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Abstract:We present SUPPOSe 3Dge, a method for the detection of surfaces in volumetric fluorescence microscopy images with resolution
better than the diffraction limit. The method works by approximating an arbitrary object surface as a polyhedron formed by small triangular
faces, which are thought as virtual point like sources of signal gradient. Then, the super-resolution arises from solving a least square problem
only on the positions of the sources, by comparing the measured image gradient with a synthetic one built from the approximated surface and
the known point spread function of the instrument. We present the formulation of the method and its characterization using simulated
measurements of two different types. We show that the method is able to identify with high precision and accuracy the sizes and shapes
of objects smaller than the instrumental resolution. Using different quantifiers that measure the distance between the solution and the
target object, we report reconstructions with an accuracy 100 times better than the axial resolution and 40 times the lateral resolution of
the instrument.
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1. Introduction

Determining the complex and dynamic interplay that exists among
subcellular compartments, organelles and plasma membrane has
become a challenging objective in biology. Shape and sizes have
been successfully measured by 3D edge detection methods using
electron tomography [1, 2], but this approach is not compatible with
living samples, where fluorescence is the preferred source of contrast
[3]. Fluorescence image segmentation is another application that
relies on 2D and 3D edge detection algorithms [4, 5], but its
accuracy is always limited by the diffraction limit. Thus, improving
the performance of edge detection in ultra-high resolution fluorescent
microscopy [6–8] would allow to achieve competitive results in
living systems.

The problem of determining shapes and edges of 3D objects
from some imaging technique is transverse to many disciplines,
including metrology [9], medical diagnosis [10, 11], geophysics
[12], and augmented reality and robotics [13, 14] among many
others. Several edge detection methods have been implemented

[15, 16] being the Canny algorithm [17] among the most
successful. Although this method was originally proposed for 2D
edge detection, its 3D generalization is well known [18, 19] and
several implementations are readily available in popular image
processing software such as MATLAB and ImageJ. Also, it is
very well established as a standard in 3D edge detection, as one
can see in recent published articles on the matter [20, 21]. The
method is based on smoothing the image and then calculating the
gradient. Improved versions and variants have been proposed [13,
16]. All these methods depend on localizing a border that must be
located far enough from the other side of the object so that the
instrument response function (point spread function (PSF) in the
case of a microscope) located on one side does not overlap with
the other side. Hence, they cannot be used to super-resolve shapes
and sizes of objects smaller than the PSF.

Fluorescence microscopy is characterized by the fact that each
point source (molecule) emits incoherently so that the image is built
by adding the intensity from each source. Within this paradigm,
many deconvolution methods have been developed to recover the
3D structure from stacks of 2D images focused to a different
plane. Such methods provide a good 3D reconstruction with
background suppression, but the resolution is only improved
marginally [22].
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A method has been recently introduced [23] based on
approximating the object to be reconstructed by a superposition of
virtual sources of equal intensities and is called SUPPOSe. It
provides a resolution enhancement up to 5 times better than the
instrument response, but it needs a certain degree of sparsity in the
object to be reconstructed. Also, in Lacapmesure et al. [24] the
problem of very sparse sources was analyzed and it was shown that
SUPPOSe outperforms compressed sensing-based techniques for
images with low signal-to-noise ratio (SNR).

In a 2D image edge detection, the object whose edge we want to
know is typically not sparse but the very opposite: a dense shape that
would require a large number of point sources needed to be filled. To
overcome this issue, a variant of SUPPOSe was presented in Vazquez
et al. [25] that instead works with the image gradient, since a sharp
boundary can be described as a sparse collection of ordered
segments that act as point sources of gradient. With this formulation,
it was shown that the method can recover shapes of objects smaller
than the PSF span with super-resolution, an achievement not
possible with Canny or related edge detection methods nor with
other deconvolution algorithms. Notice that we use the term super-
resolution meaning to recover details which are below instrumental
resolution as usual in the microscopy community, and should not be
confused with the same term used in image processing to address a
sub-pixel or sub-voxel reconstruction.

In this work, we present SUPPOSe 3Dge, a generalization to three
spatial dimensions of the edge detection method SUPPOSe Edge [25],
that allows for the identification of surfaces and the retrieval of shapes of
objects smaller than the instrumental resolution in 3D microscopy
images. Additionally, we show that the minimization problem
arising from the SUPPOSe 3Dge method can be efficiently solved
by the use of a stochastic gradient descent (SGD) method, allowing
for a much faster convergence when compared to the original
formulation of SUPPOSe that used genetic algorithms, as was also
demonstrated for the case of very sparse samples [24].

2. Method

The goal of the method is to retrieve, from a single image stack, an
object’s surface with enhanced resolution. We start by formulating our
imaging model. Let S be our measured image, which is produced by a
certain distribution R of incoherent emitters in the sample (as expected
for fluorescent molecules). The emitters are blurred by the imaging
system PSF I and the measurement is affected by noise. Then, S and
R are related by the expression,

S ¼ R � I þ η; (1)

where * denotes the convolution product and η represents a general,
zero mean noise contribution. As our target is the boundary of our
object, we will focus on the gradient of our image

rS ¼ rR � I þ η0: (2)

As in the previous methods of the SUPPOSe family [23], the idea is to
model our signal (in this case the image’s gradient) as produced by a
superposition of virtual point-like sources all with the same intensity
contribution. After this, a synthetic version of the signal is produced
using only the positions of the virtual sources and the PSF, which is
then compared with the measurement. The super-resolution
information is recovered from the positions of the virtual sources
that are the best fit to it. These positions can take any real value and

are not limited to the voxels of the image, allowing for sub-voxel
resolution. As we are fitting the changes in the intensity of the
image, the resolution will be limited by the intensity fluctuations
rather than the PSF width, similar to what occurs in single molecule
localization microscopies [26–28]. In the original formulation of
SUPPOSe [23], the approximation is applied directly to R, resulting
in virtual sources of intensity. In the edge detection problem, our
signal is not the image itself but its gradient, and then the SUPPOSe
approximation should be adapted to account for the vectorial nature
of rR. In 2D images a SUPPOSe variant named SUPPOSe Edge
[25] was developed, addressing this problem by defining an ordered
set of sources that can be thought as the nodes of a line segment dis-
cretization of our contour. Each node is then a source of gradient, whose
direction is assigned by a local estimation for the vector normal to the
contour by using the positions of the source’s two first neighbors. Then,
the fit proceeds as before, by computing a synthetic version of the
image’s gradient from the virtual sources and the PSF, and by finding
the positions of the sources that minimize the norm between this syn-
thetic gradient and themeasured one. Finally, a regularization termmust
be added to avoid very sinuous edges. For more details of the method,
see Equations (2) and (3) and Figure 2 in Vazquez et al. [25].

For 3D surface detection, we take this idea one step further. Here,
wewillmodel the target surface as a set of plane triangular elements stuck
together forming a polyhedron, as represented in Figure 1(a).
Computationally, this is described using two separate arrays, a first
one containing the information on the position of all the vertices of
the polyhedron, and a second one containing the order in which the
vertices should be connected to construct the faces. Then, the point-
like sources of gradient are chosen one at the center of each face,
pointing at the direction normal to the triangular element’s surface.
This is easy to compute from the proposed representation, as the
position of each source is the 3D average of the positions of the
vertices of that face, and the normal vector is computed from the cross
vector product between the directions given by two of the edges of the
face (taking care that its direction is consistent with a previously chosen
orientation of the surface). This is depicted in Figure 1(b), where the X at
the center of each face represents the position of the virtual source and the
blue vectors parallel to the edges of the face (used to calculate the normal
vector of the face) are highlighted. From this representation, we can
generate the synthetic gradient produced by the sources rR̃,

rR ’ reR ¼ α
XN
t¼1

δ x � at ; y � bt ; z � ctð Þ n̂t ; (3)

and including the PSF information

reR � I ¼ α
XN
t¼1

I x � at ; y � bt ; z � ctð Þ n̂t; (4)

where α is an intensity to be determined, N is the number of virtual
sources used to approximate the surface, x; y; zð Þ are the coordinates
of the image, and at; bt ; ctð Þ and n̂t are the position and the normal vector
of the virtual source t. From that, we need to find the positions of the
sources that minimize the squared error χ2 between the synthetic and
the real gradient, which results in the least squares minimization problem

χ2 ¼ krS�rR̃ � Ik2 ¼
X3
d¼1

X
ijk

rSð Þijk � α
XN
t¼1

Itijkn̂t

 !
� êd

 !
2

;

(5)
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where the first sum is over all spatial dimensions of canonical versors êd ,
the second sum symbol is a contraction of three separate sums over all the
image’s voxels, and Itijk is short for I xi � at ; yj � bt ; zk � ct

� �
:

As in SUPPOSe Edge, a regularization term Λ needs to be
included to impose some smoothness on the surface that allows for
proper convergence of the algorithm. This is achieved by looking at
all the pairs of first neighbor sources and computing a measure that
penalizes rapidly changing normal vectors. We can write this as

Λ ¼ λ
XNe

e¼1

n̂e1 � n̂e2 � 1ð Þ2; (6)

where the index e spans over theNe edges of the polyhedron and n̂e1 and
n̂e2 are the normal vectors corresponding to each one of the two faces that
share the edge e (seeFigure 1(c)). Theparameterλ is a constantweight for
the regularization term, and its importance (as well as a method for esti-
mating its value) is discussed for the two-dimensional case in

Vazquez et al. [25]. The fitness function f, the quantity to minimize, is
the sum of the contributions from Equations (5) and (6), resulting in

f ¼ χ2 þΛ: (7)

To retrieve the blurred information, we need to find the positions of the
sources that minimize Equation (7). For the two-dimensional case, we
showed that this can be done using a genetic algorithm. This method
shows a great performance in avoiding the characteristic local minima
arising from the hundreds of degrees of freedom to optimize. On the
other hand, the method has a high computational cost, as we need to
evaluate the PSF at each source position (around 102) for each pixel
of the image (32 × 32 ≃ 103 pixels) for each candidate solution in a
population (around 102) that evolves for a certain number of iterations
until convergence. The number of required iterations is in the order of
104 for SUPPOSe Edge, resulting in approximately 1011 PSF evalua-
tions. This takes around half an hour of computations for each image
in our MATLAB implementation of SUPPOSe Edge in CPU. For

Figure 1
Representation of the surface and its relation with SUPPOSe 3Dge virtual sources. (a) A portion of the surface, represented as a set of
plane triangular elements. Black dots represent the vertices, blue lines the edges, and shaded green regions the faces of the polyhedron.
(b) The SUPPOSe 3Dge virtual sources are located at the center of each face (X). The direction given by two of the edges of the face
(blue arrows) is used to compute the normal vector corresponding to that face and virtual source. (c) Representation of one vertex and
its surroundings up to third neighbors. We show an example for the notation used in the calculation of the regularization term (edge e
in red and the normal vectors of adjacent faces). If the vertex p is moved, the pink faces change their size and orientation. Blue and
green faces are not affected, but the first ones share an edge with the changing ones and are then also relevant for the calculation of the

gradient

Figure 2
Determination of the sizes of objects smaller than the experimental resolution. For ease of comparison, all the images are at the same

scale. (a) to (d), super-resolved surface detection of spheres of different diameters, ranging from 800 nm (similar to the axial
resolution) to 200 nm (smaller than the lateral resolution). Each insert is composed of, left to right, the high-resolution object, the
SUPPOSe 3Dge reconstruction, and the histogram of adjusted radii. The mean value of the distribution (blue arrow), together with
the standard deviation (light blue shading) and the target radius (red line), is indicated. (e) Mid height surface level of the PSF,

indicating lateral and axial resolution (FWHM)
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the three-dimensional case this number will further increase, as the
added dimension introduces a geometrical increase in the number of
voxels and more virtual sources are required for the description of
the surface. This leads to at least another factor or 102 evaluations, rais-
ing the computational time up to two days. Despite we already shown
that this time can be reduced down by factor of 80withGPUprocessing
technology, here we present an alternative to the genetic algorithm that
uses a SGD method, adapted from techniques widely used in machine
learning frameworks.

As in any SGD implementation,we need to compute the gradient of
our fitness function (Equation (7)) with respect to our surface parameters.
Despite our functional beingwritten in terms of the position of the virtual
sources (located at the center of each face of the polyhedron), it is more
convenient to minimize f with respect of the positions of the vertices that
define the faces. Then, we can get an analytical expression for the partial
derivatives of our fitness functional with respect to the position
rp
!¼ xp; yp; zp

� �
of the vertex p, which will have two contributions,

one arising fromEquation (5) and another fromEquation (6). For the first

one, it is convenient to define ~δ ¼ rS�rR̃ � I, such as

χ2 ¼ k~δk2 ¼~δ �~δ. With this definition, we get

@χ2

@xp
¼ �2α

X
ijk

~δ �
X

t2 Fpf g
1
3

@Itijk
@at

n̂t þ Itijk
@n̂t
@xp

0B@
1CA; (8)

where we defined the set {Fp}, containing all the faces F of our polyhe-
dron that contain the vertex p. The derivativeswith respect to yp and zp are
analogous. Then, to obtain the gradient of the χ2we need to compute the
gradient of the PSF and the gradient of the normal vectors of each source.
The first one will depend on the imaging system and can be computed
analytically or numerically depending on the nature of the PSF used. The
derivative of the normal vectors can be easily (and rapidly) computed
from the positions of the vertices if we write n̂t as

n̂t ¼
rt1
�!� rp

!� �� rt2
�!� rp

!� �
k rt1
�!� rp

!� �� rt2
�!� rp

!� �k: (9)

where rt1
�! and rt2

�! are the remaining two vertices that together with p
define the face t of the polyhedron.We also need to compute the gradient
of the regularization term 6 which leads to the expression

@Λ

@xp
¼
X

e2 Epf g
2 n̂e1 � n̂e2 � 1ð Þ @n̂e1

@xp
� n̂e2 þ n̂e1 �

@n̂e2
@xp

 !

þ
X

e2 Ẽpf g
2 n̂e1 � n̂e2 � 1ð Þ @n̂e1

@xp
� n̂e2

 !
;

(10)

where we defined the sets {Ep} (which contains all the edges E radiating
from the vertex p) and Ẽp

� �
(which contains all the edges E that form a

face in {Fp} but are not included in {Ep}, i.e., do not contain the vertex p)
and the indices 1 and 2 indicate each one of the two faces that share the
edge e. This expression is better understood by looking at Figure 1(c).
The faces shaded in pink are those whose normal vectors change when
moving the vertex p. Then, the first sum in Equation (10) accounts for the
derivatives of the terms inΛ that multiply the normal vectors of two pink
faces. In the same way, the second sum accounts for the terms in Λ that
multiply the normal vectors of a pink face and a blue face in Figure 1(c),
that is, a face whose normal vector does not change when displacing the

vertex p but shares an edge with a face that does. Again, the derivatives
with respect to yp and zp are analogous.

With these ingredients, we have all we need to build our SGD
minimization. A similar approach was already shown for the
standard SUPPOSe method applied to the very sparse problem of
localizing single emitters [24]. Here, we base our algorithm in the
Nesterov-accelerated Adaptive Moment Estimation (NADAM)
[29] SGD minimization, which differs from the standard gradient
descent method in mainly two ways: first, the positions of the
sources are updated individually in an order chosen at random
before every iteration (i.e., stochastic optimization). Second, the
direction of each update is opposite and proportional to the
gradient of the fitness functional with respect to that position (as
in any gradient based method), but it also incorporates
information about the history of each source by taking
exponentially decaying averages: first in an inertial component
called momentum that favors the movement in the same direction
as its previous steps, second in an adaptive factor that modulates
the size of the update of each source individually by dividing the
gradient by the magnitude of its fluctuations in the previous steps
[30, 31]. Overall, the NADAM implementation results in a
versatile minimization algorithm capable of adapting to very
different optimization scenarios with a low number of well-
defined, understandable parameters.

The method starts by computing an initial guess for the surface,
which can be done by using a standard edge detection algorithm or,
as in our case, by computing a level surface from the volumetric
image. From this guess, we can select the required number of
virtual sources by using a rough estimate of the surface area, from
where we can compute the minimum number of sources needed to
describe the surface at the native resolution using the Nyquist
criterion. As we expect to increase our image resolution, we
resample our initial guess to contain a number of faces which
exceeds Nyquist by a certain parameter. In our case, we use a
factor of four times the minimum number of sources.

Once the initial surface is established, an iterative optimization
begins, where each one of the vertices of our polyhedron is updated
once every iteration but in a random order by the update rule

~rp;qþ1 ¼~rp;q þ
ηffiffiffiffiffiffiffi

~vp;q
p þ ε

β1m̂p;q þ
1� β1

1� β
q
1

rpf

� 	
; (11)

where the index q represents the iteration number,

rpf ¼ @f
@xp

; @f
@yp

; @f
@zp


 �
, ~mp;q is the momentum vector, which is com-

puted on each iteration as

~mp;qþ1 ¼
β1

1� β
q
1

~mp;q þ
1� β1

1� β
q
1

rpf ; (12)

~vp;q is the uncentered variance vector, which is computed at each itera-
tion as

~vp;qþ1 ¼
β2

1� β
q
2

~vp;q þ
1� β2

1� β
q
2

rpf
� �

2 (13)

and where η, β1, β2, and ϵ are constant parameters chosen in advance.
Notice that the~: notation represents ℝ3 vectors and all of the opera-
tions (square roots, powers, etc.,) are computed element-wise. We can
see from Equations (12) and (13) that the parameters β1 and β2 are
related to the extent of an exponentially decaying memory of the
momentum and the variance vectors. On the other hand, ϵ is chosen
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as a small number to avoid divergences caused by small number divi-
sion. The parameter η is usually known as the learning rate and defines
the initial size of our updates. In all of our runs, we chose η= 10−5,
ϵ= 10−8 and β1 and β2 such that the half-decay time of the momentum
and variance vectors is 5 and 50 iterations, respectively.

It is important to notice that the NADAM minimization is
computed only on the positions of the sources. Between iterations,
the intensity factor α (present in Equations (3) and (5)) is
optimized at fixed positions (where it becomes a linear, closed
formula, least squares problem) to best fit the experimental
gradient’s magnitude.

3. Simulations

We tested the performance of our method for two different types
of simulated samples. First, wewill focus on the ability of themethod
to resolve the size of structures smaller than the diffraction limit (PSF
width). Second, we will quantify the performance of the method
when it is applied to complex structures containing high spatial
frequency features, such as spiky corners. The model for the
instrument is the one presented in Equation (1), where the high-
resolution image is blurred by the PSF and corrupted by noise.
For the latter, a Poisson statistic is chosen, as it is usually the
limiting factor in experiments where fluorescence is detected by
using photon counting devices, such as photomultipliers or single
photon avalanche detectors. Other kinds of more specific and
setup dependent effects on the images, such as optical aberrations
or more exotic noise contributions (usually related to camera
detection), are not considered in this work but deferred to future
research.

It is important to notice that the PSF profile used for the
reconstruction should resemble as close as possible the actual PSF of
the experiment. Both expression-based and numerical (look-up
tables) PSF models can be used for this purpose, with the first
option having computation speed advantages. The choice of model
will ultimately depend on the axial sectioning technique used to
acquire the stack, where light sheet, laser scanning confocal, and
multiphoton microscopies are the most relevant techniques.

For a light sheet microscopy experiment, the axial profile will
be that of the pump beam transverse profile, typically a Gaussian or
Bessel beam. PSFs obtained by physical modeling of the instrument
were shown to be appropriate for deconvolution purposes in this
technique [32].

Regarding laser scanning confocal microscopy, the computed
theoretical PSF must consider the Airy iris used at the detection [33–
35] and filters [36]. If measured using fluorescent beads, the size of
the bead is critical [37] and the protocol for the 3D PSF
measurement [38] has shown that a smooth and symmetric axial
profile is achieved. In accordance with this, Gaussian
approximations for the confocal microscope PSF have been
proposed [39, 40], where a relative squared error< 0.5% was
estimated. More complex analytical expressions involving
superposition of Gaussian functions [35] or Bessel functions [34]
were also investigated.

Multiphoton microscopes provide another axial stacking method
and multiparametric Gaussian fittings have proven a valuable
approximation to the 3D PSF [41, 42]. In our 2D edge detection
version [25], it was experimentally shown that a Gaussian
approximation was sufficient for multiphoton and widefield
fluorescence images despite the expected ringing in the PSF. Hence,
what is relevant for the technique is to have a PSF model that
approximates well enough the experimental PSF. Then, we define

our PSF model I, as proportional to the squared intensity profile of a
propagating gaussian beam,

I ¼ 1
1þ z2=z2rð Þ2 e

� x2þy2ð Þ
2σ2 1þz2=z2rð Þ; (14)

as it will be expected for a two-photon excitation microscope. In this
context, σ and zr are two parameters related to lateral and axial
resolution, respectively. We can see that this PSF model is Gaussian
in the lateral directions but Lorentzian for the axial dimension,
leading to heavier tails than a multivariate Gaussian model, and thus
it is more demanding for the deconvolution method. To produce the
synthetic samples, we start by defining our object as a binary
volumetric image in a high-resolution grid (intensity is 1 inside the
object and 0 outside of it). After this, we compute the low-resolution
image by convolving with the instrumental PSF as introduced in
Equation (1) with the model proposed in expression 14. For this, we
choose to use σ= 136 nm and zr= 582 nm, corresponding to a full
width half maximum resolution of 320 nm (2.35 σ) and 750 nm
(1.29 zr), respectively, values which are typical for laser scanning
fluorescence microscopies.

Once the convolution product was evaluated, the image is
resampled to a much larger voxel size by summing the contributions
of each one of the fine voxels grid in a 40 nm side cube, resulting in
a 64 × 64 × 64 voxels volumetric image. Then, the intensities are
scaled to a desired number of detected counts (in our case, 104 at the
maximum) and passed to a Poisson random number generator to
account for shot noise in the detection (resulting in a SNR of 40 dB
at the brightest pixel). This process results in a low resolution,
sampled, and noisy volumetric image of our object.

We implemented SUPPOSe 3Dge under NADAM SGD
optimization using MATLAB (code available upon request). We
found that 2000 minimization iterations are more than enough to
ensure convergence. The algorithm receives only the low-
resolution simulated measurement and the PSF model and returns
a list of locations for the vertices and faces that describes the
super-resolved surface that is the best fit to the object. Again,
these locations are not limited to the voxels of the image, as each
one of them can take any real value. The regularization weight
was chosen using ranges similar to those of the 2D case [25] for
these particular noise levels. An average run lasts for
approximately 4 hours in our Intel Core i7-8700K (6 cores, 3.70
GHz), depending on the sample and the number of virtual sources
used. As most of the computational time is spent evaluating the
convolutions, the method would benefit greatly from GPU
acceleration. Since the solutions lie in a continuous space, the
typical routines based on matrix formulations and Fourier
transform do not apply here. Therefore, our group has already
worked on an open source library that performs a parallel
computation of 2D and 3D convolutions for the original
SUPPOSe method in a time and resource-efficient way using the
texture mapping units of a GPU and exploiting the translational
invariant property of the images (code available upon request). This
3D-convolution library could be applied to implement SUPPOSe
3Dge with the GPU.

4. Results

The results of the first experiment, regarding the detection of the
size of structures, are depicted in Figure 2. For this, we simulated the
volumetric fluorescence signal of spherical objects of different sizes.
We selected diameters ranging from 800 nm (same order as axial
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resolution) down to 200 nm (much smaller than both axial and lateral
resolution). In Figure 2, we can see a 3D representation of the
surfaces of the objects in decreasing size (a) to (d) and the half-
maximum level surface of the PSF in (e). For ease of comparison,
all the images (including the PSF) are at the same scale. For each
one of the figures corresponding to the simulated samples we can
see (from left to right): the high-resolution sample, the SUPPOSe
3Dge reconstruction obtained from the simulated measurement,
and a histogram that measures the distance from each face of the
polyhedron to the geometrical center of the same. From these
distances, we can compute the mean value (that we call the fitted
radius of the reconstruction, marked with a blue arrow pointing to
its value over each histogram) reporting to the accuracy of the
method. In light blue shading, we highlight one standard deviation
of the distribution to each side of the mean value (numerical value
underneath), reporting on the precision of the solution. Finally,
and for comparison we indicate the true sample radius with a
vertical red line.

We can see that the solutions match the shape and size of the target,
and that the fitted radii are in good agreement with the sample. When
comparing the fitted radius with the real one (blue and red lines over
the histograms) we can see that there is a bias toward the right (bigger
radius). This is a direct consequence of the method used to choose the
initial surface from where the minimization starts. As we use a
diffraction limited detection method to set this initial guess, the
resulting surface will always be roughly the size of the PSF when the
structure is smaller than the resolution, leaving the target surface
completely inside of it. As a result of this, the minimization algorithm
will always approach the solution from the outside. As the
optimization is getting closer to the target, the gradient of our fitness

functional becomes smaller and smaller until it starts competing with
the noise in our measurement and the solution stops improving upon
iterations. This reports strongly on the accuracy of the technique, as it
is a measure of how close we can get to the target by optimization. If
we look carefully, we can see that the histograms are quite narrow, as
the 2σ interval, which contains roughly 70% of the virtual sources,
yields a precision between 8 nm and 19 nm (1% to 7% of the sphere
diameter) and an accuracy between 4 nm and 16 nm (2% to 5% of
the sphere diameter) for the different sizes. These numbers correspond
to an accuracy and precision between 16 and 80 times better than the
lateral resolution of the instrument and between 40 and 180 times the
axial resolution.

In Figure 3,we show the result of a different simulated experiment,
where we explore the performance of themethod on retrieving complex
shapes. For this, we simulated the volumetric fluorescence image of a
tetrahedron (Figure 3(a)) and an asymmetric star (Figure 3(e)) that we
show next to the PSF used, and a projection of the volumetric image in
the xz direction (all the intensity values in the y direction summed).
Because of how the latter compares to the size of the structures,
most of the details that are characteristic of the objects (sharp edges
and corners) are completely lost in the convolution, as we can see in
the projections, from which the shape of the object cannot be
identified. We decided to compare our solutions with a 3D Canny
edge detection method available since 2017 as a MATLAB function
(edge3) and moreover adding a 3D deconvolution that incorporates
the PSF information not used by Canny. In Figure 3 for each sample
we compare the solution from SUPPOSe 3Dge (Figure 3(b) and (f))
to the 3D Canny edge detection method applied directly to the
volumetric image (Figure 3(c) and 3(g)) and after using a
Richardson–Lucy deconvolution with the same PSF information

Figure 3
Determination of high-resolution details in unresolved objects. For ease of comparison, each row (a)–(d) and (e)–(h) are displayed at
the same scale (except for projections of the volumetric images). (a) Sample (tetrahedron) compared to the PSF and XZ projection. (b)
SUPPOSe 3Dge reconstruction and performance histograms. (c) Same for Canny edge detection method. (d) Same for Cannymethod
after Richardson–Lucy deconvolution. In all cases, blue histogram corresponds to the first metric (distance from solution to target)
and red histogram corresponds to secondmetric (distance from target to solution). (e) to (h), same experiment and analysis but for an

asymmetric star shaped sample
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supplied to SUPPOSe 3Dge (Figure 3(d) and 3(h)). In Vazquez et al.
[25], we define a quantifier that measures the similarity between two
sets of coordinates. That is, if A ¼ a1; . . . ; akf g and
B ¼ b1; . . . ; bkf g are two sets of coordinates, for each position of a
source in A then the distance to B is

dABk ¼ min
1�l�L

jak � blj; 8 1 � k � K (15)

If we take A as the solution of one of our 3D edge detection
methods and B as the target object we define d1 ¼ dAB (i.e., the dis-
tance from the solution to the object) and d2 ¼ dBA (i.e., the distance
from the object to the solution).We show this information by generating
histograms for the quantifiers d1 (blue) and d2 (red) for each one of our
solutions. In this way, the first measures how close is the reconstruction
to the object while the second is useful for detecting unrecovered fea-
tures (pieces of the target not well identified in the solution).

The information loss can be clearly seen in the diffraction limited
Canny detection. For both shapes, the detected surfaces roughly match
the PSF, showing none of the special attributes of the objects. The same
information can be seen in the blue histogram, corresponding to d1. The
heavy tails show that the detected surface is far from the target in dis-
tances on the order of the instrumental resolution. As the original
Canny’s method does not include information on the PSF, we take it
a step further and we apply a Richardson–Lucy deconvolution before
the surface detection. For the tetrahedron (Figure 3d), we can see the
axial resolution greatly improved, but the shape of the object is still
not retrieved, as the solution is roughly a sphere. We can also easily
see this in the red histogram, measuring the distance from each point
in the solution to the nearest point in the detection. There, a broad
and heavy tailed histogram evidences how the sharp edges in the tetra-
hedron found its closest detection at distances on the order of the res-
olution. Something similar happens with the star shape, where we can
see some retrieval of the shape, but very distorted and with the upper
part missing, also reflecting in a long-tailed histogram for d2.

Whenwe compare all of this with the SUPPOSe 3Dge solution the
enhancement is evident. In Table 1,we showa numerical comparison of
the distance quantifiers for the different reconstructions. Our method
succeeds in retrieving the shape of both the tetrahedron and the star
shape with no missing features. As expected, the sharp corners
appear rounded due to the presence of the regularization term that
forces some smoothness in the solution. Despite that, we see that
SUPPOSe 3Dge recovers most of the information regarding the
shape of the objects that was well below the instrumental resolution.
If we look at the distance quantifiers, we can see that both
histograms are narrow, well-behaved and with mean values below 1/
12 of the lateral resolution and 1/27 of the axial resolution of the
instrument. As shown in Table 1, the mean values of the histograms
also show that SUPPOSe 3Dge outperforms previous methods by a
factor between 3 and 5 and shows consistently smaller standard
deviations. A quantitative study about the effects of SNR and the
regularization weight on the performance of SUPPOSe 3dge would
require to perform a statistically significant number of runs, a task
for which a prior optimization on the computational time of the
algorithm is mandatory, since, in its current state, each run takes
several hours with our equipment. In this regard, GPU parallelization
is a promising approach for speed improvement. Nevertheless,
accuracy degradation due to different SNR levels was previously
studied in the 2D edge detection method [25], together with the
effect of different regularization weights. A similar dependence is
thus expected for SUPPOSe 3Dge.

5. Conclusions

WepresentedSUPPOSe3Dge, amethod for the detectionof surfaces
in volumetric fluorescence microscopy images with resolution better than
the diffraction limit. We tested the performance of the method with
simulated images for two different situations: first, the accurate detection
of the size of objects smaller than the PSF and second, the retrieval of
high-resolution details that are lost in the convolution with the
instrumental response. In the first simulated experiment, we showed that
the method can accurately identify the size of spherical objects more
than three times smaller than the expected axial resolution. For the
second simulated experiment, we compared SUPPOSe 3Dge with
Canny’s method generalized to three dimensions with and without
using Richardson–Lucy deconvolution for increased resolution. The
result of these experiments shows that our method successfully retrieves
the shapes of objects where the other methods fail, yielding a precision
and accuracy as good as 1/100 of the instrument resolution for smooth
structures and 1/10 of the resolution for complex spiky surfaces.
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