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Abstract: Every year, the lack of reliable and affordable structural health monitoring systems to assess the resilience of residential buildings in
coastal areas results in extensive damage from strong winds and hurricanes. This work investigates the use of embedded fiber Bragg grating
(FBG) sensors for the structural health monitoring of residential timber buildings for reliability assessment. The remaining useful lifetime
(RUL) of buildings after being impacted by hurricane has been estimated using long short-term memory (LSTM) neural network. A proof-of-
concept experimental setup has validated the system’s performance and functionality. Multiple one-story and two-story scaled-down (∼1:20)
prototype timber buildings were constructed and placed in a wind tunnel to assess their structural performance and stability under wind speeds
ranging from 0 to 150 mph. FBG sensors attached to the buildings measured strain in real time. The measured strain data are used to estimate
the building’s reliability. A mathematical Health Indicator is introduced to determine the level of structural integrity and health under varying
load and structural conditions. The FBG sensors demonstrated accurate measurement and real-time monitoring of strain changes in selected
structural elements during high wind speeds. Assessment results can inform condition-based maintenance, safety evaluations, and stability
reports. Additionally, the system can issue real-time warnings for potential failures and damages, thereby enhancing the overall resilience of
residential buildings.
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1. Introduction

Annually, strong winds, hurricanes, and tornadoes inflict
significant damage and claim lives in coastal regions, prompting
researchers in the structural health monitoring (SHM) community
to develop cost-effective monitoring systems for residential
buildings. While civil infrastructure like bridges and tunnels, as
well as critical buildings such as hospitals and high-rises, have
benefited from SHM systems for a decade, these systems remain
prohibitively expensive for residential use. An SHM system
typically includes an array of sensors, a signal processing unit,
and a communication platform for timely reporting and issuing
evacuation or maintenance recommendations. Reports generated
by the monitoring system are utilized by local authorities,
construction firms, insurance providers, and real estate agents to
assess the structure’s safety and reliability, enabling appropriate
actions to safeguard residents’ lives.

There are multiple hazards associated with hurricanes,
including high winds, storm surges, and waves, as well as wind-
driven rain, wind-borne debris, and flood-borne debris, along with
scour and erosion. As a result of these hazards, buildings may fail
in several ways, including building envelope failure caused by

high winds and debris impact, and consequent water infiltration
due to heavy rainfall and wind-driven rain. Perhaps the occurrence
of hurricanes is the most common weather condition issues
leading to catastrophic damages in residential buildings
particularly in coastal areas [1]. A hurricane arises from
atmospheric turbulence, generating high winds (90–135 mph) that
exert strong forces on structures. Traditionally, mitigating
hurricane damage involves hardening homes [2]. However,
devising effective hardening or mitigation strategies requires
assessing structural performance and health conditions. Accurate
estimation of potential losses is crucial for implementing
condition-based mitigation efforts to reduce future losses.
Numerous studies have been conducted to estimate hurricane
damage across various types of structures [3]. A critical aspect in
predicting damage from future hurricanes is the development and
accumulation of micro-damage resulting from multiple hurricane
events.

This phenomenon can gradually weaken the structure,
potentially leading to sudden failure even under forces lower than
intended. Current evaluation methods for residential buildings
primarily rely on visual inspection due to their affordability and
simplicity. However, the accuracy of visual inspection is heavily
reliant on the inspector’s experience, making it susceptible to
human errors. Moreover, visual inspections are conducted
periodically and do not offer continuous information about the
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building’s condition between inspections. The SHM system
comprises sensors, data acquisition and transmission systems, and
a database for efficient data management and health diagnosis,
including damage detection, safety evaluation, and reliability
analysis. Over the past two decades, significant research has
focused on enhancing the accuracy and functionality of each
component of SHM systems [4]. SHM technology plays a crucial
role in evaluating the safety and durability of structures during
and after hurricanes, ensuring their continued serviceability and
sustainability [5]. By offering precise and real-time damage
assessment, SHM helps prevent catastrophic damage, provides
early disaster warnings, and ultimately saves lives during
environmental disasters like hurricanes. SHM systems applied to
civil infrastructures such as bridges and high-rise buildings
involve monitoring the structure by assessing its performance
during operation.

Sivasuriyan et al. [6] investigated the use of accelerometers for
operational monitoring and damage evaluation of multi-story
buildings. Most of the existing SHM systems use electrical
sensors, including strain gauges, piezoelectric, and linear variable
differential transformers. Piezoelectric sensors are relatively low-
cost sensors that provide sufficient accuracy to be used in
residential buildings. Marveas and Bartzanas [7] conducted a
review on the application of various sensor types and technologies
for SHM of agricultural structures. Park and Inman [8] explored
the use of piezoelectric sensors for detecting damage in buildings
through impedance measurements. The effectiveness of
piezoelectric sensors in SHM depends significantly on their
placement within the structure, necessitating optimization
algorithms to determine sensor count and optimal locations [9].

More recently, fiber Bragg grating (FBG) sensors have gained
prominence in SHM systems for civil infrastructure, including dams
and high-rise buildings [10]. Janis et al. (2021) investigated the
application of FBG sensors for monitoring the structural integrity
of road asphalt. Maha and Boudriga [11] utilized FBG sensors for
vibration monitoring of buildings, particularly for assessing
structural performance during earthquakes.

Amaya and Sierra-Pérez [12] employed embedded FBG sensors
to monitor the structural health of reinforced concrete structures.
They utilized wavelength changes as indicators to monitor
structural integrity variations caused by different excitation
frequencies. Wu et al. [13] summarized the contemporary
applications of fiber optic sensors for SHM in buildings. The
applicability of residential buildings under hurricanes using FBG
sensors has been explored by Zabihollah et al. [14].

Despite valuable research work in usefulness of FBG sensors
for real-time structural heal monitoring of buildings, there is a
lack of knowledge in accurate modeling for estimating the
remaining life of the buildings which have experienced hurricane
attacks.

The studying of reliability analysis of FBG sensor has been a
challenging task in the field of civil infrastructure. Liu et al. [15]
used failure model and effects analysis techniques to access
ascertain critical failure items including failure modes, failure
causes, and effects. It returns a risk priority number to map to
which risk item is, and then it can apply in various engineering
applications such as full-scale structural testing of wind turbine
blades.

Long short-term memory (LSTM) is a type of recurrent neural
network (RNN) that was first introduced by Hochreiter and
Schmidhuber in 1997 [16]. The principle of recurrent network is
using feedback connections to store and represent their recent
information from input. The original simple RNN is a series of

blocks /units’ structure that the information of each block
dependent from previous blocks and inputs, and it was first
developed by Elman in 1990 [17] which operates with a structure
of sequential blocks or units, where each block’s information
depends on previous blocks and inputs. This RNN sequential
block design enables the modeling of time series problems and
the prediction of future values based on past data. Consequently,
this type of time series prediction model is also called a sequence-
to-sequence model at each time point t, and there is an individual
block that includes an input unit vector Xt , a hidden unit vector
Ht ; and an output unit vector Yt .

Building on RNN foundation, Hou et al. [18] discussed the
integrations of LSTM networks in building SHM. LSTM time
series analysis predicts potential structural issues, enabling early
warnings and informed maintenance decisions for civil
infrastructures. LSTM networks have also been applied in safety
monitoring under earthquake conditions, such as in the study of
Zhang et al. [19], which developed a LSTM model to access
building’s reliability during seismic events. The LSTM model was
also used by Miao et al. [20] to investigate the SHM of bridges
under external loadings. It is trained by time series data from
many factors in bridge and then predicts deterioration conditions.

The main contribution of this paper is the development of a
data-driven LSTM model specifically tailored to estimate the
remaining useful life (RUL) of FBG sensors embedded in
buildings. This approach focuses on leveraging the time series
strain data captured by FBG sensors to train an LSTM sequence-
to-sequence model that estimates RUL, with a particular emphasis
on the structural integrity of residential timber buildings subjected
to wind loads and hurricane conditions. It also explores the
feasibility of using FBG sensors to monitor strain and assess the
structural integrity of residential timber buildings under wind
loads and hurricane conditions. By utilizing strain data from
embedded FBG sensors, the proposed LSTM model advances
predictive maintenance strategies, estimating the RUL of
structures impacted by hurricanes or strong winds and enabling
timely intervention for risk mitigation.

2. Modeling Building with Embedded FBG Sensors

2.1. Dynamic modeling of timber building

A typical building structure can be approximated by frame
structure (Figure 1(a)). For structural building, a 3-dimensional
frame element (Figure 1(b)) has 5 degrees of freedom
(displacement in x, y, z directions, and rotation about y and z
axes) at each node in the local coordinate system.

Figure 1
Finite element modeling of a building, (a) 3D frame, (b)

simplified 2D frame element
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The dynamic response of a frame is given as:

M½ � d̈
n o

þ D½ � ḋ
n o

þ K½ � df g ¼ F tð Þf g (1)

The termsM,D, andK are themass, structural damping, and stiffness
matrices, respectively. For the sake of brevity, the details of element
matrices are skipped, however. For details of the finite element
procedure, one may consult the book written by Reddy [21]. The
displacement {d} is a vector containing the nodal DOFs (u, v, w,
θy, and θz) of the element. The structural stability of the building
can be estimated by accurate calculation of the induced stress at
the critical elements in real time. For a frame structural element,
the dominated stress is along the length of the element is:

σx ¼ Eεx (2)

Equation (2) shows that stress is proportional to strain; therefore,
accurate measurement of strain results in accurate determination
of stress at elements. Furthermore, the element deflection is
determined by accurate measurement of strain as given in
Equation (3)

εx ¼ �y
d2v
dx2

(3)

For stability analysis of the structure subjected to hurricane’s load,
the force vector {f(t)} in Equation (1) is determined as

F tð Þwind ¼ PwindA (4)

where A indicates the area of the element facing the wind and
pressure due to wind, Pwind, is determined as:

Pwind ¼ Cp
1
2
ρairV

2
wind

� �
(5)

where ρair, Cp, and Vwind are density of air, shape coefficient of the
building face the wind, and wind speed.

2.2. Strain measurement using FBG sensors

According to discussion provided in Section 2.1, the stability of
the structure can be estimated by acquiring an accurate measurement
of the strain induced in the element due to applied load. In the present
research, embedded FBG sensors have been used to measure the
strain within the elements. FBG sensors provide advantages such
as multi and continuous sensing using only a single fiber line,
ease of placing and embedding in the structure, and high sensitivity.

The principle of a FBG sensor is based on the wavelength
shifting of the reflected spectrum when strain or temperature
change arises in the element. The maximum reflectivity of FBG
occurs at the Bragg wavelength, λ, given by:

λFBG ¼ 2neff τFBG (6)

where neff is the effective refractive index of the mode propagating in
the fiber and τFBG indicates the FBG period. Equation (6) implies that
the reflected wavelength λ is affected by any variation in the physical
or mechanical properties of the grating region. Similarly, changes in
temperature lead to change in neff via the thermo-optic effect and in
an unconstrained fiber; τFBG is influenced by thermal expansion or

contraction. Considering the effect of variation of mechanical
properties as kT and that of the temperature as kϵ, Equation (6) can
be written as:

ΔλFBG

λFBG
¼ kTΔT þ kεΔε (7)

Considering a constant temperature of the structure during testing,
the induced strain on the element can be estimated as:

Δε ¼ ΔλFBG

kε
(8)

For more details on modeling FBG for strain measurement, one may
consult Reference [22].

In the present work, a bare fiber optic cable (FBG-MR0010,
purchased from Micronor Sensors, Inc.) composed of four FBG
sensors with wavelength of 850 nm and 300 nm grating period
that relocated 10 mm apart is used to determine the induced strain
on the selected element of the frame. The FBG sensors provide
strain and temperature measurement with a sensitivity of 1 μm/m
and 0.1 °C, respectively. The fiber optic cable is connected to an
FBGX100 Interrogator with a wavelength range of 808–880 nm
(FISENS®). FBG sensors are affixed to the outer surface of the
column (facing the wind force) using adhesive tape.

3. LSTM Neural Network Prediction of RUL
Analysis

Themain reason of degradation and reliability decrease is due to
the strain happens on the surface and inside of building structures.
Therefore, the cumulative strain and health index should be
identified and mapped to reliability or RUL. In this research, the
strain measure is collected by FBG sensor, and the detail will be
discussed in Section 4.3. The FBG sensors continuously collect
strain on building structure surface with unit of μm/m that is the
increasing of strain is measured as some μm per meter in this
research, and we use εt to represent the measure of strain on structure
at time t. However, from the probability distribution theory, due to
the random fluctuations across the structure, deriving a closed-form
mathematical expression for the distribution of εt is challenging. In
this context, big data and deep learning techniques are well-suited for
predicting the RUL. From the background introduction in Section 1,
it is clear that LSTM is a neural network model that is particularly
suited for estimating the RUL of structures due to their ability to cap-
ture long-term dependencies in sequential data. Although other
models, such as feedforward neural networks or simple RNNs,
could also be applied, they lack the memory retention capability
of LSTMnetworks, making them less suitable for capturing the time-
dependent degradation patterns commonly observed in SHM.

3.1. Fundamental concept of RUL

Since the RUL represents the remaining time that the structure
can be operable before its total failure, the mathematical formula of
RUL at current time point t can be defined as:

RUL tð Þ ¼ fail time� curr time (9)

From structure theory and Hooke’s law, the failure time can be
defined as the point at which the surface experiences the
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maximum strain that can be read from sensor directly, after which it
begins to lose integrity. Thus, the failure time corresponds to the
moment when maximum strain is reached:

fail time ¼ time indexðmax strainÞ (10)

Since the current time t can be read from sensor directly, the RUL at
time t can be obtained from Equation (9).

On the other hand, the measure of strain, εt ; at any time point t
can also be read from sensor. Thus, the cumulative strain can also be
derived as:

Cumu εtð Þ ¼
X

t
j ¼ 0

εj (11)

Therefore, the machine learning prediction model between
cumulative strain Cumu εtð Þ and RUL tð Þ can be designed.

In this research, the training and testing datasets are all obtained
from FBG sensor real-time collection. In both training and testing
datasets, the only feature variable X is cumulative strain Cumu εtð Þ
while the target variable Y is RUL tð Þ: The data are collected under
constant wind speed and dynamic wind speed cases. The constant
wind speed dataset includes 11083 records while dynamic wind
speed dataset includes 5244 records.

3.2. LSTM networks structures

Since the cumulative degradation increases with time, the
LSTM RNN model should be developed to predict the RUL of
the building structures.

In simple RNN framework as shown in Figure 2, at current time
t, the current input information is represented by input unit Xt . Sim-
ilar to logistic regression structure, Xt will be multiplied by a weight
matrix Wht; and XW passes through a non-linear activation function
to compute the values of the hidden units Ht : Then, this hidden unit
will be then used to calculate with another weight matrix Wot to get
the corresponding output Yt . So, the output in RNN network is
following:

Yt ¼ σ WotHt þ bYð Þ (12)

and

Ht ¼ δ WhtXt þ UtHt�1 þ bHð Þ (13)

While Ut is the weight matrix that connect to the hidden unit Ht�1

from previous block at time t-1. Therefore, the functional relation-
ship between Xt and Yt will be following:

Yt ¼ σ Wot δ WhtXt þ UtHt�1 þ bHð Þ þ bYð Þ (14)

Both σ; δ are activation function in LSTM network, and the com-
monly used activation functions include sigmoid function, linear
function, rectified linear unit function, and hyperbolic tangent
function.

As it is observed, the RNN uses weight and bias matrix to
update the information changing at each step and then use chain
rule to go through until it arrives at the last time point. One of
disadvantages of RNN is the vanishing gradient issue that makes
the multiple layers of RNN models not easy to train and fit well.
Hochreiter and Schmidhuber [16] mentioned that short-term and
long-term dependencies information can be employed to build
sequence models instead of traditional gradient methods. This idea
is originally from natural language processing problems, and then
it also applied to numerical regression or classification problems.
LSTM algorithm is applied in engineering areas to monitor
engineering reliability and health in recent years. Kabir et al. [23]
developed a LSTM framework as a surrogate model of Euler-
Bernoulli beam model and then used it in real-time SHM
processes. In addition, Peringal et al. [24] used LSTM network to
analyze the aircraft engine degradation patterns and schedule the
maintenance.

Like RNN, LSTM is also a series of units that pass information
and then model time series problems; the framework of one LSTM
unit is shown in Figure 3. One commonly used approach is the vanilla
LSTM sequence structure. Like RNN unit, a vanilla LSTM unit also
includes an input Xt , hidden state Ht . In addition, it also includes a
cell state Ct and has forget gate f tð Þ, input gate i tð Þ; and output
gate o tð Þ.

The input gate uses a sigma function to decide which parts of
information should be kept and combined from current input Xt , out-
put from previous Yt�1 and also the previous cell state Ct�1: On the
opposite, the forget gate aims to use a sigma function to decide which
information should be removed from current input Xt , output from
previous Yt�1 and also the previous cell state Ct�1: Therefore, the
formulas of input and forget gates can be written as follows:

i tð Þ ¼ σ WiXt þ UiYt�1 þ Vi � Ct�1 þ bið Þ (15)

and

f tð Þ ¼ σ WfXt þ Uf Yt�1 þ Vf � Ct�1 þ bf
� �

(16)

In addition, the output gate formula is:

o tð Þ ¼ σ WoXt þ UoYt�1 þ Vo � Ct�1 þ boð Þ (17)

where � are point-wise multiplication, W; U ; and V are weight
matrixes to get the update information and b is the constant bias.
In input gate, these three weight matrixes help to filter information
and pass to the next step, while they aim to remove information in
forget gate. From input and forget gates, it is obvious that each LSTM
unit can remove some useless information from previous unit, but
just keep the useful information to update into next unit. Thus, it does

Figure 2
A simple RNN network
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not need to keep all information from initial to final, and then it can
avoid the gradient vanish issue in RNN chain structure.

The cell state allows information to be carried across many time
steps without much change. This helps in preserving long-term
dependencies and mitigating the vanishing gradient problem in
standard RNN structure. The current cell state should be:

c tð Þ ¼ z tð Þ � i tð Þ þ c t�1ð Þ � f tð Þ (18)

and z tð Þ ¼ g WzXt þ UzYt�1 þ bzð Þ is named block input.

Finally, the final estimation of LSTMwill be the combination of
current cell state with the output gate such that:

Yt ¼ g c tð Þ� �� o tð Þ (19)

It finally predicts next time point target values Yt based on all
previous time points.

In this research, we will treat the cumulative strain Cumu εtð Þ as
current input variable Xt , and the RUL prediction should be Yt . The
values of weight matrixes and bias will be found by LSTM param-
eters optimization, and the detail will be discussed in Section 4.

4. Simulating Effect of Hurricanes on Building
Behavior Using Wind Tunnel Testing

According to (ASCE 7–10) [25], residential building models
scaled for wind tunnel testing typically range up to 1:50.
Considering the dimensions of the wind tunnel test area, a two-
story building with 7.5 meters height is scaled down to 0.16 m
(∼1:46 scale factor). This frame is constructed from pine wood
with a Young’s modulus of elasticity of 9 GPa.

To simulate the strong winds and hurricanes in the laboratory, a
wind tunnel made by (Aerolab®) has been used. The strain measured
by FBG sensors is collected by an FBG interrogator, which transmits
the optical signals to a computer for visualization. Figure 4 provides a
schematic diagram of the test setup, which includes the building

Figure 3
A vanilla LSTM unit

Figure 4
Schematic illustration of wind tunnel testing
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prototype, wind tunnel chamber, wind speed controller, FBG
interrogator, and computer for visualizing the induced strain.
Figure 5 shows the experimental setup showing the strain
measurement using FBG sensors.

4.1. Discussions

In this section, the performance of the prototype building under
various wind speeds and hurricane categories as given in Table 1 is
investigated.

4.2. Numerical strains

The induced strains at three different points along the column of
the two-story building as shown in Figure 4 have been determined at
various wind speeds and provided in Table 2. As expected, the
induced strains at all three points increase with higher wind
speeds, due to the increased wind pressure as determined by
Equation (6). The maximum strain occurs at the FBG sensor
located 5 mm from the fixed support.

4.3. Experimental results

To demonstrate the performance and functionality of the
building integrated with FBG sensors, the two-story structure with
attached FBG sensors, as shown in Figure 5, was placed in a wind
tunnel and subjected to various wind speeds. The wind speed was
adjusted by controlling the fan’s speed, ranging from 0 mph to
150 mph. It is worth noting that wind direction may affect the
strain measured by FBG sensors. However, in the present study,
the wind direction was kept constant due to limitations of the
wind tunnel setup.

The numerical values of each FBG sensors are collected at
desired sampling rate and saved in a.txt file. The files are
exported and Figures 6 and 7 display the response of the FBG
sensors at tropical depression and tropical storm respectively. As
observed, FBGs 3 and 1 show the highest positive and negative
values as they are connected close to the element’s endpoints. It is
observed that the strains at all points increase by increasing
wind speed.

Figures 8 to 12 display the response of the FBG sensors at
hurricanes categories 1, 2, 3, 4, and 5, respectively. Once
again, FBG 3 shows the highest value as it is located near the
fixed support. It is observed that the strains at all points increase
by increasing wind speed. It is observed that the strain values
increase significantly from 22 μm/m to approximately 48 μm/m,
more than doubling, when the hurricane category changes
from 1 to 4.

5. LSTM Model Training and Prediction Results

As introduced in Section 2, a three-layer LSTM neural network
model is trained in this study to estimate the unknown RUL of
building structures and prevent potential damage. To optimize the
prediction model, LSTM learning parameters are adjusted based
on constant wind speed and varying wind speeds as outlined in

Figure 5
Strain measurement of the frames in wind tunnel

Table 1
Saffir-Simpson Hurricane categories

Designation Wind speed, mph Damage

Tropical Depression < 38 No damage
Tropical Strom 39–73 Negligible damage
Hurricane
Category 1 74–95 Some damage
Category 2 96–110 Extensive damage
Category 3 111–129 Devastating damage
Category 4 130–156 Catastrophic damage
Category 5 157+ Catastrophic damage

Table 2
Strain (μm/m) at the selected locations for two-story building (Figure 4)

FBG Location, mm

Wind speed, mph

20 40 60 80 (Category 1) 100 (Category 2) 120 (Category 3) 140 (Category 4)

5 0.20 0.82 1.85 3.28 5.14 7.40 10.07
45 0.19 0.79 1.78 3.18 4.96 7.15 9.37
85 0.17 0.71 1.60 2.85 4.45 6.41 8.73
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Figure 6
Strain measured by FBG sensors of a two-story frame at Tropical Depression (wind speed,< 37 mph)

Figure 7
Strain measured by FBG sensors of a two-story frame at Tropical Storm (wind speed, 39–73 mph)

Figure 8
Strain measured by FBG sensors of a two-story frame at Hurricane Category 1 (wind speed, 74–94 mph)
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the designed experiments. Data preprocessing and model training
were conducted using Python 3.11.5 on a Windows 11 platform
with an Intel vPRO Essential i5 processor.

Under constant wind speed, the FBG sensors recorded 11,083
strain measurements over 1,114 s, with the maximum strain of
38.0978 occurring at the 9,838th record. According to Hooke’s
law, this represents the maximum strain the surface can withstand
before failure occurs. Therefore, a new column is created to
calculate the cumulative strain from the first record to the 9,838th

record. The corresponding time at the 9,838th record is considered the
failure time, and the RUL at this point is defined by Equation (8).
Figure 13 illustrates the cumulative strain over time under constant
wind speed conditions.

Typically, machine learning models require 70%–80% of the
data for the training set and the remaining 20%–30% for
the testing set. Since this study deals with a time series problem,
we use data from the initial time t= 0 the 7,379th record as
the training set, while the remaining 2,459 records are used as the

Figure 9
Strain measured by FBG sensors of a two-story frame at Hurricane Category 2 (wind speed, 95–110 mph)

Figure 10
Strain measured by FBG sensors of a two-story frame at Hurricane Category 3 (wind speed, 111–129 mph)
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testing set. Additionally, 20% of the training data is further split as a
validation set. In this LSTM model, we set LOOK_BACK= 1 since
the prediction is based on the current point to forecast the next time
point. The initial learning rate is set to 0.0001, and the optimal value
is determined through grid search. The activation function used in the
LSTM model is the hyperbolic tangent (tanh) function. Under
constant wind speed conditions, the best-performing model is
achieved with a 3-layer LSTM framework. The first LSTM
layer contains 64 units, while the second and third layers each
have 32 units. The activation function for all layers is the
hyperbolic tangent (tanh) function. The performance results of the
LSTM model under constant wind speed are displayed in
Figures 14 and 15. Figure 15 shows the RUL model estimations
are close to true value which means the model can perform
prediction tasks well.

The model needs adjustments to accommodate dynamic wind
speed conditions. Strain measurements were collected at wind

Figure 11
Strain measured by FBG sensors of a two-story frame at Hurricane Category 4 (wind speed, 130–156 mph)

Figure 12
Strain measured by FBG sensors of a two-story frame at Hurricane Category 5 (wind speed, >156 mph)

Figure 13
Cumulative strain under constant wind speed
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speeds of 0, 6.2, 31, 12.4, 108, 77.5, 93, and 151.9 RPM, so a
variable for wind speed with 8 levels was introduced. Figure 16
shows the cumulative strain under dynamic wind speed. The deep
learning model for RUL prediction now includes a numerical
variable for cumulative strain and an ordinal variable for wind
speed RPM. The LSTM framework and hyperparameters are then
adjusted to optimize performance. We maintain a 3-layer LSTM

structure, varying the number of units across 64, 128, and 256.
The learning rate is selected from a range of 0.0001 to 0.001, with
batch sizes of 32, 64, and 128, and epochs ranging from 50, 100,
120, to 150. Grid search is used to identify the best-performing
model. The dynamic wind speed dataset consists of 5,246 rows of
strain and wind speed measurements, with a maximum strain of
125.6613 occurring at the 3,018th record. According to Hooke’s

Figure 14
The training and validation loss of constant wind speed LSTM RUL prediction model

Figure 15
Remaining useful lifetime (RUL) prediction of constant wind speed via real testing values by LSTM neural network
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law, structural failure occurs at this point, with the RUL immediately
dropping to zero.

Figure 17 shows the model loss result, it is obvious that training
loss decreases steadily and approaches zero by around epoch 10. This
indicates that the model is learning the training data very well. Even
though there are some minor fluctuations in validation set as the
epoch’s progress, it still can show the stability of validation set.

Figure 18 shows the predicted RUL vs Time in second by
LSTM model can have similar behavior as real RUL. The mean
square error of the testing set is 483.5; and it can show the model
provides enough information to help engineering people to keep
maintenance of building structure on time.

6. Conclusion

The application of FBG sensors for monitoring the structural
integrity of residential timber buildings has been explored. A two-
dimensional frame element model was used to determine the
induced strain in selected columns under varying wind speeds. A
simplified wooden frame, designed to simulate timber structures,
was placed in a wind tunnel and exposed to wind speeds ranging
from 0 to 130 mph. The FBG sensors successfully captured strain
data from key structural elements.

Furthermore, modal testing was performed to analyze the
building’s dynamic behavior, demonstrating that FBG sensors can
accurately measure real-time strain. The monitoring system was
validated under both steady and fluctuating wind conditions. To

Figure 17
The training and validation loss of dynamical wind speed LSTM RUL prediction model

Figure 16
Cumulative strain under dynamic wind speed

Figure 18
Remaining useful lifetime (RUL) prediction of dynamical wind

speed via real testing values by LSTM neural network
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estimate the RUL of the building, a three-layer LSTMneural network
was employed. The strain data collected by the FBG sensors
provided adequate input for model training. The LSTM model’s
predicted RUL is closely aligned with the actual RUL of the
building, offering valuable information to help engineers perform
timely structural maintenance.

Knowledge of a building’s RUL can be utilized by local
authorities to issue warnings, helping to prevent structural failures
and safeguard lives during hurricanes. Additionally, insurance
companies can leverage the RUL data to more accurately assess
and determine structural insurance coverage.

Recommendations

The outcomes of this research revealed that SHM systems
based on embedded FBG sensors provide low cost yet accurate
monitoring systems for residential buildings. The mathematical
model used to determine the level of reliability can be used to
estimate the level of safety of the buildings subjected to strong
winds and hurricanes. The present system can further be
customized based on local weather and various types of
buildings. It is recommended to use the present reliability
system damage and safety model by local authorities and
insurance companies.
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