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Abstract:Vagueness in the determination of the tumor size creates significant hindrances in planning and quantitatively assessing brain tumor
(BT) treatments. Non-invasive magnetic resonance imaging (MRI) has become a primary non-ionizing radiation diagnostic tool for brain
cancers. It takes a long time to manually segment the extent of a BT from 3D MRI volumes, and the performance heavily depends on
the operator’s skill. A precise and automated BT segmentation tool is needed desperately. In this case, an accurate assessment of the
tumor’s extent requires a reliable automated segmentation method for the BT. The multimodal BT image segmentation (BRATS 2020)
dataset is used in this paper to demonstrate an automated deep convolutional network, or U-Net, method for BT segmentation. Deep
learning and transfer learning are utilized to improve the accuracy and effectiveness in detecting and recognizing different types of brain
cancers. The unobserved images’ F1 scores were 98% and 99%, respectively.
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1. Introduction

The human brain is amost vital organ. The body’s sensory organs
provide impulses or signals to the brain, which processes them, makes
the final decision, and actuates through the muscles. Brain tumor (BT)
is nemesis of the human brain. It is an uncontrolled growth of
abnormal brain cells [1]. The two main categories of BTs are
primary and metastatic (secondary).

Primary BTs comprise human cells and are often benign. In
contrast, blood flow from other body areas helped metastatic cancers
reach the brain.

Metastatic tumors are the terrifying one, because of the lousy
prognosis as well as the immediate effects on the quality of life
and diminished cognitive functions. Gliomas and primary central
nervous system lymphomas, accounting for about 80% of
malignant cases, are adults’ most common primary BTs [2]. A
2.5-year cumulative relative survival rate of 2% and 8% at
10 years for metastasis and high-grade glioblastoma, respectively,
is still regarded as untreatable despite significant advancements in
chemotherapy, radiation, imaging, and surgical technique [3].
Additionally, the prognosis for individuals with low-grade
gliomas varies, with a 10-year survival rate generally of around
57% [4]. A general categorization of such malignant cells is given
in Table 1.

This has been reported that the features of newly discovered
BTs on magnetic resonance imaging (MRI) can be utilized to
predict the likely diagnosis and course of therapy [5–7].
Additionally, multimodal MRI procedures are typically employed
to assess BTs’ blood–brain barrier integrity, cellularity, and
vascularity. This is so that the various image contrasts produced

by multimodal MRI techniques may provide essential
complementary information. T2, T1-weighted (with FLAIR, or
fluid-attenuated inversion recovery), and gadolinium-enhanced
T1-weighted imaging sequences are examples of common BT
MRI procedures that are often utilized. These structural MRI
scans usually provide a useful diagnostic [8].

The process of usingMRI images for BT studies requires image
segmentation for two reasons: (1) the segmented BT extent can
remove distracting structures from other brain tissues, which leads
to a more accurate classification for the subtypes of BTs and helps
with the subsequent diagnosis and (2) the precise delineation is
critical for radiotherapy or surgical planning, as it provides
information on both the BT and surrounding healthy tissue.
Currently, segmentation in clinical practice is still done manually
by human operators using demarcation. Manual segmentation is a
labor-intensive process that frequently uses slice-by-slice
techniques, and the results rely heavily on the experience and
subjective opinion of the operators. Furthermore, repeatable
results are challenging for even the same operator to produce.
There is a strong demand for a completely automated, objective,
and reproducible segmentation approach for a longitudinal,
multimodal, and multi-institutional clinical study.

The brain lesions vary greatly in their location, shape,
appearance, size, and regularity (such as contrast texture, uptake,
and image uniformity), which presents several challenges for BT
segmentation even with fully automatic and semi-automated
algorithms available [5, 9]. Low signal-to-noise ratios might arise
from this, and the accuracy of the final segmentation could also
be impacted by asymmetric partial volume effects. In general,
methodologies based on supervised learning [9–14] and
unsupervised learning [15–17] may be classified as having been
applied in earlier research on BT segmentation. Other sources,
like Bauer et al. [5], provide a more in-depth thematic assessment
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of the various BT segmentation techniques. Additionally, a
specialized yearly workshop and competition called multimodal
BT image segmentation is performed to compare multiple
algorithms created for the segmentation of BTs [18].

2. Materials and Methods

2.1. Computational resources

In the Google Colab environment, the results were obtained
with the use of computer resources, namely an i3 CPU and 16 GB
of RAM. The method is implemented using PyTorch. The
network is trained on an NVIDIA GeForce R.T.X. 2080 Ti GPU
and an Intel Core i3 Processor E5-2650 v3 @ 2.30GHz 20, with
16 GB of RAM. We did not use any fresh datasets to prepare our
network. For training, we selected photos and scaled them to
create non-overlapping patches of size 100 × 100.

Four patches from several parametric images—FLAIR, T1ce,
T2, and T1 images—are combined to provide the network’s input.
We have lesioned the edge impact in segmentation maps using the
U-Net model.

2.2. Brain MRI data acquisitions

This investigation used twoMRI datasets thatwere available to the
public. The online-available dataset is used as information obtained by
medical examiners, including radiologists and doctors. Several research
has also examined this dataset. With a primary focus on the
segmentation and 3,064 brain MRI slices acquired from 233
patients, respectively, we used a public BT dataset from Brats and a
Figshare source comprising BraTS 2020 multi-institutional pre-
operative MRI images. Glioma, pituitary, meningioma, and no-tumor
pictures are among the four types of BTs involved. Available in
”.jpg” format is the dataset. Each jpg file has a structure that
includes an image ID, 512 × 512 pixels of unified picture data, the
kinds of BTs, the tumor boundary with coordinate points, and
ground truth in a binary mask image. The labels of the MRI dataset
are displayed in Figure 1(B), with the tumor being shown in one
category with the title “Pituitary,” “Glioma,” or “meningioma,” and
with no cancer being shown in another with the label “no tumor.”
ResNet architecture takes the image as input, so our experiment used
image data from the .jpg files. Additionally, Table 2 shows the
database description for multi-class classification.

Table 1. Categorization of malignant cells

Type of
tumor Description Pictorial representation

Glioma Gliomas are a kind of tumor that can grow in the brain or spinal cord. Gliomas start in the
adherent support cells that envelop and facilitate the function of nerve cells. Gliomas are
classified according to their hereditary topographies and the percentage of glial cells in the
tumor. This can help forecast how the tumor will behave and potential treatment
approaches. A glioma tumor may present as imbalance, annoyance, nausea, a decrease in
brain function, or a misperception

Meningioma A meningioma is a kind of tumor that encircles the meninges, brain, or spinal cord. It is not
a brain tumor per se, but it fits the description since it can compress nearby blood arteries,
nerves, or the brain. The most common kind of tumor that forms in the head is a
meningioma. The symptoms of meningioma usually appear gradually, and they may be
greatly underestimated at first. The symptoms and signs of cancer can vary depending on
whether it is in the brain or, less commonly, the backbone. They can include changes in
vision, such as sightedness or vagueness; headaches, hearing problems or buzzing in the
ears; memory loss; seizures; and trouble speaking

Pituitary Uncontrollable growths in the pituitary gland are known as pituitary tumors. Hormones that
regulate growth and development, organ function (including those of the kidneys, breasts, and
uterus), and gland function are produced by some pituitary tumors. The pituitary gland may
produce fewer hormones as a result of some pituitary tumors. Adenomas, or benign growths
that are not malignant, make up the majority of pituitary tumors
Adenomas stay restricted to the pituitary gland or surrounding tissues; they do not spread to
other regions of the body
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The BRATS 2020 dataset, which includes four basic categories:
“NOT tumor,” “NECROTIC/CORE,” “EDOEMA,” and
“ENHANCING” of the patient scans, was used to test and assess the
suggested technique. Each patient in the BRATS 2020 datasets has
access to multimodal MRI data, and four MRI scanning sequences
employing T1-weighted (T1), T1-weighted imaging (T1c), T2-weighted
(T2), and FLAIR were carried out for each patient as shown in
Figure 1(B). The T2, FLAIR, and T1 images were co-registered into
the T1c data, with the highest spatial resolution for each patient. For
every multimodal MRI sequence, we used data normalization.

Additionally, for each instance, manual segmentations with the
intra-tumoral classifications of edema (1), necrosis (2), enhancing
tumor (3), and non -enhancing tumor (4) are accessible. Manual
segmentations have been employed as the source of truth for both
the segmentation model training and the final segmentation
performance evaluation. In earlier investigations, multimodal data
were layered like RGB multichannel pictures [19–21]. In this work,
we successfully segmented all tumor areas and regions using FLAIR
images [9]. Additionally, the enhancing tumor was defined using
T1c data. As a result, our methodology is more effective and
requires fewer clinical inputs, as patient symptoms and short
acquisition times usually prevent the availability of multimodal MRI
data. The dataset distribution for tumor proportion estimation is as
follows:

• Training slices: 245, validation slices: 87, and testing slices: 48.

2.3. Preprocessing

Since intensity variation encodes all of the information about the
brain, the contract must be carefully considered while analyzing or
deciphering brain pictures. Thus, preprocessing is necessary to
remove unnecessary marks and labels from the image. Preprocessing
approaches enhance image quality, eliminate any previously present
noise in the image, and set up the idea for later processing [22].

Unlike many other deep learning algorithms that use the entire
image, we focused only on a tiny area of the image to extract the
fundamental properties. The unfavorable outcomes are greatly
lessened by removing these meaningless, uninformative
components [23]. A total of 5.38 ms time is taken while
preprocessing the brain MRI scans. Table 3 shows the steps
involved along with the outcome achieved.

Following are the steps involved in the preprocessing with the
outcome image.

2.4. Data augmentation

By purposefully providing extra training data from the original
set, data augmentation aims to increase network performance. We
used various data augmentation techniques in this research.
Simple transformations like flipping, rotating, shifting, and
zooming can provide displacement fields for images, but they do
not give training examples with significantly altered shapes. Since
tumors lack a characteristic form, shear surgery can somewhat
affect the general structure of the tumor in a horizontal orientation
but still cannot provide sufficiently diverse training data. To
address this issue, we also used Height_Shift_Range= 0.05 and
Width_Shift_Range= 0.05 [24], Rotation_Range= 10, and
Horizontal_Flip = True which may produce additional training
data with arbitrary but acceptable forms. Figure 2 shows the
augmented output for the given original image as input.

Figure 1. (A) Various MRI tumor scans and (B) brain scans for segmentation

Table 2. Description of the dataset

Category
Number of slices in

training
Number of slices in

testing

No tumor 1595 405
Pituitary 1457 300
Meningioma 1339 306
Glioma 1321 300
Total 5712 1311
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2.5. Proposed method for multi-class classification

The suggested approach for this investigation entails multiple
steps. These are the phases: image capture with tumor detection.
All preprocessed images will be split into validation, testing, and
training sets to train in a transfer learning environment and
subsequently test using testing data. Preparing images include
converting them to grayscale, cropping them to remove as much
of the black background as possible, enhancing contrast to
obtaining more accurate data, and thresholding to isolate the
tumor’s specific location. The ResNet model is created after the
training procedure. The results will be obtained using this ResNet
model as a classification engine.

ResNet trains onF(X), as opposed to all other algorithms, which
train on the output ‘Y’. To put it another way, ResNet seeks to make
F(X)= 0 such that Y = X. The suggested model’s flow diagram is
shown in Figure 3.

2.5.1. ResNet-50
Residual neural networks are artificial neural networks that

construct networks using residual blocks. The term ResNet-50
refers to a convolutional neural network (CNN) with 50 layers.
The 50-layer CNN is composed of 48 convolutional layers, 1
MaxPool layer, and 1 average pool layer. One MaxPool layer, one
average pool layer, and 48 convolutional layers make up the
50-layer CNN. A neural network that serves as the foundation for
a number of computer vision applications is known by the general
term ResNet, or residual networks. The main innovation of
ResNet was its capacity to train incredibly intricate neural
networks with over 150 layers. Table 4 depicts the modified
parameters used in implementing ResNet-50.

a.Unique features of ResNet-50
The architecture of ResNet-50 is based on the concept shown

above, with one significant exception. The bottleneck building
block is used in the 50-layer ResNet. A bottleneck residual block
uses 11 convolutions to reduce the number of parameters and
matrix multiplications and is frequently referred to as a
“bottleneck.” This greatly accelerates the training of each layer.
Instead of using a stack of two levels, it employs three layers.

Figure 2. Output obtained after augmentation

Table 3. Obtained cropped brain scan

Steps Outcome

• Obtaining the original image

• Finding the biggest contour

• Finding the extreme points

• Obtaining the final image
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2.5.2. ResNet-101

ResNet-101 is the name of a CNN that has 101 layers. A pre-
trained version of the network, trained on over a million photos, is
available in the ImageNet database [1]. The pre-trained network can
categorize photos into 1000 different item categories, including

several animals, a keyboard, a mouse, and a pencil. As a result, the
network now includes rich feature representations for a wide range
of pictures. Images having a resolution of 224 by 224 are supported
by the network. Table 4 depicts the modified parameters used in
implementing ResNet-101.

Figure 3. Proposed architecture for brain lesion classification

Table 4. Parameters used in implementation

ResNet-50 implementation

Proposed
architecture Convolutional layers Dropout layers Activation

Max
pooling Dense layer Batch normalization Number of parameters

ResNet-50 48 1 49 1 1 53 23,328,644
ResNet-101 implementation

ResNet-101 99 1 99 1 1 106 42,666,372
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2.5.3. Hyperparameters
A parameter established before the learning process starts is

called a hyperparameter. These adjustable settings have a direct
impact on how successfully a model trains. Table 5 describes the
hyperparameters used in the proposed approach.

2.6. U-Net-based deep CNNs

Biomedical images frequently feature intricate patterns of the
photographed item (such as a BT), and the object’s edge might
vary. To handle the segmentation for the objects with complex
patterns, Long et al. [25] proposed employing the skip
architecture, which combined the appearance representation from
shallow encoding levels with the high-level representation from
deep decoding layers. This allowed for thorough segmentation.
This technique applies to biomedical imaging and has shown
encouraging results on natural images [25, 26]. Ronneberger et al.
[27] and Cui and Liu, [28] developed the U-Net to address the
cell tracking issue using skip architecture [29].

We used the U-Net model for segmentation. An up-sampling
(decoding) path and a down-sampling (encoding) path make up
our network design based on the U-Net. Five convolutional blocks
make up the down-sampling pipeline. Each block consists of two
convolutional layers with filter sizes of 3*3, 1 stride in each
direction, and rectifier activation, increasing the number of feature
mappings from 1 to 1024.

Except for the last block, max pooling with stride 2*2 is performed
after each block for the down-sampling, reducing feature map size from
240 × 240 to 15 * 15. Every block begins the up-sampling route with a
deconvolutional layer. It decreases the number of feature maps by two
while increasing the size of feature maps in both directions, increasing
the size of feature maps from 15*15 to 240*240. In each up-sampling
block, two convolutional layers reduce the total number of feature
maps that are generated when the deconvolutional feature maps and
the feature maps from the encoding path are concatenated. Unlike the
original U-Net design, we use zero padding to preserve the output
dimension for all the convolutional layers of the down- and up-
sampling routes [29]. To minimize the number of feature maps that
represent the foreground and background segmentation, respectively,
to two, a 1*1 convolutional layer is utilized. In the network, no
ultimately linked layer is activated.

2.7. Setup in the environment of a deep
convolutional neural network (DCNN)

We did numerous parameter tunings that range from 2 to 10
hidden layers to obtain the best outcome based on the optimal
hidden layer demonstrated in testing. We favor utilizing 12 neurons
in a fully linked layer as the number of neurons inside the hidden
layer. Each layer’s output is calculated using the input parameter,
weight, bias, and activation function. We employ the ReLU
activation function for the convolutional layer and the Softmax for
the output layer to obtain results for categorical data. This work
uses root mean square propagation (RMSProp) to help the
optimizer understand where the optimization should be made inside
the DCNN [30].

Therefore, we utilize the default batch size, which is 32, to
decide the number of observations that may be performed before
weight altering based on computer configuration and specification
for the period or quantity of iterations of the learning process.
Until our models converge, the more epochs, the higher the
learning outcomes. Fifty epochs were utilized in this investigation.

3. Results and Discussions

We highlight the benefits of the suggested ResNet approach in
this section. First, we look at two methods in Experiment 1 that use
the output probability maps from ResNet-50 and ResNet-101 to
forecast the ultimate lesions from BTs. In the second experiment,
we look at the suggested deep learning method’s segmentation
performance using just one model—U-Net. The following sections
provide a description of each experiment’s specifics and findings.

3.1. Experiment 1: Multi-class classification

We evaluated the suggested multi-class classification system’s
effectiveness on a deep neural network in the first experiment. We
first used a pre-trained model for training ResNet-50 and ResNet-
101 using only MRI images. The experimental outcomes are
shown in Tables 6 and 7. Various plots and predicted output
results are shown from Figures 4 to 7.

Table 5. List of hyperparameters used in the work

Model ResNet-50, ResNet-101

Activation Softmax
Image size 100,100
Weights Image net
Optimizer Adam
Dropout 0.2
Metrics Accuracy
Loss Categorical cross entropy
Epochs 60
Batch size 28
Learning rate 0.0001
Monitor Val_loss
Backbone ResNet-50 and ResNet-101, respectively

Table 6. Table for loss vs. accuracy

Model Loss Accuracy

ResNet-50 0.0330 99.01
ResNet-101 0.0205 99.05

Table 7. Performance metrics for various brain tumors

ResNet 50 model

Type of tumor Recall Precision Support F1-score

Glioma 0.97 1.00 300 0.984
Meningioma 0.99 0.98 306 0.984
Pituitary 1.00 0.98 300 0.989
No tumor 1.00 1.00 405 1.00

ResNet 101 model
Glioma 0.97 1.00 300 0.984
Meningioma 0.97 0.98 306 0.974
Pituitary 0.99 0.97 300 0.979
No tumor 1.00 0.99 405 1.00
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Figure 4. (A)Accuracy plot forResNet-50, (B) loss plot forResNet-50, (C) accuracy plot forResNet-101, and (D) loss plot forResNet-101

Figure 5. (A) AUC-ROC plot for all classes with ResNet 50 and (B) AUC ROC plot for all classes with ResNet 101
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Figure 6. (A) ResNet-50’ confusion matrix and (B) ResNet-101’ confusion matrix

Figure 7. (A) Prediction output for ResNet-50 and (B) Prediction output for ResNet-101
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3.2. Experiment 2: Tumor proportion estimation

We developed U-Net-based fully convolutional networks in
this study to address the brain lesion segmentation problem. In
essence, semantic segmentation is the task that deals with tumor
identification and segmentation. In contrast to earlier studies on
this issue that used deep learning, we used a thorough data
augmentation scheme that included affine-based deformation or
rigid and brightness and elastic distortion-based transformation,
which was then coupled with the U-Net that uses the
skip-connection architecture [29].

Therefore, a practical segmentation approach should be used on
the brain MRI data before categorizing the images into four groups
(i.e., NOT tumor, NECROTIC/CORE, EDEMA, ENHANCING).
The suggested approach may then use segmented images to
identify tumor proportions effectively. Performance analysis is

listed in Table 8 below. Various outcomes in this segmentation
approach are summarized and presented from Figures 8 to 11.

Table 8. Performance analysis

Performance measures Values

Loss 0.0179
Accuracy 99.38%
Sensitivity 99.24%
Specificity 99.80%
Dice_Coef 62.02%
Dice_Coef_Necrotic 60.62%
Dice_Coef_Edema 73.38%
Dice_Coef_Enhancing 66.13%
Precision 99.42%
Mean_iou 37.55%

Figure 8. Original scans vs ground truth vs predicted scans

Figure 9. Segments of the tumor using different effects
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Figure 10. (A) Plot for training and validation accuracy, (B) plot for training and validation loss, (C) plot for dice coefficient, and
(D) plot for mean IOU

Figure 11. (A) Tumor pixel enhancing output and (B) tumor proportion output
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4. Conclusion and Future Directions

Using a dataset of around 9000 images for the training phase,
the ResNet approach can classify tumors using MRI scans with a
99.1% and 99.99% accuracy rate. Consistent training data in one
class of glioma had an impact on accuracy. With around 500
testing data, the system achieved an accuracy of 99.01% and
99.05%, respectively, for the testing procedure. New data are
strongly advised for future studies to improve accuracy and
contemporary techniques for data picture preprocessing and data
presentation to produce the best data possible.

The proposedResNet frameworkwas built on top of the ImageNet
training. Without altering the fundamental design of the CNN, the
ReLU activation function was converted into the softmax activation
function. Overall, there were 154 layers instead of 144 after the
changes. The recommended model attained the highest-ever
classification accuracy of 99.67%. To detect the different BT kinds
on the FigShare MRI dataset, we also deployed two deep pre-trained
CNN models using the transfer learning approach. The experimental
findings showed that the suggested system better distinguished brain
malignancies. In addition, the proposed technique calculated more
descriptive and discriminative information compared to previous
state-of-the-art methods, yielding excellent accuracy.

Additionally, it is clear from testing that the pre-trained CNN
model utilizing transfer learning methods generated the best
results. However, the proposed framework’s accuracy was at its
highest level compared to the other pre-trained models. Future
research should also explore the 3D dataset using a sizable
number of normal brain MRI pictures and a limited number of
malignant brain MRI images since the suggested model retrieved
more accurate, detailed, and discriminative characteristics along
with to draw the volume function as well as the convex hull.

We cannot train a neural network employing the whole 240 ×
240× 155 brain volume due to the computational constraints of using
GPUs for state-of-the-art network training. As an alternative, we
opted for KAGGLE online notebook.
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