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Abstract: In the past decades, the metal halide perovskites gained tremendous attention from researchers because of its excellent visible light
absorption and promising power conversion efficiencies. But due its toxic nature and concerned ecological hazards, it cannot be commercialized
on a large scale. So there was a need to introduce a new toxic-free alternative. According to this paper, a volume lead-free perovskite structure is
quantitatively investigated using 1D solar cell capacitance simulator (SCAPS) software. A new approach is used in which the lead-free active
layer CH3NH3SnI3 is encased in two bilayers of a simultaneous simulation that investigates the hole transport layer and electron transport layer
and fine-tunes their respective thicknesses as well as the absorber layer to attain the best possible performance for the suggested structure.
Furthermore, a number of parameters influencing electrical properties were studied statistically, including the effect of different rear
connections, temperature changes, doping concentration in the absorber layer, defect states at interfaces, and the overall density of defects.
The optimal configuration yielded an open circuit voltage (Voc) of 0.96V, a short circuit current density (Jsc) of 32 mA/cm2, a fill factor of
82.02, and a power conversion efficiency of 26.09% under standard AM1.5 G conditions.
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1. Introduction

The current global trajectory is moving toward sustainable and
environmentally friendly with the increasing demand for energy and
the substantial expenses linked to conventional sources; there is a
growing interest in alternative energy sources, polluting resources.
Solar energy is more efficient, eco-friendly, and a reliable energy
resource compared to other types of resources for electric power
generation. According to a recent prediction, solar technology is
expected to generate one-third of the world’s electric power by
the end of 2030 [1].

The 1G solar cells (monocrystalline and polycrystalline)made up
of silicon wafers are contributing 90% to the fabrication of
Photovoltaic (PV) products throughout the international market
having an about 26% power conversion efficiency known as PCE
[2, 3]. However, due to its very high fabrication cost and low PCE,
further improvements in PCE have faced challenges due to
technological and material-wise issues [4]. Solar technology is
being innovated to improve the PCE. One of the most innovative/
novel contributions is the third-generation perovskite-based
photovoltaic cells. Throughout the last 10 years, solar cells based
on perovskites have garnered appreciable curiosity among
academics due to their notable power conversion efficiencies,

enhanced mobility, heightened absorption capabilities, extended
diffusion durations, and cost-effective fabrication processes [5]. The
efficiency of CH3NH3PbX3 perovskite solar cells (PSCs) has seen
remarkable increase, increasing up to 25.2% in 2019 from 3.8% in
2009 [6]. The compound known as perovskite can be represented
by the chemical composition ABX3: in this case, X stands for an
anion, and cations A and B come in various sizes. One of
perovskite’s features is that it may behave as an active layer or
light harvester [7]. Methylammonium lead tri-iodide (MAPbI3) has
been a potential candidate for its use as an absorbing layer with a
tunable energy bandgap of range (1.5−2.3 eV) [8, 9]. Even though
lead base PSC shows the highest efficiency which has reached
nearly 23% but due to its toxic nature, instability, ecological
hazards, and easy degradation with water, it cannot be
commercialized on a large scale. As there was need of suitable
alternative of CH3NH3PbI3 across the world, CH3NH3SnI3 is being
researched due to its many features, like good stability, low energy
bandgap (almost 1.3 eV), significant absorption coefficient, shorter
diffusion length, and low recombination rates as compare to
CH3NH3PbI3 [10–12].

PSCs fall into one of two main structural categories: either the
(p−i−n) or (n−i−p) structure. Despite their straightforward design,
planar PSCs have few interface defects and excellent internal
quantum efficiency (QE). A transparent electrode (Fluorine-doped
Tin Oxide (FTO) or Indium Tin Oxide (ITO)), an electron
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transport layer (ETL), a perovskite absorber layer, and a hole
transport layer (HTL) are the essential parts of a non-inverted
planar perovskite device’s construction and a metal electrode. The
process of separating and introducing photogenerated electron-
hole pairs into a PSC’s ETL and HTL is facilitated by energy
gaps between successive layers in the cell’s structure between this
mechanism; electrons and electron vacancies are able to move
between their respective electrodes, accumulating and producing a
voltage (Voc) and light-induced current (Jsc) [13].

Typically, a perovskitematerial is expected to possess both anETL
and an HTL to make it easier to retrieve and move charge carriers
created by photos, hence improving the efficiency of the active layer
[14, 15]. In order to ensure optimal electrical conductivity and a
minimal conduction band, it is imperative that a highly efficient ETL
possesses exceptional quality. Different materials are used for TiO2,
ZnO, and Spiro-OMeTAD, but not for ETL and HTL, which have
gained significant attention due to their promising attributes [16]. In
the suggested device structure, one of the electron transport materials
(ETMs) is ZnO. It is selected for its low processing temperature and
high mobility, ensuring excellent carrier extraction [17, 18].
Moreover, ZnO enjoys widespread use in commercial solar cells
[19]. Large-scale production of PSCs faces limitations due to the
considerable expenses involved in their fabrication and the
complexity of the manufacturing process [20]. There was a
requirement for an alternate solution in this particular scenario. CuI,
an exceptional inorganic P-type material, possesses remarkable
characteristics such as a broad bandgap and high hole mobility.
When CuI is doped with poly-triaryl amine [21], up to 20% PCEs
are possible using PSCs.

This work offers a numerical examination of a novel method that
employs TiO2 andZnOas high-efficiency PSCs by usingCuI andV2O5

as the HTL and the ETL. The 1D solar cell capacitance simulator
(SCAPS-1D) is used to concurrently propose, optimize, and simulate
bilayers of ETL and HTL in the suggested configuration.
CH3NH3SnI3 is the absorber layer used in the simulations. The
device’s total photovoltaic performance was examined in relation to
various back connections, absorber layer thickness, total defect
density, interface density of defect states, and operation temperature.
Developing the proposed device structure in an experimental
environment is the aim of this preliminary study. The following are
the reasons why this structure was chosen: (1) it is more efficient
and Pb-free, (2) it has an uncomplicated deposition method, and (3)
the material is readily available on the market at low cost. The
expected results of this research are expected to provide significant
perspectives for the future research and manufacturing of lead-free
PSCs, with an emphasis on their commercial feasibility.

2. Proposed Model and Simulations

As seen in Figure 1 from upside down, Cu/CuI/V2O5/
CH3NH3SnI3/ZnO/TiO2/FTO, we have presented a non-inverted
planar heterojunction design for PSC. In the device design, the
active layer, also known as the absorber layer, is positioned
between the two layers of ETL and HTL.

Excellent ETL and HTL are necessary for maximal conductivity,
and they should also have point-to-point correspondence for a high
PCE. Each layer’s functionalities are as follows: Because of its
high mobility and low processing temperature, ZnO aids in carrier
extraction [22]. Additionally, V2O5 has been employed as HTL due
to its suitable band configuration, high hole mobility, and increased
transparency to visible light [23]. Because the compound 9,
9-bifluorene may achieve the maximum possible PCE,
Spiro-OMeTAD is often used as the HTL in PSCs [16, 20].

However, the high cost of fabrication and the intricate
manufacturing process of Spiro-OMeTAD hinder its utilization. An
alternative for Spiro-OMeTAD in HTL applications has been
suggested: copper iodide (CuI) [24].

Precise engineering is required to overcome the major
manufacturing issues posed by the combination of ETL and HTL
bilayers in non-inverted PSC design.

Our theoretical study underscores an optimized structure
featuring CH3NH3SnI3 as the absorber layer flanked by ETL
(TiO2, ZnO) and HTL (CuI, V2O5) bilayers. Achieving uniform
deposition among materials with distinct properties necessitates
precise techniques to minimize defects and ensure optimal charge
transport [25].

Controlling nanoscale thicknesses, as optimized in our
simulations, requires advanced, high-precision depositionmethods [16].

Addressing these challenges mandates a collaborative,
multidisciplinary effort. This collaboration aims to convert
theoretical optimizations into real, high-performing solar cells by
creating reliable, scalable fabrication processes [16, 26–29].

3. Result and Discussion

Figure 2 displays the energy band diagram of the researched
PSC that was simulated using SCAPS-1D. Crucial components of
solar cell analysis include evaluating the PCE, fill factor (FF),
open-circuit voltage (Voc), and current density (Jsc). These
elements are essential to understanding how a solar cell functions
and performs. Retrieving these values is made simple by
SCAPS-1D software.

Consequently, we are able to understand a variety of profiles,
including bandgap profiles and recombination profiles.
Additionally, all measurements can be performed in both bright
and dim lighting. Figure 3 shows the voltage vs current (J−V)
characteristic, whereas Figure 4 displays the QE curves for the
recommended device.

Using SCAPS-1D software, simulation was used to get these
results. Table 1 is a list of the characteristic parameters for the
suggested PSCs. The optimal layer thicknesses with PCE over
26% are 400, 50, 90, 550, 100, and 20 nm for FTO, TiO2, ZnO,
CH3NH3SnI3, CuI, and V2O5, respectively.

Figure 1
Layer scheme of the CH3NH3SnI3 perovskite structure
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3.1. Simulation model

SCAPS-1D [21], which has been widely used since the early days
of solar technology for numerical investigation of silicon-based solar
cells CIGS and CdTe, which are known as 1 G and 2 G solar cells,
respectively, is used in the current work to simulate the suggested
solar cell design. It has recently drawn interest from scholars all over
the world and has been widely employed for numerical analysis of
novel PSC structures, both inverted and non-inverted. Three pair
differential equations of semiconductors in an equilibrium situation
inside a one-dimensional setting are solved using SCAPS-1D [30].
The electron continuity in Equation (3) and the hole continuity in
Equation (2), together with Poisson’s Equation (1), describe the
fundamental charge carrier dynamics within the solar cell structure.

as
d
dx

�ε xð Þ dΨ
dx

� �
¼ q½p xð Þ � n xð Þ þ Nþ

d xð Þ � N�
a xð Þ þ pt xð Þ

� nt xð Þ
(1)

dpn
dt

¼ Gp �
pn � pn0

τp
� pnµp

dξ
dx

� µpξ
dpn
dx

þ Dp
d2pn
dx2

(2)

dnp
dt

¼ Gn �
np � np0

τp
� npµn

dξ
dx

� µnξ
dnp
dx

þ Dn
d2np
dx2

(3)

The electrostatic potential is denoted by Ψ in this context, together
with the dielectric constant (ε), electron charge (q), permittivity of
empty space (ε0), diffusion coefficient (D), and quantities of
trapped electrons, free holes, and free electrons (n, p, nt, and pt,
respectively). The symbol “Na−” denotes the presence of ionized
acceptor-like doping, whereas the symbol “Nd+” indicates the
presence of ionized donor-like doping.

The electrical and optical parameter values are derived from
appropriate literature sources, experimental studies, and theoretical
models. Tables 1 and 2 have been created from the compilation of
these values. The device simulations were performed at 300
Kelvin and normal AM 1.5 G conditions.

3.2. Influence of absorber layer thickness on
electrical characteristics

The thickness of the absorber layer has a significant effect on the
performance of solar cells. This layer has an important influence on the
PCE, FF, open-circuit voltage (Voc), short-circuit current density (Jsc),
and other crucial electrical characteristics of PSCs. Its most notable
consequence is its effect on the charge carrier diffusion length.

Figure 4
The CH3NH3SnI3 perovskite structure’s quantum efficiency

trend

Figure 2
Energy band versus distance diagram of CH3NH3SnI3 structure

Figure 3
This perovskite structure’s J–V property is CH3NH3SnI3
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This round of the simulations involved adjusting the thickness
of the active layer between 0 and 1600 nm. There was no change in
the thickness of the remaining layers, which were 400 nm for FTO,
90 nm and 50 nm for ETL, and 100 nm and 20 nm for HTL. The
dependence of Jsc on the thickness of the perovskite absorber
layer is seen in Figure 5(a). Jsc increases quickly as the active
layer thickness increases, peaking at 35.23 mA/cm2 at 750 nm
layer thickness, from 8.9 mA/cm2 at baseline. In terms of
electrical properties, Jsc is optimized at 32.94 mA/cm2 at a
thickness of 550 nm. It is associated with a rise in the rate at
which electron-hole pairs are created within the absorber layer and
are collected at the output terminals. In Figure 5(c) and 5(d), it is
noted that Voc is recorded as 0.96 V, Jsc is determined to be 32.94
mA/cm2, and FF is found to be 82.03%. Consequently, the
device’s PCE reaches its peak value of 26.09%, corresponding to
an optimized absorber layer thickness of approximately 550 nm.
The FF exhibits a consistent decrease as the thickness of the
absorber layer increases, starting at its peak value of 82.03%. FF
is mostly linked to parasitic resistances and the shape of the J−V
curve [31]. Because resistance rises as the thickness of the
absorber layer increases, as a result, FF decreases.

As the thickness of the CH3NH3SnI3 absorber increases during
batch simulation, the Voc decreases as seen in Figure 5(b). This is
because the absorber material undergoes more recombination since
charge carriers have a shorter lifetime. Charge carriers generated
within the core of the CH3NH3SnI3 layer recombine when the thick
absorber layer of PSC exceeds the diffusion length. Additionally,

increasing the thickness of the absorber layer reduces the effective
bandgap, which sharply reduces the Voc [32]. Furthermore,
according to studies by Pazos-Outón et al. [33] and Slami et al.
[34], Equation (4) demonstrates that a change in the short-circuit
current (Jsc) is proportionate to a drop in the open-circuit voltage
(Voc).This formula is dependent on the absorber layer’s thickness
and looks like this:

Voc ¼
kbT
q

ln
Jsc
Jo
þ 1

� �
(4)

As T is the operating temperature, kb is the Boltzmann constant, q is
the electronic charge, Jo is the reverse saturation current, and Jsc is the
short-circuit current density. The absorber layer is predicted to be 550
nm thick, and this is also the largest PCE value.

3.3. Influence of hole transport material and ETM
thickness layers

Despite differences in the thickness of ETM and hole transport
material ranging from 0.02 μm to 1.4 μm, the absorber layer
thickness has stayed constant at 550 nm. The results shown in
Figure 5(e) suggest that there does not seem to be any significant
influence in this specific range [35]. The further investigation
considers this optimization. Since the PCE is maximum at this
material thickness, 550 nm is considered the ideal thickness for
the absorber layer. The suggested gadget will be further optimized
with this optimization in mind.

3.4. Temperature’s impact on the properties of the
device

Understanding solar cell performance at elevated temperatures
is crucial for analyzing and ensuring efficiency and stability. At high
temperatures, material properties including carrier concentration,

Table 1
The parameters employed for the modeling of these are the results of using the SCAPS-1D program to create an inverted perovskite

solar cell

Parameters FTO TiO2 (ETL) ZnO (ETL) CH3NH3SnI3 V2O5 (HTL) CuI (HTL)

Thickness (in nm) 400 50 90 550 100 20
Permittivity-dielectric (considered relative) 9.0 9.0 9.0 10.00 8.00 6.50
(In eV) electron affinity 4.0 4.20 4.1 4.17 3.40 2.10
Bandgap (eV) 3.50 3.26 3.3 1.3 2.20 3.10
Effective density of states for VB, measured in 1/cm2 1.8 × 1018 1.8 × 1018 1.0 × 1019 1.8 × 1018 5.0 × 1020 2.5 × 1020

1/cm3 is the States’ effective density of CB 2.2 × 1018 2.2 × 1018 4.0 × 1018 2.2 × 1018 9.2 × 1019 2.5 × 1020

Thermal speed through the hole, measured in cm/s 1.00 × 107 1.00 × 107 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107

Electron temperature velocity (in cm/s) 1.00 × 107 1.00 × 107 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107

Measured in cm2/Vs, hole mobility 1.00 × 10 1.00 × 10 2.50 × 10 1.60 1.0 × 102 4.40
Mobility of electrons (in cm2/Vs) 2.00 × 10 2.00 × 10 1.0 × 102 1.60 1.5 × 102 4.40
NA (1/cm3), the shallow uniform acceptor density 1.00 × 1019 1.00 × 1017 1.00 ×1018 0.00 0.00 0.00
Neutral acceptor density at shallow depths, NA (1/cm3) 0.00 0.00 0.00 0.00 1.0 × 1019 3.0 × 1018

Type of defect Neutral Neutral Neutral Neutral Neutral Neutral
Hole capture for the cross section (cm2) 1 × 10−15 1 × 10−15 1 × 10−15 1 × 10−15 1 × 10−15 1 × 10−15

Captured electron cross section (cm2) 1 × 10−15 1 × 10−15 1 × 10−15 1 × 10−15 1 × 10−15 1 × 10−15

Origin of fault et’s energy level Above Ev Above Ev Above Ev Above Ev Above Ev Above Ev

Distribution of energies Single Single Single Single Single Single
Nt total (in 1/cm3) consistent Energy 1 × 1015 1 × 1015 1 × 1015 3.0 × 1014 1 × 1015 1 × 1015

Energy level in eV relative to the reference 0.600 0.600 0.600 0.600 0.600 0.600

Table 2
Different back contact metal’s effects

Metal back in contact Sn Ag Fe Cu Au

Function of metal work in (eV) 4.42 4.74 4.81 5.0 5.12
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bandgap, electron and hole mobility, and density of states change.
Interlayer deformation results from these changes, which also
affect device efficiency and stability. The reduction in efficiency
with increasing temperature can be ascribed to a decrease in the
diffusion length of charge carriers. Current research indicates that
as temperature rises, there is a corresponding increase in force on
the layers. This heightened stress results in the formation of

interfacial defects and a decrease in the interconnectivity between
the layers [34, 36, 37].

In order to look at how temperature changes affect PSCs’ PCE,
optimal thicknesses of all layers were employed in this phase of the
simulations: ETL (FTO, 400 nm; ZnO, 90 nm; TiO2, 50 nm),
perovskite absorber (CH3NH3SnI3: 550 nm), and HTL (V2O5, 100
nm; CuI, 20 nm).

Figure 5
Perovskite layer thickness effect on (a) power conversion efficiency (PCE), (b) open circuit voltage (Voc), (c) the short circuit current

density (Jsc), and (d) fill factor (FF). (e) Effect of ETL and HTL thicknesses on device PCE
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Figure 6 shows how temperature has an impact on PCE, FF, Voc,
and Jsc. Since the intensity of incoming light directly affects the current
density (Jsc), an increase in temperature was expected to have a similar
effect on Jsc. The link between temperature and FF is seen in
Figure 6(b), where an increase in temperature results in a reduction
in FF. The increase in series resistances and recombination rate that
happens at higher temperatures is what causes this drop [38]. There
is a direct correlation between the forward voltage drop (FF) and the
series resistance in an electrical circuit.

FF ¼ FF0 X 1� Rs

RCH

� �
¼ FF0 X 1� RsIsc

Voc

� �
(5)

Although thermal generation causes a slight increase in Jsc, as shown
in Figure 6(a) and 6(b), the loss inVoc exceeds the rate of Jsc increase,
leading to a decline in efficiency. By raising the temperature to 300
K, the simulation results are improved and the cell’s efficiency is
increased.

3.5. Amphoteric defect density’s effect

The absorber layer is a PSC’s primary layer. In the bulk of solar
processes, the active layer is where recombination, transportation, and
generation occur [39, 40]. Different kinds of conductivity are seen in the
CH3NH3SnI3 layer, depending on the deposition characteristics of Sn
and halidemolecules. Furthermore, the Sn2+ cation is highly susceptible
to oxidation during the fabrication process, resulting in defects within
the perovskite structure [41, 42]. Thus, imperfections in a solar cell’s
absorber layer determine electron-hole pair diffusion length and Voc.
The density must be adjusted to maximize perovskite device
efficiency. In this work, the amphoteric defect with uniform energy
distribution above the absorber layer’s Ev was investigated. The
defect states ranged from 1014 cm−3 to 1017 cm−3. The solar cell
performs much better at a low defect density of 3 × 1014 cm−3, with
PCE of 26.09%, Voc of 0.96 V, Jsc of 32.94 mA/cm2, and FF of
82.03% in comparison to early results. The rise in defect density up
to 1015 cm−3 barely affects all simulated parameters. Figure 7 shows
that all metrics drop drastically as defect density increases beyond
1015 cm−3. Shown in Figure 8, photovoltaic performance, photo-
generated carrier lifetime, and diffusion length depend on absorber
defect density.

The influence of the defect density in the perovskite absorber
layer on the power conversion is explained by the Shockley-Read-
Hall recombination model efficiency (PCE) of solar cells [43, 44].

R ¼ np� n2i

τp nþ Nce
ðEg�EtÞ
kBT

� �
þ τn pþ Nve

ðEtÞ
kBT

� � (6)

Here, the energy level connected to the trap faults is shown by \(E_t \).
The variables \(p \) and \(n \) represent the densities of mobile holes
and electrons, respectively. It is possible to calculate the lifespan of
electrons and holes, represented as \(\tau \), as mentioned in
Takahashi et al. [45].

τn;p ¼ 1
σn;p : v th : Nt

(7)

where σn, p is the capture cross-section area for the electrons and holes,
Nt is the density of the trap defect, and vth is the thermal velocity.

3.6. Effect on absorber’s layer by doping
concentration

Doping is a major factor in improving the efficiency of solar
cells. P-type and N-type doping are the two primary categories of
doping, which are defined by the particular dopants used [46].
One can self-dope the absorber layer for either n- or p-type
doping. Current research indicates that the use of performance-
enhancing drugs, often known as doping, has been discovered to
aid in the stability of PSCs that can increase their PCE, as several
researches have shown [47–49].

In order to investigate the impact of doping concentration on the
basics of solar cells, the doping level in the absorber layer was
systematically varied within a certain range of 1 × 1013 cm−3 to
1 × 1017 cm−3.

Figure 7 shows how absorber layer doping concentration affects
solar cell properties. Doping concentration greatly affects simulated
performance measures. The graph illustrates that there is a little
impact on parameter variation within the range of 1 × 1013 to
1 × 1016. This implies that a wide variety of doping optimization
possibilities in the absorber layer may be investigated while
preserving superior stability. Increased doping density exceeding

Figure 6
(a) Effect of temperature on Jsc andFF. (b) Effect of temperature

on Voc and PCE
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1 × 1016 cm−3 leads to higher Voc. Figure 9 shows that doping density
affects solar cell efficiency depending on the level. An increase in
charge carrier concentrations is observed in conjunction with the
augmentation of doping density at a modest level, which frequently
leads to enhancements in cell performance. The phenomenon of
exponential decay in Jsc can be observed due to the presence of a
tiny depletion region in charge carriers at high doping levels, which
hinders efficient carrier collection [50, 51]. The alteration of the

perovskite conductivity behavior resulted in a simultaneous rise in
the Voc and Jsc.

3.7. The interface defect layers CH3NH3SnI3/ZnO
and V2O5/CH3NH3SnI3 are in a defect condition

In the suggested non-inverted PSC structure simulations, two
defect layers have been taken into account. Using numerical
inquiry and batch simulation, defect density at the interface
around V2O5/CH3NH3SnI3 and CH3NH3SnBr3/ZnO has been
examined. The defect density ranges from 1 × 1010 cm−3 to
1 × 1018 cm−3. Figure 9 and Figure 10 illustrate how interface
fault density affects PV characteristic parameters.

As fault density increases, the recombination rate decreases
efficiency substantially. The device simulation process is suitable
with an interface fault density of 11 × 1010 cm−3, as per
simulation results.

3.8. Effect of different back contact material

Copper (Cu) and others like silver (Ag), gold (Au), tin (Sn), and
iron (Fe) have all been used in simulations for non-inverted PSC as
back contacts shown in Table 2.

The PCE of several back contact materials is shown in
Figure 11. When the selected metal’s work function rises, solar
cells perform better. Table 2 shows how different metal
connections affect the efficiency of the cell. It has been shown
that copper (Cu) with a specific work function of five electron
volts (eV) exhibits the best properties as a back contact in the
context of non-inverted PSCs.

The proposed PSC’s J–V characteristic curves are displayed in
Figure 12, along with a comparison to other published simulated

Figure 8
Impact of absorber layer’s overall fault density on PCE (%)

Figure 7
Influence of concentration of doping the absorber layer’s ND
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Figure 10
Error’s impact interface condition on layer CH3NH3SnI3/ZnO

Figure 9
Impact of the condition of the interaction on layer CH3NH3SnI3/V2O5
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models. The explanation for the 31% higher value of Jsc than that
reported by Maachou et al. [52] is the 36% thinner absorber layer.
Additionally, as indicated by Kuddus et al. [53] and Sadiq et al.
[54] for tri-layers, the employment of several layers of ETL and
HTL is associated with the increased value of Jsc. The Voc and
literature are similar; additionally, Table 3 compares the electrical
parameter values of the suggested model with previous research.
Moreover, the comparison of this model’s IV characteristic with
the double ETLs of PCBM/ZnO and ZnO/SnO2 and HTLs of CuI/
Spiro-OMeTAD is shown in Figure 13.

4. Conclusions

An environmentally friendly lead-free non-inverted PSC device
structure was modeled and simulated using SCAPS-1D with
CH3NH3SnI3 as the absorber layer and two layers of ETL (TiO2,
ZnO) and HTL (CuI, V2O5). Each layer’s thickness was varied to
see how it affected Jsc, Voc, PCE, and FF. The proposed model
has an open-circuit voltage of 0.96 V, a FF of 82.03%, a PCE of
26.09%, and a Jsc of 32.94 under standard AM 1.5 G circumstances.

The simulation identifies 550 nm as the ideal active layer
thickness. The simulation findings showed that temperature, overall
defect density, and interface layer defect density (CH3NH3SnI3/ZnO
and V2O5/CH3NH3SnI3) all affected efficiency. Back contact metals
were evaluated for PCE (%) with greater variance. The numerical
analysis of the suggested structure, as described in this study,
produces the following summary: FTO/CuI/V2O5, CH3NH3SnI3/
ZnO/TiO2/Cu. The non-inverted structure of polycrystalline PSCs
offers a viable lead-free alternative to metal halide perovskites.
Additionally, experimentalists benefit from the beneficial support
provided by the theoretical insights revealed in this work in several

Figure 11
Effects on the efficiency of different back contact metals

Figure 12
Comparison of current study with reported models

Figure 13
Current study with structure containing double ETLs. (a) PCBM/ZnO, ZnO/SnO2 and HTLs,

and (b) CuI/Spiro-OMeTAD, CuI/PEDOT:PSS

Table 3
Contrast of CH3NH3SnI3 model with other study

Model Voc (V)
Jsc

(mA/cm2) FF (%) PCE (%)

Abdelaziz et al. [51] 0.92 22.65 67.74 14.03
Maachou et al. [52] 0.99 25.2 74.1 18.6
Kuddus et al. [53] 0.81 38.51 80.1 24.98
Sadiq et al. [54] 0.95 39.6 83.6 31.4
This study 0.96 32.94 82.03 26.09
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important areas. By being explicit experimentalists can better
understand how these characteristics affect PSC performance with
the aid of the theoretical framework. This knowledge makes it a
viable option for creating affordable, highly effective PSCs by
enabling more informed material selection and appropriate device
design.
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