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Abstract:Cardiovascular diseases (CVD), including heart failure (HF), represent a major global health concern, with significant indisposition
and mortality rates. Cardiomyopathy is a myocardial disease that impedes the heart’s ability to efficiently pump blood throughout the body,
ultimately leading to HF. For the identification of critical genes and proteins linking different diseases, computational biology tools and
“omics” play a significant role. Therefore, the present study was undertaken to identify underlying molecular factors responsible for
cardiomyopathy to decipher its molecular association with CVD and HF using an integrative network system biology approach.
Microarray and RNA-seq datasets for cardiomyopathy were retrieved from the Gene Expression Omnibus database, and 51 common
DEGs were identified. Subsequently, a protein-protein interaction network was constructed using STRING, followed by its analysis
using various Cytoscape plug-ins. Nine hub genes, namely LPA, APOA2, ABCA1, LCAT, APOB, APOA4, CLU, APOC3, and
APOA1, were identified that were found to be involved in cholesterol metabolism, fat digestion and absorption, lipid metabolism, and
atherosclerosis pathways. Therefore, the proteins identified in the present study belonging to the APO family and their associated
proteins may prove to be useful biomarkers for cardiomyopathy and therapeutic targets to prevent CVD and HF.
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1. Introduction

A leading cause of death in humans is cardiovascular disease
(CVD), which includes heart failure (HF), hypertension,
congenital heart disease, coronary heart disease, and other heart-
related conditions with HF being the clinically most prevalent
cardiovascular condition. Globally, it is estimated that 64.3
million individuals experience HF [1]. A study claims that CVD
causes more deaths annually than any other illness, with 17.9
million deaths annually – roughly 31% of all deaths globally.
Heart disease and stroke will account for 23.6 million of CVD-
related deaths by 2030 [2]. HF is becoming more widespread like
a pandemic. The persistent nature of age-related illnesses like
rheumatoid heart disease and the rise in recent diseases like
coronary artery disease (CAD) heighten the risk of HF [3].

Cardiomyopathies are disorders of the cardiac muscle that cause
mechanical and/or electrical dysfunction, characterized by functional
and structural modifications in the heart [4]. Primary (genetic, mixed,
or acquired) and secondary categories of cardiomyopathy can be
distinguished, leading to a variety of phenotypes such as dilated,

hypertrophic, and restrictive patterns. The most prevalent primary
cardiomyopathy, hypertrophic cardiomyopathy, can result in HF,
abrupt cardiac death, atypical chest pain, exertional dyspnea, and
presyncope. Dilated cardiomyopathy (DCM) usually manifests as
classic HF symptoms with a low ejection percentage while much
less common form of restrictive cardiomyopathy is frequently
linked to systemic illness and can be genetic or acquired [5].
Secondary cardiomyopathy is the term used to describe heart
muscle disease that arises from an extra cardiovascular cause.
There are numerous categories into which secondary causes can
be divided, such as endocrine, infectious, toxic, autoimmune,
nutritional, and neuromuscular [5].

Genetics is the primary cause of cardiomyopathy. Ciarambino
et al. [6] reported that mutations in the TTN gene, which codes for the
protein titin that connects actin and myosin, and the LMNA gene,
which codes for the protein lamins A and C, are specifically
associated with dilated cardiomyopathies. Hypertrophic
cardiomyopathy has been linked to mutations in genes such as
MYBPC3 (which codes for cardiac myosin-binding protein C of
the intermediate filament) and MYH7 (which codes for beta-
myosin heavy chain of the thick filament). They have further
reported that desmosome gene mutations are the most significant*Corresponding author: Tammanna R. Sahrawat, Centre for Systems Biology
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ones associated with arrhythmogenic cardiomyopathy while other
significant genes include JUP, DSP, PKP2, DSG2, and DSC2.A
study published by Da Dalt et al. [7] reported that PCSK9
deficiency alters the heart’s ability to produce energy and
metabolize lipids, which causes the left ventricular wall to thicken
and HF with preserved ejection fraction to develop.

Cardiac diseases are complex diseases that exhibit a variety of
phenotypes resulting from multiple pathologies, such as
cardiomyopathies, which if left untreated ultimately cause HF [8].
Network biology has provided new avenues for the better
understanding of complex systems such as protein-protein
interactions (PPI) and disease-disease links. Disease network
analysis facilitates and projects a basic understanding of the
relative risks of diseases and features of their shared architecture,
which is useful in the field of disease epidemiology [9]. The fields
of clinical medicine and cardiology have benefited greatly from
the advances in systems biology, which have led to a better
understanding of molecular systems, complex biological networks,
and biological constructs [10]. Some studies have reported genes
associated with either cardiomyopathy or different types of CVD.
Si [11] reported an association of RPS4Y1 and MYH6 genes with
cardiomyopathy based on a PPI network of transcriptome data. In
a recent study, Yan et al. [12] have identified genes namely C3,
F5, FCGR3A, APOB, PENK, LUM, CHRDL1, FCGR3A, CIQB,
and FMOD, in cardiomyopathy using a bioinformatics approach.
The mechanism underlying the molecular association of
cardiomyopathy and HF is poorly understood. Network-centric
approaches to study interactomes of diseases provide an
opportunity to identify critical targets that can act both as
biomarkers and therapeutic targets which must be studied using a
network systems biology approach for their better understanding
[13]. Therefore, the present study was undertaken to identify
underlying molecular factors and pathways responsible for
cardiomyopathy which may lead to CVD using an integrative
network system biology approach.

2. Research Methodology

2.1. Data collection

NCBI GEO database was used for the retrieval of multiple
omics datasets (GSEs) to collect RNA-seq and microarray data
related to cardiomyopathy. The inclusion criteria for both datasets
were selected as follows: (i) three control and three experimental
samples; (ii) platforms owned by Affymetrix, Illumina, or Agilent
manufacturers; (iii) human datasets. Studies using gene therapies
or interfering molecules like siRNAs or miRNAs and manipulated
datasets were not included.

2.2. Preprocessing microarray data and DEG
identification

The microarray dataset GSE120895 [14], consisting of 47 DCM
patients and 8 healthy controls, was based on the Platform GPL570
[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array.
The gene expression profile was downloaded using the R platform’s
GEOquery package [15]. For downstream analysis, the following
packages were used: (i) affy for Affymetrix-derived datasets [16];
(ii) rma method [17] in the affy package to correct background,
normalize, and summarize expression values for each probe set of the
dataset; (iii) limma [18] and Biobase [19] packages for differential gene

expression analysis. DEGs were identified with the threshold set as
P< 0.05. The DEGs with log2FC < −1 were considered as down-
regulated genes, while the DEGs with log2FC> 1 were considered as
up-regulated genes. To identify DEGs between cardiomyopathy patients
and control samples and to control the false discovery rate (FDR) of the
test statistics, moderated t-test and Benjamini–Hochberg (BH) method
were applied, respectively. The volcano plot of the DEGs was generated
using RStudio.

2.3. Preprocessing RNA-Seq data and DEG
identification

The gene expression profile of RNA-Seq dataset GSE230585,
on account of GPL21697 Platform NextSeq 550 (Homo sapiens),
including 11 samples of patients with hypertrophic
cardiomyopathy and 5 heart-healthy donors, was obtained from
the NCBI GEO database. DESeq2 R package [20] was used for
the differential gene expression analysis. The DEGs between
samples were determined by the threshold set as |log2FC|≥1 with
the BH for FDR correction of p< 0.05 followed by the
construction of a volcano plot using RStudio.

2.4. PPI network construction and analysis

Interactions among the DEGs were examined with the STRING
database [21] followed by an analysis of the interaction network
using Cytoscape 3.10.1 software [22] and its various plug-ins
namely CytoCluster [23], Molecular Complex Detection
(MCODE) [24] and CytoHubba [25].

2.5. Functional and pathway enrichment analysis

KEGG pathway analysis and functional annotation were done
using the enrichment tool, Enrichr [26]. It uses Clustergrammer to
visualize high-dimensional data as a hierarchically clustered
matrix with colored matrix cells and produces dynamic heatmaps
of enriched terms as columns and user input genes as rows.

3. Results

3.1. Identification of DEGs

TheMicroarray dataset and the RNA-seq dataset with accession
numbers GSE120895 and GSE230585 respectively were
preprocessed followed by data normalization to identify the
DEGs. A total of 859 DEGs were identified in the microarray
dataset (GSE120895) out of which 7 genes were up-regulated and
852 genes were down-regulated (Figure 1(A)). RNA-seq dataset
(GSE230585) had 973 DEGs out of which 639 were up-regulated
and 334 were down-regulated genes (Figure 1(B)). Fifty-one
common DEGs associated with cardiomyopathy were identified
using Venn diagram from the two datasets (Figure 1(C)).

3.2. PPI and modular analysis

The PPI network of the 51 genes previously identified from the
DEG analysis was constructed in STRING (Figure 2(A)) and had 48
nodes (representing the genes) and 32 edges (representing the
interactions between the genes) with enrichment P-value of less
than 1.0e-16, indicating high degrees of gene interaction. The
interaction network was further built in STRING to identify
interacting partners of the 51 proteins and the resulting network

Medinformatics Vol. 00 Iss. 00 2024

02



having 98 nodes and 486 edges was imported to Cytoscape for
further analysis (Figure 2(B)).

Clustering was performed using two different Cytoscape plug-
ins, CytoCluster andMCODE, to identify and validate the significant
clusters to further identify the critical hub genes. ClusterONE
(Clustering with Overlapping Neighborhood Expansion) is an
algorithm of CytoCluster plug-in, that was used to identify highly
overlapping regions, i.e., cluster modules based on a P-value of
<0.05 [13] while MCODE detects clusters on the basis of
topology, i.e., a maximum number of nodes and edges. Ten
clusters were obtained following analysis of the imported PPI
network from STRING (Figure 2(B)) with CytoCluster, out of
which only 2 clusters were significant (Table 1(A)). Both these
clusters were merged and had 51 genes which were analyzed with
the CytoHubba plug-in of Cyctoscape using Maximal Clique
Centrality scoring method, and nine hub genes, namely
Lipoprotein (a) (LPA), apolipoprotein A2 (APOA2), ATP-binding
cassette transporter A1 (ABCA1), lecithin cholesterol acyl
transferase (LCAT), APOB, apolipoprotein A-IV (APOA4),
clusterin (CLU), APOC3, and apolipoprotein A-I (APOA1), were
found (Table 2, Figure 3(A)). To validate the hub genes, the
imported PPI network (Figure 2(B)) was also analyzed with
MCODE which returned 5 cluster modules out of which only 2
clusters were selected that had a significant number of nodes and
edges (Table 1(B)). These two clusters having 40 genes were
merged and analyzed with CytoHubba, and the nine hub genes
obtained (Table 2, Figure 3(B)) were identical to the results of
CytoCluster and CytoHubba, thereby validating the genes
obtained using two different analysis approaches.

3.3. Gene enrichment

The diseasome association network for the 9 hub genes
identified in the present study for cardiomyopathy was constructed
using STRING and a highly connected PPI network was obtained
(Figure 4). To further understand the biological roles of the
common hub genes between cardiomyopathy, KEGG pathway
analysis was carried out, and all the genes identified in the present
study were found to be involved in cholesterol metabolism, fat
digestion and absorption, lipid and atherosclerosis, and PPAR
signaling pathway and showed a direct or indirect association with
CVDs with may result in HF (Figure 5 and Table 3).

4. Discussion

In the present study to identify underlying molecular factors
responsible for cardiomyopathy which may lead to HF, 9 proteins
were identified from the interactome obtained from the analysis of
the DEG associated with both the medical conditions. Common
causes of HF have been identified as atrial fibrillation, myocardial
infarction, ischemic heart disease, valvular heart disease, and
cardiomyocytes [27]. All the proteins identified in the study
(Table 3) are involved in pathways involved in metabolism,
absorption, or transport of fatty acids with most of them
belonging to apolipoprotein family.

The primary structural and functional protein constituent of
high-density lipoprotein (HDL), or good cholesterol in plasma, is
APOA1 which constitutes about 70% of it. It is known for
regulating cholesterol trafficking and protecting against CVD.

Figure 1. Volcano plot for up- and down-regulated genes for datasets GSE120895 (A) and GSE230585; (B) blue color represents
down-regulated genes, red color represents up-regulated genes, while black color represents non-significant genes based on the cutoff
criteria: adjustedP-value<0.05 and |log2FC|>1; (C) Venn diagram representing commonDEGs among themicroarray andRNA-seq
datasets

Medinformatics Vol. 00 Iss. 00 2024

03



Gordon et al. [28] also reported its role in modulating inflammatory
and immune responses. It facilitates the efflux of cholesterol from
tissues into the liver for excretion as a cofactor for LCAT, which
is required for the synthesis of most plasma cholesteryl esters
[29]. LCAT is a key enzyme in the metabolism of HDL and is
essential for the reverse cholesterol transport that occurs in
macrophages [30]. It has been reported that LCAT activity may

be linked to increased formation of triglyceride-rich lipoproteins
(TRLs), which in turn reduces the size of LDL particles in
patients at high risk for atherosclerotic cardiovascular disease
[30]. The second major protein constituting 20% of high-density
lipoprotein cholesterol (HDL-C) particles is APOA2, which has
been reported to have an antagonistic effect on the efflux of
cholesterol from cells by regulating the enzymes involved in the
remodeling of HDL-C, a known risk factor for CAD [31].

According to a study, APOA2 independently predicts the risk of
CVD and the need for future revascularization in patients with stable
hearts suggesting that APOA2 is directly linked to the burden and
progression of atherosclerosis rather than cardioprotection in
humans [31]. The smaller apolipoprotein APOA3 is mostly found
on TRLs and HDL in the bloodstream, with a smaller amount on
LDL [32]. According to recent research, APOC3 levels on
lipoproteins may increase their atherogenicity and act as a risk
indicator for CVD in people [33]. Lipid-binding apolipoprotein
A-IV (APOA4) is found on HDLs, chylomicron remnants, and in
lipid-free form and is reported to regulate a variety of physiological
processes, including lipid absorption and metabolism, anti-
atherosclerosis, platelet aggregation, and thrombosis [34]. APOB is
an apolipoprotein that forms a crucial part of VLDLs and the
metabolites LDLs and IDLs by providing a framework, that is
essential to preserve the lipoprotein’s structural stability [35].

LPA is a modified LDL particle and has physiological roles in
wound healing, tissue repair promotion, and vascular remodeling. Its
elevated plasma concentration is an independent predictor of
atherosclerotic CVD and peripheral arterial disease [36].

Table 1. Selection of twoClusterOne (A) andMCODE; (B) clusters
based on P-value of <0.05 and high number of nodes, respectively

(A) ClusterOne (B) MCODE

Clusters Details Clusters Nodes Edges Score

Nodes: 32 20 94 9.895
Density: 0.500
Quality: 0.70
P-value: 0.000

Nodes: 19 20 72 7.579
Density: 0.509
Quality: 0.439
P-value: 0.008

Figure 2. (A) Protein–protein interaction network generated using STRING having 48 nodes and 32 edges; (B) representation of
interacting partners of the 48 proteins generated from STRING having 98 nodes and 486 edges, in Cytoscape
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Tsimikas et al. [37] reported that LPA is a causative mediator of
calcific aortic valve disease and CVD based on
pathophysiological, epidemiological, and genetic studies.

The protein known as ABCA1 is crucial for preserving
cholesterol homeostasis and is known for mediating the nascent
HDL biogenesis. Therefore, decreased ABCA1 function may have
a significant impact on reverse cholesterol transport and
cholesterol homeostasis [38]. Therapeutic strategies aimed at
removing excess cholesterol from tissues and preventing CVD
now have ABCA1 as a promising new target, regardless of the
way numerous atherogenic factors combine to produce cholesterol
deposits in arterial macrophages [38].

CLU also known as apolipoprotein J, is a ubiquitous,
multifunctional glycoprotein that can be found in nearly all of the
body’s fluids and multiple places within the intracellular matrix
and has been proposed to play a protective role during
pathological stresses [39, 40]. Park et al. [41] reported that the
serum level of CLU is significantly increased in subjects with
type II diabetes and HF.

Table 2. Top 9 dysregulated genes and their expression values

Gene symbol LogFC AveExpr t P-value Adj.P-value B Direction

LPA −1.48308 6.756596 −3.44763 0.00108 0.03007 −0.92127 Down
LCAT 2.579948 1.019443 3.82005 0.00257 0.042554 −1.40249 UP
CLU 1.263447 4.097684 2.21768 0.03118 0.144357 −3.79878 UP
ABCA1 −1.445242 4.500200 −4.50207 3.49E-05 0.008551 2.19224 Down
APOA1 −1.135203 3.828202 −3.61844 0.00064 0.025039 −0.44848 Down
APOA2 −1.228575 4.159338 −3.616529 0.00067 0.025534 −0.45587 Down
APOA4 −1.799703 4.660992 −3.635174 0.000679 0.025534 −0.46190 Down
APOC3 −2.644425 1.723289 −3.840097 0.00072 0.025986 −0.47700 Up

Figure 3. Graphical view of ranked hub nodes of (A) ClusterOne; (B) MCODE cluster obtained from Cytohubba with color-coding
(Red – highly essential genes and Yellow – less essential genes

Figure 4. Interactome network of the hub genes obtained from
STRING
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Erdmann et al. [42] performed Genome-Wide Association
Studies and reported that APOA1, APOC3, APOA4, APOB, and
LPA genes, and their mutations are linked to CAD that may cause
HF. Henein et al. [43] reported that in the genesis, progression,
and manifestation of CVD, inflammation plays a critical role.
Clinical trial and observational cohorts reported the high
prevalence of residual inflammatory risk in patients with CVD.
Navarro et al. [44] reported that there may be differences in the
regulation of the ApoA-I/C-III/A-IV gene clusters depending on
the type of response and the temporal frame of study, such as
steady-state mRNA or plasma levels. They further reported that
hepatic and plasma Apo C-III levels are similar, which correspond
with plasma triglycerides. These findings suggest that
inflammation plays a significant role in all processes related to the
expression of the ApoA-I/C-III/A-IV gene cluster. The elimination
of ApoA-I might heighten the inflammatory reaction and may
contribute to chronic inflammation [45]. The first conclusive
evidence of ApoA-IV’s novel anti-inflammatory and inhibitory
effect onP-selectin expression, which regulates leukocyte and
platelet adhesive interactions, was found in a study using a murine
model of DSS colitis [34].

This is the first study based on analysis of the diseasome
association network obtained for cardiomyopathy that shows the
association of ABCA1, LCAT, and CLU with the apolipoprotein
family which is an inflammatory marker being associated with
CVD. The genes identified in the present study namely LPA,
APOA2, ABCA1, LCAT, APOB, APOA4, CLU, APOC3, and
APOA1 were found to be involved in cholesterol metabolism, fat
digestion and absorption, lipid and atherosclerosis, and PPAR
signaling pathway and showed a direct or indirect association with
CVDs leading to CVD which may result in HF.

5. Limitations and Recommendations

The approach used in the present study aimed to elucidate the
association between cardiomyopathy and CVD. The study lacks
direct clinical validation of the identified hub genes though
notably, the subsequent validation of the identified genes
implicated in cardiomyopathy and their relevance to CVD
outcomes was analyzed through text-mining.

To further validate the biomarkers identified in the present study
based on this predictive analysis using a network systems biology
approach, animal and clinical studies would provide additional
scientific evidence for the clinical application of these biomarkers.

The research strategy used in the present study offers a holistic
understanding of the molecular factors influencing cardiomyopathy
and its connection to CVDs. By adopting an interactome-based
computational approach, the research advances our understanding
of the complex molecular mechanisms involved in CVDs.

6. Conclusion

Cardiomyopathies are an important cause of HF, and a
comprehensive understanding of their association at the molecular
level can have a significant impact on disease prognosis. The hub
genes identified in the present study, including LPA, APOA2,
ABCA1, LCAT, APOB, APOA4, CLU, APOC3, and APOA1,
emerge as potential biomarkers and therapeutic targets for
cardiomyopathy and CVDs. The APO family of proteins
identified in this study, together with the proteins they are linked
to, may serve as helpful biomarkers for cardiomyopathy leading to
CVD that may result in HF. This in turn may guide personalized
therapeutic interventions for modulation of cardiomyopathy to
prevent CVD and HF.
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Table 3. KEGG pathway analysis of hub genes

Pathway Genes in pathway P-value
Enrichment

score

Cholesterol metabolism APOC3, APOA2, LPA, LCAT, APOB, APOA4, APOA1,
ABCA1

7.599e-21 176031.05

Fat digestion and absorption APOB, APOA4, APOA1, ABCA1 2.315e-9 8137.98
Vitamin digestion and absorption APOB, APOA4, APOA1 1.269e-7 7550.44
Lipid and atherosclerosis APOB, APOA4, APOA1, ABCA1 0.000001569 1002.34
PPAR signaling pathway APOC3, APOA2, APOA1 0.000004019 1742.91
Complement and coagulation
cascades

CLU 0.03761 97.18

Figure 5. Heatmap showing the top 9 key hub genes involved in
KEGG pathway analysis
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