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Abstract: Tetralogy of Fallot (TOF) is a combinatorial congenital abnormality comprising ventricular septal defect, pulmonary valve stenosis,
a misplaced aorta, and a thickened right ventricular wall. Biologically relevant module identification from transcriptome data may be
considered as a binary classification problem. We utilized publicly accessible mRNA expression data to extract the differentially
expressed genes and further weighted gene co-expression network analysis to identify ten modules in TOF. Network topological
properties of modular and non-modular genes were considered as features for binary classification. We applied support vector machine,
random forest (RF), decision trees (DTs), K-nearest neighbor, and Naïve Bayes algorithms to network features. RF and DT algorithms
displayed an accuracy of 99.1% and 98%, respectively. All the methods, in combination, predicted 71 common genes, which were used
to construct a gene regulatory network. The network was expanded to include 30 miRNAs targeting the genes. Interestingly, 39 out of
71 genes were transcription factors out of which ELN, SOX6, and FOXO3 genes are novel candidates in TOF. The work also provides a
sub-module of genes and miRNAs supported by statistical models as prospective candidates to be biomarkers.
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1. Introduction

Tetralogy of Fallot (TOF) is a cyanotic cardiac abnormality that
is characterized by four conditions, namely ventricular septal defect,
overriding aorta, right ventricular hypertrophy, and pulmonary
stenosis. The combination of these defects constitutes 7–10% of
malformations of heart (Bailliard & Anderson, 2009). Several
mutations in genes such as GATA4, NKX2.5, JAG1, FOXC2,
TBX5, HAND2, and TBX1 have been implicated in TOF
(Morgenthau & Frishman, 2018). The involvement of variants in
transcription factors (TFs) is noteworthy. With the emergence of
advanced sequencing technologies, rare sequence variants have
been identified (Manshaei et al., 2020).

The classification of genes in a network into modular and
non-modular categories serves as a fundamental necessity in
understanding the complex machinery of biological systems.
A gene module is a group of genes that have similar expression
profiles and tend to be functionally related. A module consists of
a group of co-expressed genes that form strongly connected sub-
networks and can be extracted by applying clustering algorithms
on gene expression data (van Dam et al., 2018). Modular genes
(MGs) are those that function within distinct, interchangeable

modules or units, often contributing to multiple biological
processes (Melo et al., 2016). On the other hand, non-modular
genes (NMGs) operate as essential, standalone entities with
limited functional flexibility. It is significant to unveil the crucial
nodes that belong to modules in critical developmental processes.
The characteristics of a network are reflected in the topological
properties (Tornow & Mewes, 2003). The structural and
functional properties of a gene network are rewired within the
higher levels of cellular pathways and hence the classification of
MG and NMG aids in deciphering the intricate network of
molecular interactions within a cell. The MGs are highly
committed to the genes of the same module than others. Hence,
the topological properties of a modular network are different from
that of a non-modular network. However, it is practically not
feasible to experimentally validate and identify all the genes in a
module. Computational methods come into play in this scenario.
Recognizing the distinction is vital for unraveling the genetic
basis of any diseases, as mutations in MGs can lead to widespread
consequences across different cellular pathways, while alterations
in NMGs may have more specific and predictable effects (Melo
et al., 2016).

Machine learning approaches have been applied to biological
data to retrieve meaningful classification, prediction, discovery,
and significant inferences. Machine learning models, trained on
network topological features, can offer predictive power, aiding in
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the discovery of key genes or regulatory hubs that play pivotal roles
in controlling biological pathways. Machine learning in combination
with network topological features has been used to predict essential
genes and proteins (Zhang et al., 2016), genes in metabolism (Moore
et al., 2019), and driver genes in diseases (Han et al., 2019). Machine
learning algorithms have great potential for mining patterns in
complex biological data (Xu & Jackson, 2019). Given the
challenges in mining the modularity, we utilized machine learning
approaches to expand the hidden knowledge in RNASeq data to
reveal intrinsic sub-networks or modules.

In this study, we propose to classify MGs and NMGs in TOF
using machine learning algorithms. We applied weighted gene
co-expression network analysis (WGCNA) algorithm on
RNASeq data to extract functional modules in TOF. The
network topological properties of the MG and NMG network
were extracted. The machine learning algorithm was trained
using the network topological properties as features. We
combined five prediction algorithms to obtain a subset of MGs.
Differentially expressed miRNAs were also integrated into the
MG network. We applied a wide range of bioinformatics tools
and statistical tests to extract meaningful insights from the
datasets, which are detailed in the methodology section. This
work provides an insight into the selection of MGs based on
network topological properties.

2. Method

The methodology adopted for this study is summarized in
Figure 1.

2.1. Data collection and pre-processing

Publicly available raw gene expression reads from sample
accession GSE36761 were downloaded from the Sequence Read
Archive SRA database. The meta-analysis was performed with 22
TOF samples from right ventricles and 8 samples (4 right
ventricular and 4 left ventricular, respectively) from normal
unaffected hearts. The selection criterion was based on the fact that
RNAseq data had corresponding sRNAseq that is quantified from
the same patient samples. sRNAseq is used in the downstream
analysis to include miRNAs in the study. Furthermore, the selected
datasets were free from treatment. The gene/miRNA counts were
extracted for further analysis. To evaluate the expression pattern in
samples, principal component analysis (PCA) was performed to
cluster sample with respect to its phenotype. PCA is done to
identify and correct batch effects, ensuring that the observed
differences are biologically meaningful rather than artifacts of the
experimental process. Differential expression screening was
performed using DeSeq2 with |log2 fold change| of >1 and FDR
cutoff of 0.1 (Love et al., 2014). DESeq is specifically designed to
identify genes that are differentially expressed between different
conditions or groups in an RNA-Seq experiment by employing a
negative binomial distribution to model the count data.

2.2. WGCNA and module identification

The genes that have mild levels of expression are uninformative
and were filtered as a part of differential expression during DeSeq2
analysis. The expression of co-expressed genes is similar in samples
under the same condition and involves closely related biochemical
signaling pathways leading to common biological outcomes. In
order to identify the co-expressed genes in TOF, we used the
WGCNA package in R Bioconductor (Langfelder & Horvath,
2008). The differentially expressed genes (DEGs) with |log2 fold
change| of >1 and p-value< 0.05 were considered for WGCNA.
WGCNA calculates the correlation between all the genes which is
then converted into an adjacency matrix through soft thresholding
(β value). A scale-free network consists of small number of genes
with high connectivity (Khanin & Wit, 2006). Low connectivity
genes will be abundant in a scale-free network. Soft threshold
value of β= 5 was considered as a cutoff for obtaining a scale-
free topology of the network. The dendrogram with corresponding
modules was derived for further analysis.

2.3. Feature identification

The MGs identified fromWGCNAwere used to train a model to
predict prioritized genes in the network. We mapped the co-expressed
MGs to STRING database into a PPI network. NMGs were identified
from the DEGs with |log (FC)| values between 0.10 and −0.108o9.
We considered the fact that NMGs will have insignificant
differential expression between normal and TOF samples. Similarly
the NMGs were mapped into another PPI network. The interactome
was analyzed using Network Analyzer app of Cytoscape (Shannon
et al., 2003). The topological properties of MG and NMG networks
were calculated using Network Analyzer (Assenov et al., 2008). We
shortlisted average shortest path, clustering coefficient, closeness
centrality, eccentricity, stress, degree, betweenness centrality,
neighborhood connectivity, radiality, and topological coefficient as
the features. Feature selection improves the performance of the
model by removing those features that do not contribute to the
prediction variable. The feature importance was evaluated using
Boruta algorithm (Chen et al., 2020). The algorithm permutes andFigure 1. Study design and pipeline
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extends the initial data with artificial features known as shadows to
assess the importance of actual features in high-dimensional
datasets. The algorithm then performs a feature selection process by
training a classifier on both the original dataset and the shadow
dataset. Features that consistently perform better than their random
counterparts are deemed relevant, while those that do not are
considered uninformative. By comparing the actual features’
importance scores to those of the shadow features, Boruta provides
a principled way to identify the most relevant attributes, mitigating
the risk of overfitting and enhancing the model’s generalization
performance in machine learning tasks.

2.4. Training the model

Identification of MG and NMG can be considered as a binary
classification problem. We considered only the genes in modules
enriched with GO terms. We obtained a total of 585 annotated
genes as positive dataset. In order to create balanced data, we
extracted 585 NMGs, which are those genes not present in any
module and do not show significant differential expression
(|logFC| between 1 and −1). We divided the data into training set
and test set in the ratio 70:30 with two classes, modular and
non-modular. We implemented five popular machine learning
classification algorithms K-nearest neighbors (KNN), decision tree
(DT), support vector machine (SVM), Naive Bayes (NB), and
random forest (RF) using Sklearn python library (Pedregosa et al.,
2011) to evaluate the binary classification model. In order to
prevent bias due to the small size of the dataset, 10-fold cross-
validation was performed in which 10 subsets of the dataset were
randomly selected and one subset was fixed as the testing set
(one fold) while the others were considered as training set data
(9 folds). The average performance was calculated over 10 folds.

2.5. Classification algorithms

2.5.1. Support vector machines
The SVC class from Scikit-learn Python library (Pedregosa

et al., 2011) was used for implementing SVM. We applied SVM
using linear, polynomial, and RBF kernel. RBF kernel was
identified to be the best kernel for our data.

2.5.2. Random forest
The RF model was developed using RandomForestClassifier

(Breiman, 2001) of Scikit Learn. RF is the ensemble of
classification or regression trees and has a wide array of
applications in biological studies. It supports possible interactions
among variables of the datasets.

2.5.3. K-nearest neighbor
KNN is a parametric supervised machine learning algorithm.

KNeighborsClassifier (Fix & Hodges, 1989) with k= 3 (obtained
after hyperparameter tuning) was used to generate the KNN model.

2.5.4. Naïve Bayes
NB is a supervised learning algorithm, which assumes that

every pair of features is conditionally independent with respect to
the class variable. The algorithm is based on Bayes’ theorem. We
implemented Gaussian NB algorithm Gaussian NB (Zhao et al.,
2018) to our dataset.

2.5.5. Decision trees
DTs are decision rule-based supervised algorithms.

DecisionTreeClassifier (Quinlan, 1986) was applied to the dataset
to generate the model.

2.6. Performance evaluation

We used four performance evaluation metrices to evaluate the
models: accuracy, precision, recall, and F-1 score. They were
calculated as follows:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

Precision ¼ TP
TP þ FP

Recall ¼ TP
TP þ FN

F1 score ¼ 2 Precision x Recallð Þ
Precisionþ Recall

where TP is the true positives, TN is the true negatives, FP is the false
positives, and FN is the false negatives.

2.7. Integration of miRNAs and TFs in network

We combined the MGs selected by five prediction algorithms in
this study. The MGs selected by all the five classifiers were integrated
into an interaction network. The miRNAs targeting the MGs were
identified using the combined target prediction tool miRDip (Tokar
et al., 2018). The cutoff was set to ‘very high’ with a minimum
overlap of five target prediction tools. The miRNAs were then
cross-validated for their expression pattern in TOF by comparing
with the differentially expressed miRNAs in the dataset
(GSE36759). The miRNAs were included in the prioritized gene
interaction network. Experimental datasets of TF2DNA database
were utilized to identify the TFs in the network (Pujato et al.,
2014). The enrichment analysis of genes was performed using gene
set enrichment analysis (GSEA) (Subramanian et al., 2005).

2.8. Corroboration with experimental evidences

We attempted to map the results obtained on to the existing
literature and validated candidate genes in TOF. The TFs were
queries against DisGeNet database (Piñero et al., 2015) to identify
associations with other cardiovascular diseases. TF-variant
association was also performed to collect the variants commonly
present in the TFs, which might play a role in TOF.

3. Results and Discussion

3.1. PCA and differential expression analysis

The normal and TOF samples were well separated with a variance
of 28% and 14% across PC1 and PC2. The significant genes that fulfill
the cutoff criteria for differential expression were extracted by DeSeq2
(Figure 2). The DEGs and fold change are provided in Supplementary
Table S1. The numbers of upregulated and downregulated genes in
TOF are 927 and 1246, respectively (Supplementary Table S2 and S3).

DEGs in a condition tend to be a part of cluster or module of
genes, which act in synchrony to bring about a phenotypic change.
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3.2. Module extraction

WGCNA is a powerful bioinformatics tool used extensively to
uncover MGs within complex biological systems. This approach
relies on the concept that genes with similar expression patterns
across various samples are likely to be functionally related and
involved in similar biological processes. WGCNA constructs a
network of gene co-expression relationships, where nodes represent
genes, and edges signify the strength of their associations
(Langfelder & Horvath, 2008).

WGCNA was performed with hierarchical tree clustering
algorithm. The soft threshold value β= 5 had the highest agreement
toward a scale-free topology in the network with fit index value of
0.90 (Figure 3). With the above parameters, WGCNA identified
10 modules with a total of 1712 genes (Figure 4). The GO
enrichment as well as pathway analysis of each module was
performed and summarized in Supplementary Tables S3–S8. The
turquoise module consisted of 444 genes (highest), while the purple
module consisted of only 21 genes. In WGCNA, the genes are
clustered into modules combining the adjacency of two genes and
the strength of interaction of these two genes with the neighboring

genes. Hence, the genes within modules have high connectivity
among themselves than genes in other modules.

The number of genes in each module is given in Table 1.
Functional annotation by gene ontology analysis was performed to

study the biological significance of genes in each module. Out of the 10
modules, only 5 modules (turquoise, brown, yellow, red, and purple)

Figure 2. (a) Volcano plot showing differential expression pattern, (b) Heatmap of top 30 DEGs

Figure 3. Network topology analysis for varying soft thresholds
based on scale fit index and mean connectivity

Figure 4. Clustering dendrogram of genes obtained from
WGCNA with assigned module colors

Table 1. Module colors and number of genes present in each
module

Sl no. Module color Number of genes

Module 1 Turquoise 433
Module 2 Blue 260
Module 3 Brown 252
Module 4 Yellow 198
Module 5 Green 174
Module 6 Red 149
Module 7 Black 98
Module 8 Pink 69
Module 9 Magenta 59
Module 10 Purple 20
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weremapped to gene ontology terms.Only twomodulesweremapped to
KEGG pathways. Turquoise module was mapped to KEGG pathways
such as cardiac muscle contraction and dilated cardiomyopathy.
Surprisingly, 39 genes were enriched in the term coronavirus disease,
which suggest a possibility of altering genes in TOF condition. Red
module was enriched in pathways related to infection such as
complement and coagulation cascades, phagosome, systemic lupus
erythematosus, and Staphylococcus aureus infection. Biological
process category was mostly related to terms in association with
morphogenesis, differentiation, translation, and immune response.

Functional annotation by gene ontology analysis was performed
to study the biological significance of genes in eachmodule. Out of the
10 modules, only 5 modules (turquoise, brown, yellow, red, and
purple) were mapped to gene ontology terms (Supplementary
Figures 1-5 represent the GO category enrichment in each module).

3.3. Training and performance of models

For developing a computational model, the most important step
is the construction of a dataset that efficiently reflects the pattern of
the class variable. We used 1170 genes as the training dataset. We
selected 585 non-redundant MGs (positive set) and 585 NMGs
(negative set) as the training set. To prevent the class imbalance,
we included an equal number of positive and negative data in our
training set. The topological features were extracted.

Feature selection methods reveal the optimal features in a
dataset since the performance of the classifier tends to be crucially
dependent on the attributes of the genes. Boruta feature selection
algorithm evaluated and reported all features as non-redundant
and significant in the classification problem (Figure 5). Radiality
was identified as the most important feature.

The performance of five models was compared in terms of
accuracy, precision, recall, and F-1 score (Figure 6). Results of all the
models RF and DTs gave the best classification accuracy of 99.1%
and 98%, respectively, followed by NB, SVM, and KNN
(Supplementary Table S9). In total, 71 genes were commonly
identified as modular in all the methods. In order to validate the
model, we used GSE217772 as an independent dataset. GSE217772
consists of samples from 5 TOF-affected children and 5 healthy
individuals. RFmodel performed at an accuracy of 98.9%on the dataset.

Any classification problem is expected to have false positives and
false negative results due to the noise in target data. However, RF and
DTs performed well on the data. Since modularity is a property of the
genes in a network, the topological properties of the network are the
best features that can predict whether a gene is modular or not. Several
studies have exploited network topological properties for predictions
such as infectious disease genes, essential genes, and disease–gene

relationship (Azhagesan et al., 2018; Barman et al., 2019; Ramadan
et al., 2016). Since topological structure of a network defines the
modularity of genes within the network, they are efficient features
to classify MGs and NMGs. Moreover, we selected the MGs in the
positive training dataset from WGCNA, which is a highly robust
approach in identifying gene modules. Our negative data in the
training set are selected based on two criteria a) not being a part of
the module selected by WGCNA and b) not significantly
differentially expressed. Boruta algorithm also predicted important
features and identified no features to be omitted for the classification.

3.4. Network construction and enrichment analysis

The MGs identified from all the prediction algorithms were
reconstructed into an interaction network using String database
version 11.0. String database contains experimentally validated as
well as predicted results for interactions between proteins. In order
to provide more insights into the regulation and modularity of the
network, we included miRNAs that are targets of the genes. From
dataset GSE36759, 30 miRNAs whose expression was quantified
were included in the network (Figure 7). Further, we performed a
GSEA of the 71 genes, which identified the overrepresented

Figure 5. Feature significance evaluation of Boruta algorithm
on network topological features

Figure 6. Comparison of performance measures of SVM, RF,
KNN, Naïve Bayes, and decision trees

Figure 7. Sub-module of genes integrated with differentially
expressed miRNAs

Medinformatics Vol. 1 Iss. 1 2024

31



pathways. TF2DNA analysis revealed 39 out of 71 genes to be TFs
(Supplementary Table S10). Among 71 genes, 59 genes were
assigned to functional categories by GSEA after 1000 permutations.
The top 10 functionally enriched categories are given in Figure 8.

3.5. Validation of key genes

The network constructed by intersecting MGs selected by all
algorithms can be considered as central network of MGs in TOF.
Examination of the gene set in this network revealed processes/
pathways related to developmental processes, which is very much
significant in TOF. Furthermore, we can consider this network as a
core sub-module with integrated miRNAs. The miRNAs targeting
the genes were selected in such a way that they express a
differential expression of |logFC|> 2. The network is highly
enriched in TFs and is highly robust. Given the critical role that
TFs play in TOF, it is reasonable to anticipate that the TFs
identified in this study are instrumental in shaping the intricate gene
regulatory network underpinning the disease. In order to ensure the
validity of the above findings, we further delved into these results
and conducted a literature survey to identify the novel TFs that play
a pivotal role in TOF. Rare variants affecting the function of TFs
are commonly observed in TOF (Töpf et al., 2014). Hence, we
focused on identifying disease relationships of TFs using DisGeNet
database. Upon querying, we obtained 51 cardiovascular diseases
associated with 18 TFs (Supplementary Table S11). The network of
TF diseases is depicted in Figure 9.

We observed that ELN is involved in the highest number of
diseases related to the heart. Elastin (ELN) is found abundantly in
the arteries and is associated with 7q11.23 CNV, which is a loss
of function mutation consequently leading to supravalvar aortic
stenosis (Richards & Garg, 2010). Furthermore, we also studied
the variants in the TFs (Supplementary Table S12). SOX6 and
FOX03 were found to have intronic mutations, rs10832571 and
rs12212067, respectively, in relation to cardiovascular diseases.
We also checked the expression patterns of these genes in the
independent dataset GSE217772 and found that the pattern of
expression (up/down regulation) of 13 genes was same in both
cases (Figure 10).

In summary, we constructed the sub-module of 71DEGs and 30
miRNA from RNAseq and sRNASeq datasets in Tetralogy of
Fallout. Further enrichment analysis reveals following enriched
pathways such as morphogenesis of epithelium, leukocyte
differentiation, circulatory system process, serine/threonine kinase
signaling pathway, and muscle development. The enriched terms
are related to development, differentiation, and morphogenesis,
which rightly points out the validity of selected MGs in a
developmental disorder. The identified TFs may be considered for
experimental validation in TOF cases since they have high
potential of being candidate genes or markers in TOF. Our study
highlights the significance of module detection-based studies of
diseases to identify potential biomarker candidates.

Figure 8. Top 10 results of gene set enrichment analysis of sub-modular genes

Figure 9. Transcription factor-disease association network
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4. Conclusion

In conclusion, our in-silico analysis demonstrates the promising
potential of network features in effectively discerning between MG
and NMG. Additionally, through the utilization of machine learning
techniques, we have identified a specific subset of MGs that could
play a pivotal role within a critical sub-module relevant to TOF.
By integrating these MGs with microRNAs, we have unveiled a
regulatory network enriched with highly significant TFs. Notably,
we have further examined these TFs for variants that hold
significance in the context of cardiovascular diseases. Our
findings also strongly suggest a noteworthy involvement of ELN,
SOX6, and FOXO3 TFs in the pathogenesis of TOF. This
comprehensive analysis underscores the potential for a deeper
understanding of the molecular mechanisms underlying TOF and
presents avenues for future research and therapeutic exploration.
Our present in-silico study has potential for experimental
validation to detect biomarkers that may exist within the
sub-module. By harnessing the power of computational techniques
and data-driven insights, novel key genetic factors that contribute
to the disease’s pathogenesis can be identified, which aids in early
diagnosis risk assessment and the way for personalized treatment
strategies.
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Supplementary Figure 1. GO yellow module 



 

Supplementary Figure 2. Purple module 



 

Supplementary Figure 3. Red module 



 

Supplementary Figure 4. Turquoise module 



 

Supplementary Figure 5. Brown module 
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