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Abstract: This study investigates the effectiveness of embedding fiber Bragg grating (FBG) sensors in power transmission towers to assess
the remaining service life of the structures following impacts from strong winds and hurricanes. FBG sensors monitor the structural
integrity of the tower using online measurement of strain variations at critical structural points. The novelty of this work lies in employing
a compact long short-term memory (LSTM) framework to estimate the remaining useful lifetime (RUL) from real-time FBG sensor data
under both stable and fluctuating wind conditions. To estimate RUL of the tower, LSTM neural network has been implemented, providing
predictive insights for proactive maintenance and risk mitigation. A prototype transmission tower was built and experimentally evaluated
in a wind tunnel to assess the effectiveness and performance of the proposed RUL model. To simulate different hurricane categories, the
experiment was conducted across wind speeds between 0 and 150 mph. FBG sensors installed at critical locations continuously captured
real-time strain data, which was transmitted via a low-power micro FBG interrogator to a computer for input into the RUL prediction
model. The proposed three-layer LSTM converges rapidly, reducing training and validation loss by nearly two orders of magnitude within
40 epochs, and achieves robust RUL predictions with an average bias of about 50 s on the test set. To quantify structural health, a
mathematical health indicator was formulated based on the observed strain responses. The FBG sensors demonstrated high effectiveness
in accurately detecting strain variations and monitoring the tower’s dynamic behavior under extreme wind loads. The findings support the
implementation of condition-based maintenance strategies, enhance safety assessments, and enable early failure detection. This approach
not only improves operational reliability but also facilitates timely intervention and maintenance during critical events.

Keywords: power transmission tower, extreme wind events, fiber Bragg grating sensors, structural stability, remaining useful life, LSTM
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1. Introduction damage, which have inflicted economic losses in the tens of billions
[2]. Therefore, timely assessment of the structural integrity and reli-

The reliability of the power transmission network is essential  ability of power transmission infrastructure is a critical factor in

to modern society, making the structural health of its infrastruc-
ture a critical priority. Transmission towers play a central role in
ensuring a stable and secure electricity supply across wide regions.
However, these structures are exposed to a range of loading condi-
tions, including wind, ice, seismic activity, and dynamic forces from
transmission line operations. In coastal regions, hurricanes pose a
particularly severe threat, with high winds and storm surges capa-
ble of severely damaging or disabling towers. Structural dynamic
analysis is therefore crucial to evaluate and maintain the safety and
resilience of these vital components. Each year, thousands of trans-
mission towers collapse due to strong winds, leading to significant
economic losses and widespread disruptions in power delivery [1].
For example, analyses of recent hurricanes in Florida show storm-
induced infrastructure failures, including power transmission system
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minimizing damage to the electrical system caused by hurricanes
and strong winds. Given that climate change is projected to increase
the frequency and intensity of hurricanes, tornadoes, and down-
bursts, the need for an accurate and efficient strategy for assessing
infrastructure failure risk becomes even more critical [3].

The Saffir-Simpson Hurricane Wind Scale, which classifies
hurricanes based on wind speed, is frequently employed in eval-
uating structural risk [4]. Table 1 shows the scaling of hurricane
categories according to this system. To mitigate structural failure
and estimate the level of structural safety, researchers and engineers
increasingly focus on structural health monitoring (SHM) systems
[5]. SHM enables real-time evaluation of structural integrity and
early detection of damage in buildings [6], offshore structures [7],
bridges [8], and other civil infrastructures. The performance of SHM
systems relies heavily on sensor selection, measurement strategies,
and optimal sensor placement within the structure [9-11].

Real-time strain measurement is particularly effective for
evaluating tower stability, as structural vibration response corre-
lates directly with deformation in structural elements. Traditional
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Table 1
Saffir—Simpson Hurricane categories

Category 1 Wind measured: 50-60 mph
Potential Impact: Expect some damage from very hazardous winds.
Category 2 Wind measured: 60-90 mph
Potential Impact: Extremely dangerous winds will cause widespread and extensive damage.
Category3  Wind measured: 90-110 mph
Potential Impact: Devastating damage is certain to occur.
Category4  Wind measured: 110-140 mph
Potential Impact: Catastrophic damage will be widespread.
Category 5 Wind measured: 140 mph or higher

Potential Impact: Expect catastrophic and widespread destruction

electrical strain gauges, although widely used, require careful
wiring, surface bonding, and are susceptible to electromagnetic
interference. In contrast, fiber Bragg grating (FBG) sensors offer
advantages such as corrosion resistance, electromagnetic immunity,
and high sensitivity, making them suitable for continuous moni-
toring in harsh environments. FBG sensors have been applied in
concrete structures [12], road pavements [13], agricultural structures,
multi-story buildings, and residential timber buildings [14].

Beyond technical implementation, SHM functionality relies
on data analysis and reporting, which are critical for decision-
making and assessing structural safety, particularly after hurricane
impacts. Wu et al. [15] employed failure mMode and effects anal-
ysis to identify potential failure mechanisms in CFRP-packaged
FBG sensors, assigning risk priority numbers (RPNs) to evaluate
severity and likelihood. Such reliability assessments are broadly
applicable across civil engineering domains [16].

A primary goal of SHM is to estimate the remaining useful
life (RUL) of structural components under extreme events. Neu-
ral network-based algorithms have been widely used for damage
estimation. Sequence models, including recurrent neural networks
(RNNs) and long short-term memory (LSTM) networks, effec-
tively capture structural dynamics and temporal dependencies
[17-19]. Physics-guided learning has proven valuable when data
are sparse or noisy; for instance, Al-Adly and Kripakaran [20]
developed a physics-informed neural network (PINN) incorpo-
rating Kirchhoff-Love plate theory, improving identifiability and
prediction accuracy from limited measurements.

Recent research demonstrates LSTM’s success across diverse
infrastructure monitoring tasks, such as shape control of steel
trusses during incremental launching [21], bridge deterioration pre-
diction [22, 23], and damage classification in high-rise buildings
[24]. LSTM models also effectively reconstruct missing or cor-
rupted SHM data: Ba et al. [25] recover monitored stress signals
and analyze accuracy under varying data loss rates. Foundational
work by Hochreiter and Schmidhuber [26] established LSTM as
a solution to the vanishing gradient problem, while Elman [27]
first introduced the feedback architecture for RNNSs, enabling
sequential data processing.

The potential of LSTM in vibration-based damage detec-
tion and dynamic monitoring has been further reviewed by
Avci et al. [28]. Additional innovations include fuzzy-control
strategies integrated with LSTM for intelligent structures in seis-
mic zones [29]. Liu et al. [30] propose an improved LSTM
that captures the mechanical response under component failure
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in cable-truss structures, demonstrating accurate failure analysis
and practical utility for SHM decision-making. Complementing
our use of FBG sensing, Smailov et al. [31] review fibreoptic
sensors for concrete structures—covering modeling, deployment,
and performance—which supports pairing optical sensing with
learning-based monitoring frameworks. Zabihollah and Shi [32]
developed multilayered LSTM frameworks integrated with FBG
sensors to estimate the RUL of hurricane-exposed buildings.

Other foundational studies support this research, including
sensor placement optimization, reliability evaluation of FBG sen-
sors, SHM data repair, and classical modeling approaches such as
finite element analysis. Guidelines for wind-load provisions pro-
vide parameters for simulating hurricane impacts on structures,
and computational models for health monitoring of storage tanks
demonstrate the applicability of FBG sensors.

Despite these advances, limited research exists on using
LSTM combined with FBG sensors for power transmission towers
under hurricane loading. This study addresses this gap by deploy-
ing multi-channel FBG sensors to acquire real-time strain data
from transmission towers and applying advanced LSTM-based
models to predict their RUL under hurricane-induced stresses.
Integrating robust sensing technology with predictive Al models
aim to enhance the reliability, adaptability, and sustainability of
critical power transmission infrastructure.

2. Simulating a Tower Integrated with FBG Sensors

2.1. Dynamic modeling of tower

The structural integrity of a building can be evaluated by
precisely determining the stress developed in critical components in
real time. Due to the presence of a huge number element withing
a tower structure, analysis of the sch structure is performed using
numerical approaches, mainly finite element method (FEM). For
details of the FEM method for structural analysis, one may consult
the book written by Reddy [33].

A typical tower structure can be modeled as a frame structure
(Figure 1), consisting of multiple two-node elements. Each node, in
the local coordinate system, possesses five DOF: translations along
the x, y, and z axes and rotations about the y and z axes. For a
frame element, the primary stress occurs along its longitudinal axis
and is given by

o, = Egy 1)
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Figure 1
Finite element simulation of a power transmission tower
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As given in Equation (1), stress (o,) is directly proportional to
strain (¢,) by a constant factor of modulus of elasticity (E). Thus,
precise strain measurement enables accurate estimation of stress
in structural components. The following section outlines the pro-
cedure for detecting strain within the tower’s structural elements.
The dynamic equation for the frame structure can be written as

[M]{d} + [D]{d} + [K]{d} = {F (1)} ()

The matrices M, D, and K represent the mass, structural damping,
and stiffness matrices, respectively. For brevity, the explicit details
of the element matrices are omitted here. For a comprehensive
explanation of the finite element methodology, the reader is referred
to Reddy’s work. The displacement vector {d} comprises the nodal
degrees of freedom (DOFs) of the elements, including translations
(u, v w, Gy, and 6.) of the element.

The lateral deflection of the beam is determined by v =Nd,
where based on Euler-Bernoulli beam theory, the shape functions
N are determined as

2 3 2 3
Ny =1-32 425, Ny = —x+25 - 2, N =3(§)

3)

2 3

) =Tk

where / is the length of the beam element. The induced axial strain
in the beam is determined as

d’N
dx?

& =—y——d 4

Here, y indicates the distance from the neutral axis of the
element to the outer surface.

For stability analysis of the structure subjected to hurricane’s
load, the force vector {f(#)} is calculated using Equation (2) as

F(t)wind = PyinaA (%)

where A represents the surface area exposed to the windward side,
and the pressure results from wind impact, Py, is determined as

1
Piing = Cp (Epair V\Zviml) (6)

where p;, Cp, are density of air, and shape coefficient of the tower
faces the wind. The mean wind speed, Vs altitude-dependent
variations can be obtained through the exponential wind profile
equation [34]:

H 24
Viind = V1o (m) @)
where V', is the basic wind speed representing the mean wind
speed of 10 min at the altitude of 10 m, H is the altitude, and
is the ground roughness coefficient.

2.2. Strain measurement using FBG sensors

As outlined in Section 2.1, structural stability can be assessed
through precise measurement of strain in structural elements sub-
jected to external loads. In this study, fiber Bragg grating sensors
are embedded at critical locations to monitor strain changes due
to changing the loading and/or structural conditions. The FBGs
measure the shift in the reflected light wavelength in response to
strain or temperature changes. The peak reflectivity that occurs at
the Bragg wavelength is given by the following equation:

AL = 2anfTFBG (8)

where gy is the effective refractive index of the mode propagat-
ing in the fiber and ppg indicates the FBG period. Change of
wavelength can be determined as

AA = aAT + BAe )]

where a and § indicate the relation of changing wavelength to
strain and temperature, respectively. Considering a constant temper-
ature, especially in laboratory conditions, the change in wavelength
is only a function of changing strain. Therefore, measuring change
of wavelength can be used to measure the strain. For further infor-
mation on modeling FBG sensors for strain measurement, refer to
Reference [35].

3. Prognostic Assessment of Remaining Useful Life
Using LSTM Networks

Structural damage and reduced reliability in infrastructure are
mainly caused by the buildup of strain, both on the surface and within
the materials. To accurately assess structural condition and predict
RUL, it’s essential to measure cumulative strain and develop reliable
health indicators (HIs). In this study, €, represents the strain measured
at time 7. However, predicting strain at the interface between the
asphalt surface and the cement-treated base is difficult due to many
design factors and uncertainties. Additionally, the random nature of
loads, environmental changes, and material differences make it hard
to create exact mathematical models for strain behavior. Because of
these challenges, combining deep learning and big data in SHM, and
RUL prediction has significantly improved our ability to monitor
and maintain critical infrastructure.

3.1. Defining failure time based on structural theory

For structural health management, the RUL determines the
duration a structure can operate before complete failure, its
mathematical formulation at a given time ¢ is expressed as follows:

RUL(8) = Currt e — fail e (10)
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Based on principles of structural mechanics and Hooke’s Law,
failure is linked to the moment when the material reaches its
maximum strain, resulting in loosening or deterioration. Accord-
ingly, the time to failure can be defined as the point at which this
maximum strain occurs:

fail e = timeg,go(max strain) (11)
Given that the sensor reads the present time ¢, the RUL at ¢ is
computed via Equation (10).

In addition, the strain undergone by the material can be
denoted by ¢,, at any time point ¢, can be continuously monitored
and read from sensors. So, the cumulative strain reflecting the total
accumulated deformation over time can also be summarized as

t
Cumu(g,) = Z gj
Jj=0

(12)

By integrating sensor data and structural mechanics principles, we
can establish a robust foundation for RUL prediction based on
cumulative strain.

Given the relationship between cumulative strain and RUL,
machine learning techniques can be employed to develop predic-
tive models. In this study, the raw strain stream gathered from the
FBG sensor during the constant wind tunnel experiment (11,083
samples) was first auto-trimmed at the time index, where the peak
surface strain was observed. This left 9,839 consecutive records
from Osto1,613s that describe the full degradation path up to fail-
ure. For each record, we integrate the shifted strain to obtain a
single handcrafted feature, the cumulative strain Cumu (g,), while
the target variable Y is RUL (¢) derived from Equation (10).

After a logarithmic variance stabilizing transform on RUL
and independent min—max scaling of the feature and target, the
processed series form a vector of size R%#39% land label vector
of size R¥839% 1 These data are split chronologically into 80%
training/validation and 20% testing windows using a 30-step look
back with a stride of 15 samples.

3.2. LSTM networks architecture and mathematical
functionality

Since cumulative degradation increases over time, an LSTM
recurrent neural network can be employed to predict the RUL
of building structures. This method takes advantage of the
LSTM architecture’s ability to capture long-term dependencies and
temporal patterns in sequential data, making it well-suited for
modeling structural degradation over time.

Figure 2
A simple RNN network
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In a basic RNN architecture, as shown in Figure 2, the input
at each time step ¢, denoted as X;, represents the current infor-
mation relevant to that moment. Like logistic regression, X; is
multiplied by a weight matrix W}, to transform the input into a
hidden state representation. This transformation extracts key fea-
tures from the input and maps them into a higher-dimensional
space, allowing the network to capture complex patterns. The
result, X, W), is then passed through a nonlinear activation func-
tion such as sigmoid or ReLU to produce the hidden state H,. This
nonlinearity enables the model to learn nonlinear dependencies
common in real-world data. The hidden state H, is then combined
with another weight matrix W, to produce the output Y, repre-
senting the network’s prediction or classification at time ¢. Thus,
the output of an RNN at each time step is computed as

(13)

where o is the activation function that is aimed at transforming the
weighted sum of the hidden units into the final output? In addition,
the formula of hidden unit at time ¢ is expressed as in an LSTM
network can be expressed as a function of the current input, the
previous hidden state, and a nonlinear activation function:

Y, = c(WyH;+by),

H = 6WyX,+UH,_+bp). (14)
The weight matrix W), connects the input to the hidden unit,
while U, is another weight matrix that represents the weight at
the previous at time step z-1 and connects to the previous hid-
den unit H,_; from the previous block. Therefore, the functional
relationship between X, and Y, will be following:

Yi= oWy (Wi X+ UH,_1 +bp)+by) (15)
Both o, & represent activation functions, which introduce nonlin-
earity into the network. Typical activation options are the sigmoid,
linear, ReL.U, and tanh functions.

RNNs update information at each time step using weight and
bias matrices, with gradients propagated through the sequence via
the chain rule. However, a key limitation of standard RNNs is
the vanishing gradient problem, which hampers the training of
deep or long-sequence models by causing gradients to shrink expo-
nentially during backpropagation. To overcome this, Hochreiter
and Schmidhuber [26] introduced a new architecture that cap-
tures both short-term and long-term dependencies in sequential
data, addressing the shortcomings of traditional gradient-based
approaches. Originally developed for natural language processing,
this architecture, known as LSTM, has since been widely applied
to numerical tasks involving regression and classification across
diverse domains.

LSTMs architecture shown in Figure 3, like RNNs, is com-
posed of sequential units that are designed to pass information and
then model time-series data. Therefore, LSTMs address the gradi-
ent vanishing problem in traditional RNNs method. Vanilla-type
LSTM unit is a basic and commonly used form of LSTM network
and shares some components with an RNN unit but with addi-
tional elements to process information flow over time. A vanilla
LSTM unit comprises the signals X,, H;and C;, with informa-
tion flow controlled by three gates: () (forget), i”) (input), and
0 (output).

The input and forget gates in an LSTM network use sigmoid
activation functions to selectively regulate which information is
retained or discarded as it flows through the network.
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Figure 3
A vanilla LSTM unit
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The input gate determines which aspects of current input
information X, previous Y,;_; and the previous cell state C,_; are
relevant to updating the cell state by a sigma function. Therefore,
the formula of input gate can be expressed as

iD= (WX, +U Y| +V;®Ci_y +b) (16)

Conversely, using a o activation function on X, and Y,_;, the
forget gate yields 7, which determines the proportion of C,_;
kept versus discarded. Hence, the expression for the forget gate is

f([)= O'(WfX,‘i‘UfY[_1+Vf®C,_1+bf) 17

Furthermore, the output gate can be represented using the

following formula:
o= oW, X, + U, Y. +V,0Cioy +b,)  (18)

Referring to the above three formulations, it is obvious that the
updated information within an LSTM unit is governed by point-
wise multiplication @ and weight matrices W, U, and V, alongside a
constant bias b. In the input gate, the three weight matrices function
to filter the incoming data and determine which information should
be retained for the next time step. Conversely, in the forget gate,
these matrices are structured to eliminate irrelevant or unnecessary
information. This selective mechanism of the input and forget gates
allows the LSTM unit to effectively discard redundant data from
the previous cell state, ensuring that only essential and meaningful
information is preserved for updating the state of the subsequent
unit. This selective retention allows the network to avoid the necessity
of preserving all information from the initial stages to the final
output, thereby mitigating the gradient vanishing issue commonly
encountered in RNN chain structures. This capability is crucial for
processing sequential data with long-range dependencies.

In addition, the cell state is a key component of LSTM
architecture; it facilitates the transmission of information across
numerous time steps with minimal alteration. This mechanism
contributes to the preservation of long-term dependencies within

the sequence, effectively addressing the vanishing gradient prob-
lem that plagues standard RNNs. The cell state at time ¢ is given
by regulated inputs and forget gates that

0= ;0 Oi(’) + =D @f(r)

and z(0 = g(W.X,+U.Y,_; +b.) is referred to as the block
input.

Finally, the output predictions derived via the LSTM archi-
tecture will be the point-wise multiplication of current cell state
with the output gate that

Y, = g(c0) (Do

Using all prior time steps, the model outputs the next target
value Y.

In the proposed sequence-to-sequence framework, the scalar
input at each time step is the cumulative strain denoted as
X, = Cumu(g,); the corresponding label is the log-transformed
remaining useful life, given by Y, = log(/ + RUL(?)). Learn-
ing the mapping is achieved through a three-layer LSTM encoder
X,_59 — Y, through end-to-end optimization of its weight matri-
ces and biases. To emphasize accuracy near structural failure, the
loss function is re-weighted so that samples drawn from the final
30% of the life curve receive a threefold penalty during training.

(19)

(20)

4. Experimental Work
4.1. Modeling

It is understood that in real applications, transmission towers
are made from steel. However, due to the limitation of making a
prototype using steel for experimental works in the laboratory, the
current research work is performed on a 3D-printed stower. It is
worth noting that the range of allowable strain for steel structural
members is around 0.1% while for current 3D-printed tower could
be up to 3%. Therefore, a truss structure, as shown in Figure 4(a)
was modeled in SolidWorks and converted to stereolithographic
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Figure 4
Finite element modeling of a power transmission tower: (a) 3D model and (b) 3D printed tower

(b)

inIP§

format (STL) and imported into the Flash Print 3D printer appli-
cation for slicing and sending the G-codes to the printer. Modulus
of elasticity of the 3D-prinetd beam is assumed as 2 GPa. An array
of FBG sensors is connected to one of the main columns as
shown in Figure 4(b). Figure 4 provides a detailed representation
of the power transmission tower, illustrating the geometric con-
figuration and key dimensions utilized in the finite element (FE)
model developed for this study. All measurements are presented in
the inch-pound-second (IPS) system. This FE model serves as the
foundational structural representation, enabling the simulation of
realistic loading conditions and the strategic placement of virtual
sensors. Notably, the locations of two FBG sensors, designated
as FBG 1 and FBG 2, are highlighted on a specific tower leg,
indicating the points where strain data were either measured or
simulated for the subsequent analysis. This detailed modeling is
crucial for understanding the structural behavior and for validating
the sensor data used in the remaining life estimation.

In this study, a bare fiberoptic cable (FBG-MR0010, sourced
from Micronor Sensors, Inc.) containing four FBG sensors spaced
10 mm apart was employed to measure the induced strain on the
chosen frame element. The fiberoptic cable was connected to an
FBGX100 Interrogator (FISENS®) operating within a wavelength
range of 808-880 nm. The FBG sensors were attached to the
outer surface of the column facing the wind load using adhesive
tape.

4.2. Wind-tunnel simulation of hurricane-induced
tower response

To replicate strong winds and hurricane conditions in the labo-
ratory, a wind tunnel manufactured by Aerolab® was utilized. The
strain data captured by the FBG sensors are gathered by an FBG
interrogator, which sends optical signals to a computer for real-time
visualization. Figure 5 shows a schematic diagram of the experi-
mental setup, including the tower prototype, wind tunnel chamber,
wind speed controller, FBG interrogator, and the computer used
to display the measured strain.

Figure 6 depicts the experimental arrangement used to mea-
sure dynamic strain on the scaled power transmission tower model
inside a controlled wind tunnel setting.
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Figure 5
Layout of the wind tunnel testing procedure
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The correlation between the fan speed and the wind speed in
the testing area is extracted from the calibration data provided by
(aero 1ab®) as

Wind speed (mph) = 0.062 Fan speed (RPM) (21)

The image clearly depicts the lattice tower model positioned
inside the transparent test section of the wind tunnel, highlighting
the method for subjecting the structure to controlled aerodynamic
loads. The blue arrow on the image explicitly indicates the direc-
tion of airflow, signifying the applied wind forces during the
experimental trials. This controlled experimental arrangement was
essential for acquiring high-fidelity, time-series strain data, which
accurately reflects the dynamic response of the tower model under
varying wind speeds. The data obtained from this setup serve
as a critical empirical basis for developing and validating the
LSTM sequence-to-sequence models utilized in the RUL estimation
framework.

5. Results and Discussion

5.1. Numerical strains determination

The induced strains at three distinct locations along the tower
elements, as illustrated in Figure 4, were evaluated under various
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Figure 6
Tower strain monitoring during wind tunnel testing
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Figure 7
Finite element strain determination for a tower subject to wind, a) 30mph, b) 150 mph
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wind speed conditions. The numerical results were obtained using
the FEM model described in the Appendix, implemented through
the FEM software shown in Figure 7. To ensure accuracy, the
support conditions in the model were aligned with those used in
the experimental setup. It is important to note that in practical
applications, the four corners of the truss are fixed. However, in
the current experiment, the truss was fixed only at the midpoint,
resulting in the left side lifting off the surface when subjected to
wind loading. As anticipated, the induced strain values increased
with rising wind speeds, corresponding to the greater wind pressure
calculated by Equation (5).

(b)

Model Name: Electric Tower
Study name: 150MPH(-Default)
Plot type: Static Strain1
Deformation Scale: 57.8593

. 4.1x10*

-3.7x10
-3.3x104
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- 2.5x104
- 2.1x10*

1.6x10*

1.2x10*

8.2x10*°
l 4.1x10°
1.1x107

5.2. Experimental strain measurement

To evaluate “the operational behavior and features of the struc-
ture embedded with FBG sensors, the tower equipped with these
sensors (illustrated in Figure 5) was placed inside a wind tunnel and
exposed to varying wind speeds. The wind velocity was controlled
by adjusting the fan speed, ranging from 0 to 150 mph. For concise-
ness, results corresponding to low wind speeds are excluded from the
figure since the strain induced at such speeds was minimal. Figure
8 displays the strain responses measured by FBG-1 (blue line) and
FBG-2 (red line) at wind speeds between 50 and 60 mph.
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Figure 8
FBG-based strain measurements of the tower under hurricane category 1 (50-60 mph)
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FBG-based strain measurements of the tower under hurricane category 2 (60-90 mph)
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Figure 8 presents the dynamic strain response measured by
two fiber Bragg grating sensors, FBG-1 (blue) and FBG-2 (red),
over an interval of 300 seconds, starting at about 400 s and
ending at 700s under wind speeds ranging from 50 to 60 mph.
The y-axis, labeled “Strain (micrometer/m),” quantifies the defor-
mation detected by the sensors. Both sensors exhibit fluctuating
strain readings, indicative of the varying forces exerted by the
wind. FBG-1 generally registers higher strain values, with its peaks
reaching approximately 8-9 micrometer/m, while FBG-2 shows
slightly lower magnitudes, typically peaking around 6—7 microm-
eter/m. A notable characteristic in this wind speed range is the
overall lower magnitude of strain compared to higher wind speed
conditions and the presence of both positive and negative strain
values for FBG-1 at the beginning of the measurement, suggesting
initial oscillatory behavior or a settling phase. These data clearly
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illustrate the dynamic nature of structural response to moderate
wind conditions, with both sensors capturing the transient strain
variations.

Figure 9 illustrates the strain response measured by FBG-1
(blue) and FBG-2 (red) within a wind speed range of 60 to 90
mph, measured over a duration beginning roughly at 700 s to 900
s. The y-axis represents “Strain (micrometer/m).” As wind speed
increases from the previous range, a corresponding increase in the
magnitude and variability of the measured strain is evident. FBG-
1 consistently records higher strain values than FBG-2 throughout
this interval, with its peaks frequently exceeding 10 microme-
ter/m. FBG-2, while following similar trends, registers peak strains
typically below 8 micrometer/m. These data demonstrate a clear
dynamic response to the elevated wind speeds, characterized by
more pronounced and rapid fluctuations in strain for both sensors.
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Figure 10
FBG-based strain measurements of the tower under hurricane category 3 (90-110 mph)
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FBG-based strain measurements of the tower under hurricane category 4 (110-140 mph)
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The distinct separation between the strain magnitudes recorded
by FBG-1 and FBG-2 suggests different loading distributions or
sensor locations on the monitored structure.

Figure 10 displays the strain response from FBG-1 (blue) and
FBG-2 (red) during wind speeds ranging from 90 to 110 mph,
within a time frame commencing at about 1000 seconds to 1200
s. The y-axis denotes “Strain (micrometer/m)”. At these higher
wind speeds, both sensors exhibit significantly increased strain
magnitudes and more intense fluctuations compared to the pre-
viously observed lower wind speed regimes. FBG-1 consistently
shows the largest strain values, frequently reaching and exceeding
14 micrometer/m at its peaks. FBG-2 also shows substantial strain,
often peaking around 10-12 micrometer/m. The dynamic nature
of the strain is highly evident, with rapid and significant excur-
sions from the mean, reflecting the considerable forces imparted
by high winds. The persistent offset between the readings of FBG-
1 and FBG-2 continues to be observed, indicating either distinct

structural responses at their respective locations or inherent sensor
characteristics.

Figure 11 presents the strain data for FBG-1 (blue trace)
and FBG-2 (red trace) under the most extreme wind condi-
tions, ranging from speeds between 110 and 140 mph, measured
near 1200s and 1600 s. The y-axis is labeled “Strain (microm-
eter/m)”. In this severe wind speed range, the measured strain
values reach their highest magnitudes across all presented figures,
indicative of the maximum loads experienced by the monitored
structure. Both FBG-1 and FBG-2 demonstrate highly dynamic
and oscillating strain, with FBG-1 consistently showing higher
peak strains, frequently surpassing 15 micrometer/m. FBG-2 also
exhibits substantial strain, often reaching 12-13 micrometer/m.
The pronounced peaks and troughs, along with the overall ele-
vated strain levels, underscore the significant structural response
to cyclonic or hurricane-force winds. These data highlight the
critical importance of monitoring structural integrity under such
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Figure 12
Cumulative strain via time
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extreme environmental conditions, as the dynamic strain behav-
ior directly correlates with the applied wind loads and potential
fatigue accumulation.

6. Training the LSTM and Predictive Results

As outlined in Section 2, this study employs a three-layer
LSTM neural network to estimate the RUL of building structures,
aiming to proactively mitigate potential damages. This LSTM
sequence-to-sequence architecture can capture long-term depen-
dencies in degradation behaviors, which are critical for accurate
RUL prediction. In addition, the gated structure of LSTM helps
avoid vanishing gradient issues and enables the model to learn both
steady and fluctuating wind-induced patterns in structural response
data. To enhance the LSTM model’s learning parameters, they are
fine-tuned to improve predictive accuracy by experiments involv-
ing both steady and adjustable wind speed conditions. The data
preprocessing and model training tasks were executed in Python
version 3.11.5, running on a Windows 11 system powered by an
Intel vPRO Essential i5 processor.

Raw strain measurements £(¢) obtained from the embedded
FBG sensors were first truncated at the automatically identified
failure index, as detailed in Section 2. To guarantee that all val-
ues remained nonnegative, the data were adjusted by shifting
them so that ¢ > 0 at each time step. Given that the RUL
decreases rapidly near the end of a component’s lifespan, a natural
logarithmic transformation was applied to stabilize its variance,
resulting in the transformed target y (#) = log (RUL (¢) + 1). Both
the input feature and the transformed target were independently
normalized using min—max scaling to the [0, 1] range.

For sequence learning, we slid a fixed-length window of 30
time steps (~7.5 s) through the series with a stride of 15 samples.
All windows before 80 % of the end-of-life time-line (chronolog-
ical split) formed the training set; the remaining 20 % were kept

10

800 1000
Time

1200 1400 1600

strictly for testing. A further 20 % of the training windows were
set aside as a validation fold. The predictive core of our frame-
work is a compact three-layer LSTM encoder. Each recurrent
tier contains 128 hidden units followed by a 20 % dropout and
batch-normalization; the first two layers return their full hidden
sequences, while the third outputs only its final state, which is fed
to a single linear neuron for the remaining-life estimate. During
training, we slide a 30-step window along the sensor stream with a
stride of 15 samples, so every labeled example summarizes roughly
half a minute of structural response. Batches of 128 windows are
processed with the Adam optimizer, whose learning rate follows
a cosine-decay-with-restarts schedule with initial learning rate =
5 x 10~-"4 and the first period being 2000 steps. Gradients are
clipped to a unit #,-norm, and a mild weight-decay of 1 x 10°
acts as further regularization.

To emphasize accuracy near failure, windows lying in the last
30 % of the structure’s useful life receive a threefold sample weight.
Training stops early if the validation loss fails to improve for ten
consecutive epochs, but never exceeds 120 epochs. Finally, we apply
a snapshot ensemble: the four best checkpoints are averaged to
form the model used for inference, yielding a smoother and more
robust RUL trajectory.

The workflow starts by transforming raw FBG-sensor strain
readings into a cumulative-strain signal, as shown in Figure 12. By
trimming the dataset at the observed point of failure and correcting
for negative offsets, the cumulative curve rises quasi-linearly from
0 to ~ 4.5 x 10"5 m [ wm over a 1600 s load sequence, providing
a physically meaningful degradation trajectory that is used as the
sole input feature. Training converges rapidly, as shown in Figure
13, where both training and validation loss fall by two orders
of magnitude within 40 epochs and stabilize near zero, indicat-
ing strong generalization and no overfitting. The resulting model
delivers a smooth RUL trajectory, as shown by the orange line
in Figure 14, that closely follows the ground truth (blue) across
the entire test horizon; predictions exhibit a consistent but modest
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Figure 13
Evolution of training and validation loss for the LSTM RUL predictor
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Figure 14
LSTM-based prediction of remaining useful life (RUL) for the real test set
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positive bias of =~ 50 s, confirming that the network captures the
monotonic deterioration pattern while erring on the safe side.

7. Conclusion

Failure prediction of power transmission towers subject to
wind load and hurricanes has been investigated using surface-
mounted FBG sensors located at the critical points of the tower.
A scaled-down model of a typical power line transmission tower
has been developed in Autodesk Inventor®. The stress analysis
has been performed using a simulated wind speed of 150 mph.
The scaled-down model of the tower is built for experimental pur-
poses. The prototype model has been placed in a wind tunnel and
subjected to a wind speed of approximately 150 mph. The induced
strain has been measured using four FBG sensors mounted at
the surface of a selected element at critical points. It was legal-
ized that surface-mounted FBG offers a low-cost, safe method to
assess the structural integrity of power transmission towers during
hurricanes. In the second phase, the RUL of the tower after hit-
ting the hurricane has been estimated using a three-layer LSTM

-y

True RUL
Predicted RUL

1450 1500 1550 1600

Time [s]

neural network. Strain readings from the FBG system were suffi-
cient to train the model. The LSTM’s RUL estimates tracked the
tower’s true life closely, supplying actionable guidance for timely
maintenance and preventive intervention of power outages can be
achieved by leveraging knowledge of a tower’s RUL. Quantita-
tively, this LSTM framework reduced training and validation loss
by nearly two orders of magnitude within 40 epochs of conver-
gence without overfitting. On the held-out test set, the predicted
RUL closely tracked the ground truth with an average bias of
approximately 50s, demonstrating both accuracy and robustness
under varying wind-induced conditions. Maintenance engineers at
power transmission agencies can use RUL estimates to mitigate
the risk of structural failures, enhance the safety and reliability of
power delivery, and protect lives during extreme weather events
such as hurricanes.

Recommendations

‘We demonstrate that embedded FBG sensing can deliver afford-
able, high-fidelity structural monitoring in residential settings.
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Using the derived reliability model, engineers can estimate safety
margins for buildings exposed to strong winds and hurricanes.

The proposed system can be further tailored to accommo-
date specific local weather conditions and different building types.
It is recommended that this reliability-based damage and safety
assessment model be adopted by local authorities and insurance
agencies for effective risk evaluation and management.
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Appendix
For a two-dimensional frame structure, the element matricesre expressed as:
A A .
70 0-2"9 0
12 6
02§0—[—27 140 0 0 70 0 O
0 126 ! 0 15622/ 0 54 —13]
740 _°¢ 0 22/ 42 0 13/ =3P
EI / 2 oAl
[Kl=7 1,02 oo IMI=75170 0 0 140 0 0
-7 ! 0 54 131 0 156 —221
012 6 6
= _g i 0 —130 3120 —22/ 42
0 & 20 _54

where p is the mass density of the element, A is the cross-sectional area of the element, / is the element, and I, is the moment of
inertia of the cross-section of the beam concerning the z-axis, and E is Young’s modulus of the element. For details on finite element
procedure, one may consult the book written by Reddy [33].
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