Received: 30 November 2024 | Revised: 24 March 2025 | Accepted: 18 June 2025 | Published online: 9 July 2025

Journal of Optics and Photonics Research
2025, Vol. 00(00) 1-12
DOLI: 10.47852/bonviewJOPR52024929

)

BON VIEW PUBLISHING

RESEARCH ARTICLE

Deep Learning Model-Based Adaptive
Power Transfer in FSO Communications

Wen-Yao Liu!, Yan-Qing Hong"”", Xu Liu', Xue-Heng Chen' and Peng-Fei Lv'

School of Information Science and Engineering, Shenyang University of Technology, China

Abstract: In bidirectional atmospheric channel transmission with channel reciprocity, the correlation between two transmission channel
turbulence noises is high, and different techniques can be used to extract channel state information (CSI) in forward transmission, and
adaptive power techniques can be used to inhibit turbulence effects in reverse transmission to improve the performance of free-space optical
(FSO) systems. In atmospheric FSO communication systems, the scintillation response from turbulence effects increases the bit error rate
(BER) of the communication system and reduces the system performance. In this paper, we propose two different adaptive power
transmission (APT) techniques, namely gated recurrent unit (GRU)-based APT with cascading LPF and recurrent neural network (RNN)-
based APT with cascading LPF, which utilizes the CSI of the channel for adaptive transmission to reduce BER. The proposed adaptive
power transfer technique can improve the BER performance of the system and effectively mitigate the scintillation effect caused by
atmospheric turbulence on the FSO communication system. A bidirectional atmospheric channel with different turbulence intensities is
constructed in the simulation software, different background noises are added to change the channel reciprocity, the effect of reciprocity on
the signal transmission is investigated, and the performance of different deep learning models in bidirectional channels. The future
development of the technique is promising. According to the simulation results, APT technology based on deep learning achieves a lower
bound that stabilizes at 107#~1073 in turbulent channels under high signal-to-noise ratio conditions. Specifically, the LPF-RNN-APT
technology excels due to its lightweight structure and parameter efficiency, delivering outstanding performance in strongly symmetric channels.
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1. Introduction

Free-space optical communication (FSO) is a technology that
utilizes optical signals for information transmission in free space.
The primary benefits of FSO communication are that it can satisfy
the demands of contemporary data-intensive applications due to its
very fast data transfer rate and greater data bandwidth than
traditional radio communications [1]. FSO is also especially well-
suited for usage in calm settings due to its interference-free nature,
as optical signals do not interact with other frequency bands [2].
Installing and deploying FSO systems is rather easy, particularly
when it comes to transmitting in the visible and near-infrared
spectrum. There are several drawbacks to FSO communication
despite all of its benefits [3]. One major factor affecting the quality
of signal transmission, which can result in signal distortion and
attenuation, is atmospheric turbulence [4]. Rain, snow, and haze are
examples of weather conditions that can have a significant impact
on optical signal transmission. Large or moving obstructions may
disrupt the optical alignment of the FSO system, which in turn may
impact the transmission’s overall dependability [5]. FSO may be
made more reliable and effective by offsetting these negative impacts.

To overcome the effects brought about by atmospheric turbulence,
researchers have proposed various compensation techniques. Maalej
and Besbes [6] explore the performance of FSO communication
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systems based on dual generalized gamma channels with M-ary
PPM modulation. This approach is able to reduce the resulting noise
to some extent by choosing the appropriate modulation. Meanwhile,
the design and optimization of the optical receiver is also one of the
important means to improve the system’s performance. Adaptive
techniques also show great potential in this regard. By dynamically
adjusting the transmission parameters (e.g., power and modulation
form), adaptive transmission systems are able to effectively improve
the quality of signals under unfavorable conditions [7]. For example,
Hufhagel et al. [8] have investigated underwater channels in quantum
communications to provide different technical solutions for signal
compensation. APT technology is an important development
direction in FSO communication research. Adaptive technology can
dynamically adjust the signal strength according to the current
environmental conditions and channel state, so as to realize the best
performance in different operating environments [9]. For example,
Liu et al. [10] propose a reciprocity-based adaptive power transfer
strategy in two-way atmospheric channels. This approach utilizes
channel state information (CSI) to be able to adjust the power
delivery in a timely manner when the environment changes,
improving the robustness of the system.

In recent years, the application of deep learning techniques in the field
of communication has received increasing attention [11]. Deep learning
can be used not only for signal processing and feature extraction but
also for intelligent adaptive system design. Padhy and Patnaik [12]
propose a deep learming-based channel estimator that operates without
requiring pilot sequences, demonstrating the advantages of deep
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learning in signal classification and adaptive decision-making.
Combining deep learning and adaptive transmission techniques
enables the system to make more accurate decisions based on
real-time data [13]. Specifically, deep learning can predict
channel conditions by analyzing historical transmission data and
adjusting transmission parameters accordingly [14]. For example,
Amirabadi et al. [15] investigate the effect of deep learning on
channel estimation in FSO communication systems, showing good
performance improvement. In two-way atmospheric channels,
techniques for reciprocity-based adaptive transmission via deep
learning are gaining more and more attention [16]. However, the
research faces many challenges, such as atmospheric turbulence and
weather effects, through which problems are yet to be solved [17, 18].

In this paper, in order to mitigate the impact of the scintillation effect,
it is proposed to use two different deep learning model-based APT
techniques in bidirectional atmospheric channels and combine them
with a low-pass filter; the two adaptive transmission techniques are
gated recurrent unit-based adaptive power transmission (APT) with
cascading LPF (LPF-GRU-APT) and recurrent neural network (RNN)-
based APT with cascading LPF (LPF-RNN-APT). In the reciprocity-
based FSO system, the forward transmitting receiver side uses
different techniques for CSI estimation of the signal and APT based
on known CSI in the transmitter side of the reverse transmission to
reduce the bit error rate (BER) of the transmitted signal. More
precisely, the primary focus of this paper can be summarized as follows.

1) In the study of turbulent channels based on reciprocity, we
integrate deep learning with adaptive transmission techniques
and propose two novel transmission technologies: the LPF-
GRU-APT and the LPF-RNN-APT. Reduce the impact of
fading effects on signal and improve the system’s transmission
performance. This study investigates the compatibility of
various deep learning models with reciprocal channels.

2) Furthermore, this paper presents a modeling study of bidirectional
atmospheric channels, comprehensively considering various
influencing factors such as background noise and signal decay.
A turbulent channel model incorporating three typical fading
coefficients is established, and the performance and adaptability
of the deep learning-based APT technology under different
channel conditions are analyzed in depth.

3) Finally, this paper replicates the traditional fixed threshold
decision (FTD) and adaptive transmission decision (ATD)
techniques, as well as an APT technology that employs a
cascaded LPF to extract CSI in reciprocal channels, for the
purpose of comparison. This allows for a more intuitive and
convenient observation of the transmission performance of the
proposed deep learning-based APT technology.

2. Turbulence Channel Analysis

Two transceivers, designated as a and b, are assigned to capture a
signal transmitted through a bidirectional optical wireless channel,
which is affected by air turbulence, as outlined in the bidirectional
atmospheric propagation model employed in this study. The two
transceivers a and b are located at the same end of the link. The
transceivers located at the two ends of the link with the same axis
symmetry can complete the transmission process of transmit-
receive-transmit in a short time, which is schematically shown in
Figure 1. We refer to beam waves propagating from the
transmission that occurs in both directions, from point A to point B
and vice versa, as a form of forward transmission and reverse
transmission beam waves, respectively [10, 19]. The forward
transmission process consists of the modulation of the On-Off
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Figure 1
Block diagram of the bidirectional atmospheric channel model
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Keying (OOK) signal by transceiver a and the emission of beam
s(t), which is transmitted through a turbulent channel to transceiver
b. The intensity of the scintillation effect due to atmospheric
turbulence of the signal is evaluated by the scintillation index [20]:

o> =(P)/(I*) -1 1)

where <-> indicates the ensemble average and / represents the light
intensity of the received OOK signal. Utilizing an analog-to-digital
converter (ADC), the transceiver b at the receiving end transforms
the received optical signal into an electrical signal, which is then
transformed into a digital signal r[k] and represented as [21]:

rlk] = I[K]s[k] + n[k] )

where [[k] denotes intensity fluctuations, s[k] is the transmitted signal
and n[k] denotes additive Gaussian white noise (AWGN). The reverse
transmission is the same. Under ideal conditions, a reciprocity-based
FSO system can achieve /,,(t) = /p,,(t), meaning the channel responses
in the time domain are identical for both transmission directions [22].
This allows the extraction of channel information from the forward
transmission signal to enhance the performance of the reverse
transmission [23]. However, due to factors such as laser wavelength
shift, nonlinear response of photodetectors, and atmospheric
scattering, the two channels cannot be completely identical in
practice. The reciprocity p between the two transmissions can be
quantified using a correlation coefficient [24]:

_ E[lplg] — 1 3)
(1+0%2)(1+ 0%)

cov(Ig, Ip)
IO =
OFOR

where the subscripts F and R stand for forward transmission
and reverse transmission, respectively, the function cov(-) denotes
the covariance operation, and E[-] denotes the mathematical
variance operation. When the reciprocity parameter p approaches 1,
the system is in an ideal state; however, under outdoor turbulent
conditions, p <0.99, resulting in partial loss of reciprocity. The
atmospheric turbulence channel of the simulated channel applied in
this paper is approximately normally distributed [25], the correlation
coefficient and scintillation index may undergo re-assessment [26].

log(1 + po?)

log(1 + 0?) )

p=
3. Operation Principle

The system block diagram illustrating the APT methodology
introduced in this paper is presented in Figure 2. The goal of
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Figure 2
System block diagram of adaptive power transfer technique: (a) LPF-based APT, (b) LPF-GRU-APT, and (c) LPF-RNN-APT APT
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suppressing turbulence and improving communication quality in a
bidirectional atmospheric channel can be accomplished by
extracting the CSI of the forward transmission pathway and
adjusting the signal power based on the known CSI in the reverse
transmission. This is possible because the turbulence intensity of the
forward transmission and reverse transmission channels is related.
The detailed procedure is outlined as follows: at the transmission
source of the forward link, an amplitude of either 0 or 1 is
produced, followed by a sequence of pulses, which are then
transmitted through the turbulent channel subsequent to OOK
modulation. At the receiving end, the signal is divided into two
paths: one path is used to estimate the channel attenuation
characteristics based on the intensity variations of the received
signal and the other way is to wait for the CSI for adaptive
adjustment. At this stage, the endpoint designated for forward
transmission transitions to serve as the endpoint for reverse
transmission. Utilizing the known CSI, the OOK signal strength is
modulated, exhibiting increased power levels at lower channel
quality and reduced power levels at higher quality scenarios. The
transceiver captures the signal at the reverse transmission endpoint,
conducts an additional CSI assessment, and subsequently relays the
findings back. To enhance communication quality, this approach
facilitates a closed-loop control system that enables the dynamic
adjustment of broadcast signal strength in accordance with the
actual communication conditions. In this study, we execute adaptive
power transfer and extract CSI using a new method.

(c)

LPF DL Module of RNN

3.1. The principles of FTD, ATD, and
APT based on LPF

For APT technology, the most crucial element is accurate CSI,
which involves the real-time acquisition and precise estimation of
key parameters such as channel attenuation, multipath effects, and
noise. This is the core for achieving high-efficiency and
low-energy-consumption communication. The APT technology
based on threshold decision makes judgments on the signal
quality by directly utilizing the received signal strength, in
combination with both fixed and adaptive thresholds, and thus
dynamically adjusts the transmission power. Among them, FTD
technology employs a pre-set power threshold to implement
power control in a simple and real-time manner as shown in
Figure 3(a). In contrast, the ATD technology adjusts the threshold
according to the dynamic changes in the receiving environment,
achieving more flexible power adaptation as shown in
Figure 3(b). While FTD is straightforward and easy to implement,
it has limited adaptability to dynamic environmental changes. On
the other hand, ATD offers better adaptability to complex
environments, though it involves higher algorithmic complexity.

Bidirectional reciprocity implies that the uplink and downlink
channels are symmetric, meaning it may only be necessary to
estimate the CSI in one direction, with the other direction inferred
through reciprocity. However, in practice, non-ideal factors such
as hardware differences and environmental variations can lead to

Figure 3
Schematic diagram of decision technology: (a) FTD and (b) ATD
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incomplete reciprocity. The LPF plays a crucial role in addressing
these real-world noises. It suppresses high-frequency random
noise, making the estimated CSI closer to its true value and
thereby improving power control. Additionally, the LPF reduces
errors caused by short-term fluctuations, particularly in FSO
systems where rapid changes are induced by atmospheric
turbulence. In Figure 2(a), adding low-pass filtering to extract the
CSI can obtain a more stable channel state estimation, which
makes the power adjustment more robust and improves the
system’s ability to adapt to environmental changes, and thus can
better ensure the reliability of the communication.

During the forward transmission process, the optical signal captured
by transceiver B initiates an important conversion from the optical domain
to the electrical domain. This optical signal is connected to an ADC. The
ADC, set at a specific sampling frequency, precisely transforms the
continuously varying analog optical signal into a discrete digital signal,
thus completing the transformation of the signal form to make it
conform to the subsequent processing requirements based on digital
logic. After that, the signal passes through the low-pass filter, and the
output signal #[k] can be expressed as:

=tk [k —n] ®)

Among them, h; [k] is the impulse response of the filter, > repre-
sents the summation symbol, and n is the index representing the dis-
crete-time sequence. The frequency components of the received
signal are calculated using the discrete Fourier transform, and the cal-
culation formula is as follows [27]:

_ Z N-13[k] - e(—2nfn/N) (6)

#lk] = rlk]hy [K]

where N is the signal length, n represents a specific moment in the
temporal domain, and D(f) is the discrete Fourier transform of the
output signal r[k]. Then, the power spectral density (PSD) is used
to calculate the frequency characteristics of the received signal,
and the formula is as follows [28]:

1
S(f) = —|D(f)|? 7
(f) = 51D )
Based on the time-domain and frequency-domain information of the
signal that has passed through the low-pass filter, the state of the channel
information within the channel can be understood. Subsequently, power
control can be carried out to improve the BER performance.

3.2. APT based on LPF and GRU

In the field of deep learning, the combination of the GRU model
and the APT technology can significantly enhance the performance of
communication systems. By conducting sequential modeling of
historical signal data, the GRU model can more accurately predict
the CSI, thus optimizing the power transmission strategy. Its
powerful ability to handle sequential dependencies enables it to
perform exceptionally well in capturing dynamic changes such as
channel attenuation, multipath effects, and noise. Through real-time
adjustment of the transmission power, the GRU model can
remarkably improve the accuracy of CSI estimation, reduce channel
estimation errors, and thereby achieve more efficient and reliable
APT, ultimately enhancing the overall performance of the
communication system. After the signal passes through the low-
pass filter, the GRU model, which has a simplified structure and
can efficiently capture long-sequence dependencies, is selected to
receive the signal from which the high-frequency noise has been
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removed. The mathematical formula for its internal hidden state can
be expressed as:

rik] = o(W, - #lk] + U, - hlk — 1] + b,)

z[k| =o(W, - #[k] + U, - h[k — 1] + b,)

hik] = (1 — z[k]) o h[k — 1] + z[k]
o tanh(Wy, - #[k] + Uy, - hlk — 1] + by,) )]

Among them, o only represents the sigmoid function, o represents
element-wise multiplication, r[k] only represents the reset gate,
z[k] is the update gate. W,,W,,W,, are weight matrices, U,,U,,U,
denote the recurrent weight matrices, and b,, b,, b;, are bias vectors.
However, to adapt to the bidirectional channel, a Batch Normaliza-
tion (BN) layer and a rectified linear unit (ReLU) layer are incorpo-
rated into the GRU model. The normalization layer normalizes the
output of the GRU, alleviating the problem of gradient vanishing
in the inner layers and accelerating the training process:

3|~
M§

plk] = h{k)®

i=1

(K :%i (WK — plk))?

AN EY:

Among them, y and B only represents the sigmoid function, ¢ is a
small constant to avoid a zero denominator. The ReLU activation
function performs a non-linear mapping on the output of the BN
layer, enhancing the model’s expressive ability.

+B ©)

alk] = ReLU(BN(h[k])) = max(0, BN (h[k])) (10)

After the input signal is preprocessed, the GRU network
processes the data at each time step by step. It dynamically
adjusts the information flow through the update gate and reset
gate mechanisms to extract sequential features. The Adam
optimizer is used to train the model, which adaptively adjusts the
learning rate of parameters. The number of training epochs is set
to 40, and the batch size is set to 8 to ensure the stable
optimization of the model. The signal is input into the trained
GRU model, and the model’s sequence modeling ability is
utilized to analyze the signal. The CSI values are output and
subjected to binarization processing to clearly reflect the channel
state. Eventually, the estimated CSI value is obtained, and APT is
carried out according to this value. Table 1 shows the layer
structure of the GRU model used.

Table 1

GRU network model structure parameters
Number Type Parameter
1 Sequence Input Size(train_put,1)
2 GRU Neuron : 64
3 RN \
4 ReLU \
5 Fully Connected 1
6 Regression \
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3.3. APT based on LPF and RNN

As shown in Figure 2(c), the OOK signal r[k] is evenly divided
into upper and lower branches. The lower branch is used to obtain the
real-time CSI of the turbulent channel, as the turbulent channel has
the characteristic of being dominated by low frequencies. In addition,
the intensity of the CSI signal extracted through the low-pass filter is
approximately half of that of the signal before being filtered by the
low-pass filter. Therefore, the extracted CSI signal is directly used as
the decision threshold for the OOK signal detected by the lower
branch. The delay is used to match the synchronization between
the signals of the upper and lower branches. Through the low-pass
filter, the low-frequency CSI components can be more effectively
extracted from the received OOK signal. After the signal passes
through the low-pass filter, the input layer of the RNN model
receives the signal 7[k] from which the high-frequency noise has been
removed, and then processes the sequential signal:

- #[k] + Uy - hlk — 1] + by)

#k] + U; - hlk — 1] + b;)

& = f o clk — 1] + iy o tanh(W, - #[k] + U, - h[k — 1] + b,)
op = o(W, - #[k] + U, - hk — 1] + b,)

h[k] = o o tanh(c;) (11)
W are weight matrices, U denote the recurrent weight matrices, and b
are bias vectors. It should be noted again that in the deep learning
model, o represents the sigmoid function. In the RNN model as given
in Figure 4, the output layer maps the hidden state, which can be
expressed as:

h[k} = Wour - h[k] + bous (12)

After the input signal is preprocessed, the hidden
layer processes the data at each time step by step. By utilizing
memory cells and gating mechanisms, it remembers long-term
dependencies and extracts sequential features that are helpful for
CSI prediction. The RNN model is trained with the input data to
optimize the CSI prediction. If the predicted CSl is g[k], then through
binarization, the predicted CSI value obtained is:

Figure 4
RNN deep learning model
Input Layer ylk-1] ylk] ylk+1]
A
Hidden Layer »
Unfold h(k-1]+ hlk] hik+1]
Output Layer O
x[k-1] x[k] x[k+1]

1 if g[k] > threshold

gbinary[k] = {O else (13)

The temporal sequence processing capabilities and memory
functions of RNN models enable them to effectively capture the
channel’s time-varying and nonlinear characteristics, providing high-
precision CSI estimation. Additionally, RNNs can maintain stable
performance in complex environments, and when combined with
reciprocity, they can further enhance the accuracy of the estimation
and improve the overall performance of communication systems.

4. Simulations and Results

In this study, we examine the degradation in performance of FSO
systems caused by scintillation phenomena, wherein the probability
density function (PDF) of light intensity fluctuations follows a log-
normal distribution under conditions of mild atmospheric turbulence.
The mathematical representation of its PDF is provided [29]:

LUEThY "

1
10 = e [f =

where I is the signal received strength, 1; is the mean value, and o is the
log intensity variance. In this paper, the atmospheric channel is repre-
sented with the parameters shown in Table 2, and Figure 5 shows the
turbulence channel model simulated at > = 0.0596. The model allows
for a more intuitive display of the attenuation and interference experi-
enced by optical signals. Figure 5(a) shows the PSD in the frequency
domain where the predominant low-frequency component, and the
PDF of the simulated turbulent channel is shown in Figure 5(b).

In FSO communication systems, the BER is and a classic
measure of system performance. BER will also be used in this
study to measure the impact of turbulence compensation techniques
on the overall system performance. The formula for BER can be
expressed as follows [30]:

- () [ o]

In FSO communication system simulation engineering, the
noise generated by photodetectors can be modeled as AWGN, and
its noise magnitude is measured by signal-to-noise ratio (SNR).
While forward and reverse transmissions in two-way atmospheric
channels have different effects on the transmission channel due to
their different heights and different reception directions, the
background noise also has various impacts on the route of
transmission. The background noise N, is measured by SNR,
when the effective power of the signal is certain, the smaller the
noise power is, the larger N, is. The SNR can be articulated

Table 2

GRU network model structure parameters
Parameters Value
Link distance 10 km
Wavelength 1550 nm
C2 2.5%x 10713
Aperture 10 cm
Wind speed 5 m/s
Divergence angle 10 urad
Visibility 30 km

05
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Figure 5
Turbulent channel modeling: (a) frequency-domain power spectral density and (b) probability density function
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through Equation (16), in which P, and P, denote the effective power
levels of the signal and the noise, respectively.

SNR = 10lg (%) (16)

The reciprocity of the turbulence channel and the received signal’s
BER of forward transmission and reverse transmission are analyzed in six
scenarios where there is a wide range of background noise N, = 30 dB,
N, =25 dB, N, =20 dB, N, =15 dB, N, = 10 dB and N, =05 dB in
order to examine the impact of background noise on the two-way
channel reciprocity adaptive technique. To facilitate the turbulence
channel accessible to comprehend with various background noises, the
turbulence channel at a scintillation coefficient of o = 0.1002 turbu-
lence channel is utilized as an illustration. The performance of the signal
traveling via the channel in the time domain when different background
noises are added to this turbulent channel is shown in Figure 6.
Figure 6(a)~(d) shows that when noise is added, the time-domain curves
are distorted, and as the proportion of noise added increases, the distortion
of the signal becomes more and more serious, and the channel reciprocity
gradually decreases. However, in the case of adding noise as shown in
Figure 6(e) and (f), the channel has almost been flooded by noise and
the channel reciprocity is low. In this case, it is difficult to transmit signals
with efficient anti-noise techniques under the influence of noise.

The simulation software used in this experiment is MATLAB, the
proposed two adaptive power transfer techniques will be tested under
three different turbulence intensities with channel models with
scintillation indices of 0.0596, 0.1002, and 0.2080, and the system
performance of the models is analyzed under the three turbulent
channels. The conventional FTD, ATD technique, and LPF-based
APT technique are reproduced as a side-by-side comparison. Table 3
lists the primary parameters of the experiment, with the RNN and
GRU models operating under identical experimental conditions.
Throughout the training process configured as Table 4, the digital
signals obtained from the ADC conversion of the received signals at
the receiver end will serve as the dataset. Among these, 80% of the
dataset is used for training, and 20% is used for testing.

Figure 7 shows the performance of the four communication
techniques in the turbulent case of 0 = 0.0596. It is evident that
the performance has improved at p > 0.8, i.e., at three conditions

06

Normalized Intensity

where the background noise is N,=30 dB, N,=25 dB, and
N, =20 dB. At SNR = 16 dB is the turning point, at SNR<16 dB,
both adaptive power transfer outperforms the conventional ATD
communication technique, and the cascaded LPF and RNN adaptive
power transfer techniques perform better. At SNR > 16 dB, both
adaptive power transfer techniques gradually stabilize and reach
optimal performance. The adaptive power transfer performance
decreases as the background noise gradually increases and the channel
reciprocity p < 0.8. N, =15 dB shows that the BER performance of
the joint LPF and RNN adaptive power transfer techniques is better
than that of the LPF-based APT. Meanwhile, in the case of N, =10
dB and N, =5 dB, the adaptive power transfer technique performs
poorly due to the fact that the reciprocity index is too affected by
the background noise in the bidirectional channel.

Figure 8 shows the performance of the five communication
techniques in the turbulence condition of 62 = 0.1002. It is evident
that the performance has improved at p > 0.9722, i.e., at the two con-
ditions where the background noise is N, =30 dB and N, =25 dB.
Taking SNR = 16 dB as the cut-off point, when SNR < 16 dB, the
adaptive power transfer technique performs well compared to the tra-
ditional ATD technique BER; when SNR > 16 dB, the three adaptive
power transfer techniques gradually tend to stabilize and reach the
optimal performance value. With the gradual increase of background
noise, the signal is flooded by noise and the transmission is affected
when the channel reciprocity p < 0.9722.

Figure 9 shows the performance of the five communication
techniques for the turbulence condition of 0 = 0.2080. It is evident
that the performance has gotten better at p > 0.8615, i.e., at three
conditions where the background noise is N, =30 dB, N, =25
dB, and N, =20 dB. Taking SNR =16 dB as the cut-off point, at
SNR < 16 dB, the cascaded LPF and RNN adaptive power transfer
techniques significantly outperform other adaptive power transfer
techniques as well as the conventional ATD technique, whereas
the GRU-based and LPF-based adaptive power transfer techniques
outperform the FTD technique as the increase in the background
noise and the decrease in the intermodulation leads to a similar per-
formance as the conventional ATD technique. At SNR > 16 dB, the
three adaptive power transfer techniques gradually level off and
reach the performance optimum. With the gradual increase of back-
ground noise and channel reciprocity p < 0.8615, the two techniques
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Figure 6

Performance of the signal in the time domain as it moves through ¢2 = 0.1002’s turbulent channel with varying
backgrounds: (a) N, =30 dB, (b) N, =25 dB, (¢) N, =20 dB, (d) N, =15 dB, (e) N, =10 dB, and (f) N,,=05 dB
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Table 3
Average of three-channel reciprocity measurements under three turbulent channels with different background noises added
Np(dB) 30 25 20 15 10 05
0% = 0.0596 0.9912 0.9730 0.9215 0.9214 0.5999 0.3884
0% = 0.1002 0.9945 0.9831 0.9493 0.8615 0.6903 0.4735
0% = 0.2080 0.9979 0.9936 0.9804 0.9417 0.8441 0.6630
Table 4

The main parameters of neural network training process

Experimental parameter

Parameter setting

Experimental parameter

Parameter setting

Number of training samples
Number of verification samples
Number of testing samples
Data Rate

SNR range

Turbulence intensity

1 x 107

8 x 10°

2 x 10°

10 Mbps

4-28 dB

0.0596. 0.1002. 0.2080

Batch size
Optimizer

Loses function
Initial learning rate
Epoch

System environment

8

Adam

MSE

0.005

40

NVIDIA GeForce RTX 4060 8GB GDDR6
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Figure 7
Performance of five transmission techniques in 6% = 0.0596 channel with various noise backgrounds:
(a) N, =30 dB, (b) N, =25 dB, (c¢) N, =20 dB, (d)N,, =15 dB, (¢) N, =10 dB, and (f) N, =05 dB
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are in the same situation as in Figure 7. And in deep learning models,
the root mean squared error (RMSE) is commonly used as the
evaluation criterion for regression prediction problems. The RMSE
and the operation time of this paper are shown in Table 5.

Figure 10 illustrates the BER performance comparison of
different transmission technologies through three turbulent
channels under 25 dB conditions. From Figure 10, it can be
observed that under conditions with relatively low background
noise, the two APT technologies proposed in this work, which
incorporate deep learning under reciprocal channel conditions,
outperform traditional FTD and ATD technologies, with their
BER being an order of magnitude lower. The best performances
achieved using the GRU model and the RNN model are
represented by 1.1 x 107> and 1.03 x 107>, respectively. Addition-
ally, after smoothing high-frequency noise using LPF, the BER
across the three turbulent channels can be stabilized within the range
of 107* ~ 1075,

08
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107
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SNR (dB)

When the channel scintillation coefficient is fixed, the
LPF-RNN-APT technology exhibits a differentiated characteristic
in the noise scenarios. In a high-noise environment, which is in
the case of relatively low reciprocity, its sequential modeling
ability based on the RNN can effectively capture the dynamic
correlations of the noise. Combined with the suppression of high-
frequency noise by the LPF, a dual noise reduction link is formed,
which includes noise trajectory tracking and frequency-domain
screening. However, in a low-noise scenario, the advantages of
this technology are weakened instead. However, the APT
technologies using the GRU and RNN models exhibit similar
characteristics under the same experimental conditions: they show
an advantage when there is a certain degree of loss in reciprocity.
The difference lies in their different degrees of response under the
same circumstances, with the LPF-GRU-APT technology having a
greater degree of response. There may be two reasons for the
comparison between the two.



Journal of Optics and Photonics Research Vol. 00 Iss. 00 2025

Figure 8
Performance of five transmission techniques in 6> = 0.1002 channel with various noise backgrounds:
(a) N, =30 dB, (b) N, =25 dB, (c¢) N, =20 dB, (d) N, =15 dB, (e) N, =10 dB, and (f) N,, =05 dB
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Firstly, it is about the structural complexity. The GRU model
has an update gate and a reset gate, and its structure is relatively
complex. In a relatively stable environment such as a reciprocal
channel, the complex structure is prone to overfitting. In contrast,
the RNN has a simple structure. When processing stable data, it
will not introduce excessive unnecessary calculations and
parameter adjustments and can learn data features more
efficiently. Secondly, it is related to the information processing
method. The gating mechanism of the GRU will screen and
update the information. In a reciprocal channel, this mechanism
may excessively change or discard useful information. The RNN,
on the other hand, simply circulates and transmits information,
which can better preserve the original features and patterns of the
data, thus being conducive to the performance of the model.

The experiment reveals that in practical applications of the
reciprocity-based APT technology, there exists a complex balancing
relationship among reciprocity, the channel scintillation coefficient,

4 7 10 13 16 19 22 25 28
SNR (dB)

107

BER

4 7 10 13 16 19 22 25 28
SNR (dB)

BER

4 7 10 13 16 19 22 25 28
SNR (dB)

and the performance of the deep leaming model. Through
experimental analysis, it is found that the mutual influence of these
parameters directly determines the energy efficiency and transmission
stability of the system. Future research will focus on further
quantifying the relationships among these parameters by processing a
large amount of real-time channel data and conducting simulation
experiments, and attempting to find specific numerical ranges as
optimization targets. Especially under different conditions of the
scintillation coefficient and reciprocity, the performance of the deep
learning model varies significantly. Systemic experiments are needed
to determine the optimal model structure and parameter configuration,
so as to ultimately achieve an efficient and reliable APT scheme.
According to the simulation content, it can be seen that
the better the performance of adaptive transmission power
technology in the case of turbulent channel scintillation
coefficient is small, and the bidirectional atmospheric channel
reciprocity is p > 0.8615. In the case of larger turbulence
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Figure 9

Performance of five transmission techniques in ¢

= 0.2080 channel with various noise backgrounds:

(a) N, =30 dB, (b) N, =25 dB, (c) N}, =20 dB, (d) N, = 15 dB, (¢) N, = 10 dB, and (f) N, =05 dB
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Table S
RMSE and training time of the two techniques in different turbulent channels in N, = 30 dB
Deep learning model Optimizer Turbulence intensity RMSE Training time
GRU Adam 0.0596 0.1362 414 s
0.1002 0.1425 425 s
0.2080 0.1225 462 s
RNN Adam 0.0596 0.0472 256 s
0.1002 0.0351 251 s
0.2080 0.0551 255s

coefficients, the adaptive transmission technique requires
more accurate channel reciprocity, and in turbulence
channel 62 = 0.2080, the channel reciprocity is required to be
p > 0.9722. Both adaptive transmission techniques based on
deep learning outperform traditional FTD and ATD technolo-
gies. The introduction of LPF reduces high-frequency noise,
stabilizing the BER floor within a certain range 107* ~ 107>

10

at high SNR conditions. In summary, in reciprocal APT FSO
systems, RNN stands out due to its lightweight structure and
parameter efficiency, demonstrating exceptional performance
in strongly symmetric channels and suitability for real-time
power control. This advancement extends the practical
application of adaptive power control algorithms in complex
atmospheric environments.
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Figure 10
BER performance of different transmission technologies under three kinds of turbulence at 25 dB
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5. Conclusion

This paper proposes two distinct APT systems for FSO
communication systems based on the reciprocity of bidirectional
channels: the LPF-RNN-APT technology and the LPF-GRU-APT
technology. The effectiveness of these methods has been validated
through simulations. The results indicate that, compared to
traditional techniques, the APT technologies proposed in this study
can achieve a lower bound that stabilizes within 10~* ~ 10~ in highly
reciprocal turbulent channels. Specifically, the LPF-RNN-APT
technology excels due to its lightweight structure and parameter
efficiency, demonstrating outstanding performance in strongly
symmetric channels. The proposed APT technologies effectively
compensate for turbulence, enhancing the BER performance of the
signal and mitigating the impact of atmospheric turbulence-induced
scintillation effects on FSO communication systems.
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