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Abstract: In the 1950s and 1960s, in molecular biology, information technology was mainly applied to the molecular evolution of proteins
and DNA and later expanded to multiple fields such as sequence alignment, protein structure prediction, and gene splicing. Entering the 21st
century, the completion of the Human Genome Project marks the arrival of the era of biomedical big data, providing a large amount of data for
the application of artificial intelligence in this field. Especially in recent years, the continuous accumulation of medical data has pushed the
application of artificial intelligence in the medical field to a broader and more practical level. This paper briefly introduces the applications of
artificial intelligence in genomics, proteomics, transcriptomics, epigenetics, drug development, and other fields. I hope this review can clearly
introduce which biomedical fields artificial intelligence can be applied to and also promote doctors and related scholars to actively use artificial

intelligence technology to solve specific biomedical problems.
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1. Introduction

Since the lecture on “what is life” given by physicist Erwin
Schrédinger in Dublin in 1943 (Schrodinger, 1944), biology has
entered the molecular age. Afterward, in 1953, Watson and Crick
unveiled the double helix structure of DNA, a breakthrough that
marked the official commencement of molecular biology (Watson
& Crick, 1953). The initiation of the Human Genome Project in
1990 (Wiechers et al., 2013) also pushed biomedical science into
the information age.

Similarly, artificial intelligence (AI) can be traced back to Turing’s
vision of the “Turing machine” in the 1930s (Turing, 1936) and Fisher’s
linear discrimination during the same period (Fisher, 1936).
Subsequently, at the workshop of the Dartmouth Summer Research
Project on Attificial Intelligence in 1956, the assertion was made that
“every aspect of learning or any other characteristic of intelligence
should be accurately described so that machines can simulate it.”” This
also marked the birth of AL

In the early stages of development, these disciplines experienced
numerous integrations, such as the application of Al in the structural
identification of estrogen steroids (Smith et al, 1972) and the
exploration of the relationship between drug mass spectrometry and
pharmacological activity (Ting et al., 1973). In recent years, the
emergence of various biotechnologies and the proliferation of
scientific experiments have generated an enormous volume of data,
opening up diverse applications for Al. The continuous advancement
of deep learming technology and the ongoing enhancement of data
processing capabilities have propelled the flourishing of Al in the field
of biomedicine.
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In this brief review, we will introduce some applications of
artificial intelligence in the field of biomedicine. Based on different
biomedical data sources, we will focus on the work of artificial
intelligence in omics analysis.

2. Artificial Intelligence in Omics

2.1. Computational genomics

The genome, serving as a carrier of life information, has garnered
widespread attention. Here, a brief overview will be presented based
on research on the types of functional elements in the genome. Early
bioinformatics analysis mainly focused on the identification of gene
coding regions. Due to the fact that prokaryotic genes contain
almost no introns, prediction for them is relatively easier for Al
There are some well-known prokaryotic coding region prediction
tools, such as Glimmer (Salzberg et al., 1998) and ZCURVE (Guo
et al,, 2003). The features used in these algorithms are mainly
based on the codon triplet encoding characteristics. Although most
genes use ATG as the start codon, the mRNAs of many genes do
not use the first ATG as the start codon. In addition, some genes
use codon GTG as the start codon. Therefore, scholars designed
Al-based models to identify translation initiation site (TIS)
(Hirosawa et al., 1997). These models were constructed mainly
using a purine-rich sequence upstream of the TIS. Good prediction
performance for TIS was achieved in both prokaryotic and
eukaryotic genomes (Sparks & Brendel, 2008). In addition,
prokaryotes have the characteristic of transcribing multiple genes
on one mRNA, so there are also some Al models for prokaryotic
operons (transcription units) (Tomar et al., 2023).

In eukaryotes, the presence of introns leads to the emergence of
broken genes, making gene prediction more difficult. Therefore, many
scholars have designed various Al models to predict intron and exon
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splice sites (Pertea et al., 2001). It is estimated that human has about
100,000 proteins; however, only about 15,000 genes were found in
genome. This difference in quantity is caused by alternative
splicing. Therefore, many Al models have emerged to predict
alternative splicing event (Kan et al., 2001). However, due to the
similarity of splicing site sequences and the difficulty in extracting
nearby sequence information, the performance of sequence-based
Al models is still far from satisfactory. Adding more regulatory
information, such as epigenetic information and genomic structural
information, may improve the predictive performance of Al models.

In the early stages of bioinformatics, there were relatively few Al
models for gene transcription start sites (TSS), mainly due to the easy
degradation of genes at the 5S'UTR and 3'UTR ends after transcription
into messenger RNA, resulting in insufficient data for training models.
With the continuous accumulation of transcriptional data, research on
TSS has also received attention. The transcription of genes is initiated
by promoters; therefore, the prediction of TSSs and the prediction of
promoters usually have the same significance. The differences in
transcriptional regulation between eukaryotes and prokaryotes require
the establishment of different predictive models. The prediction of
eukaryotic promoters mainly targets the polll promoter in the human
genome (Hannenhalli & Levy, 2001), which later extended to plants
and other species (Bubnova et al., 2023). The prediction of promoters
in prokaryotes mainly focused on the sigma70 promoter in
Escherichia coli (Coppens & Lavigne, 2020) and later extended to the
sigma54 promoter in prokaryotes (Liu et al, 2019). The predictive
information of promoters mainly comes from sequence characteristics,
mainly concentrated in several conserved regions that bind to RNA
polymerase, such as TATA box, and purine-rich regions near TSS.
The termination of gene transcription also plays an important role in
gene expression; however, there are currently not many predictive
models for transcription terminators (Feng et al., 2019). The reason
why termination prediction is ignored may be because their
functionality is not as important as transcription initiation.

The above is mainly studies on predicting different positions or
functional regions in gene structure. There are also a large number of
other functional elements in the genome, such as enhancers (Luo et al.,
2023), silencers (Choy & Huang, 2002), and enzyme cleavage sites
(Wang & Sun, 2023). Especially in recent years, due to the
development of 3D genomes, enhancers have been found to play
an important role in stabilizing the genome structure, which has
attracted great attention (Beagrie et al., 2023). Many Al models for
predicting enhancers based on sequence information have been
established (Rapakoulia et al., 2023). In addition, research on
enzyme cleavage sites on the genome mainly focuses on DNase
hypersensitivity sites (Zhou et al., 2017), etc.

The genome is used to store genetic information, but the
transmission of genetic information to the next generation is
completed through replication. Most prokaryotes only require one
origin of replication (ORI) to complete replication, making it relatively
easy to recognize. The Z-Curve-based predictor has achieved good
predictive performance for the ORI in prokaryotic genomes (Wang
et al., 2021a). In addition, many models have been developed for the
prediction of ORI in prokaryotes (Parikh et al., 2015). The genome of
eukaryotes is relatively large, requiring multiple ORIs to complete
genome replication, and has temporal and spatial specificity.
Therefore, Al-based prediction of ORI in eukaryotes has also received
widespread attention in recent years (Manavalan et al., 2021). These
models not only obtain features through sequences but also combine
epigenetic information and 3D genome information (Dao et al., 2022).

Of course, the information stored in the genome and the problems
it brings go far beyond these. Some special genomic regions, such as
Alu sequences (Torella et al., 2023), or some special types of genes,

such as essential genes (Das & Sarkar, 2022), selenocysteine genes
(Santesmasses et al., 2017), horizontal transfer genes (Sanchez-Soto
et al,, 2020), and recombination hotspot (Al Maruf & Shatabda,
2019), also have corresponding Al models. We will only provide a
brief list here.

2.2. Computational proteomics

As a specific carrier of micro-level life activities, proteins have
been extensively studied. AI models have also played a very
important role in it. In fact, the study of protein informatics was
slightly earlier than the study of genome informatics (Dayhoft, 1965).

Proteins are large molecules composed of amino acids that must be
folded into specific three-dimensional structures in order to function.
People divide the structure of proteins into multiple levels for
research. The arrangement of amino acid residues in proteins is their
primary structure. The secondary structure is a simple spatial
structure formed by the shorter sequence fragments of a protein.
Initially, the secondary structure of proteins can be classified into
alpha helix, beta strand, and random coil and designed Al models to
predict them (Peracha, 2024). Subsequently, some works classified
the secondary structure of proteins into § categories and then
predicted them using Al models (Li et al., 2023b). Some special
secondary structures, such as beta-turn, attracted scholars’ attention
(Fang et al., 2020). The secondary structures of proteins are further
assembled to form super-secondary structures, which have certain
functions. Therefore, Al models were established to predict protein
super-secondary structures (Anton et al., 2021). The actual functional
entity is the tertiary structure of proteins. The prediction of the
tertiary structure of proteins is the most concerned issue, and various
prediction models have been developed to achieve the prediction of
the tertiary structure (Zhang et al.,, 2010). In this field, a structure
prediction competition called CASP has even been established, held
once a year, to promote the theoretical analysis of protein structures
(Das et al., 2023). However, for a considerable period of time, the
accuracy of the model has been limited, and homologous modeling
was the most reliable prediction method among them. Until the
development of deep learning, AlphaFold developed by DeepMind
under Google stood out in the 2018 CASP competition, significantly
improving the accuracy of protein three-dimensional structure
prediction and promoting the development of structural analysis,
drug target research and development, and other fields (Lensink
et al, 2023). Proteins often require the formation of polymers to
function, so some studies have also built Al models to predict
quaternary structure of proteins (Soltanikazemi et al., 2022).

In recent years, a phenomenon of phase separation in biological
macromolecules was discovered, where some macromolecules gather
together. The occurrence of these phase separation phenomena is
closely related to intrinsic disordered proteins. Therefore, in recent
years, the prediction of phase separation-related proteins has attracted
scholars’ attention (Lahorkar et al., 2023), and Al models for intrinsic
disordered proteins have also received attention (Peng et al., 2020).

Proteins are not randomly distributed in cells, but need to reach
specific positions to perform their unique functions. Therefore, a lot
of work has been done for the prediction of subcellular localization
of proteins, and various Al models have been designed (Ozsari
et al., 2022). Due to species specificity, subcellular localization
models are often designed based on species types, such as humans
(Shen et al., 2020), plants (Sahu et al., 2020), other eukaryotes (Fink
et al., 2006), Gram-negative bacteria (Romine, 2011), Gram-positive
bacteria (Grasso et al., 2021), and viruses in host cells (Shen &
Chou, 2007). Some Al models further focused on protein sub-
organelle localization, such as subnuclear (Littmann et al., 2019),
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submitochondria (Hou et al., 2021), and subchloroplast (Wang et al.,
2023). Due to the fact that signal peptides guide proteins to specific
cellular locations, Al models are also used for predicting protein
signal peptides (Almagro Armenteros et al, 2019). The cell
membrane plays an extremely important role in cells, responsible for
material exchange and signal transmission inside and outside the
membrane. Therefore, the recognition of membrane protein types
has also received widespread attention (Sankari & Manimegalai, 2017).

The function of proteins is also reflected in their interactions;
therefore, Al models of protein-protein interaction (PPI) have also
been developed (Zhao et al., 2022). In addition, some special
functional proteins have also been analyzed and modeled separately,
such as hormone-binding protein (Butt et al., 2023) and cancerlectins
(Tang et al., 2021). In order to search for drug targets, some Al
models have also been developed for predicting G protein-coupled
receptor (Nemoto et al., 2011) and ion channel (Gao et al., 2020).

Usually, those with longer residue sequences are called
proteins, while those with shorter sequences are called peptides.
Due to the convenience of peptides in design and application,
they are more favored by scholars. As a potential therapeutic drug
(Yan et al., 2022), toxin peptide (Monroe et al., 2023) has been
developed with various AI models. In addition, there are
corresponding Al models for other peptides, include antimicrobial
peptide (Wang et al., 2016), anticancer peptide (Zhu et al., 2022),
cell-penetrating peptide (Su et al., 2020), and blood-brain barrier
penetrating peptide (Ma & Wolfinger, 2023).

Enzymes are the most widely used type of protein. Scholars
have been striving to improve enzyme activity. Al models are also
used for mutation of protein (Schomburg et al., 2017), thermal
stability of enzyme (Li et al., 2022), enzyme suitability for acidic
and alkaline environments (Zhang et al., 2009), solubility of
enzyme (Wang et al., 2021c), and other aspects.

The above directions are basically based on the characteristics of
amino acids to determine the type of proteins. In the field of diseases,
by measuring the proteome of the disease group and the control
group, Al models can be used to identify differential proteins and
discover disease biomarkers (Chiam et al., 2015) and drug target
(Dezs6 & Ceccarelli, 2020).

2.3. Computational transcriptomics

A transcriptome is a collection of all RNA transcribed by a specific
tissue or cell during a certain developmental stage or functional state. Al
models based on transcriptome data can provide assistance in various
aspects of life development and disease diagnosis (Zhang et al.,
2022). The basic idea behind it is that the gene expression levels
vary among different tissues, especially for disease samples. The
differentially expressed genes (DEG) or networks of DEG are
considered one of the causes of disease occurrence and can serve as
important biomarkers for disease diagnosis (Zolotareva et al., 2021).

Compared to the sequence information of genes or proteins,
transcriptome data provide more noise, especially in sequencing data
with severe batch effect (Luo et al., 2010). Directly using statistical
methods to obtain DEGs is not reliable enough, and the prediction
accuracy on independent samples is often unsatisfactory. Therefore,
feature extraction methods based on gene expression order (Stretch
et al., 2013) and gene expression network (Theofilatos et al., 2019)
have also been proposed to discover true marker genes.

The gene expression obtained from bulk data is actually the average
gene expression of each cell. Due to the emergence of single-cell
technology, gene expression can be observed at the single-cell level
(Goldman et al., 2019). In fact, most genes in a single cell are not
expressed, so the gene expression matrix that appears is sparse. The
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most important aspect in studying single-cell transcriptomics is to
determine the type of cell based on gene expression (Lin et al., 2017).
Usually, scholars first perform cluster analysis on single-cell data,
then determine the type of cells based on marker gene (Paisley &
Liu, 2021), and then further analyze biological development and
disease occurrence. Here, the marker gene is the foundation of
single-cell analysis. In addition, it has been found that the results of
bulk data analysis are often different from those obtained from
single-cell data analysis. One of the current hot topics is how to use
Al models to infer gene expression in single cells based on bulk data
(Noureen et al., 2022).

2.4. Computational epigenetics

Scholars analogize DNA sequences to computer hardware,
while epigenetic information is analogized to computer software.
The DNA sequence in the genome is usually wrapped around
nucleosomes, which are octamers formed by histones. Studies
have found that nucleosomes prefer to appear in the exon region
(Schwartz et al., 2009). The research of computational epigenetics
initially focused on the construction of predictive models for
nucleosome sequences (Teif, 2016). The model could predict
which regions of the entire genome were more easily occupied by
nucleosomes. Histones in nucleosomes undergo various chemical
modifications. Therefore, histone modifications related to gene
expression and disease occurrence are used to establish disease
prediction models (Ho et al., 2012).

DNA, RNA, and proteins also undergo various chemical
modifications, and the recognition of modification sites is of great
significance for understanding the structure and function of
macromolecules. Scholars have designed many AI models to
identify modification sites in DNA, RNA, and proteins (Hasan
et al.,, 2021). In addition, these modifications can also serve as
characteristic information for biological development, species
differentiation, and disease occurrence (Ao et al., 2021).

2.5. Other omics-related artificial intelligence
research

Al has also been widely applied in various fields of omics. Next,
we will provide a brief introduction.

Metabolomics is a discipline that conducts qualitative and
quantitative analysis of all metabolites in a specific physiological
period or biological process of an individual, organization, or cell
(Tahir & Gerszten, 2020). Metabolomics has been applied to
various stages of drug development, including drug target
identification, drug metabolism analysis, drug response, and drug
resistance research (Wishart, 2016). In addition, metabolomics has
also been used to depict the evolutionary map of lung precancerous
lesions to invasive lung adenocarcinoma (Nie et al., 2021). Using
Al model, metabolomics biomarkers related to impaired fasting
glucose and type 2 diabetes in large Chinese population can be
obtained (Long et al., 2021).

Mass spectrometry is the most useful tool for metabolomics
analysis, which can obtain a large number of metabolite ion
characteristics from biological samples and generate rich
metabolomics information (Krettler & Thallinger, 2021). Due to the
vast variety and quantity of metabolites, mining and utilizing these
mass spectrometry data is a challenge faced by Al By conducting
statistical analysis on metabolic data and using metabolic data as
features to establish Al models, the relationship between metabolic
molecules and physiological, pathological, and biological processes
can be revealed (Wang et al., 2021b). In addition, it is also
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necessary to establish Al models to annotate and identify metabolites
(Yilmaz et al., 2020). Due to its high cost-effectiveness, metabolomics
has been given high expectations by researchers.

The computational research on drugs encompasses many
aspects, and here, we only focus on the works related to Al
models. How to find drugs that can effectively bind to protein
targets from a large number of compounds is the current direction
of Al efforts (Liu et al., 2022). The prediction model for the new
use of old drugs is also one of the hotspots in the field of drug
research and development (Li et al., 2020). Drug-drug interaction
(DDI) is crucial for the treatment of diseases. Various Al models
have been developed to predict DDI (Nyamabo et al., 2022).
Especially, the issue of drug combination therapy based on Al is
of great concern to clinical practice (Yang et al., 2022). In
addition, there are some inference models to predict the
association between drugs and diseases (Guo et al., 2019), as well
as the association between RNA and diseases (Yu et al., 2022).

Pathology is the “gold standard” for disease diagnosis.
Computational pathology is a combination of digital pathology and
Al technology (Campanella et al., 2019). Its emergence provides a
guarantee for accurate and personalized treatment, diagnosis, and
treatment. Computational pathology focuses on multiple data
sources, such as pathological and tissue image information, using
Al models to perform tasks such as detection, diagnosis, prediction,
and prognosis, and showcasing clinically applicable knowledge to
patients (Verghese et al., 2023). These studies on image processing,
also known as imageomics (He et al., 2021), not only include
pathological slice information but also X-ray images (Liu et al.,
2022), magnetic resonance images (Bhalodiya et al., 2022), and so on.

Clinlabomics is a new concept proposed in recent years (Liu et al.,
2018; Wen et al., 2022), typically characterized by large sample sizes,
highly standardized data, but low feature dimensions. The information
used in laboratory omics mainly comes from various tests conducted
in medical biology, which can be demographic information such as
age and gender, laboratory testing indicators such as liver function
tests, urine tests, physiological indicators such as pulse, blood
pressure, and even traditional Chinese medicine diagnostic indicators
such as phlegm dampness and warm fever. The combination of these
indicators with Al can provide assistance for disease warning and
diagnosis and can also achieve disease occurrence analysis on a large
population (Laursen et al., 2021). Therefore, there is a certain overlap
between laboratory omics and the field of public health. For example,
Al risk prediction model for diabetes and coronary heart disease was
developed based on big data of physical examination (Li et al., 2023a;
Meng et al., 2023; Yang et al., 2023).

3. Limitation

Presently, the application of Al in the field of biomedical research
has yielded significant achievements. However, numerous studies
continue to grapple with limitations imposed by sample constraints.
Therefore, we will discuss some issues related to the samples.

Firstly, most Al-based models are built on prior knowledge. The
effectiveness of these models mainly depends on the quality,
quantity, and representativeness of the previous data. These prior
data still heavily rely on specific wet experimental techniques.

Secondly, due to ethical limitations or technological barriers,
many biomedical phenomena and mechanisms have not yet
accumulated sufficient data, resulting in a lack of relevant
artificial intelligence models.

Furthermore, there is a significant issue of data imbalance in the
biomedical field. Although various sampling methods have been
proposed to alleviate the problems of model bias and unreasonable

evaluation caused by data imbalance, they still face challenges
when the sample size is small.

Fourthly, the selection of control samples still troubles scholars with
computational backgrounds. When selecting specific application
scenarios and building models, careful selection of appropriate control
samples is crucial for ensuring the practicality and reliability of
subsequent models, which requires active participation from scholars
with a deep understanding of computational principles in the
biomedical context.

Finally, good data, especially long-term large queue data,
requires year-round accumulation, not only careful planning by
the initial designer but also the continuous efforts of multiple
generations of researchers, which is often a difficult task to achieve.

4. Summary

The continuous updating of technology has generated various types
of omics data, allowing us to observe life from various perspectives.
Integrating these omics data and establishing Al models can better
understand life phenomena and discover the laws of biological
development. In fact, people have made a lot of attempts in this field.
This review briefly explains the application of Al models in the
biomedical field from omics perspective. In short, the fusion of multi-
source information, interpretability, and high-performance Al models
has achieved success in the biomedical field in recent years. However,
we cannot be blinded by the current flourishing of the application of
Al in biomedical data. We need to pay attention to potential defects
and shortcomings in order to better develop this field.
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