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Abstract: The outbreak of COVID-19 linked to the SARS-CoV-2 virus has raised worries about its potential to worsen pre-existing health
issues such as autoimmune conditions. One common autoimmune condition seen across all individuals is epilepsy. Our detailed computational
study examined the complex connection between COVID-19 and epilepsy, with a focus on their possible impact on neurodegenerative
disorders. Leveraging transcriptome analysis, we aimed to interpret shared pathways and molecular biomarkers between COVID-19 and
epilepsy using RNA-seq datasets. Cutting-edge bioinformatics tools facilitated Network, Enrichment, and route analysis, along with the
identification of pivotal gene signatures, notably through comprehensive exploration of machine learning methods and protein-protein
interactions. This work identified 1040 common differentially expressed genes, forming the basis for unraveling shared pathways and
potential drug targets. By employing statistical methods and diverse network analyses, we meticulously identified genetic elements
shared between COVID-19 and epilepsy. The analysis reveals that 10 key genes, including CATIP, CDC25C, GPR132, NTS, PDE8B,
PLK1, SLC12A9, SPC25, TUBAIA, and TYMS, are crucial in bridging transcriptomic alterations across various scenarios. A subset of
these genes exhibited existence within distinct regulatory networks, signifying their significant role in the shared disease mechanisms of
COVID-19 and epilepsy. Notably, CDC25C, PLK1, and TYMS emerged as prominent genes within the COVID-19 and epilepsy
networks, strongly suggesting their vital roles in connecting regulatory mechanisms across these conditions. Further validation through
molecular docking studies will confirm the significance of CDC25C, PLK1, and TYMS, potentially shedding light on new opportunities
for targeted therapeutic interventions aimed at reducing the risk of seizures in individuals affected by COVID-19 and epilepsy.
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1. Introduction

The COVID-19 pandemic has brought to light various
complexities beyond its primary respiratory impacts. Among these
complexities, the virus’s potential impact on neurological health has
emerged as a significant concern. As the virus primarily affects the
respiratory system, there is growing evidence suggesting its ability
to infiltrate the central nervous system (CNS), thereby raising
concerns about its potential effects on brain function and
neurological well-being. Infections of the CNS, such as meningitis,
viral encephalitis, malaria, and neurocysticercosis, are common
causes of seizures and acquired epilepsy in the developing world
[1, 2]. These infections can lead to increased mortality and
morbidity, including subsequent Epilepsy. Notably, a considerable
proportion of individuals affected by COVID-19 have presented
with neurological manifestations. These neurological complications
range from mild symptoms to severe conditions, indicating
the virus’s ability to affect various regions of the brain. The
observation of these neurological manifestations has prompted

intensive research into understanding the underlying mechanisms
and identifying the shared genes implicated in COVID-19 infection,
particularly focusing on individuals with compromised immune
systems [3]. Epilepsy is a chronic brain disorder in which groups of
nerve cells, or neurons, in the brain sometimes send the wrong
signals and cause seizures. Seizures, characterized by sudden,
abnormal electrical activity in the brain, have been observed in
some COVID-19 patients, especially in individuals with weakened
immune systems [4]. The onset of seizures can arise from various
triggers, such as sudden electrical impulses or disturbances in
neural communication, often leading to sudden discomfort or even
temporary paralysis in affected patients. Studies found that the case
fatality rate for patients with Epilepsy and COVID-19 was 9.8% [5].

Considering these neurological complications associated with
COVID-19, there is a growing imperative to explore deeper into
the genetic reinforcements of these neurological functions.
Understanding the shared genes involved in COVID-19 infection
and their potential influence on neurological manifestations,
including seizures, holds promise for developing targeted drug
therapies. Such drugs could aim to alleviate the neurological
impact of the virus and improve associated complications, thereby
improving patient outcomes. COVID-19 can cause various
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neurological dysfunctions, such as loss of smell and taste,
severe strokes, headache, dizziness, and encephalitis [6].
The potential neurological impact of SARS-CoV-2 infection on
the brain includes symptoms such as headache, dizziness,
impaired consciousness, cognitive impairment, and motor
disorders [7].

The relationship between COVID-19 and epilepsy investigates
the potential impact of the viral infection on individuals with
pre-existing epilepsy, as well as the potential for COVID-19
to induce new-onset seizures or exacerbate existing epilepsy.
It also addresses the challenges of managing epilepsy during
the pandemic and the potential neurological implications of
COVID-19 [8]. The SARS-CoV-2 virus affects the brain, leading
to cognitive dysfunction and other neurological sequelae in
COVID-19 patients [9]. Also, studies have identified that
COVID-19 can cause a temporary loss of smell and strokes
related to blood clotting and inflammation in brain blood vessels
[10]. New-onset epilepsy noted in 0.3% of patients within
6 months of COVID-19 infection, and three cases of post-
COVID-19 epilepsy were identified after non-symptomatic to
mild disease [11]. COVID-19 infection affects the nervous system
in epilepsy patients resulting autonomic nervous system
dysfunction and psychological disorders such as depression and
anxiety [12]. COVID-19 worsens seizures in elderly patients with
epilepsy, including lung damage and hypoxia, which contribute
to a poor prognosis. Apart from epilepsy, severe neurological
manifestations such as neuroinvasion, endothelial dysfunction, and
neuroinflammation are commonly caused in COVID-19 patients
[13, 14]. Research is being conducted to understand and treat
these symptoms. A case report described a patient with new-onset
focal epilepsy and impaired awareness seizures associated with
COVID-19 infection, suggesting a possible post-COVID-19
inflammatory syndrome [15]. Patients with epilepsy may have
an immune response that predisposes them to developing
COVID-19.It is suggested to explore this correlation by
conducting studies specifically focused on investigating the
immune response of patients with epilepsy in relation to the
development of COVID-19.

In the current study, we selected two single-cell RNA-Seq and
RNA-Seq datasets from the Gene Expression Omnibus (GEO)
database to identify the key candidate genes between COVID-19
and Epilepsy. First, we identified DEGs between COVID-19 and
Epilepsy. Then, we applied ML-based algorithms to identify the
significant genes between COVID-19 and Epilepsy, we used
Common DEGs to discover the functions and obtained Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses. A protein-protein interaction (PPI)
network was constructed using the Network Analyst database,
incorporating a transcription factor (TF)-gene interaction network
to identify highly promising modules. The degree of connectivity
within these modules was then assessed to pinpoint potential
biomarkers. The objective of this study is to investigate the
potential impact of COVID-19 on the susceptibility to seizures
and the development of epilepsy in individuals with compromised
immune systems. Figure 1 summarized the data preparation,
processing, analysis, and validation.

In essence, this study aims to explore the shared genetic
factors associated with COVID-19 infection, particularly in the
context of neurological manifestations, including seizures. By
elucidating these genetic components, the goal is to pave the
way for the development of novel therapeutic interventions
that specifically target neurological dysfunctions arising from
COVID-19 infection.

2. Methodology

2.1. Datasets summary

Both the RNA sequencing and single-cell RNA sequencing
datasets of COVID-19 and Epilepsy were obtained from the GEO
database of the National Center for Biotechnology Information
[16]. The COVID-19 dataset (GSE157103) and the epilepsy
dataset (GSE221849) were selected from Homo sapiens as the
ideal pairings to ensure the testing samples were consistent and
the sample size was adequate for both disorders.

The GPL24676 Illumina NovaSeq 6000 (Homo sapiens)
contained the COVID-19 dataset GSE157103, which was
contributed by Overmyer et al. [17]. We classified 100 COVID-19
groups and 26 healthy controls using plasma and leukocyte
samples from hospitalized patients with or without COVID-19.
The seizure-affected Epilepsy dataset GSE221849 was from the
GPL24676 Illumina NovaSeq 6000 (Homo sapiens) provided by
Miller et al. [18]. Its samples are also from seizure-affected brain
tissue with mosaic copy number gain of chromosome 1q,
containing 5 treated groups (with chr1q gain) and 2 healthy
controls (without chr1q gain). Both datasets were obtained by
high-throughput sequencing. The COVID-19 dataset GSE157103
and the epilepsy dataset GSE221849 are used as validation
cohorts. Table 1 shows the basic information for the datasets, with
lots of details and numbers.

2.2. Data preprocessing

The data preprocessing is done for the dataset GSE221849,
since it belongs to Sc-RNA-Seq, we need to extract count data
from the different files we downloaded from the GEO Database.
The preprocessing workflow commenced by utilizing the Seurat
Package [19] to extract count data from the various files
downloaded from the GEO database. This count data extraction
process involved several steps within the Seurat framework to
preprocess the data. Quality check metrics were applied following
the methodology outlined by Ilicic et al. [20], ensuring the
identification and removal of low-quality cells, empty droplets, or

Figure 1. Study design. The study involved data collection,
analysis, and validation to identify molecular pathways linking
COVID-19 and epilepsy, aiming to understand the connection
between these conditions.
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potential cell multiplets based on criteria such as the number of unique
genes detected, total molecule counts, and the percentage of reads
mapping to mitochondrial genes. Normalization and Variance
Stabilization were executed using the approach proposed by
Hafemeister and Satija [21], aiming to standardize the expression
measurements across cells and stabilize the variance, thereby
enabling reliable downstream analysis. The dataset underwent a
clustering procedure, adopting the methodology described by Xu
and Su [22], which likely involved a graph-based clustering
approach or similar strategies to group cells based on their
similarities in gene expression profiles, thereby delineating distinct
cell types or populations. Following these preprocessing steps, the
finalized Seurat object contained the processed count data, which
was extracted for further analysis, particularly for differential gene
expression analysis. This extracted count file served as the
foundation for subsequent investigations into gene expression
patterns across different cell types or conditions within the dataset.

2.3. DEGs and the common DEGs of COVID-19
and epilepsy

Using the R (v4.1.1) Limma package, differential gene
expression analysis (DEGs) was performed to investigate shared
gene signatures between COVID-19 and epilepsy [23]. Using
metrics such as adj. P value< 0.05 and |log2(FC)|> 2 as tweaks,
we standardized screening criteria to find significant DEGs in
both datasets. To illustrate the DEGs in COVID-19 and epilepsy,
respectively, the ggplot2 software was used to create volcano
plots and heatmaps [24]. Using a Venn diagram, common DEGs
between the two conditions were identified.

2.4. Functional enrichment analysis

Adatabase termedGO is used to specify the roles that genes and
proteins play in different species [25]. On the other hand, the KEGG
pathway is particularly important in genome analysis and gene
annotation and is known for its function in controlling metabolism
[26]. We performed both GO and KEGG analyses using the
“ggplot2" and “Cluster Profiler” packages [27, 28]. Additionally,
the same method has been applied to the shared DEGs between
COVID-19 and epilepsy for GO analysis, which includes
biological process (BP), cellular component (CC), and molecular
function (MF). We did functional enrichment analysis to
investigate the influencing factors of the differentially expressed
genes (DEGs) in further detail.

2.5. Identification of the significant gene signatures
between COVID-19 and epilepsy

LASSO, a widely used supervised learning method, is
employed in gene signature, biomarker selection, and regression
tasks [29]. We utilized a LASSO-based regression model, trained
on DEGs, to identify discriminative gene signatures shared
by COVID-19 and epilepsy from DEGs using the “glmnet”
package [30]. Optimal parameters were chosen via a 10-fold
cross-validation procedure. The coefficients of particular features

are exposed by the lambda parameter. Genes exhibiting non-zero
coefficients in the LASSO-based logistic regression model were
deemed discriminative, while those with zero coefficients were
excluded from further analysis. Also, the prediction accuracy of
the model and these important gene signatures was evaluated
using receiver operating characteristic (ROC) analysis, where the
area under the curve (AUC) value was computed [31].

2.6. PPI network analysis

PPI network analysis was conducted to gain further insight into
the interacting proteins linked to the significant gene signatures.
The shared gene signatures were loaded into the Network Analyst
3.0 platform [32], and the “STRING Interactome” database was
used, with a confidence score cutoff of 900, to build the PPI
network. Afterward, Cytoscape Version 3.8.0 was needed for the
network’s visualization [33].

2.7. Regulatory networks analysis of gene
signature, TF, and miRNA

The Network Analyst 3.0 platform (https://www.networkana
lyst.ca) was utilized to do an extensive examination of gene-
miRNA interaction networks, TF-gene interaction networks,
and TF-miRNA coregulatory networks, among other systematic
regulatory networks. Certain DNA sequences that control
transcription and underpin many facets of human physiology,
illness, and variability can be identified thanks in large part to TFs
[34]. To analyze the TF-gene interaction network, we specifically
used the ENCODE ChIP-seq database. The miRTarBase v8.0
database, which is acknowledged as the principal experimental
database for miRNA-gene interactions and has the highest
quantity of verified MTIs in comparison to other comparable
databases, was utilized to analyze gene-miRNA interaction
networks [35]. TF-miRNA coregulatory networks were built with
data from the RegNetwork repository. Mature miRNAs control
gene expression by binding to complementary sites on mRNAs
through base pairing. The construction of the miRNA-gene
interaction network using Network Analyst was done to pinpoint
miRNAs with important regulatory functions in target genes.
MiRTarBase and Tarbase were employed during the analysis
procedure. Additionally, we assessed the biological functions and
characteristics of the leading miRNAs and TFs using a degree filter.

2.8. Statistical analysis

The R software version 4.1.1 was utilized to execute all R
packages mentioned in this research. A statistically significant
result was declared when the P value was less than 0.05.

3. Results

3.1. Preprocessing of Sc-RNA-seq data

With dataset GSE221849, we conducted various preprocessing
steps to guarantee data quality and make it ready for further analysis.
In the first step, Seurat is used for exploring quality control (QC)

Table 1. A description of the dataset’s GEO parameters

Disease GSE Id GEO platform Tissue type Experiment type Samples

COVID-19 GSE157103 GPL24676 Plasma and leukocyte RNA-seq 126
Epilepsy GSE221849 GPL24676 Brain tissues scRNA-seq 7
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metrics and filtering cells, which is a common tool for analyzing
single-cell RNA sequencing data. Evaluation is conducted on
specific factors such as the number of distinct genes identified
in each cell, overall molecule numbers, and the proportion of
reads aligning with the mitochondrial genome. Cells displaying
abnormalities like very low gene counts, high molecule counts
indicating multiple cells, or increased mitochondrial contamination
are detected and removed. The Seurat Object is created with
metadata that automatically calculates the unique genes and
total molecules. The metadata contains measurements like
nFeature_RNA (quantity of genes identified in each cell) and
nCount_RNA (overall number of molecules identified in a cell).
After quality control, cells that do not meet user-defined criteria,
such as having unique feature counts (genes) less than or equal
to 5000 or less than 10% mitochondrial counts, are discarded
(Figure 2).

Following QC, filtering of low-quality cells across 4750
samples within the Seurat object, the dataset undergoes
normalization using the “Log Normalize” method, scaling feature
expression measurements for each cell by total expression and
log transformation, ensuring a standardized scale for downstream
analyses. Highly variable features, as recommended in prior
studies, are extracted, resulting in the selection of 2,000 features
demonstrating substantial cell-to-cell variation. Subsequent linear
scaling of the dataset is conducted, adjusting gene expression to
equalize mean expression across cells and standardize variance.
Principal component analysis (PCA) is performed to visualize the
primary sources of heterogeneity using a heatmap, aiding in the
selection of significant principal components for downstream
analyses. Cells are clustered using a graph-based approach,
constructing a K-nearest neighbor graph based on Euclidean
distance in PCA space. The neighbors identify and modularity
optimization techniques, such as the Louvain algorithm, iteratively
group cells into clusters to identify distinct cell populations.
Non-linear dimensional reduction techniques such as UMAP,
are applied to visualize the dataset’s manifold, positioning cells
with similar expression profiles closer together in a lower-
dimensional space (Supplementary_File_4 (A)).

Finally, the preprocessed dataset is saved, and the extraction of
counts was used for differential gene expression analysis.

3.2. Detection of the shared DEGs between
COVID-19 and epilepsy

To discern the connection between COVID-19 and epilepsy at
the genetic level, we employed RNA-seq data from the GSE157103
dataset for COVID-19 and the GSE221849 dataset for epilepsy,
utilizing limma for analysis. Employing a stringent filter criterion
of an adjusted p-value< 0.05 and a |log2FC| value> 2.0, we
identified 2402 DEGs in COVID-19 (44 upregulated, 2388
downregulated) (Figure 3A) and 27309 upregulated DEGs in
epilepsy after preprocessing (Figure 3B). Hierarchical clustering
visualizations depicted DEG expression patterns (Figure 3C and 3D).
Through Venn analysis, 1040 common DEGs were identified,
shedding light on shared molecular pathways between COVID-19
and epilepsy. Further details on DEGs can be found in
Supplementary_file_1.

3.3. Gene enrichment analysis

The analysis delved into the 1040 common DEGs, conducting
GO enrichment analysis to unveil their biological significance. This
analysis revealed the top 5 enriched pathways in BP, CC, and MF
categories, visualized through a Sunburst graph, illustrating
hierarchical relationships among these pathways. Additionally,
KEGG pathway enrichment analysis was executed on the same
DEGs, identifying the top 10 significantly enriched KEGG
pathways (Supplementary_file_4 (B)). Together, these analyses
offer insights into the functional roles and interactions among
genes, shedding light on the biological mechanisms underpinning
the observed gene expression changes in the studied conditions.

3.4. Finding the key gene signatures between
COVID-19 and epilepsy

Utilizing the LASSO algorithm on the pool of 1040 common
DEGs, we identified 10 key gene signatures (CATIP, CDC25C,
GPR132, NTS, PDE8B, PLK1, SLC12A9, SPC25, TUBA1A,
TYMS) with significant implications for both COVID-19 and
epilepsy (Figure 4A, B). The model score, determined by the
coefficients of these gene signatures, was calculated by summing

Figure 2. Data preprocessing of Sc-RNA-seq data (Epilepsy dataset). The following charts show the results of filtering count data of
nFeature RNA, nCount RNA, and mitopercent to eliminate low count reads. Each dot in the plots represents a cell.
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each gene’s value multiplied by its corresponding coefficient.
Subsequently, we assessed the diagnostic efficacy of these key
gene signatures, revealing their predictive potential for COVID-19
and epilepsy through ROC analysis (Table 2).

Interestingly, the model developed using 10 important gene
signatures highlighted the potential of diagnostic efficacy in both
epilepsy and COVID-19 (AUC of 0.911, Figure 4E) (AUC of
0.917, Figure 4F).

3.5. Detection of PPI network

Using the STRING interactome model within the Network
Analyst 3.0 platform, we constructed PPI networks.
Supplementary_file_4 (C), showcases three distinct PPI
networks, with one network containing 244 nodes and 253 edges,
visualized using the large graph layout and highlighting seed
nodes. Within this network, seven key genes were identified.
Further details regarding the nodes in the PPI network can be
found in Table (Supplementary_file_2)

3.6. Transcription factor, miRNA, and gene
signature analysis in regulatory networks

In order to investigate the connection between gene signatures
and TFs, we started a study using the Network Analyst 3.0 platform
(TFs). DisGeNET’s regulatory Explorer highlights three TF genes
linked to epilepsy in Supplementary_file_4 (D), which shows a
network of TF-gene interactions. With 146 nodes and 190 edges
with 7 seeds, the regulatory network analysis most notably
demonstrated a strong link between TF genes and important gene
signatures. Particular connections were seen between TF genes
EZHZ, ESRRA, and MYC and PDE8B, GPR132, and SLC12A9.
Supplementary_file_3 contains the detailed information about the
regulatory network analysis of gene signatures, TF genes, and
miRNA interaction networks.

We also investigated the regulation network of microRNAs and
gene signatures (miRNAs). Despite the creation of a network, single
gene-miRNA networks were constructed Supplementary_file_4 (E),
comprising 120 nodes and 120 edges. Unfortunately, no connections

Figure 3. Differential expression analysis using Limma. Volcano plots of DEGs are shown in (A, B). The plot of the heatmap displays
the important genes that are present between (C) COVID-19 and (D) epilepsy (C, D). The genes shared byCOVID-19 and epilepsy are
depicted in the Venn diagram (E).
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between miRNAs and genes were found. This is probably because
there haven’t been many studies done on epilepsy in relation to
COVID-19 infection. To clarify the mechanics and possible
therapeutic applications of these interactions, more investigation is
essential.

Using the Network Analyst 3.0 software, we then performed
TF-miRNA coregulatory network analysis to look at the
relationship between miRNAs, TFs, and important gene
signatures. The TF-miRNA coregulatory network is illustrated in
Figure 5, which also features three TF genes such as PLK1,
BRCA2, and TP53, that were discovered via interactions with
seed genes. Blue hexagons show miRNAs associated with gene
signatures, while yellow hexagons indicate possible gene signatures.

TP53, PLK1, BRCA2 from the TF-miRNA coregulatory
network, ESRRA, EZH2, and MYC from the TF-gene interaction
network, and CDC25C, PDE8B, SLC12A9, SPC25, YWHAE,
SMC3, PLK1, and TYMS from the PPI network were among the
significant gene signatures found within the various networks after

Figure 4. Gene selection. Using LASSO coefficients (A & B), AUC values (C & D), and ROC curves (E & F) to demonstrate the
predictive capacity of the 10 gene signatures, the figure depicts the inquiry into the relationship between COVID-19 and epilepsy.

Table 2. AUC values for key gene signatures. This table
summarizes the diagnostic efficiency (Area under the curve,
AUC) of key gene signatures in COVID-19 and epilepsy.

The values represent the AUC for each gene signature in the
respective conditions

Gene

Area under the curve (AUC)

COVID-19 Epilepsy

CATIP 0.8713 0.6666
CDC25C 0.8876 0.6666
GPR132 0.9480 0.8333
NTS 0.505 1
PDE8B 0.7042 0.5833
PLK1 0.8592 0.9166
SLC12A9 0.9357 0.75
SPC25 0.8588 0.75
TUBAIA 0.8942 0.5
TYMS 0.9111 0.5
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analysis. Notably, PLK1, TYMS, and CDC25C were among the
genes that were discovered in many networks, which may indicate
that these genes play important roles in shared pathways between
conditions like COVID-19 and epilepsy.

Even though we used well-established databases with
strict curation processes, it’s necessary to admit that expected
interactions might still come with restrictions requiring experimental
confirmation. Consequently, while our examination offers useful
insights into gene-miRNA and TF-gene connections, care should be
taken when interpreting these outcomes as absolute proof of
biological interactions. We plan to be transparent about the
methodology and data sources employed for regulatory network
analysis to aid in understanding and validation by the scientific
society, allowing readers to evaluate the dependability of our
discoveries in the broader literary context. Furthermore, addressing
the possible limitations of expected interactions will put the outcomes
into perspective and grant a more detailed grasp of the regulatory
networks deduced in our investigation.

In addition to this, we compared the mRNA expression levels of
our seed genes CDC25C, PLK1, and TYMS in COVID-19 and
Epilepsy. The box plot evident that mRNA expression levels of
CDC25C and TYMS were shown as higher in COVID-19 patients
also samples with epilepsy patients who got recurrent seizures,
PLK1 shows higher expression in COVID-19 patients, whereas
expression is similar in both cases of Epilepsy patients with or
without seizures (Figure 6 (A–F)).

4. Discussion

In our study, we utilized bioinformatics methods similar to
those outlined in [36], which focused on COVID-19 and acute
kidney injury based on the shared gene signatures and regulatory
network. As we delved into understanding relationship between
COVID-19 and epilepsy, there COVID-19 has presented
significant challenges for individuals with pre-existing epilepsy,
manifesting in altered seizure frequencies independent of
COVID-19 infection. The potential exacerbation of seizures in
COVID-19 patients, particularly due to fever-induced seizures,
underscores the intricate relationship between the virus and
neurological conditions like epilepsy [37]. Additionally, severe

COVID-19 illness has been linked to complications such as
hypoxic encephalopathy and cytokine storms, further elevating
the risk of seizures in epilepsy patients. These challenges are
compounded by barriers to accessing medications and healthcare
services, exacerbating the frequency and severity of seizures in
affected individuals.

The study explores the genetic underpinnings and biological
mechanisms of COVID-19 and epilepsy, offering insights into
potential overlapping pathways and therapeutic targets. It focuses
on shared gene signatures and regulatory networks, obtaining
shared DEGs and determining representative gene signatures
using machine learning. The model has high predictive efficacy in
both conditions.

In this study, 1040 DEGs were identified with the criteria
of FDR < 0.05 and |log2 FC| > 2 in both diseases. As a result of
the functional annotation obtained by the R package cluster
Profiler, the GO enrichment analysis revealed that the 1040
DEGs were mainly associated with “homophilic cell adhesion
via plasma membrane adhesion molecules”, “cell-cell adhesion
via plasma membrane adhesion molecules”, “meiotic cell
cycle”, “meiotic cell cycle’’ etc. The KEGG pathway analysis
showed “Reductive pentose phosphate cycle (Calvin cycle)”
and “Glycolysis (Embden-Meyerhof pathway), glucose =>
pyruvate” pathways were significantly enriched, which suggests
that these genes may be involved in the action process or
metabolic reaction of drugs. This indicates COVID-19 infection
may exhibit dysregulated neurological changes which affect the
brain mechanism. With the LASSO logistic regression model,
10 shared key genes (CATIP, CDC25C, GPR132, NTS,
PDE8B, PLK1, SLC12A9, SPC25, TUBAIA, TYMS) were
identified and could effectively distinguish between COVID-19
and Epilepsy.

Particularly, three of the gene signatures such as CDC25C, PLK1,
and TYMS are significant genes in both the COVID-19 and Epilepsy
networks, indicating their critical roles in tying together regulatory
mechanisms. The results suggested that these candidate gene
signatures might help predict a person’s risk of having seizures. By
understanding the neurological manifestations, especially in the case
of Epilepsy, and guiding the appropriate treatment for COVID-19
patients.

Figure 5. TF-miRNA coregulatory network. This figure shows the formation of a TF-miRNA coregulatory network, with candidate
gene signatures represented by yellow hexagons, miRNA signatures by blue hexagons, and novel gene signatures by blue circles.
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The dysregulation of cell cycle proteins, such as PLK1,
CDC25C, and TYMS, has been implicated in epilepsy. PLK1 has
been found to be increased in the brains of scrapie-infected
hamsters [38]. CDC25C, a cell cycle regulatory protein, plays a
role in G2/M progression and DNA damage repair, and changes
in its expression have been linked to tumorigenesis and tumor
development [39]. Additionally, aberrant cell cycle activity and
DNA damage have been observed in neurons in neurodegenerative
diseases, including epilepsy [40]. The dysregulation of cell cycle
and DNA repair processes may contribute to neuronal
vulnerability in epilepsy, potentially leading to cell cycle arrest
and apoptosis [41].

While [42] elucidated molecular connections between
COVID-19 and epilepsy by identifying 373 common genes
primarily involved in immune response processes, our study differs
in approach and findings. The previous study focused on
identifying diagnostic candidates and immune cell correlations,
whereas our work extends beyond to encompass broader aspects of
genetic interactions, regulatory networks, and pathway analyses.
While we also identified common genes between COVID-19 and
epilepsy, our emphasis lies on exploring regulatory networks and
understanding the underlying biological mechanisms driving these
connections. Additionally, our study delves into gene-miRNA
and TF-gene interaction networks, shedding light on regulatory

Figure 6. Expression boxplot. A boxplot depicting the expression of COVID-19 and epilepsy, alongwith shared gene signatures (A, B)
CDC25C, (C, D) PLK1, and (E, F) TYMS expression in brain samples affected with seizures (treated, yellow box), brain samples not
affected with seizures (untreated, green box), and COVID patients (blue box) and controls (pink box), respectively.
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processes underlying the observed gene expression changes in both
conditions.

Furthermore, this study explores the potential neurological
manifestations of COVID-19, including the possibility of the virus
causing direct or indirect effects on the CNS, which could
potentially lead to seizures or other neurological complications in
affected individuals. It also addresses the need for further research
to understand the long-term neurological impact of COVID-19,
particularly in individuals with epilepsy.

5. Conclusion

In the investigation, gene signatures that imply global gene
regulatory networks were determined in COVID-19 patients with
epilepsy as a comorbidity, providing a possible avenue for
intervention. Although the study captured data from both conditions,
limitations remain due to insufficient sample sizes. The suggested
further research should verify the sample sizes and assess clinical
importance when considering predictive aspects or therapeutic
opportunities connected to COVID-19 disease.

The disruptions of CDC25C, PLK1, andTYMSgene expressions
may relate to epilepsy from COVID-19, but the exact pathogenic role
and clinical consequences need further exploration. This work extends
our comprehension of the interaction betweenCOVID-19 and epilepsy
that goes beyond neuroinflammation at the molecular level,
contributing new insights into therapeutic strategies by identifying
specific molecular targets. However, the extent of this impact needs
further studies into the management of seizures and epilepsy during
the COVID-19 pandemic. An in-depth study calls for future
research on how COVID-19 is capable of influencing epilepsy.
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