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Spatio-Temporal Attributes of Varicella-Zoster
Case Number Trends Assist with Optimizing
Machine Learning Predictions

David A. Wood1,*

1DWA Energy Limited, UK

Abstract: The varicella-zoster virus (VZV) (chickenpox) is a problematic infectious disease with regular outbreaks occurring seasonally in most
countries. Being able to predict with accuracy the expected number of cases in future weeks based on historical case trend information is an
important goal both locally and nationally. Space and time-related attributes extracted from the case number trends for the previous
12 weeks of historical VZV cases recorded in Hungary. These attributes are able to generate reliable predictions for expected VZV cases for
multiple weeks ahead. Supervised machine learning (SML) combined with feature selection optimizers can identify combinations of the
most effective of 15 local trend time-series attributes supported. These features are complemented with an additional 10 regional trend
attributes providing the spatial dimension. The most practical combination of influential trend attributes varies depending on the number of
weeks ahead being forecast. SML models are developed using weekly VZV case data (2005–2014) for the regions of Hungary focusing on
the region of Komarom-Esztergom (Kom) northwest of Budapest. SML predictions for up to 4 weeks ahead are most strongly influenced
by the local time-series attributes including moving averages (MAs) and seasonality components from recently past weeks. However, for
predictions further forward (up to 13 weeks) the SML models also exploit regional trend attributes related to recent past rate-of-change in
VZV case numbers to provide effective predictions. The proposed trend-attribute method provides more accurate case predictions than the
commonly used univariate case-forecasting methods relying on MA and autoregressive integrated moving models. The applied method also
provides a means of data mining the most influential trend attributes and the time ranges of their effectiveness. The flexibility and
transparency of the technique provide a robust method that could be applied for forecasting short-term epidemiological case numbers
associated with other infectious diseases.

Keywords: weeks-ahead VZV case forecasting, spatio-temporal trend attributes, feature importance analysis, optimized machine learning,
epidemiological univariate case-trend analysis

1. Introduction

The varicella-zoster virus (VZV), commonly referred to as
chickenpox, is a highly infectious disease with global impact. It
occurs most prominently in children of primary school age. Its
epidemics tend to be seasonal in most countries with peak
outbreaks often occurring in winter and spring [1]. VZV cases
show declining trends in many countries where vaccination
programs have been conducted [2, 3], but the disease has not been
eradicated by such efforts. A further complication is that
following a childhood VZV infection, the virus remains present
and, temporarily, inactive in the nervous system. Unfortunately,
this often re-emerges later in life as the herpes zoster virus
(shingles) with more serious consequences for older adults [4].
Chickenpox and shingles collectively represent a substantial
burden on health authorities’ resources in many countries [5].
Hence, methods that provide reliable short-term, VZV case

forecasts, locally and nationally [6], from historical case-trend
records of past recent weeks are beneficial for resource and
response planning.

A range of forecasting techniques are traditionally applied to
epidemiological weekly time-series case trends. From the univariate
case trend weekly recordings, moving average (MA) and
autoregressive integrated moving average (ARIMA) methods are
effective for very short-term forecasting (e.g., predicting one week
ahead (t0)) using t-1 to t-n weekly case records [7]. Supervised
machine learning (SML) [8, 9] and deep learning (SDL) models
[10, 11] are also proving to be effective for the short-term
forecasting of case trends of infectious diseases. An alternative
approach to short-term forecasting of time-series data involves
decomposing the univariate historical trend to extract trend-specific
information. Some studies have achieved this through wavelet
decomposition [12, 13]. The recently proposed trend-attribute
analysis method applied to energy and environmental time-series
datasets [14] is also effective in this regard. It offers a more
transparent approach to short-term time-series forecasting with a
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range of datamining capabilities. This study further develops the trend-
attribute method applied to provide national weekly case forecasts for
Hungary [6] from a published dataset of VZVweekly case trends [15]
by considering spatial as well as temporal components of the historical
case numbers. This approach provides reliable, more geographically
focused, regional weeks-ahead case forecasts incorporating spatially
influential case-trend information.

2. Materials and Methods

2.1. VZV weekly case trend dataset for Hungarian
regions

The University of California, School of Information and
Computer Science published dataset [15, 16] compiles weekly VZV
case records for Hungary. It provides data compiled at the national
level and for the country’s regions over a 10-year period. This
study evaluates this dataset using trend-attribute analysis. The VZV
case data are provided separately for the 19 counties, the capital
city, Budapest (Bud; Figure 1), and the nation as a whole. The
weekly case records from 2005 to 2014 provide the temporal

dimension. The breakdown of that data for each county and
Budapest provides the spatial dimension.

This study focuses specifically on the local case-number trend for
the Komarom-Esztergom (Kom; Figure 1) county in northeast
Hungary. It is selected for its relatively average population size and
VZV recorded case trend compared to other counties as shown in
Figure 2 [16]. The Kom time series is challenging from a forecasting
perspective in that it displays multi-year periodicity [17] and
substantial seasonal swings, with several peak-season highs and
lows. Similar to other counties, it displays a clear downward trend in
cases recorded, due to an expanding vaccination program from 2005
to 2014. For modeling purposes, the dataset is divided into two
subsets: (1) 2005–2011 involving data for 365 weeks used to train
and validate the SML models and (2) 2012–2014 involving 157
weeks to independently test the trained and validatedmodels (Figure 2).

2.2. Time-series trend attributes calculated

Fifteen trend attributes from the prior 12weeks (t− 12 to t− 1) of
recorded data are calculated and appended to each weekly (t0) data
record for the Kom dataset. These attributes include two seasonal
attributes, absolute weekly values, periodic averages, differences,
and rates of change. These trend attributes are defined in Table 1.
The seasonal attribute (SW) is calculated using the Statsmodels
package [18]. The rate of change in that seasonal component
between weeks t − 12 and t − 1 (SWdiff) is then derived from the
SW trend. Additionally, two rates of change attributes (t − 6 to t −
1 and t − 11 to t − 1) are calculated for each of the other
Hungarian counties, Budapest, and the Hungarian nation as a
whole. These two regional attributes are used to provide spatial
input. Based on correlations between these spatially relevant trend
attributes defined in Table 1, just 10 additional attributes (Appendix
A) are selected as being spatially relevant for the Kom county.
These are from counties Bac, Bud, Gyo, Pes, and nationwide, as
highlighted in Figure 1. Hence, for the Kom forecasts each
compiled data records include 15 local attributes and 10 spatial
attributes. These attributes are extracted from the time series,
providing the ML models with 25 features to consider.

Figure 1. Hungarian regions distinguished are: Capital city
Budapest (Bud); Baranya (Bar); Bacs-Kiskun (Bac); Bekes
(Bek); Borsod-Abauj-Zemplen (Bor); Csongrad-Csanad
(Cso); Fejer (Fej); Gyor-Moson-Sopron (Gyo); Hajdu-Bihar
(Haj); Heves (Hev); Jasz-Nagykun-Szolnok (Jas);
Komarom-Esztergom (Kom); Nograd (Nog); Pest
(Pes); Somogy (Som); Szabolcs-Szatmar-Bereg (Sza); Tolna
(Tol); Vas (Vas); Veszprem (Ves); and Zala (Zal). The regions
studied for VZV weekly case number data trends to provide
short-term forecasts are Kom (highlighted in green) with
spatial supporting data from the Bac, Gyo, and Pes regions
(highlighted in yellow), together with information from Bud
(highlighted in pink) and the case trend for the Hungarian
nation as a whole.

Figure 2. Weekly VZV case trend time series for the Komarom
region of Hungary 2005–2014
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There are four criteriaused to select the15 trendattributes exploited
for short-term weeks-ahead forecasting, (1) specific attributes should
focus on the recent trends recorded over a previous specified number
of weeks (the previous 12 weeks was used as the historical window
for this study, which could be extended or shortened based on
forecasting results); (2) each attribute should be easy to calculate and
visualize. Hence, specific past hourly values, past hourly averages,
and rates of change across a range of intervals within the past 12
hours contribute 13 of the 15 attributes selected. (3) The two
seasonality-related attributes are slightly more complex to extract but
are important because most datasets covering multiple years of
historical data display seasonality caused by various influences,
which needs to be accounted for. (4) Each selected attribute should
exert a distinct influence on potential short-term case-trend forecasts
so that collectively multiple distinct influences are brought to bear on
specific hours-ahead forecasts. Information about specific input
variable influence is typically difficult to extract from more complex
attributes suchas thosederivedusingwaveletdecomposition techniques.

Figure 3 provides a summary workflow diagram describing
how the compiled attribute dataset is evaluated with SML and

optimizer models. These models conduct feature selection,
train, validate, and independently test the SML models. They
generate weekly case forecasts for Kom for 5 week-ahead time
steps (t0, t + 1, t + 3, t + 6, and t + 12).

2.3. SML methods applied

Four widely used SML models are applied: K-nearest
neighbor (KNN) [19], multi-variate Ridge regression [20],
support vector regression (SVR) [21], and extreme gradient
boosting (XGB) [22]. These SML models applied in Python
code using Scikit-learn functions [23]. These models are selected
because they apply mathematically distinct methods and can be
rapidly executed with relatively few control variables. They have
also performed well with the national VZV case trend data from
the compiled dataset [6].

The control parameter values, selected by trial and error and
grid search [24] and applied to the datasets evaluated, are: (1)
KNN – the optimum K value varied from 3 to 10 depending on

Table 1. Fifteen trend attributes extracted from the Hungarian VZV case time series

Weekly case trend attributes for varicella-zoster virus (VZV) cases Calculation

0 SW: Seasonal weekly component Using Statsmodels [18] algorithm
1 SWdiff: Rate of change in SW from t − 12 to t − 1 [SW(t − 1) − SW(t − 12)]/11
2 W(t − 1): Weekly cases (W) for period (t − 1) From recorded trend
3 W(t − 2): Weekly cases for period (t − 2) From recorded trend
4 W(t − 3): Weekly cases for period (t − 3) From recorded trend
5 AW(t − 1 to t − 3): Average weekly cases (AW) from (t − 1) to (t − 3) Sum[W(t − 1):W(t − 3)]/3
6 AW(t − 1 to t − 6): Average weekly cases (t − 1) to (t − 6) Sum[W(t − 1):W(t − 6)]/6
7 AW(t − 1 to t − 12): Average weekly cases (t − 1) to (t − 12) Sum[W(t − 1):W(t − 12)]/12
8 DW(t − 2 to t − 1): Difference in weekly cases (DW) from (t − 2) to (t − 1) [W(t − 2) − W(t − 1)]
9 DW(t − 3 to t − 1): Difference in weekly cases from (t − 3) to (t − 1) [W(t − 3) − W(t − 1)]
10 DW(t − 6 to t − 1): Difference in weekly cases from (t − 6) to (t − 1) [W(t − 6) − W(t − 1)]
11 DW(t − 12 to t − 1): Difference in weekly cases from (t − 12) to (t − 1) [W(t − 12) − W(t − 1)]
12 RW(t − 3 to t − 1): Rate of change in weekly cases (RW) from (t − 3) to (t − 1) [W(t − 3) − W(t − 1)]/2
13 RW(t − 5 to t − 1): Rate of change in weekly cases from (t − 5) to (t − 1) [W(t − 5) − W(t − 1)]/4
14 RW(t − 8 to t − 1): Rate of change in weekly cases from (t − 8) to (t − 1) [W(t − 8) − W(t − 1)]/7

Note: t − 1 refers to 1 week before the current week (t0); t − 12 refers to 12 weeks before the current week (t0). See also Appendix A for the additional
spatially influential trend attributes calculated.

Figure 3. Workflow diagram illustrating how optimizedmachine learning that feature selects categories of spatio-temporal influence
on epidemiological, case-trend time series can be used to provide short-term predictions of contagious diseases in local regions
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the dataset and the Manhattan distance measure yielded the best
results; (2) Ridge – tolerance factor = 0.001; maximum
iterations = 10000; (3) SVR – error-regularization factor
(C = 30), an RBF kernel with depth-of-influence factor (γ) set to
“scale” so that it is automatically selected based on the variance
of the dataset variables, and an error-tolerance limit (ϵ = 0.001);
and (4) XGB – number of decision trees (500–750), maximum
tree depth (10–15), learning rate η (0.01), subsample limit of
data records sampling for each decision tree (0.4–0.6), and the
fraction of features (columns) to be considered by each tree
(0.8–0.9). Prior to executing these four SML models, the data
variables are all normalized to value ranges between −1 and +1
to avoid scaling biases. The forecasting performance of each
model solution is then assessed using statistical error metrics
mean absolute error (MAE) and root mean squared error (RMSE).

2.4. Multi-K-fold cross-validation

Cross-validation analysis [25] rotates through a random
selection of training and validation data subsets. It does this by
applying multiple repeat runs with distinct data record
combinations to provide statistical confidence in terms of mean
and standard deviations of error metrics. The recently developed
multi-K-fold cross-validation technique [26] extends basic cross-
validation to repeatedly perform such “leave-one-set-out”
analysis with a sequence of different percentage splits (e.g., 3-
fold in each run rotates three times through 1/3 of the data
records randomly assigned to validation and 2/3 assigned to
training; 15-fold rotates 15 times through 1/15 of the data
records assigned to validation and 14/15 assigned to training). In
this study, 3-fold, 4-fold, 5-fold, 10-fold, and 15-fold analysis
was conducted and repeated in multiple leave-one-set-out trials.
These trials identify the most effective training: validation subset
splits and the forecasting uncertainty to be expected from each
model. The 4-fold cross-validation method provided the most
statistically reliable results for the datasets evaluated in this
study. The multi-K-fold analysis is conducted using customized
Python-coded Scikit-learn functions “RepeatedKFold” and
“cross_val_score” [27].

2.5. Optimized feature (trend-attribute) selection

The KNN algorithm combined separately with five
optimizer algorithms applied to the training/validation subset
provides an effective way of conducting feature selection. It
rapidly identifies the most influential of the 25 compiled
trend-attribute combinations for the Kom region. The selected
feature combinations are then used with the SML models to
provide short-term VZV case number predictions. The five
optimizers employed are: differential evolution (DE) [28],
cuckoo-search (CSO) [29]; Jaya [30], particle swarm
optimizer (PSO) [31], and sin-cosine algorithm (SCA) [32].
As these optimizers all apply different mathematical
algorithms to search the feasible solution space, using them
collectively tends to identify a wider range of potential
feature combinations. The KNN-optimizer models were
executed in this study with two sets of attributes available:
(1) using only the 15 attributes calculated for the local Kom
time series (i.e., no spatial input) and (2) using the full set of
25 compiled trend attributes including both those local to
Kom and those extracted from spatially relevant time series
(from the Bac, Gyo, and Pes counties and the Hungarian
national data).

2.6. Relative feature influence on the SML
predictions

Having identified the most effective feature selections and
trained/validated the SML models with the high-performing
feature combinations, it is informative to consider the relative
contributions of the attributes to the specific solutions generated
by the SML models. Two of the SML models evaluated readily
reveal feature importance information. The Ridge model yields
this information from the relative absolute magnitudes it assigns
to its regression coefficients. The XGB model yields this by
comparing Gini coefficients [33], or its other node selection
discriminators, associated with each decision-tree branch in its
optimum solutions. In this study, feature influences derived from
the XGB model are displayed in bar charts. This information
provides analysis and insight that reveals the most influential
attributes in the forecasts derived for each time step. This
information is also useful for assessing the likelihood that
attributes calculated in various ways will make meaningful
contributions to specific timestep forecasts.

3. Statistical Relationships Between the Kom
Extracted Trend Attributes

3.1. Correlations between trend attributes and
time-series case sequences

Pearson (R) and Spearman (p) correlation coefficients reveal the
strength of the relationships between each of the 25 attributes
calculated for assessing the Kom VZV case time series, and each
of the hours-ahead time steps considered. Comparing R and p
values also identifies whether the relationships are parametric
(an assumption made by the R calculation but not the p
calculation) or non-parametric. If R and p values are similar, the
variable distributions are approximately parametric. Figure 4
displays the R and p data in the form of heat maps for the 25
attributes distinguished as 15 local attributes (#0 to #14) and 10
spatial attributes (#15 to #24) (defined in Appendix A).

Although the overall R and p relative relationships are similar,
the actual values are typically distinct. This suggests that most of the
attributes exhibit non-parametric relationships with the time series
for each time step considered. Overall, attributes 0–7 (Table 1)
show strong positive correlations for time steps t0, t+ 1, and
t+ 3. However, those correlations weaken progressively as the
time step moves forward from t0 to t+ 12. For local attributes
#8 to #14 and regional attributes #15 to #24, p values tend to be
substantially higher than R values. The strongest correlations are
displayed for time steps t+ 1, t+ 3, and t+ 6, with weaker
correlations for t0 and t+ 12.

To be clear, neither R nor p values are used by the SML models
when making their predictions. These correlation statistics therefore
have no influence on the models’ prediction results. The correlations
are calculated purely to characterize the variable distribution
relations and show the manner in which the trend-attribute
variables are correlated with the VZV case number trends.

3.2. Correlation relationships case trends for
Hungarian regions

R and p values are also used to assess the Hungarian regional
and national VZV case-trend data for potential spatial influences.
This is conducted in terms of the two rate-of-change attributes
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(t− 6 to t− 1 and t− 11 to t− 1) calculated for each region. These are
expressed as heat maps in Figure 5.

The Komarom (Kom) region (Figure 5) has strong R and p
values for both rate of change attributes with the nationwide data
trends, and trends for Budapest (Bud), Pest (Pes), Gyor (Gyo),
and Bacs (Bac) regions. It is because of these high correlation
coefficient values that trend attributes from those four regions,
and the nationwide trends have been included in the datasets (as
trend attributes #15 to #24) compiled to forecast the Kom time

series. This correlation analysis is therefore a crucial step in
establishing which regional data to include as spatial-dimension
features for each specific region.

4. Results

A provisional multi-fold cross-validation analysis was
conducted with two t0 datasets (15-variable dataset with local
attributes and 25-variable dataset with local plus spatially relevant

Figure 4. Heat map of Pearson correlation coefficients (R) between trend attributes and Komarom weekly VZV time series
(2005–2014)

Figure 5. Heat map of correlation coefficients between rates of change in VZV cases recorded at regional and national level in
Hungary (2005–2014)
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regional attributes) applying multiple SML models. This analysis
considered means and standard deviations of the MAE and RMSE
error metrics. The four-fold cross-validation, repeated eight times
to provide 32 random selections, provided the most statistically
reliable results. The four-fold analysis outperformed the 3-fold,
5-fold, 10-fold, and 15-fold cross-validation trials. It established
that the KNN, Ridge, SVR, and XGB models all generated
reliable predictions with comparable error levels. For the
15-variable dataset, MAE mean varied between 10.563 and
11.170 cases with standard deviations varying from 0.998 to
1.064 cases. For the 25-variable dataset, MAE mean varied
between 10.743 and 11.373 cases with standard deviations
varying from 1.028 to 1.180 cases. The strong performance of the
four-fold cross-validation justified the use of 0.75 training: 0.25
validation splits of the dataset for more detailed SML modeling.

4.1. Optimized feature selection for detailed SML
predictions

The KNNmodel was applied, combinedwith the five optimizers,
to train and validate the ML models (using 2005–2011 data records).
This was performed separately for each of the t0, t+ 1, t+ 3, t+ 6, and
t+ 12 time series for the 15-variable and 25-variable datasets.
Considering the best solutions from multiple KNN-optimizer runs
for each time-series dataset, the two best feature combinations were
selected for detailed SML analysis for the 15-attribute selection
(Table 2) and the 25-attribute selection (Table 3).

The optimized feature selections reveal the importance
of the seasonality attributes (0 and/or 1) to all the solutions. All of
the optimized solutions from the 25-variable selection include at
least three attributes from the other spatially relevant areas (i.e.,
attributes 15–24) with attributes 20, 22, and/or 24 appearing in
many of them. The optimum solutions derived from the
15-variable selections involve from 4 to 10 features (Table 2).
This indicates that for many of those selections more than half of
the available features are disregarded. The same is true for the
optimum solutions derived from the 25-variable selections, which
involve from 7 to 14 features (Table 3).

4.2. Four-fold cross-validation of trained SML
models for t0 to t+ 12 forecasts (2005–2011)

Four-fold cross-validation analysis was performed with each of
the optimized feature selections described in Tables 2 and 3. This was
performed applying each of the KNN, Ridge, SVR, andXGBmodels
separately (Figure 6). Hence, for each time-series dataset, six distinct
feature combinations were evaluated: 15 variables, FS3 and FS4
selections considering local Komarom information only, and 25
variables, FS1 and FS2 selections considering local Komarom
plus spatially relevant information from other areas. The feature
configurations generating the lowest mean errors for each timestep
sequence are presented in Table 4. The SVR models provide the
best forecasts for the validation subsets relating to the t0 and t+ 1

Table 2. Feature selections established by KNN-optimizer
models from Kom trend attributes only

Features selected from 15-variable data selection

Case identifier Optimizers Features selected
t0 dataset
KOMt0FS3_4Var Jaya [0 7 11 14]
KOMt0FS4_10Var Jaya [0 2 3 4 6 8 10 11 13 14]

t + 1 dataset
KOMt1FS3_10Var Jaya/PSO [0 1 4 5 9 10 11 12 13 14]
KOMt1FS4_6Var CSO [1 4 5 11 13 14]

t + 3 dataset
KOMt3FS3_4Var Jaya [1 5 11 13]
KOMt3FS4_5Var DE [0 1 5 6 11]

t + 6 dataset
KOMt6FS3_5Var PSO [0 1 6 7 9]
KOMt6FS4_4Var SCA [0 1 6 12]

t + 12 dataset
KOMt12FS3_6Var Jaya/DE [1 2 7 8 9 12]
KOMt12FS4_8Var CSO [1 2 6 7 9 10 12 13]

Note: For feature numbers 0–14 see (Table 1), and for feature numbers
14–24 see Appendix A.

Table 3. Feature selections established by KNN-optimizer
models from Kom plus spatial trend attributes

Features selected from 25-variable data selection

Case identifier Optimizers Features selected
t0 dataset
KOMt0FS1_13Var Jaya [0 1 2 4 6 7 8 14 16 17 18

19 24]
KOMt0FS2_10Var CSO [0 4 7 8 10 16 17 19 22 24]

t + 1 dataset
KOMt1FS1_7Var CSO [1 5 11 14 17 18 19]
KOMt1FS2_14Var Jaya [0 1 3 5 6 9 10 11 14 16 17

18 20 21]
t + 3 dataset
KOMt3FS1_9Var PSO [0 1 5 7 11 15 19 20 21]
KOMt3FS2_8Var DE [0 1 5 11 15 20 22 23]

t + 6 dataset
KOMt6FS1_8Var CSO [0 1 3 6 13 20 22 24]
KOMt6FS2_10Var DE [0 1 3 6 11 13 15 20 22 24]

t + 12 dataset
KOMt12FS1_9Var PSO [1 7 9 13 15 20 22 23 24]
KOMt12FS2_12Var Jaya [1 4 5 6 7 9 10 13 15

19 20 24]

Note: For feature numbers 0–14 see (Table 1), and for feature numbers
14–24 see Appendix A.

Figure 6. Cross-validation prediction errors RMSE versus MAE
for SML models applied to the training and validation subsets
(2005–2011) for time series t0, t+ 1, t+ 3, t+ 6, and t+ 12
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time steps, whereas the XGB models provide the best forecasts for
the validation subsets relating to the t+ 3, t+ 6, and t+ 12 time steps.
The mean MAE and RMSE values increase progressively from t0 to
t+ 12. However, in general, those error values and the associated
standard deviations are relatively low.

The cross-validation results of all 120 evaluations (30 for eachSML
model) are displayed in Figure 6. It is apparent that all SML models
provide good forecasts for the validation subsets for timesteps t0,
t+ 1, and t+ 3. However, for time steps t+ 6 and t+ 12 there is
more dispersion. The SVR and Ridge models are generating more
errors for all feature combinations with the validation subsets.

4.3. Application of trained models to independent
testing time sequence (2012–2014)

The trained and validated models based on 2005–2011 data were
all applied to forecast the testing dataset (2012–2014). The feature
configurations and SML models that generated the lowest errors for
each time step with the testing dataset are presented in Table 5. The
feature configurations that generated the lowest errors with the
validation subset were not those that generated the lowest errors

with the testing dataset. For t0, the KNN model applied to all 25
available variables generated the lowest errors. For the other time
steps considered, it was the SVR models that generated the least
errors. For time steps t+ 1 and t+ 3, the SVR models (FS4) using
only local trend attributes generated the lowest errors. On the other
hand, for time steps t+ 6 and t+ 12 the SVR (FS2) using local and
spatially relevant trend attributes generated the lowest errors. The
MAE and RMSE values for the testing dataset compare favorably
with those generated by the validation subset for time steps t0,
t+ 1, and t+ 3. However, the error values for the testing subsets
relating to the t+ 6 and t+ 12 time steps are somewhat higher for
the testing dataset compared to the validation subset.

Prediction errors associated with all 120 model evaluations
relating to the testing subset are displayed in Figure 7. Whereas all
the SML models evaluated for the t0 to t+ 3 time steps generate
errors for the testing subset within the ranges MAE 9–16 and
RMSE 10–18, the models for the t+ 6 and t+ 12 timesteps
generate more dispersed errors with MAE varying from 15 to 27
and RMSE varying from 19 to 30. For period t+ 12, the XGB and
KNN models all generate errors at the high end of those ranges,
suggesting that the trained/validated XGB and KNN models for that
timestep are to an extent overfitted. The XGB and KNN models
are, therefore, not as generalizable for predicting independent
datasets. On the other hand, the SVR models that generated
relatively higher errors for the validation subsets for t+ 6 and
t+ 12, compared to the other models (Figure 6), are much more
generalizable when applied to datasets independent of the training/
validation process.

4.4. Feature influences on high-performing test
dataset forecasting models

The relative importance of each feature to the XGB models is
readily revealed via tree-node selection coefficients. These are
generated based on the node selections of the XGB model’s
underlying decision trees. These are displayed for selected high-
performing models in Figure 8. For the KNN 25-variable t0
solution (Figure 8A), which generated the lowest prediction errors
for the testing dataset for that time step, the features 5 (average
for weeks t − 1 to t − 3), 0 (seasonality), 3 (t − 2 value), and 7
(average for weeks t − 1 to t − 12) exerted the greatest influence
on the XGB forecast, in that order. These four attributes are all

Table 4. Four-fold cross-validation prediction errors for
evaluated ML models

Cross-validation (CV) results for models achieving the lowest
prediction errors for each time series trained and validated
(2005–2011)

30 trials run
for each model

MAE
(4-fold CV)

RMSE
(4-fold CV)

Model
Time
series Mean

Standard
deviation Mean

Standard
deviation

SVR Opt FS2
(10 variables)

t0 10.563 1.098 15.554 2.048

SVR Opt FS2
(14 variables)

t + 1 11.765 1.180 17.152 2.500

XGB Opt FS4
(5 Variables)

t + 3 12.417 1.092 17.923 2.237

XGB Opt FS4
(4 Variables)

t + 6 12.741 1.187 18.342 2.458

XGB Opt FS1
(9 Variables)

t + 12 13.589 1.225 18.492 2.571

Note: Value units are VZV case numbers.

Table 5. Independent testing subset prediction errors for
evaluated SML models

Testing subset results for models with lowest prediction errors for
each time series forecasted (2012–2014)

Model Time series MAE RMSE

KNN – 25 variables t0 9.043 12.031
SVR Opt FS4 (6 variables) t + 1 8.348 10.867
SVR Opt FS4 (5 Variables) t + 3 10.316 13.571
SVR Opt FS2 (10 Variables) t + 6 14.685 17.603
SVR Opt FS2 (12 Variables) t + 12 19.007 21.975

Note: Value units are chickenpox case numbers.

Figure 7. MAE versus RMSE for trained and validated SML
models applied to the testing subsets (2012–2014) for time
series t0, t + 1, t + 3, t + 6, and t + 12
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derived from the local time series. For the t+ 1 FS4 solution
(Figure 8B), involving six features derived from the local time
series, feature 5 is again the most influential. For the t+ 3 FS4
solution (Figure 8C), involving just five features derived from the
local time series, feature 5 is also included and all five features
are assigned relatively high importance. However, for that XGB
model, the two seasonality features, 0 and 1, are assigned the
highest importance. The t+ 3 25-variable model (Figure 8D),
which performed well for that timestep, assigned features 7, 1, 6
(average for weeks t − 1 to t − 6), 20 (rate of change from weeks
t − 11 to t − 1 for the BAC time series), and 0 the most importance.

For the t+ 6 FS2XGBmodel (Figure 8E), features 1, 24 (rate of
change from weeks t − 11 to t − 1 for the national time series), and 6
were assigned the most importance. For the t+ 12 FS2 XGB model
(Figure 8F), features 24, 15 (rate of change from weeks t − 6 to t−1
for the PES time series), 6, and 7 are assigned the most importance.
Overall, considering all the time steps modeled by XGB, the locally
derived weekly averages (features 5, 6, and 7) and seasonality
(features 0 and 1) are the most influential for time steps t0, t+ 1,
and t+ 3. On the other hand, for time periods t+ 6 and t+ 12,
spatially derived rate of change information (features 15–24) is
assigned equal or greater importance by the models than the
locally derived weekly average and seasonality features.

4.5. Forecast comparisons with alternative
univariate prediction methods

For the t0 time step of the Kom dataset, compared to the best
trend-attribute model forecast for the testing dataset (MAE = 9.043;
RMSE = 12.031), a naïve forecast applied to the univariate time

series generates slightly higher errors (MAE = 9.936;
RMSE = 13.945), and a seasonally adjusted, 3-interval, MA
model achieves almost the same error levels (MAE = 9.165;
RMSE = 12.693). However, a standard 3-interval MA model
applied to the univariate t0 time outperforms the trend-attribute
model for the t0 time step (MAE = 7.945; RMSE = 11.240), as
does an ARIMA(2,1,3) model (MAE = 7.853; RMSE = 11.216)
and a univariate convolutional neural network CNN(1D) SDL
model (MAE = 7.899; RMSE = 11.186). Clearly, these univariate
models focusing only on a short prior time-interval provide a
better forecasting alternative for the Komarom t0 dataset (Figure 9).

For time steps t+ 1, t+ 3, t+ 6, and t+ 12, the trend-attribute
SML models substantially outperform an ARIMA(2,1,3) model
applied to the univariate dataset (Figure 9). The SML models
also outperform a multi-step encoder-decoder, bidirectional, long
short-term memory (LSTM) model [34, 35] with a 3-period interval
applied to the univariate datasets (Figure 9), by a relatively small
amount for t+ 6, but more substantially for t+ 1, t+ 3, and t+ 12.
The optimized bidirectional LSTM model applied involved the
following configuration of structure and control parameters: one
LSTM layer (bidirectional) with 200 nodes; no dropout; one dense
layer with 100 nodes applying the “relu” activation function; one
output layer with one node applying a linear activation function;
“adam” optimizer; learning rate 0.0001; batch size 32; and 200
iterations run for time series t0, t+ 1, and t+ 3 and 750 iterations for
time series t+ 6 and t+ 12.

The trend-attribute models offer the additional advantages over
the univariate models of providing useful insight into the key
influencing factors associated with the forecasts they generate.
This latter information facilitates various data-mining applications

Figure 8. XGB feature influences on solutions applied to feature selections providing accurate case trend forecasts for specific time
steps
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that the trend-attribute models can perform. Such data mining
possibilities with case-number epidemiological time series are not
possible with the univariate time-series models such as ARIMA,
1-D CNN, and LSTM models.

5. Discussion

The SML, trend-attribute SML models as developed and
implemented for forecasting the Komarom VZV, weekly reported-
case time-series provide a useful and effective forecasting method.
They achieve this by incorporating historical information from the
local univariate time series plus time-series data from other
potentially influential regions. The SML-optimizer combinations
applied to the training/validation subset make it possible to offer
the SML models a substantial number of potentially influential
attributes (up to 25 for the Komarom case). The optimizers then
work to filter out the least influential of those attributes with
respect to specific datasets. This approach is highly transparent
and leads to solutions that generate meaningful forecasting
performance from a limited set of optimizer-selected features (e.g.,
the SVR FS4 model with just five features [0 1 5 6 11] applied to
the t+ 3 time series, Figure 10). It also generates multiple feature
combinations worthy of evaluating with specific datasets. Some of
these feature combinations focus just on local information; others
incorporate local plus regional information. Further consideration
of the best-performing feature combinations with the XGB model
can reveal which of the selected features are the most important to
each high-performing feature combination selected.

The developed methodology could be readily applied to time-
series datasets relating to other contagious diseases, particularly so
where historical weekly data are available for multiple years but
recorded separately from a number of regional locations within a
specific country or geographical region. Further epidemiological
case applications are required to evaluate the forecasting and data
mining capabilities of the proposed method.

The spatio-temporal trend-attribute method is transparent and
flexible in the sense that the attributes extracted from specific
univariate time series are clearly identified. They are also easy to
calculate and could be varied and/or expanded to suit the recorded
trends. For instance, in this study only two attributes were extracted

from the regional datasets available to provide a spatial influence
dimension to the Komarom dataset studied (i.e., 5-week and
10-week rate of change in recorded case numbers). Clearly, rates of
change in recorded case numbers over longer or shorter past time
intervals could also be considered, together with the combinations
of various weekly averages. An effective way to evaluate the likely
influence of regional attributes on a specific location is to consider
their R and p correlation coefficients. Future studies are planned to
apply the model to other epidemiological time series.

6. Conclusions

Optimized and SML models are able to forecast the VZV cases
likely to occur in the short term (up to 13 weeks forward) for regions
of Hungary. This is achieved using a trend-attribute dataset covering
the previous 12 weeks of historical weekly recorded cases. SML
models are trained with historical weekly case data recorded over
multiple years for specific regions. The trend attributes calculated
from the regional time series include seasonality factors, multiple
weekly averages, and rates of change in recorded VZV case
numbers over the past 12 weeks. By considering the data
available from multiple regions in the prediction of VZV cases in
specific regions, both spatial and temporal dimensions are
incorporated into the trend attributes considered. As well as being
beneficial for weeks-ahead prediction purposes, the compiled
trend-attribute dataset can be transparently data mined to reveal
the historical influences on case numbers. The SML models are
trained using weekly data from 2005 to 2011, and the trained
models are then tested with weekly data from 2012 to 2014 for
the dataset evaluated. The trend attributes considered are able to
cope with the long-term decline in VZV case numbers over that
period (due to vaccination programs) and seasonal fluctuations in
case numbers. The SML model results presented focus
specifically on the Komarom-Esztergom (Kom) county. However,
the SML models consider the relative influences of other regional
and national case trends on the Kom case trend, with those
influential regions selected by optimization. Several optimizers are
applied with the KNN SML model to establish those spatial and
temporal trend-attribute features that exert the greatest influence
on the Kom VZV case trends. The most accurate SML model
forecasts for the Kom case trends are generated by trend-attribute
models evaluated by SVR and XGB models. The predictions
generated by these models for 1–4 weeks ahead (t0 to t+ 3)

Figure 9. MAE forecasting error comparisons with other
univariate, multi-step forecasting methods. RMSE displays
similar relationships between the model forecasts

Figure 10. Actual versus predicted case numbers for the t + 3
test dataset applying the SVR FS4 (features [0 1 5 6 11]) model
trained and validated with the 2005–2011 dataset
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mostly exploit the trend-attribute data derived from the Kom time
series itself. However, the most accurate SML forecasts for
periods t+ 6 and t+ 12 exploit Kom time-series attributes
together with some regional and national trend attributes. The
SVR model proved to be the most generalizable of the SML
models evaluated generating the lowest prediction errors.
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Appendix A

A. Trend attributes calculated for other Hungarian regions considered likely to spatially influence the VZV case trends in the Komarom-
Esztergom (Kom) region.

B. Historical trend attributes calculated and allocated to each data record in a time series. Trend attribute numbers 15–24 are those calculated
for regions Bac, Bud, Gyo, and Pes (defined in Figure 1) and for the Hungarian national VZV case trend for use in forecasting the Kom
cases for periods t0 to t + 12.

Weekly VZV case trend attributes considered for
regions spatially influencing Kom Calculation

15 Rate of change from weeks (t − 6) to (t − 1) [W(t − 6) − W(t − 1)]/5 for PES
16 Rate of change from weeks (t − 11) to (t − 1) [W(t − 11) − W(t − 1)]/10 for PES
17 Rate of change from weeks (t − 6) to (t − 1) [W(t − 6) − W(t − 1)]/5 for GYO
18 Rate of change from weeks (t − 11) to (t − 1) [W(t − 11) − W(t − 1)]/10 for GYO
19 Rate of change from weeks (t − 6) to (t − 1) [W(t − 6) − W(t − 1)]/5 for BAC
20 Rate of change from weeks (t − 11) to (t − 1) [W(t − 11) − W(t − 1)]/10 for BAC
21 Rate of change from weeks (t − 6) to (t − 1) [W(t − 6) − W(t − 1)]/5 for BUD
22 Rate of change from weeks (t − 11) to (t − 1) [W(t − 11) − W(t − 1)]/10 for BUD
23 Rate of change from weeks (t − 6) to (t − 1) [W(t − 6) − W(t − 1)]/5 for entire nation
24 Rate of change from weeks (t − 11) to (t − 1) [W(t − 11) − W(t − 1)]/10 for entire nation

Note: t − 1 refers to 1 week before the current week (t0); t − 12 refers to 12 weeks before the current week (t0).
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