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Abstract: For over six decades, chalcogenide glasses (ChGs) have played a pivotal role in the optical community, fostering innovations and
new applications in photonics, electronics, and electro-optics. In the last decade, the exploration of novel applications, such as Gradient Index
(GRIN) ChGs, has underscored the need for a nuanced comprehension and precise control of nucleation and crystallization kinetics in
emerging infrared glass compositions. This article explores the activation energy of crystallization in amorphous materials, particularly
focusing on ChGs. It identifies long-standing challenges associated with existing models used for crystal growth in nucleated glasses.
Employing carefully outlined mathematical logic, our study critiques conventional models and introduces innovative equations centering
around the need for balanced units and proper physical trends. These new models overcome some shortcomings of the established
framework and provide a more accurate depiction of crystallization kinetics. To validate the efficacy of our proposed models, we
conducted a comparative analysis using differential scanning calorimetry data from a recently published Sb-Te-Se chalcogenide glass
composition. The numerical and graphical results clearly illustrate the improvements inherent in our models and their practical utility.
Beyond ChGs, our models and equations have broader applications. They may extend to oxide, halide, oxy-halide, and fluoride glass
compositions, as well as polymers, contributing new tools to the understanding of crystallization kinetics across diverse materials.
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1. Introduction

Differential scanning calorimetry (DSC) testing provides the
quickest and most accurate means to determine the crystallization
behavior of chalcogenide glasses (ChGs). These glasses contain
neither oxygen nor any other anion. Unlike oxide glasses, they are
not ionically bonded materials. Structurally, they are composed of
van der Waals forces bonded and covalently bonded molecules,
with the former being the more predominant percentage (Loretz
et al., 2022). They are made by melting high atomic mass
elements found in the periodic table and quenching the molecular
melts to an amorphous state.

When DSC enthalpy data are collected and evaluated properly,
optimum temperatures for nucleation and crystallization, as well as
the correct activation energy for crystallization, can be determined
readily. While the mathematics presented within this paper
provides the foundations for the accurate solution of the optimum
temperatures for nucleation and crystallization, we only address
their use for determining the expression known as “the activation
of crystallization.” We will address the application of DSC
endothermic and exothermic data to the task of determining the
optimum (correct) temperatures for nucleation and crystallization
in future publications.

Elabbar et al. (2008) published a chalcogenide glass research
paper covering crystallization work done on a specific glass

formula, found within the Sb-Te-Se compositional arena. They
applied the traditional equations developed more than 80 years
ago by Johnson, Mehl, and Avrami (the JMA model) (Avrami,
1939, 1940, 1941) in combination with those developed more
than 55 years ago by Kissinger (1956) and Moynihan et al. (1974)
to draw conclusions about the crystallization behavior of this
amorphous material.

Starting with the JMA model, Equation (1), we derive new
models and equations to replace those normally advocated in the
literature but rarely given more than simple mathematical
presentation and never given any mathematical justification, based
on our literature review. These original models and equations are
consistently applied to chalcogenide glass compositions during
DSC studies (Abdel-Rahim et al., 2002; Augis & Bennett,
1978; Imran et al., 2001; Kissinger, 1957; Larmagnac et al., 1981;
Lasocka, 1976; Matusita & Sakka, 1980; Moynihan et al.,
1996; Ozawa, 1971; Patel & Pratap, 2012).

Our equations correct the irrational behavior, whereby key
temperature points, such as the glass transition temperature (Tg),
calculated using DSC enthalpy data collected from endothermic
and/or exothermic results, migrate to absolute zero (along with the
integrals over temperature) as DSC heating rates approach “0”
degrees per unit time. Our new equations are temperature unit and
time unit independent and allow for zero (i.e., final and true
equilibrium) and near-zero heating rates to be evaluated without
calculation errors (such as divide by zero). We provide a detailed
mathematical explanation, which includes all logical steps.*Corresponding author: Thomas J. Loretz, Computer Engineering Service,

USA. Email: tom@CESWorldHQ.com
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1.1. The original JMA equation

α

α1
¼ 1� e�k tn (1)

Where:
α is the volumetric fraction of crystallites at time t,
α1 is the maximum fractional volume of crystallites possible,
k is the reaction rate constant (reactions/unit time),
t is the reaction time, and
n is the “Avrami” exponent associated with nucleation and
crystal growth mechanisms (unitless).

We cannot ignore the mathematically irrational nature of Equation (1),
which raises “e” to a final power value that is neither unitless nor
designed to have some type of useful fixed units, given that the time
units contribution changes as n changes. Instead, we choose to
accept the documented research of Khanna and Taylor (1988). Like
us, they conclude that a mathematically rational model multiplies the
reaction rate constant (k) with the reaction time (t) to create a
unitless quantity which is then raised to the power of the Avrami
constant, “n”. They evaluated this model with material standards of
known activation energy and confirmed their beliefs through
controlled experiments.

1.2. The modified and corrected JMA equation

α

α1
¼ 1� e� k tð Þn (2)

We will use this equation from this point forward and suggest that
future researchers do the same, in light of its obvious
mathematical correctness and more importantly, in light of its
experimental validity. As explained above, this model does not
suffer from the obvious mathematical imbalance of its predecessor.

1.3. The Arrhenius equation

Nucleation and crystallization are thermally activated processes
and therefore as a salient element of the JMA process, the reaction
rate constant “k” is related to the temperature by the Arrhenius
equation:

k ¼ A e� E
RT (3)

Where:
k is the reaction rate constant (1/unit time) for nucleation (kN ) or
crystallization (kC),
A is the pre-exponential factor (1/unit time) for nucleation (AN )
or crystallization (AC),
E is the nucleation (En) or crystallization (Ec) activation energy
(kJ mol−1),
R is the gas constant (8.314e-03 kJ mol−1 °K−1), and
T is the temperature (in °K) associated with nucleation (TN ) or
crystallization (TC).

For this paper, we are only interested in discussing the physics and
mathematics of the crystallization process. Although we will not
discuss the nucleation dynamics in this paper, the physics and
mathematics of the process are expected to be similar. We will
briefly discuss the misconceptions within our ChG community,
which are associated with the determination of the correct

nucleation and crystallization enthalpies for DSC analysis.
However, we will ignore the effects of these issues for the
purpose of this paper. The effects of these issues and corrections
will be addressed in future papers by us and by our other team
members.

The correct nucleation and crystallization enthalpies found
within the boundaries of a DSC thermogram are those which
would be located at the Limit “0” or, therefore, a heating rate of
zero Kelvin degrees per unit time (alternately, zero degrees
Celsius per unit time). Without exception, every ChG research
paper we have studied ignores this requirement. Typically, the
researchers elect to use a DSC sample heating rate of 10 °C/min
or, worse yet, 20 °C/min, with no explanation or justification,
leading us to conclude that researchers are simply doing what
their colleagues are doing and not giving any consideration to
why. Occasionally, we see measurements in the 3 to 5 °C/min
range. However, these are rare and also without explanation. In
future papers, we will explain why and how to use a DSC to
measure at the Limit “0” to locate and evaluate all endotherms
and exotherms.

Beyond the issue of location, the correctly chosen DSC
crystallization enthalpy is a thermogram feature which starts at the
baseline (zero enthalpy) and peaks at some positive value before
declining in magnitude back to the baseline zero value (i.e.,
exothermic peak). Typically, the feature is symmetric in nature
and its peak value provides the best temperature for controlled
crystallization. Its internal area represents the sum of all heat flow
(dH/dt) from t0 to t1 [or the enthalpy at t1 ΔH1ð Þ] and is readily
integrated mathematically. Furthermore, the crystallization reaction
rate constant (k) has a value of “0” at the start of the feature, expe-
riences its largest value at the peak, and returns to zero at the end of
the feature.

The problem with Equation (3) for a reaction rate approaching
zero is that the temperature would need to approach absolute zero.
Beyond the intuitive irrational nature of this issue, we know that
this is not true, because the start of the crystallization process
must occur at elevated temperatures that exceed the true glass
transition temperature, Tg ; for the amorphous material. This is to
say that mechanically the glass may no longer exist within its elastic
domain and must be in its inelastic domain, where relaxation time
constants are quite small, allowing atoms to move freely throughout
the amorphous matrix. For our reformulation of Equation (3), we are
interested in seeing how reaction rate k varies with temperature rel-
ative to a given reaction rate k1 at temperature T1.

1.4. Our new mathematical model

1þ k
k1

� �
¼ A0e

�Ec
R

1

T
� 1

T1

� �
(4)

Where:
k is the reaction rate constant (reactions per unit time),
k1 is the reaction rate constant linked with T1,
A0 is the pre-exponential factor (unitless),
EC is activation energy “density” of crystallization (kJ mol−1),
R is the gas constant (8.314e-03 kJ mol−1 °K−1), and
T is the temperature (°K).

(Please refer to Appendix-A for mathematical proofs associated
with the following derived equations presented)
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1.5. Our modified Kissinger relationship

From Equation (4), ki varies as 1=Ti. The slope of

ln
1þ βi

β1

� �
T2
i

0
BB@

1
CCA vs

1
Ti

� �
is such that it follows our modified

Kissinger relationship:

d ln
1þ βi

β1

T2
i

 ! !

d
1
Ti

� �� � ¼ �EC
R

,

where

β1 ¼ 1
�
K min�1 ¼ 1

60
�
Ksec�1 ¼ 60

�
K hr�1; etc: (19)

(Loretz & Loretz, 2024)

The units of the gas constant “R” are kJ mol−1 °K−1, and the term
1
Ti

h i
has units of °K−1. This makes EC

R
1
Ti

h i
a unitless term.

ln Ti
2ð Þ has units °K2 and thus the term Const has units °K−2 {which

is expected since it is proportional to ln 1
T0

� �
2

h i
}.

If we plot ln
1þ βi

β1

� 	
Ti

2

� �
vs 1

Ti

h i
, the slope is � EC

R


 �
and will be

different than that of the original formulation.
The value of the “Activation Energy” for any temperature

domain of interest can be determined from our key equation:

�1ð Þ x R x slopeð Þ½ � ¼ EC (20)

(Please refer to Appendix-B for mathematical proofs associated
with the following derived equations presented)

Using the derivation logic as detailed Appendix-B,
Equation (B1b), the resulting MODIFIED model equation is

1þ β

β1

� �
¼ 2

T2

T2
1

� �
e
� EC

R
1
T

� 1
T1

� �
(30)

(Please refer to Appendix-C for mathematical proofs associated
with the following derived equations presented)

A numerical comparison of the original and modified models
[Equations (B5b) and (30), respectively] will be graphically
demonstrated in the next section of the paper.

2. Experimentation

A DSC instrument provides a measurement of enthalpy
(energy) per mol (differential power with time per unit mass of
glass sample) as a function of a precision heating rate (°K sec−1).
Power is defined as “work/time” (or, energy/time) and 1 Watt of
power equals 1 J/sec. One mol is equal to 1.0 Avogadro’s number
of atoms of a material, where the mass of the glass sample
equates to “x” mols of material (which is determined through
knowledge of its density). Therefore, a calibrated and correctly
applied DSC instrument provides graphical measurement
values of differential energy per second per mol of glass
(ΔJ sec−1 mol−1), as a function of glass temperature increase
per second (Δ°K sec−1) for a given temperature (°K), (or,
ΔJ mol−1 °K−1), a useful fact often overlooked. Table 1 is created
using data extracted from the paper.

In accordance with our mathematical models, we make
β1 ¼ 1:0 �K min�1. The data employed in our numerical
example were taken from a recent research paper that examined
the activation energy of a new composition of chalcogenide glass
in the Se-Te-Sb family (or, by convention, Sb-Te-Selenide
family).

The results of Table 1 are used to generate the two slope lines
found in Figure 1. The red line represents the original slope
determined by Elabbar, with its calculated activation energy of
approximately 116.7 kJ per mol. The blue line represents our
modified slope, with its corrected calculated activation energy of
approximately 99.6 kJ per mol, which is significantly less (15%)
energy to accomplish crystallization.

We believe that the change in activation energy is explained by
the elimination of the inherent temperature approach to absolute
zero of the original formulation and thus the use of a more
physically rational temperature domain in the modified
formulation.

Table 1
A comparison evaluation of the activation energy of crystallization for Sb0.9-Te20.0-Se79.1 chalcogenide glass

by applying traditional models and our models

T T2 1000
T β=β1 1þ β

β1
ln β=β1

T2

� �
lnð1þ

β

β1
T2 )

°K °K 2 °K −1 Unitless Unitless °K −2 °K −2

400.0 160000 2.500 19.75 20.75 −9.00 −8.95
397.3 157846 2.517 15.95 16.95 −9.20 −9.14
396.2 156972 2.524 15.09 16.09 −9.25 −9.19
393.2 154635 2.543 13.45 14.45 −9.35 −9.28
390.5 152469 2.561 11.41 12.41 −9.50 −9.42
387.1 149883 2.583 8.31 9.31 −9.80 −9.69
384.0 147475 2.604 5.21 6.21 −10.25 −10.07
382.0 145902 2.618 4.02 5.02 −10.50 −10.28
379.5 144025 2.635 3.09 4.09 −10.75 −10.47
375.9 141331 2.660 1.93 2.93 −11.20 −10.78
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where per Equation (19): Modified Slope = −11.98 = �Ec=R, Ec ¼ −11.98 × 8.315 kJ mol−1 °K−1= 99.61 kJ mol−1.
Original Slope = −14.03 = �Ec=R, Ec ¼ −14.03 × 8.315 kJ mol−1 °K−1= 116.65 kJ mol−1.

3. Model Comparison

The original and modified models [Equations (B5b) and (30),
respectively] can be evaluated numerically using the data from the
above experiment. The result of the numerical calculations is
shown visually in Figure 2. The original and modified curves

follow the same trend with temperature, as expected, when higher
heating rates are employed.

However, if one focuses on the low tonear zero heating rate range,
as depicted in Figure 3, it becomes obvious that the models diverge.
This behavior is the consequence of the original formulation moving
toward absolute zero temperatures as heating rates decrease, while

Figure 1
Comparison of models for activation energy “slope” determination. The slope of the blue line is the accurate

slope for use with Equation (19) to yield the activation energy of crystallization

Figure 2
Comparison of heating rate versus temperature for the original and modified Kissinger formulations
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the modified model approaches a limiting temperature as heating rates
decrease [a temperature which is slightly lower than T1 (about 7 °K in
this example, as shown below)].

From the numerical data, T1 for the modified formulation is
about 370.8 °K. This is the temperature where Equation (30)
evaluates to β

β1
¼ 1. Using equation (C1) to solve for T0 in terms

of the value of T1, the limiting temperature value is about
T0 ¼ 363:5 °K, which is the intercept shown in Figure 3.

4. Conclusions and Discussion

For more than 55 years, chalcogenide glass (ChG) researchers
have applied the Johnson–Mehl-Avrami (JMA) model in
combination with either the Kissinger or Moynihan model to
determine the activation energy for crystallization (Abd El-
Raheem & Ali, 2010; Abu-Sehly et al., 2009; Afify, 1991;
Ahmad et al., 2010; Al-Ghamdi et al., 2011; Aly, 2017; Dahshan
et al., 2010; Kaur et al., 2000; Lee et al., 2004; Vázquez et al.,
2004; Yinnon & Uhlmann, 1983). Individually and collectively,
these models incorporate equations that have implicit
shortcomings and which may lead to incorrect solutions,
especially when employing slow heating rates. We have analyzed
the equations associated with these models and corrected them to
achieve necessary end results. We have provided the logical steps
behind corrections and using DSC data found in published
literature we have compared our solutions against those made
with the original equations.

While we have only evaluated a modest number of research
papers concerning ChG nucleation and crystallization, we have
assessed a sufficient number of publications to feel confident that
the reduction in energy demonstrated in this study will extend to
other glass types as. We maintain this belief as a result of our
work in the field of ChG science in general, where we have
evaluated hundreds of peer reviewed papers covering DSC
experimentation and analysis for a variety of other reasons.
Unfortunately, most DSC data in the literature are taken at either
10 °C/min or 20 °C/min heating rates and therefore mispositions

the true endothermic and exothermic enthalpies necessary for
useful nucleation and crystallization data. For this reason, we
expect that even larger and more profound variations will be
generated in research studies which incorporate properly analyzed
DSC nucleation and crystallization thermograms using data sets
taken at the limit zero heating rate. We and our other team
members will be providing further insight into this problem and
its remedy in the near future.

The information provided in this paper offers a fundamental
advancement in the field and a fresh perspective on the activation
energy of crystallization in amorphous materials. By refining
existing models and presenting new mathematical frameworks, it
improves accuracy in describing nucleation and crystallization
kinetics. This study should be particularly useful for researchers
studying ChG Gradient Index (GRIN) compositions, where
controlled variations in the refractive index are employed to focus
light rather than traditional component geometry (Yadav et al.,
2019). Typically, lasers and masks are used in combination with
DSC nucleation and crystallization data to produce the desired
lens performance. The application of these models to experimental
data, particularly in the context of GRIN ChGs, underscores their
importance and potential for widespread adoption in diverse
material systems.

Recommendations

As researchers continue to develop highly specialized ChGs for
optical, electro-optical, and electronic applications relying on
nucleation and crystallization control, they will need access to
more accurate activation energy information than presently
available using current mathematical models. They will also need
access to accurate information concerning nucleation and
crystallization temperatures. Without such data, a useful process
can neither be developed nor optimized. We believe that such
accuracies can only be achieved by analyzing endothermic and
exothermic behaviors properly and then applying the models and
equations provided by us in this paper. Lastly, we believe that our

Figure 3
Reexamination of Figure 2 with focus on the low to near zero β

β1

� �
heating rate range
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models can be used in most other material fields (such as polymers)
where DSC is employed to generate similar enthalpy data.
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Appendices

Appendix-A

We can solve for A0 when k equals k1 at temperature T
equals T1:

1þ k1
k1

� �
¼ A0e

� Ec
R

1
T1

� 1
T1

h i
(A1a)

2 ¼ A0 e�
Ec
R 0½ � ¼ A0 (A1b)

In the limit as k approaches “zero” and T approaches T0, and
Equation (4) becomes:

1þ 0 ¼ 2e
� Ec

R
1
T0

� 1
T1

h i
(A2a)

1
2
¼ e

� Ec
R

1
T0

� 1
T1

h i
(A2b)

� Ec
R

1
T0

� 1
T1

� �
¼ ln

1
2

� �
(A2c)

T0 ¼
1
T1

þ R
Ec

ln 2ð Þ
� ��1

(A2d)

Thus, we can express Equation (4) in terms of the limiting
temperature T0 as

1þ k
k1

� �
¼ 2e

� Ec
R

1
T þ R

EC
ln 2ð Þ� 1

T0

h i
or (A3a)

ln 1þ k
k1

� �
¼ ln 2ð Þ � EC

R
1
T
� 1

T0

� �
� ln 2ð Þ (A3b)

ln 1þ k
k1

� �
¼ � EC

R
1
T
� 1

T0

� �
(A3c)

The derivative of Equation (A3c) with respect to time is

d
dt

ln 1þ k
k1

� �
¼ d

dt
� EC

R
1
T
� 1

T0

� �� �
(A4a)

1=k1

1þ k
k1

� � dk
dt

¼ EC
R

T�2 dT
dt

(A4b)

dk
dt

¼ k1 þ kð ÞEC
R

T�2 dT
dt

or (A4c)

dk
dt

¼ k1 1þ k
k1

� �
EC
R

T�2 dT
dt

(A4d)

Returning to Equation (2), the derivative of the fractional crystalline
volume with respect to time is

1
α1

dα
dt

¼ �n ktð Þn�1 t
dk
dt

þ k
dt
dt

� �� �
e� ktð Þn (A5a)

1
α1

dα
dt

¼ �n ktð Þn�1 t
dk
dt

þ k

� �� �
e� ktð Þn (A5b)

Substituting Equation (A4d) yields:

1
α1

dα
dt

¼ �n ktð Þn�1 k1t 1þ k
k1

� �
EC
R

T�2 dT
dt

þ k

� �� �
e� ktð Þn

(A6)

If the heating rate is constant such that dTdt ¼ β, then Equation (A6)
becomes:

1
α1

dα
dt

¼ �n ktð Þn�1 k1t 1þ k
k1

� �
EC
R

T�2 βþ k

� �� �
e� ktð Þn

(A7)

Now, when k ¼ ki, the Equation (A7) for dαi
dt becomes:

1
α1

dαi
dt

¼ �n kitð Þn�1 k1t 1þ ki
k1

� �
EC
R

Ti
�2 βi þ ki

� �� �
e� kitð Þn

(A8)

Taking the natural log of both sides yields:

ln
1
α1

dαi

dt

� �
¼ ln �n kitð Þn�1k1t 1þ ki

k1

� �
EC
R

Ti
�2 βi � n kitð Þn�1ki

� �
� kitð Þn or

(A9a)

ln
1
α1

dαi

dt

� �
¼ ln �nk1 kið Þn�1tn 1þ ki

k1

� �
EC
R

Ti
�2 βi � nðkiÞn tð Þn�1

� �
� kitð Þn

(A9b)

When ki ¼ k1, Ti ¼ T1; βi ¼ β1 and αi = α1, then Equation (A9b)
yields:

ln
1
α1

dα1
dt

� �
¼ ln �nk1 k1ð Þn�1tn 1þ k1

k1

� �
EC
R
T1

�2 β1 � nðk1Þn tð Þn�1

� �
� k1tð Þn

(A10)

Rearranging terms yields:

ln
1
α1

dα1
dt

� �
¼ ln �n k1ð Þn tn 2ð Þ EC

R
T1

�2 β1 þ tð Þ�1

� �� �
� k1tð Þn

(A11)

Thus,

1
α1

dα1
dt

¼ �n k1ð Þn tn 2ð Þ EC
R

T1
�2 β1 þ tð Þ�1

� �
e� k1tð Þn (A12)

Integrating Equation (A12) vs fractional volume yields:

ð
α1

0

1
α1

dα1 ¼
ð
tfinal

0
�n k1tð Þn�1k1 2ð Þ EC

R
β1

T2
1
t þ 1

� �
e� k1tð Þndt

(A13)

The left-hand side (LHS) of Equation (A13) integrates to unity. This
has to equal the integral of the right-hand side (RHS) of the equation



as the “final time” (tfinal Þ approaches infinity. The right-hand side of
Equation (A13) can be rewritten as

limtfinal !1

ð
tfinal

0
�n k1tð Þn�1k1 2ð Þ EC

R
β1

T2
1
t þ 1

� �
e� k1tð Þndt ¼

lim
tfinal !1

ð
tfinal

0
�n k1tð Þn�1 k1 2ð Þ EC

R
β1

T2
1
t e� k1tð Þndt þ

lim
tfinal !1

ð
tfinal

0
�n k1tð Þn�1k1e

� k1tð Þndt

(A14)

The first term on the RHS of Equation (A14) is the fractional volume
contribution from a varying reaction rate versus time (varying
temperature induced). The second term on the RHS of Equation
(A14) is the fractional volume contribution from the fixed portion
of the reaction rate. Thus, if dT/dt equals 0, meaning that the
reaction rate, k1, stays constant (and the temperature stays con-
stant), the first RHS integral also equals zero and the second RHS
integral will eventually get to unity (“1”) as time approaches infinity,
assuming one is at a favorable temperature for crystallization
to occur.

However, when dT/dt is greater than zero, the first term of the
RHS of Equation (A14) is nonzero, implying that both terms may
contribute toward a unity solution (and the solution may reach
“saturation” in less time). On the contrary, however, an ever-
increasing temperature due to heating, especially if the heating
rate is high, may reduce the time spent in the favorable
crystallization temperature range, thus reducing the amount of
crystallization that can occur. Thus, constant temperature or slow
heating rates may accomplish more complete crystallization than
fast heating rates. The fractional volume of crystals in the glassy
matrix will try to approach α1 providing the material remains in
favorable temperatures for crystallization. The physical implication
of the fractional volume achieving α1 is that no further reactions can
take place, as a consequence of all available nucleation sites either
being consumed or being separated by a kinetically prohibitive dis-
tance that prevents further crystallization.

Appendix-B

We turn our attention to the issue of units, an issue frequently
ignored by the glass community. The RHS of Equation (B1) has to
match the units of the LHS. ECR has units of °K. Thus, the LHS must
also have the units °K.

Letxi ¼
1
Ti

� �
Then;

d ln ð1þ βi=β1ð Þx2ið Þ
d xið Þð Þ

¼ 1þ βi

β1

� �
X2

� ��1 dβ=dX
β1

X2 þ 1þ β

β1

� �
2 X

� �
(B1a)

d ln ð1þ βi=β1ð Þx2ið Þ
d xið Þð Þ ¼ 1

β1 þ βð Þ
dβ
dX

þ 2
X
¼ � EC

R
(B1b)

Substituting 1
Ti
for xi yields:

d ln ð1þ βi=β1ð ÞT�2
ið Þ

d T�1
ið Þð Þ ¼ 1

β1 þ βð Þ
dβ

d T�1
ið Þð Þ þ 2T (B2)

and the units of both terms of the RHS of Equation (B2) are thus °K,
as expected.

Researchers have expressed an equation which is similar to our
Equation (B1) (Moynihan et al., 1974):

d ln βi
T2
i

� �� �
d 1

Ti

� �� � ¼ � EC
R

(B3)

These researchers either do not recognize or perhaps choose not to
acknowledge that this equation’s LHS has time units (ex. 1/min)
in the βi term. The equation, as written, will be numerically chal-
lenged when βi changes units from °K/min to °K/sec to °K/hr.
For instance, not only do the numeric values change with unit
changes but also there can be a sign change when a particular value
of βi

T2
i
goes from less than unity to greater than unity (i.e., the natural

log of a number less than unity is negative and the natural log of a
number greater or equal to unity is positive). Equation (B3) can be
corrected for time units by expressing it as

d ln βi=β1
T2
i

� �� �
d 1

Ti

� �� � ¼ � EC
R

(B4)

where β1 ¼ 1
�
K min�1 ¼ 1

60
�
Ksec�1 ¼ 60

�
K hr�1; etc:

Although Equation (B4) has addressed the potential unit issues,
there is another, more important, problem with the original
formulation that is revealed below.

Let xi ¼
1
Ti

� �
:

Then Equation (B4) becomes

d ln β =β1ð ÞX2½ �
d X½ � ¼ �EC

R
¼ β=β1 X2½ ��1 X2 1

β1

� �
dβ
dX

þ 2
β

β1

� �
X

� �
(B5a)

or
d ln β =β1ð ÞX2½ �

d X½ � ¼ 1
β

dβ
dX

þ 2
X

� �
¼ � EC

R

(B5b)

Rearranging Equation (B5b) and integrating yields:

ð
β

β1

1
β

dβ ¼ ln βð Þ � ln β1ð Þ ¼
ð
X

X1

� EC
R

� 2
X

� �
dX

¼ � EC
R

X � X1½ � � 2 ln Xð Þ þ 2 ln X1ð Þ (B6)



or, after substituting 1
Ti

� �
¼ xi and evaluating terms results in:

ln
β

β1

� �
¼ � EC

R
1
T
� 1

T1

� �
þ ln

T2

T2
1

� �
(B7)

Taking the inverse natural log of both sides of Equation (B7) yields
the ORIGINAL model equation is

β

β1

� �
¼ T2

T2
1

� �
e�

EC
R

1
T� 1

T1


 �
(B8)

If one evaluates Equation (B8) in the limit of zero heating rate, one
obtains the following relationship to the limiting zero heating
temperature T0:

lim
β!0

β

β1

� �
¼ T0

2

T2
1

� �
e
�EC

R
1
T0

� 1
T1

h i
¼ 0 (B9)

The only way to satisfy Equation (B9) is for the temperature T0 to
approach absolute zero. The reality is that we do not see such a

plunge in temperature if, for instance, very low heating rates are uti-
lized in a DSC or the DSC is turned off all together. Luckily, a more
precise physical model can be developed using the relationship of
Equation (B1b).

Appendix-C

For the relationship of a zero-valued heating rate to
temperature T0, the resulting equation is

lim
β!0

β

β1

� �
¼ 2

T2
0

T2
1

� �
e
� EC

R
1
T0

� 1
T1

h i" #
� 1 ¼ 0 (C1)

Equation (C1) shows that there is a temperature T0 associated with a
zero-valued heating rate that is not tied to absolute zero. In fact, the
temperature T0 is related to temperature T1 by

2 ln T0ð Þ � EC
R

1
T0

� �
¼ � ln 2ð Þ þ 2 ln T1ð Þ � EC

R
1
T1

� �
(C2)
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