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Abstract: Cardiovascular diseases (CVD), including heart failure (HF), represent a major global health concern, with significant 

indisposition and mortality rates. Cardiomyopathy is a myocardial disease that impedes the heart's ability to efficiently pump 

blood throughout the body, ultimately leading to heart failure. For the identification of critical genes and proteins linking 
different diseases, computational biology tools and "omics" play a significant role. Therefore, the present study was undertaken 

to identify underlying molecular factors responsible for cardiomyopathy to decipher its molecular association with CVD and 

heart failure using an integrative network system biology approach. Microarray and RNA-seq datasets for cardiomyopathy were 

retrieved from the Gene Expression Omnibus database and 51 common DEGs were identified. Subsequently, a Protein-Protein 
Interaction (PPI) network was constructed using STRING, followed by its analysis using various Cytoscape plug-ins. Nine hub 

genes, namely LPA, APOA2, ABCA1, LCAT, APOB, APOA4, CLU, APOC3, and APOA1 were identified that were found to be 

involved in cholesterol metabolism, fat digestion and absorption, lipid metabolism, and atherosclerosis pathways. Therefore, the 

proteins identified in the present study belonging to the APO family and their associated proteins may prove as useful biomarkers 
for cardiomyopathy and therapeutic targets to prevent CVD and heart failure. 

 

Keywords: cardiomyopathy, cardiovascular disease, inflammation, interactome, network systems biology, computational 
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1. Introduction 
 

A leading cause of death in humans is cardiovascular disease, which includes heart failure, hypertension, congenital heart 

disease, coronary heart disease, and other heart-related conditions with heart failure being the clinically most prevalent 
cardiovascular condition. Globally, it is estimated that 64.3 million individuals experience heart failure [1]. A study claims that 

cardiovascular disease (CVD) causes more deaths annually than any other illness, with 17.9 million deaths annually—roughly 

31% of all deaths globally. Heart disease and stroke will account for 23.6 million of CVD-related deaths by 2030 [2].Heart 

failure (HF) is becoming more widespread like a pandemic. The persistent nature of age-related illnesses like rheumatoid heart 
disease and the rise in recent diseases like coronary artery disease heighten the risk of heart failure [3]. 

 

Cardiomyopathy is a pathologic and anatomic diagnosis that refers to muscle or electrical dysfunction in the heart. This 

diverse group of illnesses result in heart failure that worsens over time and has a notable morbidity and mortality rate [4]. Primary 
(genetic, mixed, or acquired) and secondary categories of cardiomyopathy can be distinguished, leading to a variety of 

phenotypes such as dilated, hypertrophic, and restrictive patterns. The most prevalent primary cardiomyopathy, hypertrophic 

cardiomyopathy, can result in heart failure, abrupt cardiac death, atypical chest pain, exertional dyspnea, and presyncope. Dilated 

cardiomyopathy usually manifests as classic heart failure symptoms with a low ejection percentage while much less common 
form of restrictive cardiomyopathy is frequently linked to systemic illness, and can be genetic or acquired [5]. Secondary 

cardiomyopathy is the term used to describe heart muscle disease that arises from an extra cardiovascular cause. There are 
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numerous categories into which secondary causes can be divided, such as endocrine, infectious, toxic, autoimmune, nutritional, 

and neuromuscular [5]. 

 
Genetics is the primary cause of cardiomyopathy. Ciarambino et al. [6] reported that mutations in the TTN gene, which 

codes for the protein titin that connects actin and myosin, and the LMNA gene, which codes for the protein lamins A and C, are 

specifically associated with dilated cardiomyopathies. Hypertrophic cardiomyopathy has been linked to mutations in genes such 

as MYBPC3 (which codes for cardiac myosin-binding protein C of the intermediate filament) and MYH7 (which codes for beta-
myosin heavy chain of the thick filament). They have further reported that desmosome gene mutations are the most significant 

ones associated with arrhythmogenic cardiomyopathy while other significant genes include JUP, DSP, PKP2, DSG2, and 

DSC2.A study published by Da Dalt et al. [7] reported that PCSK9 deficiency alters the heart's ability to produce energy and 

metabolise lipids, which causes the left ventricular wall to thicken and heart failure with preserved ejection fraction to develop. 
 

Cardiac diseases are complex diseases that exhibit a variety of phenotypes resulting from multiple pathologies, such as 

cardiomyopathies, which if left untreated ultimately cause heart failure [8]. Network biology has provided new avenues for better 

understanding of complex systems such as protein-protein interactions and disease-disease links. Disease network analysis 
facilitates and projects a basic understanding of the relative risks of diseases and features of their shared architecture, which is 

useful in the field of disease epidemiology [9]. The fields of clinical medicine and cardiology have benefited greatly from the 

advances in systems biology, which have led to a better understanding of molecular systems, complex biological networks, and 

biological constructs [10]. Some studies have reported genes associated with either cardiomyopathy or different types of CVD. Si 
[11] reported association of RPS4Y1 and MYH6 genes with cardiomyopathy based on a PPI interaction network of transcriptome 

data. In a recent study, Yan et al. [12] have identified genes namely C3, F5, FCGR3A, APOB, PENK, LUM, CHRDL1, 

FCGR3A, CIQB, and FMOD, in cardiomyopathy using a bioinformatics approach. The mechanism underlying molecular 

association of cardiomyopathy and heart failure is poorly understood. Network-centric approaches to study interactomes of 
diseases provide an opportunity to identify critical targets that can act both as biomarkers and therapeutic targets which must be 

studied using a network systems biology approach for their better understanding [13]. Therefore, the present study was 

undertaken to identify underlying molecular factors and pathways responsible for cardiomyopathy which may lead to CVD using 

an integrative network system biology approach. 
 

2. Research Methodology 
 

2.1. Data collection 
 

NCBI GEO database was used for the retrieval of multiple omics datasets (GSEs) to collect RNA-seq and microarray data 

related to cardiomyopathy. The inclusion criteria for both datasets were selected as follows: (i) three control and three 
experimental samples; (ii) platforms owned by Affymetrix, Illumina, or Agilent manufacturers; (iii) human datasets. Studies 

using gene therapies or interfering molecules like siRNAs or miRNAs and manipulated datasets were not included. 

 

2.2. Preprocessing microarray data and DEGs identification 
 
The microarray dataset GSE120895 [14], consisting of 47 dilated cardiomyopathy (DCM) patients and 8 healthy controls, 

was based on the Platform GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. The gene expression 

profile was downloaded using the R platform's GEOquery package [15]. For downstream analysis, the following packages were 

used: (i) affy for Affymetrix-derived datasets;[16] (ii) rma method [17] in the affy package to correct background, normalise, and 
summarise expression values for each probe set of the dataset; (iii) limma [18] and Biobase [19] packages for differential gene 

expression analysis. DEGs were identified with the threshold set as P<0.05. The DEGs with log2FC < −1 were considered as 

down-regulated genes, while the DEGs with log2FC > 1 were considered as up-regulated genes. To identify DEGs between 

cardiomyopathy patients and control samples and to control the false discovery rate (FDR) of the test statistics, Moderated t-test 
and Benjamini–Hochberg (BH) method were applied respectively. The volcano plot of the DEGs was generated using RStudio. 

 

2.3. Preprocessing RNA-Seq data and DEGs identification 
 

The gene expression profile of RNA-Seq dataset GSE230585, on account of GPL21697 Platform NextSeq 550 (Homo 

sapiens), including 11 samples of patients with hypertrophic cardiomyopathy and 5 heart-healthy donors, was obtained from the 
NCBI GEO database. DESeq2 R package [20] was used for the differential gene expression analysis. The DEGs between samples 

were determined by the threshold set as |log2FC|≥1 with the Benjamini-Hochberg for FDR correction of p < 0.05 followed by the 

construction of a volcano plot using RStudio. 

 

2.4. PPI network construction and analysis 
 

Interactions among the DEGs were examined with the STRING database [21] followed by an analysis of the interaction 
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network using Cytoscape 3.10.1 software [22] and its various plugins namely CytoCluster [23], MCODE [24] and CytoHubba 

[25]. 

 

2.5. Functional and pathway enrichment analysis 
 
KEGG pathway analysis and functional annotation were done using the enrichment tool, Enrichr [26]. It uses 

Clustergrammer to visualize high-dimensional data as a hierarchically clustered matrix with colored matrix-cells and produces 

dynamic heatmaps of enriched terms as columns and user input genes as rows. 

 

3. Results  
 

3.1. Identification of DEGs 
 

The Microarray dataset and the RNA-seq dataset with accession numbers GSE120895 and GSE230585 respectively were 

preprocessed followed by data normalisation to identify the DEGs. A total of 859 DEGs were identified in the microarray dataset 

(GSE120895) out of which 7 genes were up-regulated and 852 genes were down-regulated (Figure 1A). RNAseq dataset 
(GSE230585) had 973 DEGs out of which 639 were up-regulated and 334 were down-regulated genes (Figure 1B). Fifty-one 

common DEGs associated with cardiomyopathy were identified using Venn diagram from the two datasets (Figure 1C). 

 

3.2. PPI interaction and modular analysis 
 
The protein-protein interaction network of the 51 genes previously identified from the DEG analysis was constructed in 

STRING (Figure 2A) and had 48 nodes (representing the genes) and 32 edges (representing the interactions between the genes) 

with enrichment P-value of less than 1.0e-16, indicating high degrees of gene interaction. The interaction network was further 

built in STRING to identify interacting partners of the 51 proteins and the resulting network having 98 nodes and 486 edges was 
imported to Cytoscape for further analysis (Figure 2B).  

 

Clustering was performed using two different Cytoscape plug-ins, CytoCluster and MCODE to identify and validate the 

significant clusters to further identify the critical hub genes. ClusterONE (Clustering with Overlapping Neighbourhood 
Expansion) is an algorithm of CytoCluster plug-in, that was used to identify highly overlapping regions i.e. cluster modules based 

on a P-value of <0.05 [13] while MCODE (Molecular Complex Detection) detects clusters on the basis of topology i.e. a 

maximum number of nodes and edges. Ten clusters were obtained following analysis of the imported PPI network from STRING 

(Figure 2B) with CytoCluster, out of which only 2 clusters were significant (Table 1A). Both these clusters were merged and had 
51 genes which were analyzed with the CytoHubba plugin of Cyctoscape using Maximal Clique Centrality scoring method and 

nine hub genes namely LPA, APOA2, ABCA1, LCAT, APOB, APOA4, CLU, APOC3 and APOA1 were found (Table 2, Figure 

3A). To validate the hub genes, the imported PPI network (Figure 2B) was also analyzed with  MCODE which returned 5 cluster 

modules out of which only 2 clusters were selected that had a significant number of nodes and edges (Table 1B). These two 
clusters having 40 genes were merged and analyzed with CytoHubba and the nine hub genes obtained (Table 2, Figure 3B) were 

identical to the results of CytoCluster and CytoHubba, thereby validating the genes obtained using two different analysis 

approaches. 
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         GSE120895: control vs disease                         GSE230585: control vs disease 

 
Figure 1. Volcano plot for up- and down- regulated genes for datasets GSE120895 (A) and GSE230585; (B) Blue color 

represents down regulated genes, red color represents up regulated genes while black color represents non-significant 

genes based on the cutoff criteria: adjusted P-value<0.05 and |log2FC|>1; (C) Venn diagram representing common DEGs 

amongst the microarray and RNA-seq datasets. 

 

 

 
Figure2. (A) Protein-Protein Interaction network generated using STRING having 48 nodes and 32 edges; (B) 

Representation of interacting partners of the 48 proteins generated from STRING having 98 nodes and 486 edges, in 

Cytoscape. 
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Table 1. Selection of two ClusterOne (A) and MCODE; (B) clusters based on P-value of <0.05 and high number of nodes 

respectively. 

 

A) ClusterOne B) MCODE 

CLUSTERS DETAILS CLUSTERS NODES EDGES SCORE 

 

Nodes: 32 

 

20 94 9.895 
Density: 0.500 

Quality: 0.70 

P-value: 0.000 

      

 

Nodes: 19 

 

20 72 7.579 
Density: 0.509 

Quality: 0.439 

P-value: 0.008 

 

 

 

 
Figure 3. Graphical view of ranked hub nodes of (A) ClusterOne; (B) MCODE cluster obtained from Cytohubba with 

color-coding (Red - highly essential genes and Yellow – less essential genes. 
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Table 2. Top 9 dyresgulated genes and their expression values 

Gene 

Symbol 
LogFC AveExpr t P.Value Adj.p.value B Direction 

LPA -1.48308 6.756596 -3.44763 0.00108 0.03007 -0.92127 Down 

LCAT 2.579948 1.019443 3.82005 0.00257 0.042554 -1.40249 UP 

CLU 1.263447 4.097684 2.21768 0.03118 0.144357 -3.79878 UP 

ABCA1 -1.445242 4.500200 -4.50207 3.49E-05 0.008551 2.19224 Down 

APOA1 -1.135203 3.828202 -3.61844 0.00064 0.025039 -0.44848 Down 

APOA2 -1.228575 4.159338 -3.616529 0.00067 0.025534 -0.45587 Down 

APOA4 -1.799703 4.660992 -3.635174 0.000679 0.025534 -0.46190 Down 

APOC3 -2.644425 1.723289 -3.840097 0.00072 0.025986 -0.47700 Up 

 

3.3. Gene enrichment  
 

The diseasome association network for the 9 hub genes identified in the present study for cardiomyopathy, was constructed 
using STRING and a highly connected PPI interaction network was obtained (Figure 4). To further understand the biological 

roles of the common hub genes between cardiomyopathy, KEGG Pathway analysis was carried out and all the genes identified in 

the present study were found to be involved in Cholesterol metabolism, fat digestion and absorption, Lipid and atherosclerosis 

and PPAR signaling pathway, and showed a direct or indirect association with cardiovascular diseases with may result in heart 
failure (Figure 5 and Table 3). 

 
Figure 4. Interactome network of the hub genes obtained from STRING 

 

 
Figure 5. Heatmap showing the top 9 key hub genes involved in KEGG pathway analysis 
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Table 3. KEGG pathway analysis of hub genes 

Pathway Genes In Pathway P-Value 
Enrichment 

Score 

Cholesterol metabolism 
APOC3, APOA2, LPA, LCAT, APOB, 

APOA4, APOA1, ABCA1 
7.599e-21 176031.05 

Fat digestion and absorption APOB, APOA4, APOA1, ABCA1 2.315e-9 8137.98 

Vitamin digestion and absorption APOB, APOA4, APOA1 1.269e-7 7550.44 

Lipid and atherosclerosis APOB, APOA4, APOA1, ABCA1 0.000001569 1002.34 

PPAR signaling pathway APOC3, APOA2, APOA1 0.000004019 1742.91 

Complement and coagulation cascades CLU 0.03761 97.18 

 

4. Discussion 
 

In the present study to identify underlying molecular factors responsible for cardiomyopathy which may lead to heart failure,  

9 proteins were identified from the interactome obtained from the analysis of the DEG associated with both the medical 
conditions. Common causes of heart failure have been identified as atrial fibrillation, myocardial infarction, ischemic heart 

disease, valvular heart disease, and cardiomyocytes [27]. All the proteins identified in the study (Table 3) are involved in 

pathways involved in metabolism, absorption or transport of fatty acids with most of them belonging to apolipoprotein family.  

 
The primary structural and functional protein constituent of high-density lipoprotein (HDL), or good cholesterol in plasma, 

is apolipoprotein A-I (APOA1) which constitutes about 70 % of it. It is known for regulating cholesterol trafficking and 

protecting against CVD. Gordon et al. [28] also reported its role in modulating inflammatory and immune responses. It facilitates 

the efflux of cholesterol from tissues into the liver for excretion as a cofactor for lecithin cholesterol acyl transferase (LCAT), 
which is required for the synthesis of most plasma cholesteryl esters [29]. LCAT is a key enzyme in the metabolism of HDL and 

is essential for the reverse cholesterol transport that occurs in macrophages [30]. It has been reported that LCAT activity may be 

linked to increased formation of triglyceride-rich lipoproteins (TRLs), which in turn reduces the size of LDL particles in patients 

at high risk for atherosclerotic cardiovascular disease (ASCVD) [31]. The second major protein constituting 20% of high-density 
lipoprotein cholesterol (HDL-C) particles is apolipoprotein A2 (APOA2), which has been reported to have an antagonistic effect 

on the efflux of cholesterol from cells by regulating the enzymes involved in the remodelling of HDL-C, a known risk factor for 

coronary artery disease (CAD) [32].  

 
According to a study, APOA2 independently predicts the risk of CVD and the need for future revascularization in patients 

with stable hearts suggesting that APOA2 is directly linked to the burden and progression of atherosclerosis rather than 

cardioprotection in humans [33]. The smaller apolipoprotein APOA3, is mostly found on TRLs and HDL in the bloodstream, 

with a smaller amount on LDL [34]). According to recent research, APOC3 levels on lipoproteins may increase their 
atherogenicity and act as a risk indicator for CVD in people [35]. Lipid-binding apolipoprotein A-IV (APOA4) is found on 

HDLs, chylomicron remnants, and in lipid-free form and is reported to regulate a variety of physiological processes, including 

lipid absorption and metabolism, anti-atherosclerosis, platelet aggregation and thrombosis [36]. APOB, is an apolipoprotein that 

forms a crucial part of VLDLs and the metabolites LDLs and IDLs by providing a framework, that is essential to preserve the 
lipoprotein's structural stability [37]. 

 

Lipoprotein (a) (LPA) is a modified LDL particle and has physiological roles in wound healing, tissue repair promotion, and 

vascular remodelling. Its elevated plasma concentration is an independent predictor of atherosclerotic CVD and peripheral 
arterial disease [38]. Tsimikas et al. [39] reported that LPA is a causative mediator of calcific aortic valve disease (CAVD) and 

CVD based on pathophysiological, epidemiological, and genetic studies.  

 

The protein known as ATP-binding cassette transporter A1 (ABCA1) is crucial for preserving cholesterol homeostasis and is 
known for mediating the nascent high-density lipoprotein biogenesis. Therefore, decreased ABCA1 function may have a 

significant impact on reverse cholesterol transport and cholesterol homeostasis [40]. Therapeutic strategies aimed at removing 

excess cholesterol from tissues and preventing CVD now have ABCA1 as a promising new target, regardless of the way 

numerous atherogenic factors combine to produce cholesterol deposits in arterial macrophages [41].  
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Clusterin (CLU) also known as apolipoprotein J, is a ubiquitous, multifunctional glycoprotein that can be found in nearly all  

of the body's fluids and multiple places within the intracellular matrix and has been proposed to play a protective role during 

pathological stresses [42, 43]. Park et al. [44] reported that the serum level of CLU is significantly increased in subjects with type 
II diabetes and heart failure.  

 

Erdmann et al. [45] performed Genome-Wide Association Studies (GWAS) and reported that APOA1, APOC3, APOA4, 

APOB, and LPA genes and their mutations are linked to CAD that may cause heart failure. Libby[46] reported that in the genesis, 
progression, and manifestation of CVD, inflammation plays a critical role. Clinical trial and observational cohorts reported the 

high prevalence of residual inflammatory risk in patients with CVD [47].Navarro et al. [48] reported that there may be 

differences in the regulation of the ApoA-I/C-III/A-IV gene clusters depending on the type of response and the temporal frame of 

study, such as steady-state mRNA or plasma levels. They further reported that hepatic and plasma Apo C-III levels are similar, 
which correspond with plasma triglycerides. These findings suggest that inflammation plays a significant role in all processes 

related to the expression of the ApoA-I/C-III/A-IV gene cluster. The elimination of ApoA-I might heighten the inflammatory 

reaction and may contribute to chronic inflammation [49]. The first conclusive evidence of ApoA-IV's novel anti-inflammatory 

and inhibitory effect on P-selectin expression, which regulates leukocyte and platelet adhesive interactions was found in a study 
using a murine model of DSS colitis [50].  

 

This is the first study based on analysis of the diseasome association network obtained for cardiomyopathy that shows the 

association of ABCA1, LCAT and CLU with the Apoliprotein family which ias an inframmorty marker being associated with 
CVD. The genes identified in the present study namely LPA, APOA2, ABCA1, LCAT, APOB, APOA4, CLU, APOC3, and 

APOA1 were found to be involved in cholesterol metabolism, fat digestion and absorption, lipid and atherosclerosis and PPAR 

signaling pathway, and showed a direct or indirect association with cardiovascular diseases leading to CVD which may result in 

heart failure 
 

5. Limitations and Recommendations 
 

The approach used in the present study aimed to elucidate the association between cardiomyopathy and cardiovascular 

disease. The study lacks direct clinical validation of the identified hub genes though notably, the subsequent validation of the 
identified genes implicated in cardiomyopathy and their relevance to CVD outcomes was analysed through text-mining. 

 

To further validate the biomarkers identified in the present study based on this predictive analysis using a network systems 

biology approach, animal and clinical studies would provide additional scientific evidence for the clinical application of these 
biomarkers. 

 

The research strategy used in the present study offers a holistic understanding of the molecular factors influencing 

cardiomyopathy and its connection to cardiovascular diseases. By adopting an interactome-based computational approach, the 
research advances our understanding of the complex molecular mechanisms involved in cardiovascular diseases. 

 

6. Conclusion 
 

Cardiomyopathies are an important cause of heart failure and a comprehensive understanding of their association at the 

molecular level can have a significant impact on disease prognosis. The hub genes identified in the present study, including LPA, 
APOA2, ABCA1, LCAT, APOB, APOA4, CLU, APOC3, and APOA1, emerge as potential biomarkers and therapeutic targets 

for cardiomyopathy and cardiovascular diseases.The APO family of proteins identified in this study, together with the proteins 

they are linked to, may serve as helpful biomarkers for cardiomyopathy leading to CVD that may result in heart failure. This in 

turn may guide personalized therapeutic interventions for modulation of cardiomyopathy to prevent CVD and heart failure. 
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