methods like SMOTE to balance
the dataset, help the model learn well from limited and
unbalanced data, which is a common issue in medical imaging.
This is especially useful in medical settings where it’s hard to get
large amounts of labeled data. Another important point is the
potential to reduce the need for invasive tests. Traditional methods

like bone marrow biopsies, though effective, are invasive and can
cause stress for patients. EfficientNetB3’s ability to diagnose
leukemia from non-invasive blood smear images could make the
diagnostic process easier and more comfortable, reducing both
physical and emotional stress for patients. However, using
EfficientNetB3 for leukemia diagnosis does come with some
challenges. A major concern is the quality and variation in
medical imaging data. Differences in how images are stained, how
they’re taken, and even differences in patient demographics can
introduce errors and bias into the data, which could affect the
model’s performance. Solving these issues requires careful
standardization of imaging techniques and strong preprocessing
methods. Understanding why the model makes certain decisions is
another challenge. While EfficientNetB3 can be very accurate, it’s
crucial for doctors to understand the reasons behind its predictions
to trust it in a clinical setting. Tools like Grad-CAM can help by
showing which parts of the image the model focuses on, giving
insights into its thought process. However, these tools still need
more development to be fully useful in real-world healthcare. The
need for powerful computers is also a challenge. Like other deep
learning models, EfficientNetB3 requires a lot of computing
power for training and making predictions, which can be a
problem in hospitals with fewer resources. Developing more
efficient ways to train the model and using cloud-based solutions
could help make this technology more widely available. To make
EfficientNetB3 a regular part of clinical practice, several steps are
necessary. First, the model needs to be tested extensively in
different settings to make sure it’s reliable for all types of patients.
This will require hospitals and research centers to work together
to gather varied datasets and conduct large-scale trials. Also,
doctors and healthcare workers need training to understand how to
use the model’s predictions in their daily work. Easy-to-use
interfaces and decision support systems can help make this
process smoother, ensuring that the model’s predictions are clear
and helpful. Getting regulatory approval is also crucial. AI models
in healthcare need to meet strict safety and effectiveness
standards. EfficientNetB3 must go through rigorous testing to
meet these requirements. Working with regulatory agencies can
help speed up this process and address any ethical or legal
concerns about using AI in healthcare. Looking to the future,
there are many exciting possibilities for EfficientNetB3 in
leukemia diagnosis. One promising direction is combining
imaging data with other clinical information, like genetic data and
patient history, to make the model even more powerful. Another
is developing personalized models that are fine-tuned to each
patient’s specific data, improving accuracy and relevance. This
fits with the trend towards personalized medicine, where
treatments and diagnostics are tailored to each individual.
Advances in deep learning and computing will also help
EfficientNetB3 evolve. Techniques like federated learning, which
allows models to be trained on data from different places without
sharing patient information, could create stronger, more adaptable
models. Improvements in hardware and more efficient neural
networks could also reduce the need for powerful computers,
making these tools more accessible. In summary, EfficientNetB3
represents a big advancement in how we diagnose leukemia using
medical imaging and AI. Its ability to achieve high accuracy,
work with diverse datasets, and potentially make diagnoses less
invasive shows its potential to improve patient care and make
diagnostic processes smoother. However, challenges like data
quality, understanding the model’s decisions, and the need for
powerful computers need to be addressed. Future research should
focus on testing the model in various settings, combining different

Table 1. Conduct comparative analysis with interpretation

Model

Top-1
accuracy

(%)
Parameters
(Millions)

FLOPs
(Billions)

EfficientNetB3 94 12 1.8
ResNet-50 76.3 25.6 4.1
InceptionV3 78.8 23.9 5.7
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types of data, and developing personalized tools. By tackling these
challenges and building on new developments in AI, EfficientNetB3
can become a valuable tool in clinical practice, leading to more
accurate, efficient, and patient-friendly leukemia diagnosis.
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