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Abstract:Malaria continues to be a serious illness for world health. Deadly parasites that causemalaria infect female Anopheles mosquitoes, which
then bite humans, acting as the disease’s vector. SincePlasmodium falciparum is the deadliest of the fivePlasmodium species and research indicates
that medicines for malaria are increasingly revealing drug-resistance mechanisms, it is imperative that new and effective medications be developed.
This project aims to identify and produce a novel therapeutic lead against aP. falciparum target that has been validated. Target2Scan, a programmed
tool, was employed in this investigation to find potential therapeutic targets for P. falciparum peptide deformylase (PDF). After the tool received the
target signature, it ran a Basic Local Alignment Search Tool (BLAST) methodology to find targets that resembled PDF. To ascertain the binding
affinities of protein–ligand complexes, molecular docking was performed using PyRx and CBDock. Of the 12,561 compounds produced, 11,304
were used as the training set and 1,256 as the test set. Six ligands were produced by machine learning as potential therapeutic leads, and using
molecular docking, 1-[(4-fluorophenyl) methyl] indole-2,3-dione showed the greatest binding effect on PDF when compared to 5-chloro-1-
(2-phenylethyl) indole-2,3-dione. The higher binding affinity of 1-[(4-fluorophenyl) methyl] indole-2,3-dione over 5-chloro-1-(2-phenylethyl)
indole-2,3-dione and other ligands on PDF suggests that it has the ability to suppress P. falciparum PDF activity.
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1. Introduction

Approximately 6.6 billion people are still susceptible to malaria,
which results in 200 million cases being reported in 97 countries, with
nearly 600,000 deaths from the disease [1]. For this reason, malaria

remains a major problem. Four distinct species of the unicellular
parasite Plasmodium parasitize human red blood cells, resulting in
malaria. As a result, the parasites multiply inside the blood cells
and transfer the disease from person to person by Anopheles
mosquitoes that feed on human blood. Furthermore, complicating
matters is the fact that this “arms race” is being built step-by-step,
making disease control the top priority [2].*Corresponding author: Omiyale Olumakinde Charles, Department of
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P. falciparum is estimated to be responsible for 300–500
million clinical cases reported annually and 1–3 million fatalities
annually, accounting for the majority of infections and deaths
globally [3]. See Figure 1 for more information on malaria distribution
and progression. The majority of mortality is caused by Plasmodium
falciparum, with other Plasmodium species accounting for only 1%
of deaths [4]. Plasmodium species are newly discovered parasites
that infect female Anopheles mosquitoes and arthropod hosts
alternately. Their life cycle is refilled by the interaction of various
zoite cell types. In the ten years prior, many epidemiologists have
voiced concerns about the increasing resistance of several major
human pathogenic bacteria and parasites to a class of drugs often
used in medicine. For instance, research seems to show that
Plasmodium is not very responsive to aromatic drugs [5].

The implementation of a law-and-order system in the healthcare
industry will undoubtedly have unfavorable effects, but that is not the
focus of this study; instead, the development of a new antimicrobial
medication may be the result, and resistant microbes will most likely
survive the storm. This is not feasible, though, as lab-based
conventional screening is limited to identifying compounds as
potential pathogen candidates based on their capacity to combat
the pathogen in the lab. It also requires little rigorous work to
confirm whether the candidates are successful or unsuccessful in
target cells. However, as one component emerges, another portion
of the entire also manifests itself, and this is the process of
developing alternate techniques as well as envisioning something
new. It concerns me, and for this reason, the first I would face is
the molecular target that will succeed the whole panel of the
libraries, starting from the drugs to the final targets comprising

thousands of products designed, and I would test the items that
offer working chances one by one. I think that the hardest task is
picking the right target audience as it can have a tremendous
impact on the success of my campaign. It is generally agreed [6]
that such a target should (a) be part of the genetic structure of
several human infectious pathogens that essentially harbour, (b)
plainly not located in human cells, (c) serve a contribution to the
virulence pathway, and (d) not be restricted by the common
antimicrobials (drug-resistant).

It clearly points out that peptide deformylase (PDF) could be the
most suitable creature since it holds a certain amount of contribution
for research purposes and will definitely serve as a good example.
Besides accepting the whole substrate moiety, the multiple binding
sites of the PDF enzyme govern the reaction process delaying fMet
deformylation product formation by proteins synthesized in bacteria
cells and organelles such as chloroplasts and mitochondria [7]. The
necessity of deformylation makes PDF an attractive target in the
development of new antimalarial drugs. The identification of PDF
as an attractive target for new drugs to treat infectious diseases has
led to an extensive search for PDF inhibitors.

Yet, as the global big data and artificial intelligence (AI)
revolution progresses, it will lead to the impact of those
technologies in bioinformatics, genetic science, and drug
exploration even in such a narrow field of knowledge. The field of
bioinformatics and computational biology along with AI has earned
increased attention as data-driven methods and AI technologies are
leveraged. It is necessary to point out that for genomics/proteomics
and drug discovery, one can use machine learning within these
areas [8–10]. Machine learning, a division of AI, provides a set of
tools that can improve discovery and decision-making for well-
specified questions with abundant, high-quality data. In small drug
molecule discovery, the recent surge in the development of
machine learning-based protein–ligand interaction tools has helped
researchers in identifying small drug molecules that can interact
with a particular drug target [11–13]. Mechanical learning (ML)
methods have been developed in this context to identify compound-
target occurrences and to establish an inverse relationship between
compounds and their corresponding targets. Our tools’ workflow is
built on the integration and thoughtful selection of the key
components that together form the robust bioinformatics,
computational biology, and AI-driven drug discovery revolutions,
all of which are combined into a single, straightforward workflow.
The tool user may supply dependent signatures of the molecule in
the target’s amino acid sequence format or the target’s nucleotide
sequence when asked to find drugs against a new drug target. In
the end, the programmatic workflow for locating compounds that
bind and target the given molecule begins as follows: The
instrument performs a Basic Local Alignment Search Tool
(BLAST) program against the new target signatures provided by
the user. From the output, many known protein drug targets are
recognized, which are somehow similar to the new target provided
by the user. Since they are accessible with data available, some of
the high-interest protein drug targets that are screened using the
tool’s BLAST technique as well as the drug lead generation based
on quantitative structure-activity relationship (QSAR)-scaffolds
study could be used in PubChem. The tool will obtain experimental
data regarding the inhibitory activity of PubChem compounds on
the target as well as the molecular descriptors of the active
compounds in order to generate QSAR models during the lead drug
generation process based on the QSAR technique. In this instance,
the 6–7 million ligand library of PubChem was used in the
construction, validation, and prediction stages of the ML-based
AutoQSAR technique for drug lead generation. The interactions

Figure 1. Malaria distribution and progression. (A) Human
malaria distribution inAfrica and its estimated burden inNigeria.
Adapted fromWHO, 2008a. World Malaria Report 2008. World
Health Organization, Geneva, pp. 7–15, 99–101. (B) Progression
of malarial disease in a malaria-endemic region. Adapted from
MARA/AMRA
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between compounds, identified as drug leads using the tool, and the
protein targets were also predicted through in silico modelling. See
Figure 2 for more information on Plasmodium falciparum peptide
deformylase (PfPDB) structure and function. AutoDock was a
popular high throughput virtual screening package that was used
programmatically through the tool. Then the calculators can be
built, and the results should be put into the temporary storage folder.

See Figure 1, malaria continues to be one of the most
devastating infectious diseases worldwide, especially in low-
resource settings. This life-threatening disease, caused by the
Plasmodium parasites, particularly “Plasmodium falciparum,” is
transmitted to humans through the bites of infected Anopheles
mosquitoes. Malaria is responsible for approximately 200 million
cases and nearly 600,000 deaths annually, predominantly in sub-
Saharan Africa, where it is endemic [1, 14]. The high morbidity
and mortality rates associated with *P. falciparum* highlight the
urgent need for effective control and treatment strategies [15, 16].

Socioeconomic factors and limited access to healthcare
contribute significantly to the global burden of malaria. The
disease is particularly prevalent in regions where climatic
conditions, such as consistent temperatures and high humidity,
favor mosquito breeding and transmission [17]. In Nigeria, which

accounts for a quarter of all malaria cases in Africa, the disease
exhibits year-round transmission in the south and seasonal peaks
in the north, exacerbating the public health challenge [18].

Malaria control efforts have focused on vector management,
including the widespread use of insecticide-treated bed nets and
indoor residual spraying (IRS), which have successfully reduced
mosquito populations and transmission rates [19]. The
introduction of the RTS,S/AS01 malaria vaccine represents a
significant advancement, showing promise in reducing the
incidence of clinical malaria, particularly in young children [20].

However, the emergence and spread of drug-resistant strains of
P. falciparum pose a formidable challenge to existing malaria control
measures. The rapid evolution of resistance to frontline antimalarial
drugs, such as artemisinin, necessitates the development of new
therapeutic agents [21, 22]. Traditional drug discovery methods,
which are often time-consuming and costly, are proving inadequate
in keeping pace with the emergence of drug-resistant strains.

Recent advances in computational biology and bioinformatics
offer promising alternatives for accelerating drug discovery
processes. Machine learning and AI have revolutionized the field
by enabling the analysis of vast biological datasets to predict
potential drug candidates with high accuracy and efficiency. These

Figure 2. Plasmodium falciparum peptide deformylase (PfPDB) structure and function. (A) Secondary structure of PfPDB (ribbon
representation) showing α-helices, β-sheets, and loops. (B) Catalytic reaction mechanism of PfPDB. (C) Structures of six drug leads
against PfPDB: (1) indole-2,3-dione, 5-chloro-1-(2-phenylethyl), (2) [2,3-f] 5-ethylthieno indole-6,7-dione, (3) 1-[methyl (4-fluorophenyl)]
2,3-dione of indole, (4) 1-[methyl 5-bromothiophen-2-yl] 2,3-dione of indole, (5) indole-2,3-dione 7-bromo-1-(thiophen-3-ylmethyl), and
(6) indole-2,3-dione 7-bromo-1-(thiophen-2-ylmethyl)
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technologies facilitate the identification of novel compounds,
prediction of their biological activities, and optimization of their
pharmacokinetic and pharmacodynamic properties [11–13].

In our study, we focus on the identification and production of a
novel therapeutic lead targeting PDF in P. falciparum. PDF is an
essential enzyme in bacterial protein synthesis, absent in human
cells, making it an attractive target for antimalarial drug
development [7]. Using a combination of molecular docking,
QSAR models, and machine learning techniques, we identified
1-[(4-fluorophenyl) methyl] indole-23-dione as a potential lead
compound with high binding affinity to PDF. Shown in Figure 3.

The integration of machine learning with traditional drug
discovery methods in our research underscores the potential of
these advanced computational techniques to streamline the
identification of effective antimalarial compounds. By addressing
the pressing need for new treatments, our study contributes to the
global effort to control and ultimately eradicate malaria.

2. Materials and Methods

2.1. Identification of target with data availability
on PubChem

Target2Scan is a software tool that the scientists used in their work.
It incorporates several features from the early days of bioinformatics,
computational biology, and AI-driven drug launches, all of which
come together in a single process. This strategy is sometimes called
“hybridizing” the conventional drug development procedure for the
contemporary day. They employ extensive protein, genomic, and
other data collection methods to thoroughly train their machine
learning algorithms. The algorithm will then be applied to obtain
drug targets. Using modeling and training data from pharmacological
targets with known ligands, Target2Scan is tasked with identifying
the ligands of novel targets. Finding new treatments, understanding
how proteins bind to different drugs, and determining if a medicine
is successful for a particular patient are all made possible by it.
Additionally, it ensures optimum ligand bioactivity and supports
perimeter markers. Although the core of Target2Scan is data mining,
which offers the tool greater leverage in making educated decisions
to recommend cost-effective preventive actions, AI and machine
learning reduce the tool’s error-proneness and time-consuming
processes. The Target2Scan in general is an ultra-potent weapon in
the arsenal of drug discovery.

Using the target’s signature, the tool was configured to
identify possible medications or ligands for the target. The
chemicals are ligands for the target that the tool retrieved from
PubChem. The molecular descriptors of the ligands are
summarized in Table 1 below. We looked for druggable or well-
known protein targets that were comparable to the new target
using the BLAST. Here, the software limited the findings to
only those targets for which PubChem, an open public database
of chemical compounds and biological functions, provided
background information. The list of possible medications or
ligands for the targeted receptor could now be reduced thanks to
the drug discovery tool.

2.2. Ligand retrieval for the target and its
characteristics

The chemicals are ligands for the target that the tool retrieved
from PubChem. The tool not only identifies new drug leads but also
ensures their optimum bioactivity and supports perimeter markers.
The possible medications and ligands can be further examined
using these descriptions.

Figure 3. Grid boxes of ligands (figures courtesy of the authors).
(A) 1-[(4-fluorophenyl) methyl] indole-2,3-dione. (B) 5-chloro-1-
(2-phenylethyl) indole-2,3-dione. (C) 7-bromo-1-(thiophen-3-
ylmethyl) indole-2,3-dione. (D) 1-[(5-bromothiophen-2-yl)methyl]
indole-2,3-dione. (E) 7-bromo-1-(thiophen-2-ylmethyl) indole-2,3-
dione. (F) 5-ethylthieno[2,3-f] indole-6,7-dione

Table 1. Molecular descriptors of ligands

Parameters Ligand 3 Ligand 4

CID 13603431 28492614
IUPAC name 5-ethylthieno[2,3-f] indole-6,7-dione 1-[(5-bromothiophen-2-yl) methyl] indole-2,3-dione
Molecular weight (G/Ml) 231.27 322.18
Heavy atom count 16 18
XLogP 2.3 3.1
Complexity 344 376
Hydrogen bond acceptor counts 3 3
Monoisotopic mass (Da) 231.0354 320.9459
Rotatable bond counts 1 2
TA/SA (A2) 65.6 65.6
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2.3. Retrieval of compounds that share structural
characteristics with recognized ligands for the
target

Compounds with structures similar to the known ligands for the
target were retrieved by the tool along with their molecular
characteristics. These compounds recovered molecular characteristics
including rotatable, monoisotope, XLogP, complexity, heavy atom,
molecular weight, hydrogen bond acceptor, and TPSA (topological
polar surface area).

2.4. Generation of drugs leads by machine learning

Drug target interaction prediction studies can be analyzed and
resolved with the aid of computer technology called machine
learning. This method was developed to forecast how prospective
medications or ligands would interact with the target protein. The
target protein’s details were obtained using BLAST search results,
which served as the foundation for the employed technique. The
results of the BLAST searches were then used to retrieve
information about potential drugs/ligands from PubChem, a public
database of chemicals and their properties. The final dataset was
generated by an AutoQSAR script, which combined the information
from both sources. Get PubChem Property (which was used to
overwrite the downloaded file to final_data_frame) and AutoQSAR
script (generated TOP_CID_123, which retrieved data from
PubChem that are related to the protein target given).

The machine learning algorithms that comprise AutoQSAR are
AI software that builds, validates, and uses QSAR models. A
software program called AutoQSAR integrates machine learning
methods with statistics related to the creation and development of
QSAR models. A vast number of models are first created, and
then an iterative process that involves choosing the best models
and optimizing the selected model is implemented. This is
completed by testing the models against a series of validation
compounds to ensure their correctness and robustness. The model
works well for predicting the characteristics of new chemicals that
will be applied to environmental chemistry, toxicological research,
and medicinal development.

In order to ascertain the biological qualities (such as solubility or
reactivity) of chemical molecules, it filtered the enormous libraries of
bioactive compounds (PubChem) based on their structural composition.

Two sets of compounds were identified based on their properties
that resembled well-known ligands: a training set and a holdout set.
The machine learning model was built using the training
component of the data, and its accuracy was verified using the test
portion of the data. Processing in this manner is required since it
makes it easier to examine the model and identify its weak points.

Under the moniker AutoQSAR, QSAR created two linear and
nonlinear regression models based on a variety of chemical
descriptor types. The models with the highest R2 value or the
models’ R2 values closest to 1 were chosen from among those
QSAR models, and the prediction model was the one with the R2
value closest to 1. The screening was done, yielding several
chemicals from the PubChem database. The Lipinski’s drug-likeness
criteria (which relate molecular descriptors of the retrieved
compounds/ligands with known drug activity) were used to
eliminate undesirable compounds; the top 50 compounds of the
prediction that satisfied the criteria were printed out as drug leads
against the target. The speed, efficiency, robustness, flexibility, and
accuracy make AutoQSAR a good choice for machine learning.

2.5. Ligand and receptor (target model)
preparation for docking

We used the AutoDock-Vina 1.5.6 tool to get the receptor and
ligands ready for docking. The Protein Data Bank in Europe (PDBe:
https://www.ebi.ac.uk/pdbe/entry/pdb/2VGB) is a centralized source
of structural data for biological macromolecules. This is where the
receptor model was obtained in PDB format. After that, AutoDock-
Vina was used to analyze the receptor model and convert it to
PDBQT format. Water molecules were eliminated, polar hydrogens
were added, and Kollman charges were incorporated during this
conversion. Moreover, the AutoDock-Vina tool was used to convert
the ligands into PDBQT format.

2.6. Molecular docking

AutoDock-Vina (version 1.5.6)was used to optimize knowndrugs
and identify novel binders by predicting their bindingmode and affinity
of each ligand given. The available open-source programhas a powerful
heuristic search algorithm that allows for fast and accurate docking of
molecules to a target protein. It has a user-friendly interface that sets
docking simulations and results analyses very easy.

In order to forecast the intensity of the binding between the ligand
and the target and to generate possible postures that are subsequently
assessed using scoring functions, autodocking was utilized to
position the ligands within the target’s binding region. Furthermore,
this method produced many poses, which were then evaluated using
scoring systems to determine their feasibility.

The binding affinity and strength of the intermolecular
interactions between the ligand and the target are roughly
predicted by the mathematical functions known as scoring functions.

2.7. Visualization and determination of protein–
ligand interaction using PyMOL program

Using autodocking, the ligands were positioned inside the
target’s binding site to anticipate the strength of the binding between
the ligand and the target. This allowed for the production of possible
poses, which were subsequently assessed using scoring systems. This
method also produced other positions, which were then evaluated
using scoring systems to see how feasible they were.

Table 2. Ligands and their binding affinities

S/N IUPAC name
Binding
affinity

1 1-[(4-fluorophenyl) methyl] indole-2,3-
dione

−4.3

2 5-chloro-1-(2-phenylethyl) indole-2,3-
dione

−4.2

3 7-bromo-1-(thiophen-3-ylmethyl) indole-
2,3-dione

−4.1

4 1-[(5-bromothiophen-2-yl) methyl]
indole-2,3-dione

−4.0

5 7-bromo-1-(thiophen-2-ylmethyl) indole-
2,3-dione

−3.9

6 5-ethylthieno[2,3-f] indole-6,7-dione −3.8

Medinformatics Vol. 00 Iss. 00 2025

05

https://www.ebi.ac.uk/pdbe/entry/pdb/2VGB


The scoring functions are mathematical functions that are used
to predict, to some extent, the intensity of the intermolecular
interactions and the binding affinity between the ligand and target.

To determine the chemical and geometric elements that
influence the binding behavior of the tested ligands, the chemical
groups involved in specific interactions were discovered, and the
interaction’s geometry (distance and angle), or the preferred
groups, was examined. The target molecules and the molecule
with the highest affinity toward the negatively bound ligand,
which were investigated thereafter for visibility and additional
analysis, are in poses that indicate the molecular interaction.

The protein–ligand complex’s interactions, or bonds, were
manually identified using PyMOL version 1.7.4.5’s molecular
graphics tool. The parameters for determining the bonds are the
angle, the atoms (carbon atoms in the case of hydrophobic
contacts), and the distance limit (4.0– for hydrophobic bonds, 4.1–

for hydrogen bonds, and 5.5– for salt bridge bonds).

3. Results and Discussion

3.1. Peptide deformylase as the protein of interest

In bacteria and in organelles found in some eukaryotes, such as
mitochondria and chloroplasts, PDF is in charge of eliminating the
formyl group from the N-terminal fMet amino acid of freshly
synthesized proteins [23, 24]. Since bacterial PDF activity is essential
to their survival [25], researchers are looking at using bacterial PDF as
a possible target for novel therapeutics. Currently, a number of
pharmaceutical companies are focused on creating antibacterial
medicines that specifically target PDF [25–27]. In eukaryotic cells,
such as P. falciparum, where they are thought to be found in the
apicoplast based on a potential leader peptide sequence, the role of
bacterial PDFs is different [28]. The Apicomplexa phylum, which
includes malaria parasites, has the apicoplast, a crucial organelle
encircled bymanymembranes. The catalytic activity of the recombinant
PfPDF indicates that the malaria parasite’s apicoplast is where the
formylation/deformylation process takes place. The growth of malaria
parasites was moderately inhibited by two E. coli PDF (EcPDF)
inhibitors. Thus, PfPDF offers new opportunities to design novel
antimalarial drugs [28].

3.1.1. P. falciparum peptide deformylase structure
With a root mean square deviation (rmsd) of 2.2 Å for 161

equivalent Cα atoms, PfPDF’s structure is comparable to that of the
E. coli enzyme (Protein Data Bank code 1DFF). Nonetheless, the
two architectures differ in a few significant ways. For instance, in
PfPDF, three insertions are made in the loop that joins β strands β3,
and the presence of Pro 220 causes the C-terminal helix (residues
213–230) to become kinked. The P. falciparum enzyme’s active site
and helix α2’s general structure are altered by the three insertions in
the loop that connects β strands β3 and β4. The distinct substrate
selectivity and activity of the P. falciparum enzyme are probably
influenced by these variations.

PyMOL, a system software, was used to view the 3D structure of
the protein target (PDF), which was obtained from the Protein Data
Bank (PDB) database. The resolution of the structure is 2.18 Å. Two
subunits totaling more than a thousand amino acid residues make up
the target. Fourteen β-sheets and two ten α-helices encircle the
central α-helix, which houses the metal ion and the active site
(bound by a conserved HEXXH motif).

3.1.2. Reaction catalyzed by peptide deformylase
Peptide deformylase (EC 3.5.1.88) is a type of enzyme in

enzymology that catalyzes the following chemical reaction:

Formateþmethionyl peptideþ formyl-L-methionyl peptideþH2O

The hydrolysis of formyl-L-methionyl peptide into formate and
methionyl peptide is catalyzed by this enzyme. It belongs to the
category of hydrolases, more precisely amidohydrolases, which
break down links between carbon and nitrogen apart from peptide
bonds. This family of enzymes is known by its systematic name,
formyl-L-methionyl peptide amidohydrolase.

3.2. Artificial intelligence-generated medication
leads

Six distinct ligands that may be used as prospective drug leads
were identified by using the machine learning AutoQSAR technique.
Out of the top 50 compounds that satisfied Lipinski’s requirements
for drug similarity, these particular compounds were identified as
prospective therapeutic leads. The machine learning system identified
a set of pharmacological leads that include chemicals like 1-[(4-
fluorophenyl) methyl], 5-ethylthieno[2,3-f] indole-6,7-dione, and
5-chloro-1-(2-phenylethyl) indole-2,3-dione. Additionally, it identified
three different compounds: 1-[(5-bromothiophen-2-yl) methyl]
indole-2,3-dione, 7-bromo-1-(thiophen-3-ylmethyl) indole- 2,3-dione,
and 7-bromo-1-(thiophen-2-ylmethyl) indole-2,3-dione. Structures
available in Figure 3. The tables below describe the drug leads
and their molecular descriptors.

3.3. Molecular docking

Scoring functions produced by molecular docking are
exhaustiveness= 8, and energy level= 4, respectively, for all drug
leads (ligands). All six ligands were examined to determine the
ligand with the highest binding affinity (lowest binding energy)
for PDF as a target. The size of the resulting grid box was:

Size x ¼ 40; Center x ¼ 0

Size y ¼ 40; Center y ¼ 0

Size z ¼ 40; Center z ¼ 0

3.4. Peptide deformylase-1-[(4-fluorophenyl)
methyl] indole-2,3-dione interaction

The maximum binding affinity was obtained when
1-[(4-fluorophenyl) methyl] indole-2,3-dione bound to PDF of −4.3.
Interactions between this ligand and the protein target were deter-
mined and visualized with PyMOL. Distances of interactions were
measured as follows:

Hydrogen bond interaction= 3.6 (ILE-186 and hydrogen atom of the
ligand)

Hydrophobic interactions= 3.9 (HIS-191 and hydrogen atom of the
ligand), 4.3 (LYS-186 and hydrogen atom of the ligand)

Salt bridge= 5.5 (LEU-187 and oxygen atom of the ligand)

The orientation of the ligand bound to the receptor is shown in
Figure 4a and b below.
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4. Conclusion

Since the discovery of quinine from the cinchona tree,
antimalarial medications have been the main tool used to treat and
prevent malaria. However, the emergence of resistance in
P. falciparum has posed significant obstacles to the creation of new
medications and a vaccine. The ability of Plasmodium to elude
antimalarial medications and the human immune system is a key
hurdle to the development of effective treatments. Although there
are now effective medications available to treat P. falciparum
malaria, further research is necessary due to the possibility of
resistance. Nonetheless, the risk of resistance necessitates continued
investigation into novel therapeutic targets and enhanced
approaches to malaria therapy and prevention. The fight against
malaria requires not only the development of drugs but also the
implementation of vector control measures such as bed nets, IRS,
and mosquito control. Gaining insight into the biology and genetics
of Plasmodium could lead to the development of innovative
methods for managing this debilitating illness.

The search for novel chemicals that function as ligands to attach
to the target gene ofP. falciparum is crucial in reducing the complexity
associated with antimalarial drug resistance, given the high mortality
rate of malaria. The interaction between 1-[(4-fluorophenyl) methyl]
indole-2,3-dione and P. falciparum PDF produced the lowest
binding affinity of −4.3 out of the six ligands (drug leads)
identified by machine learning in this study. A metric known as the
binding free energy is used to quantify the binding affinity between
a ligand and a target protein; a lesser binding affinity is indicative
of a stronger bond with the lowest binding affinity, and
1-[(4-fluorophenyl) methyl] indole-2,3-dione is simply more
competitive than other drug leads, P. falciparum PDF function
more successfully. See Table 2 for the binding affinities of the ligands.

In summary, as PDF is a desirable target for novel medications,
more study is required to develop 1-[(4-fluorophenyl) methyl]

indole-2,3-dione as a possible antimalarial therapeutic candidate.
In order to prevent resistance, it’s also critical to safeguard novel
compounds and their use in conjunction with other antimalarial
medications. Research should also be funded and conducted to
discover new drug leads for the development of antimalarial drugs.

5. Recommendations

Over the past ten years, the global impact of malaria has
considerably decreased, partly as a result of the widespread use of
IRS, bed nets treated with insecticides, and artemisinin
combination therapy for both prevention and treatment. However,
the rise in resistance to antimalarial medications—both old and
new—highlights the necessity of ongoing study and advancement.
It is evident that the battle against malaria is far from being won.

Studying 1-[(4-fluorophenyl) methyl] indole-2,3-dione as a
possible therapeutic target is essential, considering the allure of
PDF as a target in the fight against P. falciparum, the parasite that
causes malaria. It is critical to stress the importance of ongoing
study as well as this compound’s potential for further investigation.

In order to strengthen our defenses against malaria, funds and
resources must be set aside for further research projects that seek to
identify novel drug candidates for the creation of antimalarial
medications. Future studies developing more potent tactics to
counteract this ongoing health danger will build on the current research.
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Supplementary Information

The supplementary tables provided here offer an extensive
overview of the molecular descriptors of the ligands examined in
this study. These supplementary data are intended to support the
main findings by offering additional context and details that

enhance the understanding of the ligand properties and their
implications in the study. Researchers and readers are encouraged
to refer to these supplementary tables for a comprehensive
analysis and to gain deeper insights into the molecular
characteristics that underpin the main results presented in the
manuscript.

Table S1. Molecular descriptors of ligands

Parameters Ligand 1 Ligand 2

CID 1645097 2930041
IUPAC name 1-[(4-fluorophenyl) methyl] indole-2,3-dione 5-chloro-1-(2-phenylethyl) indole-2,3-dione
Molecular weight (G/Ml) 255.24 285.72
Heavy atom count 19 20
XLogP 2.2 3.3
Complexity 376 392
Hydrogen bond acceptor counts 3 2
Monoisotopic mass (Da) 255.0696 285.0557
Rotatable bond counts 2 3
TA/SA (A2) 37.4 37.4

This table lists various molecular descriptors of the ligands studied. These descriptors include properties such as molecular weight, logP,
hydrogen bond donors, and acceptors, among others. The data provided here support the main findings presented in the Results section,
offering additional details that are crucial for in-depth analysis but are supplementary to the main text.

Table S2. Molecular descriptors of ligands

Parameters Ligand 5 Ligand 6

CID 61356610 61356832
IUPAC name 7-bromo-1-(thiophen-3-ylmethyl) indole-2,3-dione 7-bromo-1-(thiophen-2-ylmethyl) indole-2,3-dione
Molecular weight (G/Ml) 322.18 322.18
Heavy atom count 18 18
XLogP 2.8 2.8
Complexity 376 376
Acceptors of hydrogen bond counts 3 3
Mass of monoisotopes (Da) 320.9459 320.9459
Rotatable bond counts 2 2
TA/SA (A2) 65.6 65.6

This table is a continuation of Table S1, providing further molecular descriptors of the ligands. The extended dataset includes additional
ligands and their properties, allowing for a comprehensive understanding of the ligand characteristics. These details complement the primary
data and are essential for a thorough interpretation of the study’s results.
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