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Abstract: Nowadays, the radiofrequency (RF) photonics become an inevitable candidate to address several military-related potential
applications including electronic warfare (EW), photonic signal processing (PSP), photonic-based RF transportation, and photonic
communications. As part of this emerging technology development/requirement, we designed a photonic-based EW system (PEWS) in
the optisystem environment (later implemented using optoelectronic components) to extract various radar waveforms such as continuous
wave (CW), pulsed wave, and frequency/phase-modulated wave. All these radar waveforms are transmitted and captured by the
proposed/implemented PEW system and then processed to construct the radar signatures from its electromagnetic (EM) spectrum/signals.
The key parameters of various waveforms generated and processed in our research work are varied, over the time, during the
performance validation tests. The values of key parameters of the waveforms, RF CW signal frequencies, pulse repetition time, pulse
widths, Barker code phase modulations, Frank code poly-phase modulations, sweep frequencies, and RF power levels are 100 Hz
through 8 GHz, 10 ms through 2 ps, 750 ns through 2 ns, 0°/80°, 0°/90°/180°/270°, and —84 dBm through 30 dBm, respectively. The
details of PEWS design approaches, their implementation methodologies, and different performance validation experimental results are

reported and analyzed. The limitations and possible immediate research contributions/requirements are also listed.

Keywords: photonics electronic warfare system, optisystem simulation environment, continuous wave radar signal, pulse-compressed
waveform, frequency-modulated CW (FMCW) signal, phase modulation waveforms, radar signature extractions

1. Introduction

A set of technologies and strategies used to understand the
electromagnetic (EM) spectrum/signature for various military
potential applications are known as an electronic warfare system
(EWS) [1]. EW systems’ sensed/detected signals are meant to
create and broadcast counter-EM spectrum to protect against
enemies. The EWS, at the top-level, is organized into three
categories: electronic attack (EA), electronic protection (EP), and
electronic support [2, 3]. The EA system uses the EM spectrum/
radiation to attack/destroy the enemy systems, such as jamming
and directed energy weapon systems [4]. The EP system defends
our own and/or friendly electronics (communication/surveillance)
systems against the EA of opponents via encryption or EM
shielding [5, 6]. The ES system gathers/captures and interprets the
key parameters of the radar/communication signals from the
captured EM spectrum in order to establish situational awareness
[7, 8]. A lengthy and dynamic history of the advancement of
electronic technology and military tactics is inextricably linked to
the evolution of EW systems. During the World War I [9, 10], the
first form of EW system was developed and used in a simple way.
Radiofrequency (RF) transmission was used in the war for
communication while the radio technology was still in its infancy
[10, 11]. During these periods, jamming the enemy RF signals
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and intercepting their messages became tactical requirements. In
World War II [11], the EW system capabilities were relatively
advanced with several electronic sophistications. With the
development of radar technology, the necessity for radar
deception and jamming became essential. In an effort to impede
enemy communications and obtain the upper hand in combat, the
axis and allied forces both participated in EW operations [9, 11].
During the Cold War, the EW technologies made considerable
advances with sophisticated electronics and signal processing
techniques/modules [12, 13]. The introduction of more powerful
and sophisticated radar systems spurred the development of
electronic countermeasures (ECM) and electronic support
measures (ESM). While the ESM focused on intercepting and
studying opponents’ electronic signals, the ECM entailed
disrupting hostile radar and communication equipment [14, 15]. In
terms of EW, the Vietnam War was a turning point [9, 10]. The
United States used a variety of ECMs to damage North
Vietnamese air defense systems, including radar jamming and
suppression of enemy air defenses tactics [10]. This conflict
demonstrated the significance of EW in modern aircraft combat as
well. The incorporation of computer technology in the EW
systems resulted in increasingly more powerful systems during the
late 20" and early 21% centuries. The EW currently encompasses
not only the radar jamming and communication disruption but
also the cyber warfare, electronic intelligence (ELINT), and EA
capabilities [16, 17]. The intelligent way of interception and
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Figure 1
Top-level schematic of photonic-based electronic
warfare (EW) system
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analysis of electronic signals is referred to as ELINT, whereas the use
of EM radiation to target the adversary systems is referred to as EA
[18, 19]. As the technology advances, the EW systems grow more
advanced and integrated with other military capabilities/
appliances. In order to combat opponents in the air, land, sea,
space, and cyberspace, the modern EW systems are built to
function in the contested and complicated EM environments
[20, 21]. The EW has progressed from simple radio jamming to
highly complex and integrated systems that play a critical role in
modern military operations, allowing forces to gain a significant
advantage over adversaries by disrupting their electronic systems
and communication networks [22-24].

As technology has advanced and been used in military
applications, photonics integration into EW systems, as shown in
Figure 1, has changed throughout the time. Using the photons
(i.e., light wave), it is possible to capture/transmit/process a wide-/
multiband (up to mm EM wave) RF signals across long distances
via optical fiber for the purpose of EW applications such as
extraction of signatures’key parameters of radar systems,
communications signals, and other EM applications [25-27]. As
shown in Figure 1, the multiband (e.g., DC-40 GHz)
instantaneous bandwidth RF signals of different types/modulations
are captured by a suitable antenna that pumps the received signal
into the optical carrier signal (generated by an optical source) via
an electro-optic modulator which is then processed in optical

domain (therefore no bandwidth limitations), and then, the
spectral profiling is also done in the optical domain. The optically
processed RF signal is constructed back into electrical domain/
signal, by a large-bandwidth photodiode, i.e., optical detector,
which is subjected to hardware post-processing, as shown in
Figure 1, and subsequently into the pulse descriptor word (PDW)
record generation. When compared to the traditional metallic
conductors, photonics-based devices carry data with far reduced
signal loss and experience little to no EM interference (EMI)
when traveling through the fiber [28-31].

Therefore, nowadays, the photonic-supported EW system is one
of the critical and emerging worldwide research requirement
[32, 33]. Table 1 gives precise comparison between EW system
(EWS) and photonic-based EWS (PEWS) in terms of certain critical
factors [34-36] such as signal transmission, communication
medium, speed of signal transmission, security, size and weight,
frequency range, signal processing, sensitivity and resolution,
interference and crosstalk, adaptability, and environmental factors.
With the advent of laser technology, photonics made its first entry
into EW technology in the year of 1960s and to a greater level in
the year of 1980s. Lasers were used in this era mainly for
communication, target identification, and range finding [37].
Fiber-optic technology advancements at the same time provided
benefits for security and signal integrity. Photonics technology is
found useful in optical countermeasure systems, especially in laser
countermeasures intended to interfere with or neutralize missile
sensors and seekers [5, 38]. Photonics was recognized as a critical
instrument for modifying EM signals in a wartime environment
during this period. These systems significantly contributed to
improve the situational awareness and safeguarding platforms
against EM attacks. In the 21% century, optical technologies were
significantly incorporated into RF systems known as RF photonics,
marking a significant advancements [9, 39]. This included the use
of photonic components in EW applications for signal processing,
wideband communication, and frequency measurement. The goal of
ongoing research and development is to improve overall
performance by integrating photonics into EW sensors. Detecting,

Table 1
A comparative analysis of EW and PEW systems

Features EWS

PEWS

Signal transmission
Communication medium Typically relies on copper cables
and RF components
Limited by the speed of electrons
Vulnerable to EMI
Components may be bulkier
and heavier
Limited by the characteristics of
electronic components
Uses electronic circuits for signal
processing
Limited by the characteristics
of electronic components
Susceptible to EMI and crosstalk

Speed of signal transmission
Security
Size and weight

Frequency range
Signal processing
Sensitivity and resolution
Interference and crosstalk
Adaptability

for adaptability

Susceptible to EMI, temperature
variations, etc.

Environmental factors

Utilizes electrical signals (electrons)

May require additional components

Utilizes optical signals (photons)
Utilizes optical fibers and photonic devices

Higher speed due to the speed of light in fiber optics

More secure due to reduced EMI and susceptibility

Smaller and lighter components due to the compact
nature of photonics

Broader frequency range, especially in RF photonics

Use of photonic devices for signal processing,
offering advantages such as low loss and high bandwidth
Higher sensitivity and resolution, especially in
radar/communication signals
Reduced susceptibility to EMI, and potentially lower crosstalk
More adaptable due to the flexibility of photonic components

More robust in challenging environments, potentially
less affected by EMI
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analyzing, and tapping countermeasure systems into place involve the
use of RF photonic technologies [13, 40]. Looking ahead, the future of
photonics in EW is anticipated to feature advancements in integrated
providing
multifunctional systems. Photonics is poised to maintain its crucial

photonics, compact and efficient solutions for
role in addressing the challenges posed by congested EM
environments and in augmenting the adaptability of EW systems.
Addressing these research requirements to a possible greater extent
is the main research contribution presented in this paper.

The rest of the paper is organized as follows: Section 2 briefs the
principles of radar waveform generation and their detection techniques,
Section 3 reviews the background and related recent works, Section 4
explains the design of proposed photonic-based EW systems, Section 5
gives the details of experimental implementation of designed PEW
system, Section 6 presents on-the-spot experimental validation

results and analysis, and Section 7 gives the conclusion.

2. Principle of Radar Waveform Generation
and Detection Techniques

The basic principles associated with the generation of radar
signals/waveforms and their photonically detection techniques are
briefed in this section. Time domain signal of the continuous wave
(CW) radar can be generated as S(t) = A[cos(27fyt) + 6], where 4
is the signal amplitude, f; is the operating frequency, and 0 is the initial
phase of the radar signal. The linear frequency-modulated CW
(LFMCW) signal can be generated as S(t) = A. sin(27(f, ¥ £1)1),
where f; is the starting frequency and K is the chirp rate, + sign
indicates an up-chirp signal and the “—" sign is for a down-chirp signal.
The LFM pulse signal is generated as

m(t) = A.sin(2r(fy — 8 (t — nTpp)) (t — nTpr)), nTpp <t <nTpp+t
o, elsewhere

(1)

where n is an integer, 7 is the pulse width, K is the chirp rate, and nTpy
is the pulse repetition time (PRT). The RF-pulse signal is generated
as S(t) = A.sinc(nwpt). cos(2nf.t + ¢), where S(?) is the RF pulse
waveform as a function of time ¢, 4 is the amplitude of the pulse, S
is the pulse bandwidth, fc is the carrier frequency, and ¢ is the phase
0, fort#0

oo, fort=0’
where ¢ represents the real time. Multiplying this impulse function with
any RF signal gives the RF-contained impulse signal. All these radar-
generated signals are transmitted which actually have to be extracted
back by using the process of demodulation using the PEWS. In pho-
tonics, demodulation refers to the process of extracting information or
signals from a modulated optical carrier wave. Various demodulation
techniques are employed in photonics, depending on the modulation
scheme used. In direct detection, the intensity of the optical signal
is modulated, and the information is encoded in the amplitude of
the signal. The simplest demodulation method for this involves
detecting the changes in the intensity of the optical signal. Photodetec-
tor can be used to convert the optical signal into an electrical current,
and the variations in this current represent the modulating RF signal. If
the optical power is modulated, the instantaneous power can be
represented as P(t) = Py + A,,cos(27f,,t)cos(27nf.t), where P, is
the average optical power, A, is the modulation depth, f,,, is the modu-
lation frequency, and . is the optical carrier frequency. In the coherent
detection, both the amplitude and phase information of the optical sig-
nal are used to demodulate the RF signal. It is often used in the

offset. The impulse function is generated as §(¢) = {

advanced modulation formats like quadrature amplitude modulation.
A local oscillator is mixed with the incoming optical signal, and the
resulting beat signal is processed to extract both amplitude and phase
information. Balanced detectors and digital signal processing are com-
monly used in coherent detection systems. If the phase of the optical
signal is shifted due to modulation, the received signal can be repre-
sented as E(t) = Acos(27nf.t + ¢(t)), where A is the amplitude of
the optical carrier, f, is the optical carrier frequency, and ¢(¢) is the
phase modulation. After any of this modulation/demodulation, the
radar signal will have a few key PDW parameters such as amplitude,
frequency, phase, bandwidth, PRT, and pulse repetition frequency
(PRF). The PRF is the number of pulses transmitted per unit time which
is a critical parameter in radar systems because it determines how often
pulses are emitted. It affects the system’s capacity to detect moving
objects and prevent range ambiguity. The PRT is the time between
the start of one pulse and the start of the following pulse. PRT is used
to adjust the range resolution of a radar system. It helps to eliminate
range ambiguities by ensuring that the echoes of one pulse are
heard before transmitting the following pulse. The PRT is inversely
proportional to the PRF and influences the radar system’s duty cycle.
The duty cycle is the fraction of time the radar is actively transmitting
pulses. A longer PRT results in a lower duty cycle, which is important
for system that need to manage power consumption or heat dissipation.
Therefore, the PRT = pulse width (PW) + listening time (LT) and PRF
= 1/PRT. In photonics, RF limiters are used to protect sensitive optical
receivers and other photonic components from the damage of high-
power RF signals. The dense wavelength division multiplexing is a
key technology in photonics and optical communication systems,
which enables the simultaneous transmission of multiple optical signals
(channels) over a single optical fiber, each operating at a different wave-
length. This allows for a significant increase in the overall RF-carrying
capacity of the fiber infrastructure. The multiplexer and demultiplexer
are the devices used to combine and separate multiple optical signals,
respectively. Therefore, the captured RF signals have to be transported
and processed in/by the photonic circuits before the extraction of critical
parameters of PDW record.

3. Background and Related Works

Stark et al. [1] highlighted the significant impact of photonic
components and technologies on traditional RF and digital EW
jammer system architectures in their paper ‘Photonics for
Electronic Warfare”. Ghelfie et al. [33] offer photonics-based
solutions that are suggested for use in the field of EW systems,
more precisely exploring the application of a spectrum scanner
that was presented in a recent study. The research highlights
improvements in tuning speed in addition to performance metrics
like bandwidth, linearity, and sensitivity that are comparable to
cutting-edge electronic commercial systems. Future improvements
are also discussed in the article, with integrability and tuning
speed being identified as major areas in need of development [3].
In a comprehensive study by De et al. [3], the development of
photonics radar applications from optics to conventional
microwave systems was surveyed. The study highlights the
dynamic nature of photonics radar research, showcasing current
accomplishments and outlining future improvements [4].
A technique was proposed by Zhou et al. [4], which involved
splitting an optical carrier into two parts, one of which is phase-
modulated and the other of which is intensity-modulated, and both
parts are modulated by an unknown microwave signal. The RF
powers of the two components are compared after photodetection
in order to produce a frequency-to-power mapping. The method is
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simple and has been experimentally validated over a 13.5 GHz
frequency range with a measurement error of less than 0.3 GHz
[5]. Manka [6] discusses the most recent advancements in the
Australian defense industry’s research and development of
microwave photonics systems and their integration into EW
receivers. Akhter et al. [8] suggested a research project that builds a
5.3 GHz CW photonic radar and an empirical wavelet transform-
based method. Propeller systems and cone-shaped targets, which are
representative LSS targets in open-field studies, exhibit 99%
agreement with conventional measurements. The created photonics
radar shows to be accurate in detecting and describing the various
actions of LSS airborne targets [10]. Igbal et al. [9] presented an
adaptive innovation for sub-array-level mono-pulse ratio estimation,
specifically for numerous snapshots of phased array data, according
to a research study. Additionally, beam pattern distortion in
adaptive beam-forming is discussed in the study, with a focus on
maintaining the sum and delta beam pattern forms for precise target
localization [11]. According to a paper by Zou et al. [12], photonic-
assisted microwave measurements are a novel kind of measurement
that gauges microwaves using light. Broader frequency coverage,
greater instantaneous bandwidth, reduced frequency-dependent loss,
and immunity to EMI are just a few of the benefits they offer over
conventional electronic measurements. The writers of this paper
give a thorough summary of the most recent developments in
photonic microwave measurements. They talk about the
technology’s potential in the future, including how software-defined
architectures and photonic integrated circuits (PICs) can be used to
enhance measurement performance [14].

Garenaux et al. [13] highlight the need for high-purity signal
transmission in radar systems. Photonics technology is now
mature enough to provide low-noise, interference-resistant, wide-
bandwidth analog transmission even in harsh environments. This
paper presents optimized optical links for radar and
multifunctional systems. RF photonics is now ready for use in
radar and EW systems. Future research will concentrate on
enhancing integration and reducing expenses [15]. Oliveira et al.'s
article [14] provides a comprehensive overview of photonic
research currently underway at the Instituto Tecnologico de
Aeronautica, which was funded by the Brazilian air-force EW
center. The research investigates the performance of an acousto-
optic power spectrum analyzer and integrated optic lithium
niobate modulators using versatile computer-aided design
methods. It presents an all-optical RF oscillator as a viable option
for a highly stable EW signal generator by fusing a fiber optic
feedback loop with an integrated Mach-Zehnder modulator
(MZM). The use of integrated optic modulators in a beam-
forming network intended for phased array antennas is also
examined in this paper [16]. According to Choe [15], military RF
systems need to be adjusted in line with how warfare has
changed. This presents RF photonics technology with both an
opportunity and a challenge. The paper employs a top-down
analysis to investigate how photonics can be integrated into RF
systems, taking into account changes and aligning requirements
with its capabilities [17]. By using wavelength scanning of RF
sidebands through a phase-shifted fiber Bragg grating’s central
transmission peak, Winnall and Hunter [17] presented an all-
optical scanning receiver system for EW applications. The system
uses a semiconductor diode laser with current modulation to
achieve fast wavelength scanning using simple and lightweight
fiber optics. Outstanding characteristics encompass a wide 20
GHz bandwidth, with a sensitivity of 73 dBm and a frequency
resolution of 50 MHz. This emphasizes how useful the system is
for EW applications [19].

04

In order to identify and extract Doppler profiles of low-slow-
small (LSS) aerial objects with numerous simultaneous behaviors,
Akhter et al. [8] describe a C-band CW RF-photonic sensor that
recovers micro-Doppler signatures from low-RCS targets such as
drones and bionic birds. The experimental findings illustrate its
capacity to distinguish distinct target postures, demonstrating its
usefulness in studying and identifying various actions [20].
Rodgers [19] discusses RF photonics technologies as a cutting-
edge approach for adaptable, wideband, multifunctional systems
used in radar, communications, EW, and sensing. The EW
functions in airborne settings are demonstrated via photonic
components and subsystems in the research by Davis et al. [20].
Improving situational awareness and modifying messages in
cluttered EM settings are two increasingly difficult problems
that can benefit from the special qualities of photonics [23].
Shen et al. [21] presented a non-scanning frequency measuring
technique supported by photonics that uses a detuning optical
frequency comb and double-sideband carrier-suppressed signals
to beat one another. It provides a promising method for high-
accuracy frequency measurement in spectrally crowded
situations, with potential applications in a wide range of RF
signal frequency measurements [24]. Also, an article by Zhang
et al. [26] discusses about the potential use of photonics in EW
systems and the challenges that can arise while integrating, in
detail [29].

As a result of the literature research and to the best of our
knowledge, the inclusion of RF photonics into EW systems/
applications has become significant/inevitable and a growing
necessity in order to have a multiband high-sensitive, compact,
and EMI-free EW system. The key scientific contributions
discussed in this study are to address this immediate necessity to
the greatest extent feasible by designing/developing a photonic-
based EW system for extracting CW, pulsed, and frequency/
phase-modulated radar waveforms.

4. Design of Photonic EW Systems — CW, Pulsed,
and FMCW Radar Waveform Photonic Extractors

The proposed PEWS can detect various types of radar signals
which is the main mission of any EW system. The optisystem
software environment is initially used for designing three different
optoelectronics PEWS architectures, and the same environment is
used for their simulation & data analysis. The layout schematic
for the design/simulation of a CW photonic-based EW system is
shown in Figure 2. The main optoelectronic components used in
the design of CW photonic EW system are optical carrier,
optoelectronic modulator, RF signal generator, optoelectronic
converter, and spectrum analyzer. An optical carrier at 1550 nm is
generated using a CW laser with a power of 40 mW and a line
width of 0.05 MHz. For RF signal generation, a sinusoidal signal
of 3 GHz with a 90-degree phase offset is employed. The system
uses a dual-port MZM as the optoelectronic modulator and a PIN
photodiode for optical-to-electrical conversion.

Both the laser and RF sources are split into two branches using
optical and electrical power splitters, respectively. The upper arms of
the optical and electrical splitters serve as inputs to the MZM for
modulating the optical carrier, while the lower arms are reserved for
reference signals for subsequent down-conversion stages. The MZM,
acting as an intensity modulator, receives optical input from a CW
laser source, RF input from the upper arm of the power splitter, and
a DC bias set according to the V-n of the modulator.

Within the MZM, the RF signal modulates the optical carrier,
producing a modulated optical output that is amplified using a
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Figure 2
Design schematic of a frequency-modulated continuous wave (FMCW) — photonic-based electronic warfare (PEW) system
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Figure 5
Design schematic of a frequency-modulated continuous wave (FMCW) — photonic-based electronic warfare (PEW) system
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40 dB erbium-doped fiber amplifier. A time delay is introduced in the
signal chain, and a reference signal is extracted from the lower arm of
the optical power splitter for optical subtraction in the photonic down-
conversion process. The optical-to-electrical conversion is performed
using a PIN photodiode whose responsivity is 1 A/W.

The RF signal is mixed with a local oscillator obtained from the
lower arm of the electrical splitter, and the resulting mixed signal
passes through a low-pass filter to extract the instantaneous
frequency. Finally, a real-time oscilloscope is employed as a
visual component for observing the RF spectrum. This
experimental setup enables the investigation and analysis of CW
photonic EW systems providing insights into their functionality
and performance characteristics.

The designed CW-PEWS is simulated in the optisystem
environment, and the simulation results are shown in
Figure 3(a). The radar-transmitted 3 GHz and 6 GHz CW RF
signals are accurately measured which witnesses the detection
accuracy of our CW signal extraction PEWS design. To design
and simulate the pulsed photonic EW system and FMCW
photonic EW system, modifications are made to the RF signal
generation setup, as shown in Figures 4 and 5, respectively. For
the pulsed photonic EW system, the CW RF signal generator is
replaced with a pulse generator while for the FMCW photonic
EW system, a sweep signal generator substitutes the CW RF
signal generator. In the pulsed photonic EW setup, a non-return-
to-zero bit sequence is utilized as input to generate pulses via a
pulse generation circuit. The generated pulses serve as the RF
signal for the pulsed photonic EW system. For the FMCW
photonic EW system, a bit sequence is fed into a ramp generator
circuit, generating a saw-tooth waveform with a width of 1 unit
and a sample rate of 15E6 Hz. Subsequently, an electrical
frequency modulator is employed to produce a LFMCW signal.
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This signal is then directed to the RF input of the MZM. This
setup allows for the evaluation of the effectiveness and
versatility of photonic techniques in EW applications. The
extracted simulation results of pulsed and FMCW RF signal are
shown in Figure 3(b) and (c), respectively. The results prove the
accuracy of our proposed/designed PEWS in detection of the
pulsed and FMCW RF signals.

Figure 6
A photograph of designed/implemented
photonic-based EW system
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5. Experimental Implementation of Designed
Photonic EW Systems

Upon the successful design and simulation of photonic-based
CW, pulsed, and FMCW signatures extracting EW systems, we
proceeded into the experimental implementation of the same for
the open-field EW applications. The designed PEWS consists of
various hardware optoelectronics, and photonics components as
shown in Figure 6. The key components used in our
implementation of PEWS are wideband 12 dBi gain antenna,
intensity modulatable high RF sensitive MZM, optical 1550 nm
source, optical amplifier, large RF bandwidth, i.e., 60 GHz,
optical detector, high-gain (i.e., 40 dB) electrical amplifier,
16 GHz real-time oscilloscope (RTO), 14 GHz RF signal
analyzer, high-speed analog to digital converter, power supply
unit, and single mode optical fiber cables. All these photonic
components are connected using the 9-micron single-mode fiber
cables/connectors, as shown in Figure 6. An in-house-developed
radar system [18, 34] is used to generate all the radar signatures/
waveforms such as CW signal, pulsed signal, pulse-compressed

signal, and frequency-modulated waveforms. The procedures
followed in our research work to experimentally validate our
PEWS are (i) switch the radar system to generate the different
radar waveforms such as CW, plain pulse, RF-pulse, FMCW
signal, impulse waveform, Barker code, Frank code, frequency-
compressed pulse, etc., (ii) transmitting the generated radar
waveform towards the designed PEW system, (iii) capturing the
remotely transmitted radar waveforms by the developed PEW
system, (iv) logging the samples of received radar signals (after
down conversion) in the MATLAB environment in case of
post-processing (please refer to Section 6), otherwise for the direct
measurement, passing the captured signals into the RTO for
temporal/spectral imaging, and signal analyzer for spectral/
time-frequency (T-F) imaging, and (v) post-processing the
MATLAB logged samples and generating finally the PDW record.

The generated radar waveforms are transmitted toward the
developed PEWS in order to immediate the radar transmission
and RF signal capturing phenomenon of the EW system. A part of
the generated radar signal (CW, RF-pulse, & FMCW) is shown in
Figures 7, 8, 9, and 10 with their spectral profile and spectrogram,

Figure 7
(a) and (b) Experimental results of designed PEWS with multicomponent CW RF signals
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Figure 8
(a) and (b) Experimental results of designed PEWS with multicomponent multiple-pulse-width RF signals
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i.e., T-F images. In the RF CW mode, the radar system transmitted a
DC-biased multicomponent RF signal whose frequencies are 2 GHz,
5 GHz, 7 GHz, and 8 GHz. The results of our PEWS captured
temporal and its spectral signatures are shown in Figure 7(a). As
therein, the time domain representation of the captured RF signal
has multicomponent which are clearly detectable in the generated
spectral profile of the same CW signal.

The measurement parameters of the PEWS result for this CW
signal are as follows: the amplitude is + 31 mV, dominant frequency
components are 2 GHz, 5 GHz, 7 GHz, & 8 GHz, and the peak power
of the received signal —33.7 dBm. Similarly, another set of DC-
biased RF CW waveform generated at the frequencies of 4.5
GHz, and 5 GHz at the peak power of +5.1 dBm, and Figure 7(b)
shows their spectral profile accurately. In the RF-pulse mode, two
different pulse (i.e., PRT of 4 ps, & 2.75 ps, and pulse width of 2
ps and 740 ns)-modulated RF signal are transmitted, as shown in
Figure 8(a)—(b), toward the designed PEW system, and their
respective spectral profile is also shown in Figure 8(a)—~(b). As
therein, the temporal and spectral profiles clearly illustrate the
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radar signatures and its key (pulse width, PRT, and carrier
frequencies) parameters. In the modulation mode, two different
LFMCW signals of bandwidth 2 GHz (i.e., 6-8 GHz) and 1 GHz
(4.5-5.5 GHz), as shown in Figure 9(a)-(b), respectively, are
transmitted. The measurement results of our PEW system are also
shown in Figure 9(a)~(b) which clearly shows the FM sweep at
6-8 GHz and 4.5-5.5 GHz, respectively. The spectrogram, i.e., T-
F image, corresponding to a 6.5 GHz CW radar signal is shown in
Figure 10(a). All these experimental results prove that our
designed photonic-based EW system is capable of accurately
extracting the radar signatures and measuring their key parameter
in the RF bands covering VHF through C-band. Further, in order
to investigate the T-F imaging capability of our designed
photonic-based EW system for a steeped FMCW signal, we have
operated the radar system varying its frequency from 2 to 4 GHz
in a step of 0.15 GHz, transmitted toward the PEW system and
the instantaneous RF frequency and the stepped profile of RF
frequency are shown in Figure 10(b), in which the T-F image
precisely detects and shows the steeped profile of radar signature.
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Figure 9
(a) and (b) Experimental results of designed PEWS with multicomponent frequency-modulated CW signals
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6. On-the-Spot Performance Validation of
Photonic EW Systems

In order to experimentally validate the designed and
implemented photonic-based EW system with all possible radar
waveforms, open-field experiments are conducted transmitting
different radar waveforms from a distant radar system and the
developed PEWS is subjected for the collection of all the radar
signature and MATLAB-based EW signal processing to extract
the temporal, and spectral primary PDW parameters. A portion of
those results collected on-the-spot open-field experiments are
shown in Figure 11(a)-(h). In all these on-the-spot validation
experiments, the waveforms of the radar system are tuned one to
another, i.e., CW to plain pulse, plain pulse to RF-pulse, RF-pulse
to frequency-modulated pulse, frequency-modulated pulse to
phase-modulated pulse, & back, over the time, in order to mimic
the dynamic waveform change profile/nature of the stealth radar
system, finally, the acquired EW signals are logged and then
transferred into the MATLAB environment. As a test case, a
continuous sinusoidal wave is generated at the frequency of 50 Hz

Freuency GHz)

urull‘ﬁl!w-H

i
AR ARRRERY

{\

SRR RRIRRNNNY
| ‘\‘

HH
{H

(RRRRRRRARARARAAS

with the sampling frequency of 1 KHz, as shown in Figure 11(a),
and the same is transmitted toward the PEWS. The PEWS
receiver captures the 50 Hz CW signal for the period of every 1 s
and subjects it to the spectral profile estimation as detailed in
Laurenzis et al. [34]. The result of the spectral estimator is shown
in Figure 11(c) which clearly shows the spectral signature of the
captured CW signal, i.e., the dominant frequency component
present in the signal is 50 Hz. In the second test case, the radar
model is switched to plain pulse transmission whose temporal
signal is shown in Figure 11(b), therein, the pulse repetition
frequency is 100 Hz, sampling frequency is 10 KHz, and pulse
width/duty cycle is 20%.

The designed PEWS captured the plain pulse for every one-
second period, computed the spectral signature, and the result of a
1 s temporal signal is shown in Figure 11(d), which proves the
capability of our proposed PEWS for receiving the plain pulse.
Figure 11(d) clearly shows the “sinc-function” spectral response
[18] close to the DC for the plain pulse and a dominant frequency
single-tone peak at 100 Hz for the plain pulse’s PRF, which are
the actual EW signatures of the captured plain pulse signal. In the
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Figure 10
(a) and (b) Spectrum result of single-tone and stepped-frequency-modulated CW signals
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third test case, the radar model is switched to the sinusoidal pulse
mode as shown in Figure 11(e) whose frequency is 500 Hz,
sampling frequency is 10 KHz, pulse width/duty cycle is 50%, &
PRF is 1 Hz, and the same is transmitted. The result of our PEWS
for this sinusoidal pulse signal is shown in Figure 11(g); which
accurately measures the EW frequency signature of the received
signal at 500 KHz. Please note that in this experiment a low-pass
filter of cut-off frequency 2 Hz is applied; hence, the magnitude
around the DC is blocked in the result. This is the reason why
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does the PRF is nor shown in the result. In the fourth test case,
the radar transmitter is switched into the LEFMCW signal whose
parameters are frequencies 30 Hz through 100 Hz, sampling
frequency 10 KHz, and sweep PRT 10 s, as shown in Figure 11(f).
The processed respective result of our PEWS for this LFMCW
signal is shown in Figure 11(h) which clearly illustrates the
instantaneous bandwidth of 80 Hz, i.e., Flow is 30 Hz, and Fhigh is
100 Hz. In order to validate the performance of our PEWS
optoelectronic architecture for the inter-pulse-modulated radar
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Figure 11
Performance validation of developed PEWS with the radar signatures of (a) CW signal, (b) plain pulse signal, (e¢) RF-pulse signal, and
(f) linear frequency-modulated signal, with their respective spectral profiles in (c), (d), (g), and (h)
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Figure 12

Performance validation of developed PEWS with the radar signatures of (a) impulse signal, (b) Barker code signal, (¢) Frank code
signal, and (f) frequency-compressed pulse signal, with their respective spectral profile in (c), (d), (g), and (h)

(@) Impulsed wafeform
1 : :
3~
£> 1 [
SE ' —
£~ '
b I
o 1 2 3 «_ s 6 7 s s 10
() Time (s) x10*
. 006
o
3
= o
X
2w
<
% 100 200 200 00 " P
(e) Frequency (Hz)
1 : -
8" Frank code
2S
g
st
Y 1 12 14 16 18 2 22
(9 Time(s) x10?
250
@200
T
=50/
3
100/
3
S50
<
0 . . .
0 2 4 6 8 10 12
Frequency (Hz) K10t

(b) Barker code
1 .
o 05
A
=25 -
3’
E 05!
B 16 18 2 22
d . X10%
( ) Time (s)
a 400 T
2
= 300 1
=
X zoo'» ‘I‘ 1
]
a
< 100 |
o
12 14
Frequancy (Hz) X 10
(f) Frequency compressed pulsed waveform

Amplitude
& (mV) _
] o

n

3
(h) Time (s) x10"
0.15 !
@ 0.1
s |
go.os
3 0 LJ
< Y 500 1000 1500
Frequency (Hz)

11



Journal of Optics and Photonics Research Vol. 00

Iss. 00 2025

waveforms, the radar system is operated in another four different
modulation schemes as impulse signal, Barker code signal (binary
phase modulation), Frank code signal (poly-phase modulation),
and frequency-compressed pulse signal as shown in Figure 12(a),
(b), (e), and (f), respectively. An impulse of 0.2E-3 pulse width and
~1E-3 off period containing a cycle of 5 KHz frequency is
generated as shown in Figure 12(a) and transmitted. The processed
respective spectral profile is shown in Figure 12(c) which is a “sinc-
function” and shows the frequency present in the on-period along
with the pulse repetition frequency. In the second test trail, a Barker
code of B7 is generated by modulating the binary phase (i.e., 0° or
180°) of a sinusoidal signal as shown in Figure 12(b), and its PEWS
processed spectral signal is shown in Figure 12(d) which clearly
illustrates the fundamental frequencies present in the sinusoidal
signal. The reason for the occurrence of different low-magnitude
frequency components is the signal amplitude shift happening during
the time-instant of phase shift within the pulse-on period.

In the third trial test, a Frank code is generated by the radar
system modulating a sinusoidal signal at its four-phase values
(ie., 0° 90° 180° or 270°) as shown in Figure 12(e) and
transmitted toward the PEWS, and its processed results are also
shown in Figure 12(g). As mentioned above, the spectrum is not a
single tone due to the impulse nature of phase shift that happened
during the multi-phase modulation of Frank code. In the last trial
test, four different frequencies of continuous sine waves of 100
Hz, 300 Hz, 1000 Hz, and 1400 Hz at different time intervals
0of 0.2 5, 0.5s, 0.8 s, and 1 s, respectively are generated, as shown
in Figure 12(f) and transmitted. The result of our PEWS is
shown in Figure 12(h) evidence the accurate reception of all those
frequency components present in the received EW signal.

Therefore, as proved in the simulation, indoor, and on-the-spot
experimental results, our developed photonic-based EW system is
capable of capturing the radar signatures and processing them to
illustrate/measure the spectral profile’key parameters that are
pertaining to their remote sources.

7. Conclusion

The evolution of EW systems and PEW systems has been briefed
right from the scenario of World War L. The significance of incorporation
of photonics into the EW technology/applications is detailed.
A comparative analysis of EW systems with the PEW systems, in
terms of several key parameters, is performed and reported.
A regressive state-of-the-art literature review/survey is performed in
order to understand the worldwide research scenario and industrial
developments happening in the field of PEW systems, and the
outcome of the review is reported. Design principles of different radar
waveforms, their RF-optical modulation techniques, and their effective
demodulation techniques are presented with the essential background
mathematical concepts. The design, modeling, and evaluation of a
CW, pulsed, and FMCW photonic EW system are done in
optisystem/MATLAB environments. The preformation of optisystem
environment-designed CW, pulsed, and FMCW PEWS are verified
using the RTO and spectral-profiling software tools. The designed
PEWS is implemented using the optoelectronic and photonics
components whose hardware design and its realization methodologies
are detailed. The accuracy and efficiency of our proposed/
implemented PEW system are examined by on-the-spot experiments
transmitting, and processing the CW, plain pulse, RF-pulse, FMCW,
impulse, Barker code, Frank code, and frequency-compressed pulse,
and the results proved that our proposed/implemented design is
appropriate for the intended missions. The RF CW signal frequencies,
PRTs, pulse widths, phase modulations, poly-phase modulations,
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sweep frequencies, and RF power levels are varied, during the system
performance investigations, as 100 Hz through 8 GHz, 10 ms through
2 ps, 750 ns through 2 ns, 0°, & 180°, 0°, 90°, 180°, & 270°, and
—84 dBm through 30 dBm, respectively. Implementing the entire
system in a compact/packaged from and subjecting it to the real-field
operations is one of our ongoing researches. However, the designed
PEWS is of high-cost and a complex one due to its configuration
using the discrete optoelectronic components, which can be largely
reduced by incorporating them in the form of PICs. Also, increasing
the instantaneous operation RF bandwidth and performing most of
the RF/EW signal processing in the photonics domain itself
improve the effectiveness of PEW system which are our near-future
research works.
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