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Abstract: Stroke ranks as one of the deadliest diseases globally, emphasizing the crucial need for early diagnosis. This study aims to create a
two-stage classification system for stroke and non-stroke images to support early clinical detection. Deep learning (DL), a cornerstone of
diagnosis, detection, and prompt treatment, is the primary methodology. Transfer learning adapts successful DL architectures for diverse
problems, and ensemble learning combines multiple classifiers for enhanced results. These two techniques are applied to classify stroke
using a dataset of stroke and normal images. In the initial stage, six pre-trained models are fine-tuned, with DenseNet, Xception, and
EfficientNetB2 emerging as the top performers, achieving validation accuracies of 98.4%, 98.4%, and 98%, respectively. These models
serve as base learners within an ensemble framework. A weighted average ensemble method combines them, resulting in a remarkable
99.84% accuracy on a reserved test dataset. This approach exhibits promise for stroke detection, a life-threatening condition, while also
demonstrating the effectiveness of ensemble techniques in enhancing model performance.
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1. Introduction

Strokes are the third most common cause of disability and the
second most common cause of mortality worldwide. Stroke is a major
contributor to dementia and depression because it causes the rapid
demise of some brain cells from a lack of oxygen when a blocked or
torn artery cuts off the blood supply to the brain. Approximately 87%
of stroke-related fatalities and years lived with a disability take place
in low-income and middle-income nations (Owolabi et al., 2015).
Even in certain low-income countries, combining preventative
techniques has been successful in lowering stroke mortality.

Current recommendations for the treatment of acute stroke are
based on a diagnosis of ischemic stroke established with computed
tomography (CT) scanners. Without a way to distinguish between
an ischemic and hemorrhagic stroke, doctors in low-resource
settings are forced to make tough clinical decisions, such as
whether to anticoagulated patients or not and to what degree to
regulate their blood pressure. The disparately high rates of stroke in
low-income and middle-income countries may be attributable to
these patient management issues, insufficient rehabilitation services,
a lack of preventive measures, and a lack of knowledge of the
potential unique risk factors associated with stroke in these
countries (O’Donnell et al., 2010). Understanding the genetic
underpinnings of the linkages between risk factors can help guide
targeted preventive efforts as part of a larger strategy with four
components, including surveillance, prevention, and acute therapy.

The evidence base needed to produce the guidelines for stroke
prevention, treatment, and rehabilitation in low-income and middle-
income countries will be provided by this type of integrated
strategy. Taking care of acute stroke in low-resource settings calls
for a fresh strategy, one that may revive the original World Health
Organization (WHO), worldwide stroke initiative, as a partnership
between the WHO the World Federation of Neurology, and the
World Stroke Organization to raise awareness of stroke, provide
improved surveillance data, and provide guidance for better
management and prevention (World Health Organization, 2020).

The assessment of a stroke can be conducted using various
imaging techniques, with one notable method utilizing CT imaging,
particularly effective for swiftly addressing emergency cases in the
initial stages of a stroke. Employing CT images for diagnosing
ischemic stroke offers advantages like minimal spatial constraints
and rapid image acquisition. Nevertheless, image-based diagnosis
presents a considerable challenge, constituting a significant
drawback of this approach. Multiple alternative diagnostic methods
for strokes, including clinical assessment, magnetic resonance
imaging (MRI), and catheter angiography, have been devised.
Among these, the CT scan stands out for its capability to deliver
prompt results (Jung & Whangbo, 2020). Brain CT scans are
frequently employed to assess cerebral conditions; however,
promptly and accurately interpreting emergent brain CT images
poses a challenge, even for proficient neuroradiologists. The
adoption of deep learning (DL) networks in medical image analysis
has become commonplace, as they facilitate efficient computer-
aided diagnosis (Chen et al., 2022). From this point of view, this*Corresponding author: Serkan Savaş, Department of Computer Engineering,
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study aims to introduce a new approach called ensemble learning for
the classification of strokes from CT images. Ensemble learning
methodology is being used for many other disciplines, especially in
recent years. Medical image classification and segmentation studies
are among these also.

When the studies conducted in the last decade are examined, it
has been proven in many studies that convolutional neural network
(CNN)-based architectures produce effective results in both
segmentation and classification of medical images (Bütüner &
Calp, 2022; Calp, 2021; Güngen et al., 2020; Karakış, 2023; Savaş
& Damar, 2023). Compared to manual methods, traditional
methods, statistical methods, or machine learning (ML) methods, it
has been revealed that the CNN algorithm achieves more successful
results, thanks to automatic feature extraction from large amounts
of data (Buyrukoğlu, 2021; Güler & Polat, 2022). Based on these
results, CNN-based architectures have also been used in studies
such as segmenting brain lesions or classifying brain diseases.
Especially recently, in these studies, instead of producing specific
models for each dataset, there has been a tendency to use pre-
trained models that have proven their success in different datasets.
Since there are different studies related to stroke such as DL, risk
factors, carotid artery related, and ML studies, ensemble learning
studies, which are the subject of this research and have not been
performed at a sufficient level, have been examined in the literature
review. However, since transfer learning and fine-tuning studies to
be used in ensemble learning constitute the first stage of the
proposed approach, transfer learning studies in the literature have
also been examined. These studies can be summarized as follows.

Rao et al. (2022) proposed a combination of ResNet50 and a
dense layer for the prediction of intracranial hemorrhage on brain
images. Their proposal was better than the direct use of ResNet50
pre-trained architecture with 99.6% accuracy, 99.7% specificity,
and 99.4% sensitivity results. In another exploration of transfer
learning, a study employed multiple CNNs to decipher the
electroencephalogram (EEG) of stroke patients, aiming to develop a
proficient motor imagery brain–computer interface system (Xu
et al., 2021). The models, including EEGNet, DenseNet, Xception,
ResNet50, and VGG16, were trained and tested as part of the
investigation. The resulting average classification accuracy of the
proposed model for 11 subjects was determined to be 66.36%, with
EEGNet leading the way.

In their proposal, Jung and Whangbo (2020) introduced a pre-
processing algorithm tailored for ischemic stroke, utilizing non-
contrast CT data sourced from the middle cerebral artery region
(specifically, the NCCT dataset collected from patients).
Furthermore, they recommended an adaptive transfer learning
algorithm employing the ResNet152 architecture. The study
demonstrated a performance improvement of 18.72% compared to
other studies evaluated in their research. Chen et al. (2022)
proposed a solution for classifying strokes based on findings from
unenhanced brain CT images, utilizing a private dataset collected
from patients. The classification included categories such as
normal, hemorrhage, infarction, and others. The study employed
CNN-2, VGG16, and ResNet50 models, varying data sizes, mini-
batch sizes, and optimizers. The comparative results indicated that
both CNN-2 and ResNet50 outperformed VGG16, achieving an
accuracy of 0.9872. However, it is noteworthy that ResNet50 took
longer to produce results compared to the other networks.

In another study, Zhang et al. (2021) introduced an intra-domain
task-adaptive transfer learning method for stroke detection. Their
approach involved refining the model with various binary
thresholds of time since stroke (TSS). The methodology
incorporated both 2D (ResNet) and 3D CNN (U-Net) architectures,

resulting in a Receiver Operating Characteristic-Area Under the
Curve value of 0.74. Specifically, for classifying TSS < 4.5 h, their
model demonstrated a sensitivity of 0.70 and a specificity of 0.81.

In their proposal, Talo et al. (2019) introduced the ResNet34
model for the classification of normal and abnormal brain MR
images. The training of the model involved techniques such as
data augmentation, optimal learning rate finder, and fine-tuning.
Remarkably, the proposed model demonstrated exceptional
performance, achieving a 5-fold classification accuracy of 100%
on a dataset consisting of 613 MR images. Dawud et al. (2019)
utilized fine-tuning for the brain CT hemorrhage classification
task and introduced a novel approach for the AlexNet model
incorporating a support vector machine (SVM) classifier. The
training and testing of the model involved normal and diseased
brain CT images sourced from a hospital in Nigeria. Notably, the
model demonstrated a high level of success, achieving an
accuracy rate of 93.48% in the study. Cetinoglu et al. (2021)
conducted a study to assess the performance of Modified
MobileNetV2 and EfficientNetB0 models in detecting and
classifying strokes based on diffusion-weighted images. Their
custom dataset comprised 1800 slices (900 strokes and 900
normal), distributed into 1400 for training, 200 for validation, and
200 for testing. The study reported a stroke detection accuracy of
96% for the modified MobileNetV2 model and 93% for the
EfficientNetB0 model. In the vascular territorial classification of
strokes into middle cerebral artery, posterior circulation, or
watershed infarction, the modified MobileNetV2 model achieved
93% accuracy, while the modified EfficientNetB0 model achieved
87%. Notably, as literature research did not yield studies using
ensemble learning methodology for stroke classification, this
study stands out for its promising approach.

The organization of this paper unfolds as follows: The second
section elucidates the materials employed in this study and outlines
the proposed approach. Following that, the third section presents the
results obtained during the course of the study. Subsequently, the
fourth section delves into a discussion of the research findings.
Finally, the paper is concluded in the fifth section.

2. Materials and Methods

The CNN architecture, widely employed in image recognition
and classification studies, is a complex neural network composed of
multiple layers, including convolution, pooling, activation,
normalization, dropout, fully connected, and classification layers. In
the context of image classification, pre-trained models based on the
CNN architecture have been extensively analyzed for their
performance. The convolution layer, characterized by parameters
such as the number of images, image size, and filter size, applies a
filter matrix to the input data, treated as a matrix, resulting in
convolution and the generation of a new feature map. In the
subsequent pooling layer, the feature map’s size is reduced through
methods like max pooling and average pooling, preparing it for
further convolution layers. The CNN model iteratively applies
convolution and pooling processes. Following feature extraction
and data reduction, the classification layer produces outputs
corresponding to the number of objects targeted for classification.
This sequential process forms the foundation of CNN-based image
recognition systems (Çınarer et al., 2020; Güler & Yücedağ, 2022).

2.1. Research design

The classification process for predicting stroke or non-stroke in
the brain is presented in this section (Figure 1). This process starts with
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data acquisition. After loading the data, we implemented some data
augmentation techniques since DL studies use a better with much
amount of data. Then, the data pre-processing step is finished by
splitting the data into three parts, train, validation, and test. Next,
pre-trained Deep Neural Network are applied to the training and
validation data to define the best three models among them. For the
application process, the models are fine-tuned appropriately to the
problem. The first step of the proposed approach is completed with
the results of the pre-trained DNNs. In the second step, the top-3
models of the first step are defined as base learners of the ensemble
learning process. We brought these three models together to get a
weighted average prediction result. Finally, the ensemble models
give a classification result for the test data. This result is the
average of scores that resulted from the best three models.

2.2. Data

To employ the suggested transfer learning-based models, the
brain MR images dataset is divided into two classes: those with
and those without strokes. The MR images are first subjected to
many pre-processing procedures for image augmentation and
enhancement. The initial dataset contains 2376 MR images. There
are 1426 and 950 images in non-stroke and stroke classes,
respectively. The Kaggle website offers access to the MRI scans
and study dataset is get from the Kaggle. Since the data used in
the study were removed from the Kaggle platform after the study
was conducted, no data link is provided. However, the study data
can be sent to researchers who request it, with privacy/ethical
restrictions. Kaggle is a platform for data science, ML, and DL
that facilitates collaboration and competition among a global
community of data scientists, researchers, and practitioners.

Founded in 2010, Kaggle provides a platform where users can
access and share datasets, explore, and build models in a cloud-
based environment, and participate in ML competitions to solve
real-world problems. The platform offers a diverse range of
datasets and challenges, enabling participants to hone their skills,
learn from others, and contribute to the advancement of data
science. Kaggle (2023) also serves as a hub for knowledge
exchange through forums, notebooks, and discussions, fostering a
vibrant ecosystem for the exploration and application of data-
driven solutions. A larger MR training dataset has been produced
by expanding this collection. Six pre-trained models are used to
train and assess the transfer learning model.

After data acquisition, the initial stage is data augmentation, to
increase the number of MR images for training the pre-trained
models. The original dataset is supplemented with a variety of
random alterations (rotations, brightness changes, etc.,) using the
image data generator function. This process serves as a regulator
and lowers overfitting during DL model training. Data
augmentation has a close relationship to oversampling in data analysis.

The second goal of the preparation stage is resizing the dataset
images to 224 × 224 × 3 so that they can be normalized and made
consistent with the used pre-trained models. The process of
separating the study dataset into three parts for training,
validation, and testing is the last step in the preparation process.
Seventy percentage of the overall dataset is stored for training.
The remaining images were stored for model validation (20%)
and testing (10%). To reduce the sample difference between the
classes in the study and to prevent the formation of a dominant
class, the images were rotated by 45° to reach 2500 images. Two
hundred and fifty of these images were used for testing, while the
remaining images were used in the training and validation phase.

Figure 1. Block diagram of the approach used in the study
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2.3. Transfer learning

Transfer learning is the process of resolving a separate but
related problem utilizing the relevant parts of a pre-trained DL
model. Often, programmers select the model’s components that
need to be re-trained and applied to the new task. In our research,
we used six pre-trained CNN architectures, which are successful
for many other problems (ResNet50, MobileNetV2,
EfficientNetB2, VGG16, Xception, and DenseNet121).

The ResNet50, which is a widely used ResNet model, consists
of 48 convolution layers, 1 MaxPool layer, and 1 average pool layer.
The number of floating-point operations is 3:8 x 109 (He et al.,
2016). MobileNetV2 is an architecture, which uses depthwise
separable convolution that is suited for mobile devices or other devi-
ces with limited processing capabilities. In this model, an enhanced
module with an inverted residual structure is included. Non-linear-
ities in thin layers are removed this time. Using this architecture
as the basis for feature extraction, contemporary results are also
obtained for item detection and semantic segmentation (Sandler
et al., 2018). In contrast to conventional methods, the EfficientNet
scaling strategy uses a set of pre-determined scaling coefficients
to uniformly scale network width, depth, and resolution. To scale
these parameters of the network, EfficientNet employs a compound
coefficient (Tan & Le, 2019). In the VGG16 architecture, the image
is sent to the network with 224 � 224 � 3ð Þ sizes. The feature
extraction layers of the structure continue, with two convolutional
layers with 64 filters, two convolutional layers with 128 filters, three
convolutional layers with 256 filters, three convolutional layers with
512 filters, and three convolutional layers with 256 filters. Between
all these convolutional layer blocks, there is a pooling layer that uses the
max-pooling technique (Simonyan&Zisserman, 2014). AnXception is
a type of CNN that uses dense blocks to connect all layers (with match-
ing feature-map sizes) directly with one another, creating dense connec-
tions between the levels. Each layer sends its feature and receives
additional inputs from all preceding levels (Chollet, 2016). Dense-
Net121 has one 7 � 7 filter, fifty-eight 3 � 3 filters, sixty-one
1 � 1 convolution layers, and four AvgPool layers in its structure.
All layers, that is, those within the same dense block and transition
layers, spread theirweight acrossmultiple inputs, allowing deeper layers
to use previously extracted features (Ruiz, 2018).

Table 1 summarizes the important hyperparameters that are
employed throughout the execution of the pre-trained models.
Each of the pre-trained models used in the study was fine-tuned
with the parameters specified in Table 1. After the training
process, the final weights of the models were saved for use in
ensemble learning.

To incorporate the pre-trained models into the application using
the transfer learning method, the fine-tuning adjustments used in
Table 1 were made. Each model retrieved from the Keras
applications library was applied to the problem used in the study
using these parameters. Since the number of classes in the

ImageNet competition is 1000, the models retrieved from the
Keras library were trained for this number of outputs. While the
weights of the models included in this study were the weights in
the ImageNet competition, in the fully connected layers, also
called classification layers, the GlobalAveragePooling method was
first applied, and then the model output was reduced to 2 classes
(stroke and non-stroke), which is the classification problem. In
addition, a callback for early stopping over the “loss” value was
also added during the training of the study.

The tests in the study were performed using the Python
programming language in the Google Colab environment, a
platform that supports online ML and DL studies. TensorFlow
(version 2.10.0), Matplotlib (version 3.6.0), and Sklearn (version
1.2.0) libraries were used to perform the analysis.

2.4. Ensemble learning

Ensemble learning involves the amalgamation of diverse
learning algorithms to collectively improve performance or enhance
existing models by integrating multiple models into a reliable single
model (Cao et al., 2020). While DL models have demonstrated
proficiency in various applications, there remains an opportunity to
employ a combination of DL models using ensemble techniques to
achieve comparable objectives. The study utilizes a randomized
weighted ensemble, an ensemble technique that assigns weights to
predictions from each ensemble member. These weights are
combined to calculate an aggregated prediction, as illustrated in
Equation (1). The optimization of weights involves a search process
using randomized search, based on the Dirichlet distribution and
conducted on a validation dataset (Borges, 2019).

w1: ŷ1½ � þ w2: ŷ2½ � þ . . .wn: ŷn½ � ¼ ŷ½ � (1)

wherew is the weight of eachmember, ŷ is the output of eachmember,
and ŷ is the weighted average ensemble output. The deepstackmodule
for ensemble learning was used in the study and version 0.0.9 of this
library was included in the program.

2.5. Evaluation metrics

Many different evaluation measures can be used to test a model.
These include classification accuracy, loss, and confusion matrices,
F1-score, recall, precision, sensitivity, specificity, etc. Typically, we
refer to classification accuracy when we use the word accuracy.
There are four categorizations used to compute these metrics from
Equations (2)–(5) as follows.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(2)

Precision ¼ TP
TP þ FP

(3)

Recall Sensitivityð Þ ¼ TP
TP þ FN

(4)

F1Score ¼ 2 x Precision x Recall
Precisionþ Recall

(5)

In the Equations;

• A TP result is one in which the model accurately predicts the
positive class.

Table 1. Fine-Tuning of hyperparameters

No Parameter Values

1 Optimizer Adam, beta_1 = 0.9, beta_2= 0.999
2 Learning rate 0.001 to min 0.0000001
3 Loss function categorical_crossentropy
4 Metrics Accuracy, precision, recall, F1-score
5 Batch size 32
6 Epochs 50
7 Patience 5
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• A TN result is one in which the model accurately predicts the
negative class.

• An FP result occurs when the model guesses the positive class
falsely.

• AnFN result occurs when themodel guesses the negative class falsely.

Equation (2) defines accuracy as the total successfully categorized
examples divided by the total examples that were classified. Equation
(3) defines precision as a rate of correctly predicted samples for the
positive class. For a classification problem with two classes, recall
(also called sensitivity) is calculated in Equation (4) as the ratio of
true positives to both true positives and false negatives. The F1-score
is calculated as in Equation (5) and is the harmonic mean of
precision and recall (Nighania, 2018).

The loss function serves as a crucial metric, assessing the
disparity between the predicted value and the actual label. In the
context of image processing, the loss layer of a neural network
contrasts the network’s output with the ground truth. The study
adopts the categorical cross-entropy as the chosen loss function,
calculated as outlined in Equation (6) (Zhao et al., 2017).

Loss ¼ �
X

Output
Size

i¼1

yi log ŷi (6)

3. Results

3.1. Results of the transfer learning models

In this section, the results of the transfer learning model
according to all metrics used like accuracy, loss, precision, recall,

and F1-score are explained. The accuracy graphs are given in
Figure 2 (ResNet50, MobileNetV2, EfficientNetB2, VGG16,
Xception, and DenseNet121).

As seen in Figure 2, the validation average accuracy rates of the
models are 96.8%, 96%, 98%, 57.9%, 98.4%, and 98.4% for the
ResNet50, MobileNetV2, EfficientNetB2, VGG16, Xception, and
DenseNet121, respectively. Although the number of epochs was
defined as 50, during the training of ResNet50 and Xception
models, early stopping call-back was activated with the function it
was defined and stopped the training at the 30th epoch.

Among the models, the VGG16 model was significantly the
least accurate, as shown in Figure 2(d). The training accuracy of
this model was 60.34% while the validation accuracy was 57.9%.
The test accuracy results are explained in Figure 4 together with
the confusion matrix. Among the other models, EfficientNetB2,
Xception, and DenseNet121 were the three models that exceeded
98% accuracy. Loss graphs of the models were also obtained for a
more comprehensive evaluation of the performance of these
models. The loss graphs of the ResNet50, MobileNetV2,
EfficientNetB2, VGG16, Xception, and DenseNet121 models are
given in Figure 3, respectively.

The important point in the Loss parameter is that the Loss value
of the model converges to 0. Thus, it is concluded that the confusion
rate of the prediction result between the labeled data of the model
decreases. The Loss values of all models converged to zero as seen
in Figure 3. The validation Loss values of the models are
23 � 10�5, 149 � 10�5, 6 � 10�5, 68160 � 10�5, 95 � 10�5,
and 69 � 10�5for the ResNet50, MobileNetV2, EfficientNetB2,
VGG16, Xception, and DenseNet121, respectively. Figure 3 shows
that the Loss values of MobileNetV2 and EfficientNetB2 models
oscillate up to the first 30 epochs, while the other models stabilize after
the first 10 epochs. This means that the confusion rate between the
labeled data classes of the models is almost negligible. When we look

Figure 2. Accuracy results of (a) ResNet50, (b) MobileNetV2, (c) EfficientNetB2, (d) VGG16, (e) Xception, and (f) DenseNet121
models
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at the results of the Loss values of the models, although all models
obtained very low Loss values, the VGG16model reached the highest
Loss rate among the models.

After evaluating the performance of the models on the training
and validation data, their performance on the test data was finally
evaluated to determine the three most successful models in the
first stage. These performances were realized through confusion
matrix metrics. The confusion matrix is an important criterion for
evaluating the performance of DL models. It can be used
especially in health studies to see the correct and incorrectly
predicted values for each class and to measure the ratios. The
confusion matrix results of the pre-trained models used in the
study are given in Figure 4.

As seen in Figure 4, there are 250 images in the test dataset
consisting of 125 images from both classes. The ResNet50 model
classified all non-stroke images truly but 8 of 125 images in the
stroke class are predicted as non-stroke, which is a false
prediction. The MobileNetV2 model also predicted all non-stroke
images truly, but the MobileNetV2 made 10 false predictions for
the stroke class, which is worse than ResNet50. The
EfficientNetB2 model predicted truly 124 of 125 images for the
non-stroke and 121 of 125 images for the stroke classes.
EfficientNetB2 model prediction for 4 images from the stroke
class and 1 image from the non-stroke class was false. As seen in
Figure 4(d), the VGG16 model predicted all samples as in the
stroke like a single class. This confusion matrix result is generally
encountered as the output of failed models. It is an important
indicator that the model fails on test data. These results of the
VGG16 model support the training and validation accuracy and
loss rates. As the most unsuccessful model among all pre-trained
models, it is concluded that VGG16 is not suitable for the
problem of this study. The Xception model only made 4 false
predictions for the stroke class and the DenseNet121 model made

3 and 1 false predictions for the stroke and non-stroke classes,
respectively.

After the fine-tuning of the pre-trained models, the training and
validation evaluation, and after obtaining the confusion matrices on
the test data, confusion matrix metrics were also generated for each
model. These obtained ratios are presented in Table 2.

As seen in Table 2, for the ResNet50 model, precision, recall,
and F1-score of the stroke class are 100%, 93.6%, and 96.7%,
respectively. For the non-stroke class, these are 93.98%, 100%,
and 96.9%, respectively. The stoke class precision, recall, and F1-
score of the MobileNetV2 are 100%, 92%, and 95.83%,
respectively. The non-stroke class rates of this model are 92.6%,
100%, and 96.15%, respectively. EfficientNetB2 model’s
precision, recall, and F1-score rates are 99.18%, 96.8%, and
97.98%, respectively, and for the other class, these metrics are
96.88%, 99.2%, and 98.02%, respectively. VGG16 model’s
results are not successful for this problem. The precision, recall,
and F1-score of the Xception model for the stroke class are 100%,
96.8%, and 98.37%, respectively. For the non-stroke class, these
metrics are 96.9%, 100%, and 98.43%, respectively. Lastly,
DesNet121 metrics for the stoke class, like precision, recall, and
F1-score are 99.17%, 97.6%, and 98.39%, respectively. For the
non-stroke class, they are 97.64%, 99.2%, and 98.4%, respectively.

After all these evaluations, DenseNet121, Xception, and
EfficientNetB2 were determined as the three most successful
models as a result of the first step of the proposed approach in the
study. These models were used as base learners in the ensemble
learning phase.

3.2. Results of ensemble learning

The best models used in this process are the DenseNet121,
Xception, and EfficientNet models. Table 3 represents the scores

Figure 3. Loss results of (a) ResNet50, (b) MobileNetV2, (c) EfficientNetB2, (d) VGG16, (e) Xception, and (f) DenseNet121 models
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of the ensemble learning using the best three models. It represents the
score for every pre-trained model during the application of the
ensemble learning and the total score.

The models used in the ensemble model structure were taken
from the Keras application library in the transfer learning phase
and adapted to the research problem through fine-tuning. These
models were trained according to the classification structure of the

research problem in the training phase and their weights were
recorded. These weights were used as a base learner for ensemble
learning in the deepstack structure. Within this structure, each
model contributed to the ensemble learning process with different
weights according to the Dirichlet distribution formulation.

The ensemble model has a 99.84% accuracy score because it
combines the advantages of the best models represented. The
EfficientNetB2 model has an accuracy rate equal to 87.03%
with a weight rate of 0.023, the DenseNet121 model has an
accuracy rate equal to 93.35% with a weight rate of 0.0002,
and the accuracy rate of the Xception model is 99.63% with a
rate of 0.9768, as a single base learner in the deepstack
structure. When we combined all these models with the
weighted average technique in ensemble learning, the accuracy
score for the test dataset became 99.84%, which is a perfect
score for the problem.

Figure 4. Confusion matrices of (a) ResNet50, (b) MobileNetV2, (c) EfficientNetB2, (d) VGG16, (e) Xception, and (f) DenseNet121
models

Table 2. Precision, recall, and F1-score results for the models for each class

Class Precision Recall F1-score Support

ResNet50 Stroke 1.00 0.936 0.967 125
Non-stroke 0.9398 1.00 0.969 125

MobileNetV2 Stroke 1.00 0.92 0.9583 125
Non-stroke 0.926 1.00 0.9615 125

EfficientNetB2 Stroke 0.9918 0.9680 0.9798 125
Non-stroke 0.9688 0.9920 0.9802 125

VGG16 Stroke 0.5000 1.0000 0.6667 125
Non-stroke 0.0000 0.0000 0.0000 125

Xception Stroke 1.00 0.968 0.9837 125
Non-stroke 0.969 1.00 0.9843 125

DenseNet121 Stroke 0.9919 0.976 0.984 125
Non-stroke 0.9764 0.992 0.984 125

Table 3. Ensemble learning results

Model Results

EfficientNetB2 – Weight: 0.0230 accuracy_score: 0.8703
DenseNet121 – Weight: 0.0002 accuracy_score: 0.9335
Xception – Weight: 0.9768 accuracy_score: 0.9963
Ensemble model 99.84%
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4. Discussion

The outcomes of the proposed approach, including transfer
learning and ensemble learning models, are contrasted in Table 4.
Table 4 represents a comparison between the proposed approach
with the related works according to models used, aims, and results.
Stroke is one of the most important health problems, which ranks
second worldwide among the diseases that result in death.
Therefore, studies on this subject are also of great importance.
Recent studies using transfer learning and ensemble learning
techniques for classification and detection processes are listed in
Table 4.More than 90% successwas achieved inmost of these studies.

In their study, Dawud et al. (2019) employed an AlexNet
combined with a SVM for hemorrhage classification, achieving an
accuracy of 93.48%. Talo et al. (2019) utilized ResNet34 to
successfully classify normal and abnormal brain MR images,
achieving a perfect accuracy of 100%. Xu et al. (2021) explored
the effectiveness of various models, including EEGNet, DenseNet,
Xception, ResNet50, and VGG16, in designing a motor imagery
brain–computer interface system, achieving an accuracy of
66.36%. Zhang et al. (2021) focused on stroke detection, utilizing
ResNet and U-Net models and reporting a specificity result of
0.81. Cetinoglu et al. (2021) employed MobileNetV2 and
EfficientNetB0 for the detection and vascular territorial
classification of stroke, achieving accuracy rates of 96% and 93%,
respectively. In the study conducted by Rao et al. (2022),
ResNet50 was employed for predicting intracranial hemorrhage,
resulting in an impressive accuracy of 99.6%. Lastly, Chen et al.
(2022) utilized CNN-2, VGG16, and ResNet50 for the
classification of stroke, achieving a high accuracy of 98.72%.
These studies collectively demonstrate the diverse application of
CNN models in medical image analysis, showcasing their
effectiveness in tasks ranging from hemorrhage classification to
stroke detection and intracranial hemorrhage prediction.

The conclusion drawn from this is that transfer learning and
ensemble learning techniques can be promising results for stroke.
However, it is seen that the ensemble learning approach proposed in
the study is superior to previous studies. In addition, it is seen that
the models used alone increase the performance. From this point of
view, an approach that can lead to future studies has been put forward.

Ensemble learning is widely utilized in ML and DL to enhance
the performance and robustness of predictive models by combining

multiple individual models. The fundamental principle behind
ensemble methods is that aggregating diverse models can yield
improved overall predictions compared to a single model. In the
field of ML, ensemble learning encompasses various approaches
such as bagging, boosting, and stacking, which have been
extensively studied. Bagging techniques, such as random forests,
involve training multiple models on different subsets of the
training data and then combining their predictions through voting
or averaging. Boosting methods, such as AdaBoost and gradient
boosting, iteratively train weak models by assigning higher
weights to misclassified instances, thereby creating a stronger
final model. Stacking, on the other hand, combines predictions
from multiple models using another model, commonly referred to
as a meta-learner, to make the final prediction (Polikar, 2006).

Ensemble learning has also garnered significant attentionwithin
the DL community. In DL, ensemble approaches focus on combining
predictions from multiple DNNs to enhance model performance.
One commonly employed technique is model averaging, where
multiple neural networks with different initializations or
architectures are independently trained, and their predictions are
averaged to obtain the final prediction. Another approach is
known as model stacking, where the outputs of multiple neural
networks serve as input features to a meta-learner that learns to
make the final prediction. Ensemble learning in DL has
demonstrated the ability to improve model generalization, mitigate
overfitting, and enhance prediction accuracy across various
domains, including computer vision, natural language processing,
and speech recognition (Deng & Yu, 2014).

Ensemble learning techniques are particularly effective when
the individual models within the ensemble possess diverse
strengths and weaknesses. By combining multiple models,
ensemble learning can capture a broader range of patterns and
enhance the model’s resilience to noise or outliers in the data.
Furthermore, ensemble learning provides a means to explore
different hypotheses and model architectures, enabling more
reliable and confident predictions. However, it is important to
note that ensemble learning may introduce additional
computational and resource requirements due to training and
combining multiple models. Therefore, the selection and design
of ensemble learning methods should be carefully considered
based on the specific task, dataset, and available resources
(Brown, 2011).

Table 4. Comparison of proposed work with related work

Author Model Aim Result (Acc)

Dawud et al. (2019) AlexNet+SVM Hemorrhage classification 93.48%
Talo et al. (2019) ResNet34 Classify normal and abnormal brain MR images 100%
Xu et al. (2021) EEGNet, DenseNet, Xception,

ResNet50, and VGG16
To design an effective motor imagery brain–
computer interface system

66.36%

Zhang et al. (2021) ResNet, U-Net Stroke detection 0.81 (Specificity)
Cetinoglu et al. (2021) MobileNetV2 and EfficientNetB0 Detection and vascular territorial classification of

stroke
96% and 93%

Rao et al. (2022) ResNet50 Prediction of intracranial hemorrhage 99.6%
Chen et al. (2022) CNN-2, VGG16, and ResNet50 Classification of stroke 98.72%
Proposed work DenseNet121 Classification of stroke 98.4%

Xception 98.4%
EfficientNetB2 98%
Ensemble model 99.84%
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5. Conclusion

An efficient approach for classifying stroke or non-stroke
automatically from MRI data was investigated in this work. The
approach is built on transfer learning, which utilizes well-known
CNN architectures and ensemble learning. Stroke medical image
data analysis has always been difficult, and the most difficult part
is choosing the distinguishing characteristics with some
understandable indicators.

The experimental results demonstrated that, despite the short
amount of the given dataset, a classifier could identify stroke with
pre-trained DL models. The DenseNet121 and Xception DL models
outperformed the state of the art with an accuracy of 98.4%,
demonstrating their supremacy over the other models. Later, the total
score of implementing ensemble learning using the best three models
is obtained as 99.84%, using EfficientNetB2, DenseNet121, and
Xception. Even while diagnosing stroke disorders with MR images
has seen considerable progress recently, it is still a long way from
meeting the criteria for a clinical diagnosis. When creating any
predictive models for clinical diagnosis, generalization, and
interpretability should be taken into consideration. Most current
approaches can only categorize one condition versus a healthy
control, thus an intelligent system that can identify many disorders
would be greatly desired. In this context, the contributions of this
study can be listed as follows.

• Transfer Learning and Ensemble Approach: The study contributes
by exploring an efficient approach for automated stroke
classification from MRI data. Leveraging transfer learning and
ensemble learning techniques, the research employs well-
established CNN architectures, demonstrating the efficacy of
these methods in handling the challenging task of stroke
detection in medical images.

• Model Performance: The experimental results highlight the success of
the proposed classifier, even with a limited dataset. Notably, the
DenseNet121 and Xception DL models exhibit superior performance
with an accuracy of 98.4%, surpassing current state-of-the-art
methods. The implementation of ensemble learning further enhances
accuracy, reaching a commendable 99.84% using EfficientNetB2,
DenseNet121, andXception, showcasing the robustness of the approach.

• Challenges and Considerations for Clinical Diagnosis: The
conclusion underscores the persisting challenges in stroke
medical image analysis, particularly in achieving clinical
diagnosis standards. The need for generalization and
interpretability in predictive models for clinical use is
emphasized. The study prompts a thoughtful consideration of
creating intelligent systems capable of identifying various
disorders, going beyond binary categorizations of a single
condition versus a healthy control.

• Future Directions: The research suggests intriguing possibilities
for future work, such as enhancing findings by integrating MR
images with other data sources like electronic medical records,
EEG, and structural MR images. The exploration of
comprehensive datasets and the utilization of multiple DL
models are proposed as avenues to develop specialized models
capable of identifying different types of brain strokes, indicating
a potential direction for advancing the field.
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