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Abstract: Photocatalysis materials have gained significant attention as a powerful tool for environmental remediation and green energy
generation, due to their remarkable ability to convert solar energy into chemical energy efficiently. Additionally, photocatalysis also
plays a significant role in the medical realm, facilitating advancements in drug synthesis. However, the wavelengths of photocatalysis
light normally focus on UV light, which is usually generated by higher energy. In recent years, the spotlight has shifted towards visible-
light photocatalysis as a promising green and sustainable alternative due to the increasing concerns about environmental challenges and
energy crises. This review focuses on the recent advancements in visible-light photocatalysis materials and emphasizes the diverse types
of photocatalytic materials and their impactful applications in environmental remediation, organic synthesis chemistry, and energy
conversion. Furthermore, the prevailing challenges and potential solutions in visible-light photocatalysis materials are also summarized
to provide valuable insights for the further development and optimization of photocatalysis.
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1. Introduction

The increasing environmental challenges, such as air and water
pollution, climate change, and escalating energy crises, imperil both
ecosystem balance and human health and set obstacles to sustainable
development [1]. Therefore, visible-light photocatalysis has emerged
as the most promising candidate, offering energy efficiency and
clean reaction conditions without secondary pollution. Through
designing material structures, photogenerated electron-hole pairs
excited by visible light are separated and directed toward catalytic
reaction sites, promoting the chemical transformation of substrate
molecules [2]. The applications of visible-light photocatalysis
technology are diverse. In environmental remediation, for
instance, it could treat air and water pollution [3, 4], reducing
environmental stress by efficiently breaking down harmful
substances. Furthermore, in energy, it can promote the production
of clean energy, such as hydrogen generation [5], thereby
contributing to a greener and more sustainable energy landscape.
In sum, visible-light photocatalysis offers promising solutions for

environmental remediation and clean energy production,
illuminating a path toward a more sustainable future.

Many efforts have been dedicated to photocatalysis research,
which can track back to scene early 1970s. By using titanium
dioxide as a photocatalytic material, water decomposition can be
achieved, which paves the way for photocatalysis [6]. Thereafter,
in 1976, Carey et al. [7] utilized titanium dioxide to degrade
organic pollutants in water, specifically polychlorinated biphenyls.
This breakthrough indicated a new era in the application of
photocatalysts for wastewater treatment and environmental
recovery. In the following, Yokota et al. further expanded the
horizons of photocatalysis by demonstrating that TiO2 exhibits
photocatalytic activity for propylene epoxidation under light
irradiation. This discovery opened up new routes for organic
synthesis, highlighting the diversity of photocatalysis. In 1983,
Pruden and Ollis [8] made notable contributions, showing that a
range of pollutants, including alkanes, olefins, and aromatics,
could be efficiently degraded through photocatalysis. The
underlying mechanism of the photocatalytic process is a crucial
factor in improving the efficiency of catalysis. Tanaka et al.
expatiated the underlying mechanism that hydroxyl radicals (•OH)
can drive the degradation of organic compounds. They further
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demonstrated that the addition of H2O2 could enhance the
concentration of •OH, providing valuable insight into optimizing
photocatalytic reactions. With the rapid development of industry
in the early 1990s, the environmental consequences became
increasingly terrible. Among a series of emerging environmental
protection technologies, photocatalysis, using semiconductors,
driven directly by solar energy emerged as a promising solution
for solving environmental pollution. For the first time, the
utilization of titanium dioxide photocatalysts for environmental
purification was proposed. In recent years, research in visible-light
photocatalysis has yielded remarkable advancements. Notably, in
2019, by designing precise nanometer structures, facilitating
efficient visible-light catalytic conversion can be successfully
achieved. This progress underscores the key role of photocatalysis
in tackling environmental challenges and facilitating clean energy
production, ultimately providing crucial scientific and
technological support for sustainable development.

As a cutting-edge technology in green energy, photocatalysis
currently prioritizes research in visible-light photocatalysis,
including nanomaterial design, and multi-functional catalytic
systems by visible-light-driven. In recent years, the scientific
community has been diligently working, aiming to foster
environmentally friendly and efficient energy conversion, by
enhancing the absorption and utilization of visible light by
photocatalytic materials. Despite these advancements, visible-light
photocatalysis materials still suffer several challenges, including
stability, absorption, catalytic efficiency, selectivity, scale-up
production, and regeneration. This paper comprehensively
summarizes visible-light photocatalytic materials and applications.
Next, the discussion on challenges in visible-light photocatalysis
materials is also presented (Figure 1). This review is aimed to serve
as a valuable reference, paving the way for enhanced utilization of
visible-light photocatalysis, for future research and development.

2. Classification of Visible-Light Photocatalysts
Materials

The preparation of high-performance photocatalytic materials
holds immense significance in addressing energy challenges,
preserving the environment, and fostering sustainable progress,
which possess a range of advantageous characteristics, including
stability, resistance to photo-corrosion, a wide light response
range, a high light absorption coefficient, robust photocurrent
density, and superior photoelectric conversion performance. We
classify those materials into four main types and summarize their
respective catalytic effects in the following.

2.1. Conventional II–VI semiconductor
photocatalytic materials

Conventional II–VI semiconductors are of great importance
among all the photocatalytic materials. The response mechanism
of semiconductor photocatalytic materials during the catalytic
process is depicted in Figure 2(a). Upon exposure to light,
electrons in the valence band of the semiconductors undergo
excitation to the conduction band (CB), resulting in the formation
of electron-hole pairs. These highly active electrons and holes can
participate in oxidation-reduction reactions with substances
adsorbed onto the semiconductor surface, thereby affecting
photocatalysis reactions. Specifically, the electrons exhibit a
reducing capability, enabling the reduction of organic/inorganic
substances adsorbed on the semiconductor surface, while the holes
possess an oxidizing ability that can oxidize organic compounds

or generate potent oxidizing agents, such as ·OH. ZnS and ZnO
are commonly used semiconductor photocatalytic materials. These
materials are typically robust in resistance to chemical and photo-
corrosion, mild reaction conditions, cost-effectiveness, and low
energy consumption. Consequently, they exhibit promising
application prospects in water treatment, environmental
purification, and renewable energy fields.

The ZnS system has been investigated the most in terms of
photophysical processes. Via solvent-free self-overflow strategy,
Song et al. [9] introduce DSS (sulfur defects) into ZnS NPs for
the production of H2. As a result, the photocatalytic hydrogen
production rate of the defective ZnS can increase up to 21350.23
μmol·h−1·g−1 (λ= 400 nm), which is roughly 4.7 times higher
than that of pristine ZnS. This result can be attributed to the
introduction of DSS, which changes the band position, increases
the CB position of ZnS, and enhances the reduction ability of
photogenerated electrons. Using a polymer-template self-
polymerization method, mesoporous dual-semiconductor ZnS/CdS
nanocomposites were synthesized, involving cross-linking
polymerization of 5–7 nm-sized CdS and ZnS NPs. Notably,
when ZnS content was at 50 wt%, the material achieved an
impressive photonic-to-hydrogen conversion efficiency of
approximately 60% at 420 nm, along with excellent stability for
H2 generation [10]. Recently, a ZnSe/TiO2 nanorod heterojunction
material was prepared by glancing angle deposition (Figure 2(b)).
The fluorine-doped SnO2 glass and silicon substrates underwent a
cleaning process that involved rinsing with acetone, ethanol, and
deionized water, subsequently dried with N2. TiO2 nanorods were
prepared under reduced pressure and in a muffle furnace at
550 °C for annealing before natural cooling to room temperature.
ZnSe was layered onto the surface of the TiO2 nanorods using the
same way, without further annealing. Figure 2(b) illustrates
substrate rotation speed (n), revolution angle (a), and deposition
rate (m) for preparing TiO2 nanorods and depositing ZnSe on the
surface of TiO2. The variation of ZnSe deposition time determines
different samples. When ZnSe was deposited for 100 s, the
sample exhibited the highest photocurrent density of about 0.55
mA/cm2, which was more than double that of pure TiO2

nanorods. Additionally, it has the best catalytic effect on methyl
orange (MO) under visible light for 8 h, with a degradation rate of
45.35% (Figure 2(c)) [11].

However, conventional II–VI semiconductor photocatalytic
materials also have several disadvantages in their applications.
The capacity to visible-light absorption capacity of conventional
II–VI semiconductors, such as ZnS and ZnSe, is relatively limited,
which leads to a suboptimal conversion efficiency of solar energy
into chemical energy. Besides, the recombination rate of
photogenerated electrons and holes in conventional II–VI
semiconductor photocatalysts is high. Moreover, some II–VI
group materials contain heavy metals such as cadmium, which
can pose environmental and health risks.

2.2. The composites of conventional semiconductor
and noble metal nanoparticles

Platinum group metal (PGM) nanomaterials, including Au, Ag,
or Pt at the nanometer scale, hold revolutionary potential due to their
remarkable catalytic properties in environmental remediation and
energy conversion. By optimizing shapes and structures and
modulating the surface plasmon resonance effects and specific
surface areas of PGM nanomaterials, the catalytic activity in
photocatalytic reactions can be significantly enhanced [12]. When
exposed to light, the surface plasmon resonance effect is triggered,
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resulting in improved absorption and utilization efficiency of light.
This, in turn, enhances the collection efficiency of photogenerated
electrons and facilitates the separation and migration of
photogenerated carriers, ultimately leading to improved

photocatalytic efficiency (depicted in Figure 3(a)). The adjustable
nature of PGM nanomaterials, coupled with their excellent
catalytic properties, holds promise for a wide range of
applications in environmental remediation and energy conversion.

Figure 1
Classification of visible-light photocatalytic materials, related applications, and challenges
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Despite their immense potential in environmental and energy
applications, the composites of conventional semiconductors and
noble metal nanoparticles face challenges due to high synthesis
costs, stability concerns, and limited lifetimes. To solve these
issues, many efforts have been made to explore more economical
preparation techniques and strategies to enhance the stability of
these nanomaterials for practical and reliable application. Gold
nanoparticles (Au NPs), when combined with highly dispersed
semiconductors, exhibited increased catalytic activity and efficiency
[13]. These attributes make them well-suited for photocatalysis,
enabling the efficient utilization of light energy to drive chemical
reactions. Specifically, the surface plasmon resonance effect in Au
NPs can stimulate photons and electrons at the nanoscale, leading
to their widespread investigation for photocatalytic pollutant
degradation [14]. While TiO2 is a well-recognized photocatalyst, its
performance remains suboptimal due to its limited response to
visible light [15, 16]. Via the seed growth method, Au@TiO2 NPs
were synthesized by introducing Au NPs into TiO2 NPs. The
addition of Au NPs induces significant changes to the spectrum of
TiO2. The enhanced activity of core-shell Au@TiO2 NPs may be
due to the improved light-harvesting efficiency based on the
resonance of Au ameliorating improved catalytic activity to TiO2

(Figure 3(b)) [17]. Thus, the integration of Au NPs can significantly
enhance the catalytic efficiency of TiO2.

Ag-NPs are also emerging as promising photocatalysts due to
their distinctive optical and electrical properties. The NPs
efficiently utilize light energy to drive photocatalytic reactions

forward, while also exhibiting robust chemical stability and an
extended service lifetime. For instance, using the hydrothermal
method, the TiO2-Ag composites were prepared. The introduction
of Ag causes the composite material to exhibit absorbance in the
visible-light region (illustrated in Figure 3(c)) [18]. To improve
photocatalysis efficiency, the complex of noble metal is a
promising way. Using the one pot method, the Ag-Au/ZnO
nanocomposites were synthesized. Zinc acetate and
polyvinylpyrrolidone were dissolved in ethanol in a round-bottom
flask. The mixture was heated to 95 °C until it turned milky-white
and then cooled. Chloroauric acid was added for Au deposition,
and the mixture was heated to 75 °C for 2 h. The resulting purple
Au/ZnO nanocomposites were cleaned and dried. Similar methods
were used for ZnO/Ag and ZnO/(Ag-Au) synthesis, with silver
nitrate and chloroauric acid added accordingly. In ZnO/(Ag-Au)
synthesis, both metal precursors were used at the same time. In
comparison with the original ZnO, Ag/ZnO, and Au/ZnO
nanosamples, the Ag-Au/ZnO sample showed higher degradation
efficiency of MB in visible light (Figure 3(d)) [19].

In summary, the composites of conventional semiconductor and
noble metal nanoparticles, including Au and Ag, possess remarkable
electrical conductivity and chemical stability. The main mechanism
is that these materials induce a surface plasmon resonance effect
upon exposure to light irradiation, thus significantly enhancing
light absorption and utilization efficiency. Furthermore, these
noble metal nanoparticles facilitate the separation and migration of
photogenerated carriers, thereby accelerating oxidation-reduction

Figure 2
(a) Scheme of photocatalytic mechanism in conventional II–VI semiconductor materials. (b) Preparation flow chart
of ZnSe/TiO2 heterojunction. (c) Photocatalytic degradation curves of MO using ZnSe/TiO2 nanorod heterojunctions

under visible-light irradiation; the inset is first-order kinetics plot of the degradation
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reactions and achieving photocatalytic effects. Importantly, the
integration of noble metal nanoparticles enhances the visible-light
responsiveness of photocatalytic materials, broadening their range
of applications.

2.3. 2D material-based semiconductor
photocatalytic materials

The photocatalytic mechanism of those photocatalytic materials
based on 2D nanostructures possess planar or layered arrangements
is similar to those observed in traditional 3D photocatalysts (depicted
in Figure 4(a)), which also can effectively utilize light energy for
chemical energy conversion. Notably, 2D materials often exhibit
superior surface areas and abundant active sites [20, 21]. Since the
groundbreaking discovery of single-layer graphene, 2D materials
have triggered significant attention and found rapid application
across diverse fields, including photocatalysis [22, 23], energy
storage [24], electrocatalysis [25], organic catalysis [26], sensing
[27], and magnetoresistance [28]. Alomar et al. [29] used a two-step
solvothermal process to craft CdS NPs decorated with MoS2
nanosheets. The ultrathin MoS2/CdS nanocomposite, synthesized at
220 °C, exhibited the most remarkable photocatalytic proficiency for
MO degradation. Furthermore, this catalyst demonstrated excellent
recyclability, maintaining robust catalytic activity even after five
consecutive cycles. Utilizing the hydrothermal method, Wen et al.
[30] synthesized 2D/2D N-Sn3O4/CN-x (x is the percentage
composition of N-Sn3O4) heterojunction for photocatalytic H2

production under visible-light irradiation. Photocatalytic H2

generation rate achieved by N-Sn3O4/CN-3 composite stood at a
remarkable 1788 μmol h−1 g−1, significantly higher than N-Sn3O4

(72 μmol h−1 g−1) and g-C3N4 (1202 μmol h−1 g−1). This
enhancement was primarily ascribed to the development of an
S-scheme heterojunction between the N-Sn3O4 and g-C3N4

nanosheets, which effectively facilitated the separation and transfer of
photoinduced charge carriers. Recently, a 2D graphene oxide (GO)
modified α-AgVO3 was synthesized, using a facile in situ
coprecipitation method at room temperature. When the content of
GO was 0.5 wt%, the GO/α-AgVO3 exhibited the best performance
for rhodamine B (RhB) decomposition, with an apparent reaction
rate constant 18 times higher than that of pure α-AgVO3 under
visible-light irradiation, with a degradation efficiency of 90% and a
maximum rate constant of 0.0584 min−1(Figure 4(b) and (c)) [31].

2D photocatalytic materials showed admirable catalytic
performance due to their extensive specific surface area, superior
conductivity, and exceptional photoelectric properties. Notably,
numerous two-dimensional photocatalytic materials are effective
under visible-light conditions, as listed in Table 1.

2.4. Organic photocatalytic materials

Organic photocatalysts constitute a class of intricate organic
molecules that promote chemical reactions under light
illumination. These catalysts possess the remarkable ability to
absorb specific wavelengths of light energy and convert it into the

Figure 3
(a) Schematic diagram of the catalytic mechanism of the composites of conventional semiconductor and noble

metal nanoparticles. (b) UV–Vis of AuNPs, TiO2, and Au@TiO2 nanohybrids. (c) Photocatalytic MB
degradation percentages. (d) Concentration vs time curve for various nanocomposites
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required activation energy for chemical transformations, thereby
augmenting reaction rates and modifying reaction pathways.
Typically, organic photocatalyst materials are characterized by
their complex structures, often dotted with chromophores or
photosensitive groups that endow them with light-harvesting

capabilities. The photocatalytic mechanism primarily relies on the
formation of photoexcited states. Upon exposure to light, these
organic materials undergo excitation, resulting in the generation of
excited states that initiate oxidation-reduction reactions. These
reactions are instrumental in the degradation and reduction of

Figure 4
(a) Catalytic mechanism diagram of 2D material-based photocatalytic materials. (b) Photocatalytic

degradation curves of RhB. (c) Corresponding pseudo-first-order kinetic curves
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Table 1
2D material-based photocatalysts for visible light

2D material-based composite photocatalyst Synthesis method Applications using visible light Reference

SiP nanosheets Ultrasound-assisted liquid-phase exfoliation H2 evolution [32]
S-doped and nitrogen-vacant CN S vapor-annealed CN [33]
2D/2D CdS/g-C3N4 heterojunction In situ hydrothermal process

assisted with microwave
degradation of MO [34]

SnO2-nanoparticle-decorated
2D-Bi2WO6 nanoplates

Hydrothermal degradation of RhB [35]

2D g-C3N4/BiOBr heterojunctions Solvothermal [36]
Vanadate-rich 2D BiOBr/Bi NSs In situ preparation [37]
Ultrathin-layered MoS2 nanoflowers
and nanosheets (NS)

Hydrothermal degradation of MB, MG, RhB [38]

2D/2D CoFe-LDH/g-C3N4 nanocomposite Co-precipitation degradation of tetracycline
hydrochloride

[39]

Interfacial coupled TiO2/g-C3N4

2D-2D heterostructure
In situ growth benzylamine coupling reactions [40]

2D CoS/BiOBr heterojunctions Two-step solvothermal route glyphosate degradation [41]
2D/2D g-C3N4/Bi4NbO8Cl nano-composite Hydrothermal degradation of oxytetracycline [42]
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targeted pollutants, underlining the key role of organic photocatalysts
in environmental remediation and synthetic chemistry.

Figure 5(a) outlines the intricate reaction mechanism of organic
photocatalysts. Initially, the photocatalyst P absorbs light energy,
exciting it to the first singlet state (1P*). This excited state can
react with pollutants Q, oxidizing them to Q•+ while reducing the
photocatalyst to P•−. Alternatively, 1P* or its triplet state (3P*)
can interact with water molecules, generating hydroxyl radicals
(OH•) and P•−. These hydroxyl radicals play a crucial role in
oxidizing pollutants. The triplet state 3P* is also capable of
electron transfer reactions with pollutants, forming Q•+ and P•−.
Additionally, 3P* can react with oxygen to produce singlet
oxygen (1O2). In some cases, the photocatalyst P and pollutant Q
form a complex (P-Q) that, upon illumination, undergoes charge
separation, generating Q•+ and P•−. Finally, P•− reacts with
molecular oxygen to yield the superoxide anion (O2

•−). These
various pathways contribute to the photocatalytic degradation of
pollutants [43]. This elaborate mechanism highlights the diversity
and efficiency of organic photocatalysts in mediating a diverse
range of photochemical reactions. These catalysts have found
widespread application in the domain of organic synthesis,
facilitating reactions such as the formation of carbon-carbon
bonds [44] and carbon-nitrogen bonds, acylation, and oxidation-

reduction reactions. The significance of sustainable chemical
synthesis and green chemistry is immense, as they utilize
renewable light energy, thereby mitigating the reliance on
traditional, high-energy-consuming heat sources. Recently, molecular
organic dye-sensitized photocatalysis materials have gradually
emerged as suitable candidates for photocatalysis. Assembling
molecular dyes with semiconductors can not only endow them with
the conductivity of the semiconductor’s CB but also obtain the
capability to generate multi-electron carriers through dye excitation.
Yang et al. [45] have synthesized a novel material, namely 3D
metal-free graphene-organic dye aerogel, via a one-step wet chemical
method (depicted in Figure 5(b)). This material significantly
enhances the photosensitivity efficiency of molecular dyes and
exhibits remarkable catalytic activity towards the photoreduction
reactions of nitro compounds and Cr (VI). Furthermore, when
compared to graphene-organic powder composites, this graphene-
organic aerogel demonstrates superior separation and transfer
capabilities for photogenerated electron-hole pairs.

Xu et al. [46] employed both hydrothermal and calcination
techniques to synthesize organic porous material-TiO2/Cu
composite materials. Using polydimethylsiloxane (PDMS) sponge
as a scaffold (Figure 5(c)), the PMETAC-PDMS sponge was
formed through air plasma treatment and vinyltrimethoxysilane

Figure 5
(a) Alternative mechanistic pathways. (b) Schematic (top) and appearance (bottom) illustrations of the preparation of 3D metal-free
and robust macroscopic graphene-organics aerogels. (c) Preparation of PDMS-RB (polydimethylsiloxane-Rose Bengal) sponge
photocatalyst. (d) The synthetic routes for the furan-based polymers. (e) HERs (hydrogen evolution rates) of the as-synthesized

polymers (10 mg) under visible light (λ> 420 nm)
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modification, followed by free radical polymerization. Finally,
PDMS-RB sponge catalyst was prepared by mixing this sponge
with RB salt. This sponge photocatalyst exhibits efficient
photocatalytic activity for cross-dehydrogenation coupling reactions
under visible-light irradiation and maintains excellent catalytic
performance and recyclability even after 15 cycles of use [47].
Recently, two furan-based polymer photocatalysts were prepared,
F-BTDO and BF-BTDO, using furan (F) and dibenzofuran (BF) as
electron donors, along with dibenzothiophene-S,S-dioxide (BTDO)
as an acceptor. The photocatalysts were tested for H2 production in
visible light. As shown in Figure 5(d) and (e), F-BTDO
demonstrated higher photocatalytic activity, producing H2 at a rate
of 120.68 mmol h−1 g−1, while BF-BTDO exhibited a much lower
rate of 4.83 mmol h−1 g−1 [48].

In summary, organic photocatalytic materials possess the
capability to absorb a wide range of spectra, spanning from UV to
visible and even near-infrared regions, which enables them to
efficiently convert light energy into chemical energy, thereby
facilitating photocatalytic degradation reactions of organic
compounds. Furthermore, their adjustable structures permit the
optimization of photocatalytic performance. The recyclability of
these materials contributes to minimizing environmental pollution,
thus offering innovative solutions for environmental remediation
and beyond. However, the stability of organic photocatalytic
materials is relatively poor, and they are prone to photochemical
degradation when exposed to light or high temperatures, which
limits their photocatalytic performance and lifetimes. Besides,
some organic photocatalytic materials may pose biological
toxicity or environmental risks.

3. Applications of Visible-Light Photocatalysis

Visible-light photocatalysis has increasingly attracted attention
for its applications including environmental remediation, organic
synthesis chemistry, and energy conversion. In environmental
remediation, visible-light photocatalysis can effectively degrade
harmful gases in the air and indoor pollutants, and eliminate various
pollutants in the water. In organic synthesis chemistry, visible-light
photocatalysis facilitates the production of organic molecules with
remarkable efficiency and selectivity, resulting in the generation of
high-purity and high-yield organic products. Unlike traditional
organic synthesis methods, visible-light photocatalysis eliminates
the need for organic solvents and harsh reaction conditions, thereby
minimizing environmental impact; in energy conversion, visible-
light photocatalysis enables photocatalytic water splitting for H2

generation and photocatalytic reduction of CO2, representing a
promising avenue for renewable energy production. Additionally,
visible-light photocatalysis finds applications in medical fields,
optoelectronic devices, and self-cleaning materials, further
underlining its diversity and significance. All of those applications
not only highlight the potential of visible-light photocatalysis but
emphasize its critical role in advancing sustainable development and
enhancing the quality of human lives.

3.1. Environmental pollution control

During pollution water treatment, photocatalysis materials,
such as TiO2, can absorb light energy and initiate transformative
chemical reactions, which can degrade organic matter, heavy
metals, and other harmful pollutants in water. For instance,
through photocatalysis, organic compounds such as phenol, dyes,
and pesticides can be effectively degraded and converted into
safer or more manageable substances. Moreover, this process also

exhibits the ability to eliminate microorganisms in water, thereby
contributing to the enhancement of water quality.

Wang et al. [49] have presented a type of graphene aerogel (GA)
that can effectively remove uranium fromwater using visible light in air.
The GA is made by reducing GO, where the extent of reduction is
precisely controlled by temperature. Through experiments, GA-200
(produced at 200 °C) exhibited excellent catalytic performance
(Figure 6(a)). Mohsin et al. [50] enhanced the visible-light absorption
of ZnO by doping Fe3+ and immobilizing it on ceramic plates. This
modified material proves highly effective in degrading natural
organic matter, particularly humic acid, which offers a promising
approach for treating urban wastewater (see Figure 6(b)). In addition,
Zhou et al. [51] incorporated the K-g-C3N4 photocatalyst into
concrete, creating a photocatalytic concrete that exhibits excellent
performance in degrading organic dyes in water and visible light
(Figure 6(c) and (d)). This innovation holds considerable potential
for safeguarding urban water bodies from contamination.

In terms of air pollution control, photocatalysis also has the
potential to purify harmful gases in the air, such as nitrogen
dioxide, and carbon monoxide. He et al. [52] prepared Ce, S, and
N trisubstituted TiO2 photocatalysts through the sol-gel method
with the assistance of ionic liquids. The results showed that the
ionic liquids can shift the light absorption area of trisubstituted
TiO2 to the visible-light area. Different types of ionic liquids have
different effects. When using 1-butyl-3-methylimidazolium
chloride as the ionic liquid, the photocatalytic activity of the
composite catalyst is the best and its photocatalytic degradation
ability for gaseous toluene is 5.7 times that of naked substituted
TiO2. Table 2 summarizes the parameters of photocatalyst
materials in environmental pollution control applications.

Recently, a range of BiOI/SnO2 heterojunctions (called X%B-S,
whereX% is the relative amount ofBiOI compared to SnO2, and stands
for 15, 30, or 75) were synthesized to efficiently convert NO into
NO3

−. Figure 6(e) shows the preparation of p-BiOI/n-SnO2

heterojunctions. The heterojunctions were prepared by varying the
amount of BiOI to 15%, 30%, and 75% of the SnO2 weight.
Figure 6(f) demonstrates the ability of the newly created catalysts to
remove NO. After 30 min, the removal ratio of 30%B-S reached
47.1% under a halogen lamp (λ≥ 420 nm), and it possessed better
stability (Figure 6(g)) [61].

3.2. Organic synthesis chemistry

In organic chemical synthesis, photocatalysis is an essential
technique that helps with a variety of reactions, such as coupling
and oxidation-reduction processes. The extraordinary selectivity and
mild conditions of photocatalytic reactions are their main
advantages. The total reaction yield can be increased by these
reactions’ ability to split or activate particular bonds. Photocatalysis
has found widespread application in making pharmaceutical drugs,
fine chemicals, and other high-value compounds. Using
mesoporous carbon nitride (mpg-C3N4) polymer as a semiconductor
photocatalyst, combined with its surface alkalinity, can activate O2

under visible light to highly selectively oxidize benzyl alcohols
(BA) to benzaldehyde. It can also selectively convert other alcohol
substrates into corresponding aldehydes or ketones [62]. 2,4,6-
triphenylpyrylium tetrafluoroborate was also used as an organic
photocatalyst by Tambe et al. [63]. Under visible light, molecular
oxygen was used as the oxidant to establish a sustainable alcohol
oxidation scheme. This scheme achieved the generation of
superoxide for the first step of alcohol to aldehyde and singlet
oxygen for the second step of aldehyde to carboxylic acid through
electron transfer and energy transfer pathways, respectively.
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Additionally, the scheme also converted a series of primary and
secondary alcohols into corresponding carboxylic acids or ketones
and applied optimized reaction conditions to the synthesis of
benzocoumarin. Figure 7 shows the mechanism of alcohol
oxidation to carboxylic acid. Zhang et al. [64] introduced a new
method for allylic silylation reactions using visible light at room
temperature. By using an inexpensive organic photocatalyst, they
can avoid producing wasteful transition metal salts. Their method
also works well for turning silane carboxylic acids into vinylsilanes
by removing the carboxyl group.

3.3. Energy conversion

Photocatalysis can not only be applied in environmental treatment
and organic chemistry but energy field. The photocatalytic water

splitting for H2 production under visible light provides a feasible
solution to energy and environmental issues, which utilizes photonic
energy to drive the decomposition of water molecules into H2 and
O2. Therefore, photocatalysis, especially visible-light photocatalysis,
is considered a green and sustainable way of producing hydrogen
energy, due to fossil fuel use is not necessary, and the produced
hydrogen can be used as a clean energy supply. Xiang et al. [65]
used the composite impregnation method to prepare graphene and
graphitized carbon-nitrogen (g-C3N4) composite photocatalysts.
Graphene contents in the samples were varied and labeled GCx
(Graphene Content x). The catalytic activities of the composite
samples with different GC were evaluated under visible light and
their catalytic activities are exhibited in Figure 8(a). It can be seen
that the GC has a significant effect on the photocatalytic activity of
g-C3N4. The Ag2S/CdS nanocomposites were synthesized through

Figure 6
(a) The comparison experiment with different photocatalysts in the removal of uranium. (b) Impact of concentration of HA on the

photodegradation ability of ZnO@CP and Fe3+:ZnO@CP. The contrast of concentration of methylene blue (c) under
photocatalysis and (d) without photocatalysis. (e) Fabrication procedure of p-BiOI/n-SnO2 heterojunction. (f) Photocatalytic

activity of as-synthesized catalysts for NO removal. (g) stability test of 30 %B-S
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the solvothermal method and subsequent in situ ion exchange method
(Figure 8(b)). Figure 8(c) showed the optimal photocatalytic H2

production rate of the composite material is more than 12 times that
of pure CdS. When the Ag2S content exceeds the optimal value, the
H2 production rate decreases (Figure 8(d)), which is ascribed to the
abundant surface H2 evolution active sites of Ag2S NPs. When it is
excessive, it may cause serious accumulation and shielding of light
absorption, leading to a decrease in photocatalytic activity [66].

Guan et al. [67] designed a PdSe2/Sv–ZIS (sulfur vacancies-ZnIn2S4)
semiconductor heterojunction with covalent interface. The sulfur
vacancies of Sv-ZIS are filled by Se atoms of PdSe2, leading to the
Zn–In–Se–Pd compound interface. The length of the Se–H bond is
longer than that of the S–H bond, which facilitates the desorption of
H and promotes the production of H2. As a result, the PdSe2/Sv-ZIS
heterojunction demonstrates exceptional photocatalytic performance,
achieving a H2 evolution rate of 4423 μmol g−1h−1. Additionally,

Figure 7
Proposed mechanism of oxidation of primary alcohol to carboxylic acid

Table 2
The parameters of photocatalyst materials in environmental pollution control application

Photocatalyst Photocatalytic performance test Absorbance peak Efficiency Reference

ternary g-C3N4/MoS2/MIL-101(Cr)
heterojunction photocatalyst

MO photodegradation λ= 506 nm 98% (60 min) [53]

CuS-Fe3O4/RGO catalyst Ibuprofen photodegradation λ= 496 nm 96% (60 min) [54]
SnP/AA@ZnO Amaranth dye photodegradation λ= 428 and 558 nm 95% (60 min) [55]
CuO/Bi2WO6 Z-scheme
heterojunction

Oxytetracycline hydrochloride
photodegradation

λ= 424 and 518 nm 86.3% (180 min) [56]

Bi2O2S NS Congo red
photodegradation
RB photodegradation

λ = ∼496 nm 82% (75 min)
80% (150 min)

[57]

Graphene/ZnO Composite Ethyl acetate photodegradation
2-Propanol photodegradation
Benzene photodegradation

λ= 427 nm 87% (13 h)
83% (13 h)
72% (13 h)

[58]

GeBuxH(1−x)

CNDs/ZnMn2O4

(20%) nanocomposite

RhB photodegradation λ= 800 nm
λ= 590 nm

61% (3 h)
98% (45 min)

[59, 60]
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photocatalytic reduction of carbon dioxide is also a research hotspot in
the energy field. For instance, the Au-Pt/Cu2O/ReS2 photocatalyst
synthesized by co-depositing Au and Pt nanoparticles on the Cu2O/
ReS2 heterostructure can control the selectivity of CO2 reduction by
adjusting the Au/Pt mass ratio, as shown in Figure 8(e) and (f).
Under visible light, when the Pt content is 0, CO2 can only be
reduced to CO. Conversely, when the Au content is 0, the reduction
product of CO2 is only CH4. The Au-Pt bimetallic photocatalyst has
a higher yield of CH4, and the Au1-Pt5/Cu2O/ReS2 has the highest
yield of CH4, which is 60.76 μmol/g. This provides significant
assistance for photocatalysis in energy conversion [68]. Additionally,
the application of photocatalysts in energy is far more than that,
and Table 3 shows the results of some researchers. Shortly,
photocatalysis will also emerge in the energy field.

4. Challenges for Visible-Light Photocatalysis

With increasingly severe environmental issues and continuous
growth in energy demand, visible-light photocatalysis, as a green and
sustainable means of energy conversion and environmental protection,
has acquired widespread attention. However, in practical applications,
visible-light photocatalysis faces challenges such as low light energy
utilization efficiency, high recombination rate of photogenerated
carriers, and poor catalyst stability. To address these issues,
researchers continue to explore and innovate, striving to improve
photocatalytic efficiency and stability through methods such as
optimizing material structure, surface modification, and preparation of
composite materials. The following summarizes the challenges of
visible-light photocatalysis in detail, aiming to provide references and
insights for related research fields.

Figure 8
(a) Comparison of the photocatalytic activity of the samples GC0, GC0.25, GC0.5, GC1.0, GC2.0, and GC5.0, and N-doped TiO2 for
the photocatalytic H2 production from methanol aqueous solution under visible-light irradiation. (b) Schematic illustration of the
synthesis of Ag2S/CdS nanocomposites. (c) Time courses of photocatalytic H2 production, and (d) comparison of the H2 generation

rate of samples over CdS and Ag2S/CdS nanocomposites under visible-light irradiation. Evolutions of (e) CH4 and
(f) CO with Au-Pt/Cu2O/ReS2 samples as the photocatalysts

Table 3
The parameters of photocatalyst materials in energy application

Photocatalyst
Photocatalytic
performance test Absorbance peak Efficiency Reference

PCCN-20 H2 evolution λ= 459 nm 1956.23 μmol g−1 h−1 [69]
Ag/TiO2/g-C3N4 nanocomposites λ = ∼425 nm 1.12 mmol g−1 h−1 [70]
g-C3N4/KTaO3 heterojunction λ= 426 nm ∼842.7 μmol g−1 h−1 [71]
2D/2D covalent organic framework/graphitic
carbon nitride van der Waals heterojunctions

λ= 620 nm 449.64 μmol h−1 [72]

1D carbon nitride nanotubes CO2 reduction λ= 467 nm 12.58 μmolg−1h−1 [73]
CNGA/CdS λ= 469 and 553 nm 32.75 μmol g−1 h−1 [74]
Bi2WO6/g-C3N4/Cu foam as 3D Z-scheme λ = ∼440 nm 33.84 μmol/g (6 h) [75]
2D/1D ZnIn2S4/g-C3N4 nested hollow porous
heterojunction

λ= 450 nm 79.96 μmol/g (6 h) [76]
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4.1. Light absorption capability

UV light only accounts for about 5%of the solar spectrum [77] and
may cause certain damage to the human body and biology. Especially in
some public places ormedical environments, extra safetymeasures need
to be taken to prevent UV light damage to the human body. Therefore,
ultraviolet photocatalytic is no longer suitable for the current situation.
On the contrary, visible light is a big part of sunlight, making up about
43%, and its impact on biological systems is relatively small, making it
more environmentally friendly. Due to the above reasons, visible-light
photocatalysis has gradually become a research hotspot in
photocatalysis. However, many traditional photocatalytic materials,
such as TiO2, although their light stability and chemical stability
enable them to maintain stable physical and chemical properties in
various environments, mainly work under UV light and absorb little
visible light, which hinders their widespread application in visible light.

Improving the visible-light absorption capability of photocatalytic
materials is of crucial importance. Doping and surface modification
methods have been proven as effective ways to improve light
absorption capability. For example, using a solvothermal method,
Ren et al. [78] synthesized HC/BiOCl with the visible-light response
by combining biochar (HC) and BiOCl (Figure 9(a)). Under 70 W
metal halide lamp irradiation, they degraded RhB. The samples
exhibited extremely high visible-light photocatalytic activity
(Figure 9(b)). Doping carbon into TiO2 also could enhance the
visible-light absorption capability. As shown in Figure 9(c), the
absorption boundary of the composites was transferred to the
visible region. Additionally, all the composites exhibited better
photocatalytic activity for mercury removal under 24 W white light
LED irradiation (Figure 9(d)) [79]. Nowadays, enhancing the light
absorption capacity of catalysts remains of most importance. By
thermal polymerization, single-atom Ag was anchored on ultrathin
CN (UTCN) and the catalyst acquired is called AgUTCN. Firstly,
Ag tricyanomethanide (AgTCM) was synthesized by blending
AgNO3 and C4KN3 solutions at 80 °C. The compound was stirred
overnight and the white precipitate was obtained. Then the
precipitate was separated, dried, and mixed with dicyandiamide and
NH4Cl to form AgUTCN. After drying and calcination at 550 °C, a
light-yellow powder was obtained. UTCN and g-C3N4 were also
synthesized using similar methods. Figure 9(e) and (f) show how
UTCN absorbed and responded to light before and after adding Ag.
After adding Ag, UTCN absorbed more light, especially at
wavelengths from 450 to 800 nm. Additionally, Ag doping made the
material glow brighter at 470 nm when excited with 350 nm light
[80]. Although the visible-light absorption capability of
photocatalytic materials has significantly improved, it is insufficient
for industrial applications, and more research is needed.

4.2. Separation and transport of photogenerated
charges

In photocatalytic reactions, the separation and transport of
photogenerated charges are crucial steps, affecting the interaction
between the catalyst surface and reaction substances and the
progress of catalytic reactions. When electrons and holes are
excited by light, in some cases they may recombine, so that they
cannot be fully utilized in the surface reactions of the catalyst.
Additionally, some photocatalysts have limited electron transport
distances, especially for materials with poor conductivity or
surface structures that are not conducive to electron transport,
which limits the ability of photogenerated electrons to transmit
within the catalyst to reaction sites and hinders the progress of
photocatalytic reactions.

In response to the above two points, it is possible to use materials
with good conductivity to dope into the photocatalyst, such as graphene.
Graphene doping in photocatalysts like g-C3N4 enhances performance,
as seen in Xiang et al. [65] where g-C3N4 fixed on graphene sheets
resulted in over three times the H2 production rate. Figure 10(a)
shows the mechanism of enhanced electron transfer in the graphene/
g-C3N4 composite material. Additionally, graphene acts as an
efficient carrier for photogenerated electrons, reducing electron-hole
recombination and advancing photocatalytic reactions, as supported
by PL and photocurrent response data. Based on the advancements,
recent studies have highlighted the role of photothermal effects in
enhancing photocatalytic performance. The integration of
photothermal effects, as observed in graphene-based nanocomposites,
can substantially increase the separation efficiency of photogenerated
charge carriers by converting absorbed light into heat energy.
This localized heating accelerates carrier migration, reduces
recombination, and thus enhances the photocatalytic process
(Figure 10(b)). The photothermal effect can improve the degradation
efficiency of organic by ∼38%, indicating a promising direction for
optimizing photocatalytic material performance [81]. In recent years,
ternary Ni2P/ZIF-8 (zeolitic imidazolate framework-8)/CdS
composite was synthesized (Figure 10(c)), which can accelerate the
separation of photogenerated carriers. Figure 10(d) presents the
photocurrent-time curve, indicating that the introduction of ZIF-8 and
Ni2P significantly enhances the efficiency of carrier separation and
transfer in the Ni2P/ZIF-8/CdS composite. Among the various
compositions tested, the 10% Ni2P/ZIF-8/CdS composite exhibits the
strongest photocurrent, demonstrating its superior charge separation
and transfer capabilities. Additionally, this composite displays
remarkable photocatalytic performance, achieving a high hydrogen
production rate of 21.05 mmol g−1 h−1 and effectively degrading
99% of malachite green under solar light irradiation [82]. Unlike the
above methods, via Al reduction in an evacuated two-zone furnace,
2D lateral anatase–rutile TiO2 phase junctions with controllable
oxygen vacancies were fabricated. The 2D lateral phase junctions
together with three-dimensional arrays exhibit the highly efficient
photogenerated charge separation guaranteed by the build-in electric
field at the side-to-side interface. Additionally, the interfacial oxygen
vacancies also can further accelerate the separation and transfer of
photogenerated charges [83]. In summary, the integration of
photothermal effects with traditional photocatalytic mechanisms,
along with the strategic design of composite materials and
heterojunctions, presents a multifaceted strategy to overcome the
limitations associated with charge carrier separation and transport.

4.3. Stability

For practical applications, due to the influence of various
uncertain factors, visible-light photocatalytic materials need to
have good stability to ensure long-term catalytic activity and
recyclability. However, some materials may undergo inactivation
and corrosion during photocatalytic reactions, which limits their
practical feasibility. TiO2, for example, is a commonly used
photocatalyst, but it easily undergoes lattice defects and surface
structural changes under long-term exposure to light, thus
reducing its catalytic activity. Therefore, how to improve the
stability of catalysts is still a challenge. Using the plasma
sputtering method, Ag3PO4-GR was synthesized to degrade
phenol, which had better stability. The material was prepared in a
glass reactor with steel and graphite electrodes, with Ag3PO4

sputtered under specific conditions and repeated for 3 cycles.
Samples at sputtering times of 15 and 150 s and pure Ag3PO4

were tested for stability in four photodegradation cycles. The
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results are shown in Figure 11(a). The stability of Ag3PO4-GR (15 s)
photocatalyst was significantly improved, while the stability of
Ag3PO4-GR (150 s) was reduced compared to Ag3PO4-GR (15 s),
and pure Ag3PO4 almost lost its stability. Based on the reaction:
4Ag3PO4+ 6H2O+ 12h+ + 12e− →12Ag+ 4H3PO4+ 3O2 [84],

the primary reason for the instability of Ag3PO4 is that
photoinduced electrons tend to reduce Ag+ to metallic silver.
Previous experiments have shown that the modification of
Ag3PO4 by graphene-based nanomaterials can inhibit electron-
hole recombination, increase the adsorption of pollutants, and

Figure 9
(a) UV–Vis diffuse reflectance spectra of samples. (b) Degradation curves of the samples.

(c) UV–Vis diffuse reflectance spectra of amorphous C-TiO2 as-prepared. (d) The mercury removal
efficiency. (e) UV-Vis diffuse reflectance spectra. (f) Fluorescence spectra of AgUTCN and UTCN
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thereby improve the decontamination performance [85]. Graphene or
GO can act as electron relays, thereby preventing silver reduction and
effectively preventing the above reduction, enhancing material
stability. However, the stability of the 150 s sample is not as good
as that of the 15 s sample due to the excessive sputtering time that
distorts the crystal structure and accelerates silver reduction
(Figure 11(b)). Before the process started, only a small amount of
silver nanoparticles with a size of about 10 nm were observed.
With time, more and more Ag nanoparticles were formed, which
affected its stability [86].

The ZnO/Ag/CNT photocatalyst was synthesized by decorating
carbon nanotubes (CNT) with Ag and ZnO nanoparticles for the
degradation of MB in visible light. The photocatalytic efficiency
of ZnO/Ag/CNT was higher than ZnO/Ag and ZnO. This
enhanced performance is attributed to the synergistic effects of
Ag-NPs and CNT, which facilitate charge separation via Schottky
barrier formation at the ZnO/Ag interface and CNT’s electron-
accepting properties. Besides, repeated experiments have
consistently demonstrated the excellent stability of the ZnO/Ag/
CNT catalyst as well [87].

4.4. Reaction selectivity

In some complex reaction systems, such as multi-component,
multi-step organic synthesis reactions, visible-light photocatalysis
often faces challenges in selectivity. In addition to the production
of the target product, other by-products such as methane may also
be generated. The formation of these by-products not only reduces
the selectivity of the catalyst but causes some degree of
environmental pollution. Therefore, achieving high selectivity

photocatalytic reactions and avoiding the occurrence of side
reactions is an important research aspect. For instance, during the
experiments on the photocatalytic oxidation of BA to
benzaldehyde using porous g-C3N4 photocatalyst under the same
environment, with oxygen, visible light, and UV light, the
selectivity of porous g-C3N4 catalysis was greater than 99%.
Solvents also affected the selectivity. When acetonitrile was used
as the solvent, the selectivity of benzaldehyde decreased to 68%
[88]. The introduction of nitrogen vacancies (NVs) into g-C3N4

enhances its photocatalytic performance for selective oxidation of
BA to benzaldehyde. Theoretical calculations indicate that NVs
promote the adsorption and activation of oxygen molecules, while
experimental results show that nitrogen-deficient g-C3N4 (CN-x)
exhibits significantly higher conversion efficiency and product
selectivity compared to pristine g-C3N4 under visible-light
irradiation (Figure 12) [89]. Despite some progress in improving
selectivity, further enhancements still require additional research.

4.5. Scale-up production

Some advanced photocatalytic materials synthesis methods are
complex and expensive, making it difficult to achieve large-scale
preparation and limiting their practical application. In addition, the
reaction conditions of photocatalysis are relatively harsh, requiring
specific light, temperature, and pressure conditions. These
conditions may increase production costs and limit their
popularity in industrial applications.

The newconcept of intermolecular charge transfer for photoredox
catalysis based on visible-light excitation was proposed. Besides, a
simple, efficient, and environmentally friendly non-metal anion

Figure 10
(a) Enhanced electron transfer mechanism in graphene/g-C3N4 composite materials. (b) Mechanism of MB degradation over

P25-rGO. Surface plasmon resonance (SPR) under NIR irradiation leads to PTE of rGO. Thermal energy promotes carrier mobility
on rGO sheets and thus results in the improved photodegradation activity. (c) Schematic of the formation for the Ni2P/ZIF-8/CdS

composite. (d) CdS, ZIF-8/CdS, 10% Ni2P/ZIF-8/CdS transient photocurrent response
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complex photocatalytic system was discovered that uses inexpensive
sodium iodide, triphenylphosphine, and carboxylate as raw materials
to successfully achieve the decarboxylation reaction of fatty carboxylic
acid derivatives. Most importantly, this type of catalytic system can
maintain high catalytic efficiency when the production reaches
gram-scale quantities, indicating its potential for industrialization [90].
Ma et al. [91] used the coprecipitation method to synthesize
photocatalysts of phosphorus compounds/CdS for hydrogen
production. After loading CoP and MoP catalysts, the hydrogen
production increased significantly. The CoP/CdS and MoP/CdS
systems achieved optimal hydrogen production rates of 140 and
78 μmol/h, respectively, exceeding CdS by 7.0 and 4.0 times and
Pt/CdS by 2.0 and 1.1 times (Figure 13(a)). This suggests that CoP
and MoP, as cost-effective non-noble metal catalysts, exhibit
remarkable photocatalytic activity for H2 production, making them
viable alternatives to noble metals. Large-scale hydrogen production
becomes feasible with such catalysts. Efforts to synthesize materials
with precise control over molecular weight and dispersity for
industrial applications are ongoing. Fang et al. [92] developed a
PPh3-CHCP photocatalyst using a phosphine-based conjugated
hypercrosslinked polymer. PPh3-HCP was synthesized via Friedel-
Crafts alkylation between TPP and DMB with FeCl3, followed by
reduction with NaBH4 to yield PPh3-CHCP (72.5% yield). This
photocatalyst enables efficient, large-scale Cu-ATRP, achieving

monomer conversions close to 99% for various monomers at a 200
mL scale and enabling the synthesis of block copolymers at a 400
mL scale (Figure 13(b) and (c)). However, there is still a need for
the preparation of diverse visible-light photocatalysts and the
enhancement of their performance for industrial applications, which
requires further research efforts.

4.6. Regeneration

The regenerative capacity of photocatalysts is an essential
aspect of their practical application, directly relating to the
catalyst’s lifespan and economic viability. The process of
photocatalyst regeneration aims to restore their catalytic activity,
allowing for reuse across multiple reaction cycles. However, the
regeneration process itself faces a series of challenges, including
issues of regenerative efficiency, cost, environmental impact, and
operational complexity. Therefore, understanding and optimizing
the mechanisms of photocatalyst regeneration is crucial for
advancing the field of photocatalysis. We will now delve into two
primary mechanisms of photocatalyst regeneration: photoreduction
and chemical reduction. Photoreduction utilizes photogenerated
electrons to reduce oxidized catalytic species back to their active
state. For instance, in the TiO2 nanotube-based catalyst (TNT(Pd)/
Fe2O3), Pd nanoparticles generate photoelectrons that rapidly
separate and traverse the TiO2 wall to the Fe2O3 surface, reducing
Fe3+ to Fe2+ and continuously regenerating the most active Fe2+

sites for the Fenton reaction. After several cycles (Figure 14(a)),
the MO degradation performance under photo-Fenton catalysis
showed no decay, demonstrating the self-regeneration of Fe2+,
with a slight increase in the number of Fe2+ species revealed by
XPSmeasurements post-long-term stability tests (Figure 14(b)) [93].
Chemical reduction, on the other hand, involves the use of reducing
agents to restore the catalyst’s active state. For example, in the Cu2O/
BiOBr S-scheme heterojunction photocatalyst, glucose acts as a
reducing agent capable of reducing Cu(II) back to Cu(I), thus
achieving catalyst regeneration. As shown in Figure 14(c) and (d),
the photocatalytic degradation efficiency, which dropped to
60.10% after four cycles, was significantly restored to 89.98%
with the addition of glucose, demonstrating the effectiveness of
this method in regenerating the used catalyst [94]. The
combination of these two mechanisms, that is, the synergistic
effect between photocatalysis and Fenton-like reactions, provides
a strategic approach to enhancing the overall performance of
photocatalysts. In the TNT(Pd)/Fe2O3 system, the synergistic

Figure 11
(a) Stability experiment results. (b) TEM images of

Ag3PO4-GR (150 s) before and after the photocatalytic
degradation of phenol in (a–c) and (d–f)

Figure 12
Photocatalytic selective oxidation of BA on different catalysts
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interaction between photocatalytic and Fenton reactions led to a
marked increase in catalytic activity, as further confirmed by
photocurrent tests and photochemical degradation experiments.
Additionally, the Fenton-like process in the Cu2O/BiOBr system,
involving the transition Cu(I)-e−→Cu(II), plays a crucial role in
photocatalytic degradation, with Cu(I) being regenerated through
the reducing action of glucose, a widely recognized method for
regenerating Fenton catalysts.

In summary, the regeneration of photocatalysts is a key area
where the use of photoreduction and chemical reduction strategies
allows catalysts such as TNT(Pd)/Fe2O3 and Cu2O/BiOBr to
maintain high activity over multiple cycles. The synergistic effect
of photocatalysis and Fenton-like reactions further enhances
degradation efficiency, offering a promising strategy for the
design of robust and sustainable photocatalytic systems. Future
research should focus on optimizing these regeneration methods
and exploring new materials and mechanisms to further improve
the stability and recyclability of photocatalysts.

5. Summary and Outlook

Visible-light photocatalysis has immense application potential
and broad development prospects. This review offers a
comprehensive exposition of its concept, classification, applications,
challenges, and prospects. Delving into its fundamental mechanisms
and distinct characteristics, we categorize various photocatalysts for
a thorough understanding of the field. Notably, visible-light
photocatalysis has demonstrated remarkable performance across
multiple applications, including environmental pollution control,
organic synthesis chemistry, and energy conversion. However, it
faces challenges such as light absorption capability, separation and
transport of photogenerated charges, stability, reaction selectivity,
and scale-up production. Despite these challenges, the future of
visible-light photocatalysis is still promising. This review aims to
provide researchers in related fields with a comprehensive and
systematic reference to further promote the development of visible-
light photocatalysis.

Figure 13
(a) Comparison of photocatalytic activities of sulfides/CdS with CdS and Pt/CdS. (b) Strategy for

the fabrication of PPh3-CHCP photocatalyst. (c) Photoinduced Cu-ATRP in the presence of PPh3-CHCP
(inserted photo: 200 mL reaction scale of PMA under sunlight irradiation)
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