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Abstract: This study added central pattern generators (CPGs) to 3D artificial animal (i.e., animat) articulated robots contained in a simulated 
ecosystem. Specifically, Hopf and Matsuoka CPG equations were added to the hidden neuron calculations, and the effects of these augmentations 
on robot behavior were analyzed. The results indicated that robots utilizing sum-and-squash neurons with the CPG equations in the hidden neuron 
equation performed better than robots using only sum-and-squash neurons without CPGs. The rhythmic motor patterns generated by the CPG 
dynamics helped the articulated robots to move around the environment, as well as to better accomplish survival and reproduction. The robots 
equipped with CPGs were able to reproduce more often and with higher energy efficiency than the No CPG robots. The performance advantage in 
birthrates of robots with CPGs over robots without CPGs increased as the simulation progressed. Overall, the addition of CPGs to the neurons of 
3D articulated robots provided useful rhythmic movement that proved beneficial for movement, survival, and reproduction.
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1. Introduction
Biological neural networks and animal brains contain certain 

neural circuits and neurons called central pattern generators (CPGs). 
CPGs are capable of producing rhythmic outputs endogenously, i.e., 
without rhythmic sensory input, although in some cases they work with 
and can be modulated by sensory input [1].

This automatic generation of rhythmic patterns internally is 
useful to animals because it allows their body to move in rhythmic 
ways, which helps them in navigating the environment. For example, 
the rhythmic CPG signals can be routed to the motor neurons to produce 
regular movements which propel the body such as walking gaits, 
flapping wings, and slithering or swimming motions.

Consequently, CPGs are also a topic of interest in robotics, where 
it is desired for the robot to move around so it can accomplish tasks. 
The more complex the robot, the more complex it can be to control. 
For example, in a quadruped robot, each leg can have up to 3 degrees 
of freedom (DOF). A control program for the quadruped will have to 
control at least 3 DoF * 4 legs = 12 degrees of freedom. The more 
degrees of freedom it has to control, the larger the search space of 
possible movements, not only allowing more freedom of movement but 
also potentially increasing the time it takes to reach a valid solution. 
CPGs allow for a reduction in the dimensionality of the input, allowing 
the network to simply modulate the outputting smooth rhythmic signals 
to the muscles/joints, rather than trying to control every individual 
muscle/joint with high-precision low-level control. By explicitly adding 
CPGs to robot control, the complexity of control is reduced, creating a 
smaller optimization space, therefore accelerating optimization time.

This study tested the effects of adding evolving CPGs to 
articulated robots in an animat ecosystem. This study used the open-
source ERAIASON animat ecosystem [2].

For optimization, evolutionary algorithms were used over gradient-
based algorithms for a few reasons. Firstly, evolutionary algorithms (EAs) 
are highly general; it is easy to add CPGs, or any other parameterized 
system, into the evolutionary process for optimization. Secondly, 
evolutionary algorithms are on average better at global exploration 
than gradient-based algorithms [3], because updates in gradient-based 
algorithms are more localized to the current best solution, whereas 
gradient-free algorithms have the opportunity to escape local optima.

2. Literature Review
Marder and Bucher [4] described two mechanisms of CPGs, 

pacemaker neurons and reciprocal inhibition. The function of both is to 
control multiple muscles in a repetitive manner using only one chemical 
signal. In pacemaker neurons, the neurons are connected so they fire 
together; that way, a signal that triggers one neuron triggers all of the 
connected neurons. With reciprocal inhibition, you have two sets of 
neurons A and B which are coupled. When neurons in A are activated, 
they suppress/inhibit B. Some biological process eventually allows B to 
trigger, which suppresses A. Similarly, A can eventually become active 
again, triggering B. This cycle of activation and inhibition can result in 
a rhythmicity.

Lu et al. [5] described a system of differential equations that 
incorporated time delays and the strength of synaptic interfaces over 
time. To make sure that their system was still oscillatory and a closed 
loop, they used Grunwald–Letnikov fractional derivatives. They then 
experimented with different fractional orders of their derivatives.

Buono and Golubitsky [6] described a model for controlling 
quadruped motion using CPGs. The model was described geometrically 
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as a cube-like structure, where the four corners of each face represent 
the four legs and their CPGs, and the top and bottom faces represent two 
phases of quadruped locomotion. The four CPGs were explicitly coupled. 
They show that this model can result in various gaits such as pacing, 
trotting, and walking. Two limitations to this model are that it cannot 
result in jumping; and that each leg only has one CPG available to it.

Bellegarda and Ijspeert [7] use deep reinforcement learning to 
train a sim-to-real quadruped robot by learning the parameters of CPG 
neurons. The authors trained it in simulation and tested it on a Unitree 
A1 quadruped, and found that it was robust to disturbances even not 
experienced during training, such as uneven terrain and added mass.

Ijspeert [8] used a genetic algorithm to evolve a CPG system and 
applied it to a salamander-like physical robot to observe its gait. Their 
model used a set of differential equations that describe the interactions 
between the neurons in the CPG. Each neuron had its own bias and 
time constant, and had weights for its connections to other neurons. A 
“chromosome” of a neuron described the bias, time constant, and weights. 
The genetic algorithm optimized the chromosome for each neuron.

Bongard [9] allowed neural networks to evolve controllable 
“CPG neurons”, which output a sinusoidal signal. The frequency of 
a CPG neuron’s signal was able to be controlled by incoming neural 
signals, such that positive inputs caused a higher frequency, whereas 
negative inputs caused a lower frequency. The phase was set relative to 
the time step when the neuron was formed during neurogenesis.

Wu et al. [10] implemented a CPG controller for the stable 
locomotion of biped robots. They designed Hopf-style oscillators whose 
outputs were transformed into motor outputs via a multivariate linear 
mapping model, rather than neural networks. They showed the ability 
of their simulated biped robots to walk on flat surfaces and uphill.

While the last few studies mentioned used EAs to evolve CPGs, 
they didn’t include evolutionary forces such as food dependency, 
meaning that it was not as imperative for the robots to move in multiple 
directions. Their fitness functions also take a more localized approach; 
for example, Ijspeert [8] considers the number of extrema in the CPG 
oscillation, as well as the phase difference. 

This paper studies evolution in virtual articulated quadrupeds in the 
context of an ecosystem, where quadrupeds must move towards virtual 
food blocks and must actively stop at them to eat in order to survive. 
The food blocks are scattered throughout the environment, meaning that 
the quadrupeds must be able to change direction. This study compares 
quadrupeds with evolving CPGs to those without, in order to see if the 
CPGs still made a significant improvement to their locomotion ability.

The rest of our paper is organized as follows. Section 3.1 
describes the quadruped and its kinematics. Section 3.2 describes the 
CPG models used. Section 3.3 describes the sensors and motors of 
the quadrupeds, and Section 3.4 describes the training environment. 
Section 3.5 describes the EA used. Section 4 describes our results using 
both graphs and statistics, and Section 5 describes possible future work. 

3. Research Methodology

3.1. Experimental overview
In this section, we will discuss our experimental design.
A new animat was born with 25 energy, which is 1/4 the amount 

contained in a fully grown food block. Consequently, to reproduce, the 
parent(s) had to contribute 25 energy to the offspring. Energy drained 
a rate of 0.05 energy per 0.02 seconds, or 2.5 energy per second. This 
meant that a robot had about 10 seconds to begin eating food if it was 
to survive. A robot was not permitted to live for more than 90 seconds, 
regardless of its energy levels.

Figure 1 shows a block diagram of our experimental design. 
Algorithm 1 shows the high-level algorithm. Neural networks were 

evolved to control fixed-morphology articulated animal (“animat”) 
robots which lived together in a shared ecosystem. Each animat had 
to consume energy to stay alive, while using CPGs in their hidden 
neurons to control the robotic limbs to locomote towards new energy 
sources. The population persisted either by autonomous reproduction, 
sexually or asexually, which costed energy. Or, when autonomous 
reproduction was insufficient to maintain a minimum level of animats, 
the population was supplemented via evolutionary algorithm. The goal 
of the simulation experiment was to evolve robots to become better 
capable of survival and reproduction.

3.2. Robot
The robots were hand-designed into a quadruped form, such that 

the robot had 2 torso segments, 4 legs each consisting of a “quad”, 
“calf”, and “foot” segment (see Figure 2) and a “head” segment on 
which the vision sensor was attached (see Figure 3). The robot’s joints 
were ball joints, which could rotate on X, Y, and Z axes between [−30, 
30] degrees.

The simulations had a time step of 0.02 seconds.

3.3. Neural network and CPGs
The neural network of a robot was updated every 0.04 seconds. 

The initial neuroevolution of augmenting topologies (NEAT) genomes 
(neural networks) were not completely disconnected. Instead, the 27 
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 Figure 1
The high-level flow of energy and control in the ecosystem
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vision neurons were sparsely connected to the motor outputs, where 
each potential connection had a 30% chance to form.

For our CPG models, versions of the Hopf and Matsuoka 
oscillator differential equations were implemented in our hidden 
neuron calculations. The coefficients of these equations were evolved 
as evolutionary parameters in each individual neuron. This allowed 
evolution to decide the characteristics of the sinusoidal signal produced 
by the equations. Furthermore, the input signal I(t) into the hidden 
neuron at time t, coming “externally” from other neurons, was allowed 
to influence the CPG output as detailed in the sections below.

The output of the CPG oscillation ICPG(t) was scaled by an evolved 
gain parameter G, then mixed with the raw input signal I(t) using a per-
neuron evolved parameter blend ∈ [0, 1] for use in a weighted average, 
as follows:

Then,  was squashed through a non-linear activation 
function, hypertangent, to get the final hidden neuron output O ∈ (−1, 
1):

The high-level process can be seen in Algorithm 2.

3.3.1. Hopf
One of our CPG models implemented a Hopf adaptive oscillator 

[11] in the hidden neurons. The original Hopf equations are:

where, for a given hidden neuron CPG, ω is the frequency of the 
oscillation, α is the amplitude of the oscillation, θ is the oscillator 
phase, and ϕ is the phase difference between oscillator i and a reference 
oscillator.

μ is a parameter that modulates the oscillation amplitude, γ is a 
parameter which controls the speed of recovery after perturbation, F(t) 
is an external learning signal, and τ and ϵ are coupling constants.

Since this experiment did not implement explicit neuron coupling 
or a reference oscillator, ϕ(t) = 0, therefore Equation (7) was ignored 
and set ϕ = 0 in Equation (3).

This experiment did not utilize an external learning signal, so 
F(t) = 0, causing Equations (5) and (6) to be ignored, and the term 
ϵF(t) modulating x in Equation (3) to disappear. Adaptation and external 
driving of the oscillatory signal by other neurons were still permitted, by 
adding a new term u(t) to Equation (3), scaled by an evolved parameter ϵ 
similarly to how F(t) was scaled. The term u(t) represents the incoming 
signal into the neuron from other neurons. It was calculated using the 
original input I(t) to the hidden neuron, normalized and clamped to [−1, 
1] using an evolved normalization parameter  ∈ [0.1,20], 
such that u(t) =  ∈ [−1,1].

Since Equation (7) is zero, ω never changes, so the function ω(t) 
in Equation (5) becomes a constant ω (which here, was evolved).

One is now left with two equations for a simplified Cartesian 
Hopf oscillator in hidden neuron i:

One can convert these from Cartesian form (x,y) to polar form 
(r, θ), allowing the external signal u(t) to directly specify the amplitude 
and frequency. Thus, it is possible solve for  r(t)and  θ(t).

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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Figure 2
Quadruped robot used in simulations

Note: The “eyeballs” are decorative, simply used to indicate the position of the 
visual sensor.

 Figure 3
Vision simulation via a circular raycast array

Note: Vision was simulated using a circular arrangement of raycasts emanating 
from the robot’s “head” segment.

Algorithm 2
Steps for updating neuron activation with CPGs at timestep t
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Starting with the standard polar substitution:

Using x/r = cos(θ), the final differential equation used to update 
the oscillator’s amplitude r was:

For  θ(t), starting with the standard polar substitution:

Using y/r = sin(θ), the final differential equation used to update 
the oscillator’s phase θ was:

Equipped with r and θ, the Hopf output was ultimately calculated 
as .

The parameter ranges which were allowed are listed in Table 1.

3.3.2. Matsuoka
For the Matsuoka simulations, each hidden neuron implemented 

a Matsuoka-style adaptive neuron model, based on the equations from 

Matsuoka [12]. Rather than hardcoding mutually inhibitory pairs in 
Matsuoka’s study, the network topology was permitted to evolve in 
this experiment. In this way, a setup of inhibiting pairs could appear 
if necessary, while also allowing the possibility for other useful 
connectivity patterns to emerge.

The original Matsuoka equations were written as:

where, for a hidden neuron CPG at time t, x(t) is its membrane potential, 
y(t) is its firing rate, and v(t) is its adaptation/fatigue property. a, b, c 
are its configurable coefficients, and τ and T are its configurable time 
constants, which in these simulations were evolved for each individual 
neuron.

The Matsuoka output  was calculated at each time step to 
let it contribute towards the hidden neuron’s activation. The equation to 
update a neuron’s Matsuoka model at each time step can be determined 
by simply rearranging the above equations:

Since there was no hardcoded single neuron coupling, the value of 
the coupled neuron  was simulated by using the sum of all external 
weighted inputs to the neuron. For use in the CPG equations, the 
external input signal I(t) to the hidden neuron at time t was normalized 
by dividing it by some evolved parameter  ∈ [0.1,20] then 
clamping the result  ∈ [−1, 1].  

The parameter ranges which were allowed are listed in Table 2.

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)
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Parameter name Parameter range
μ [0.1, 1]
γ [0.1,3]
ω [0.1,2]
τ [0,2]
ϵ [0,2]
θ0 [0,2π]
p [-0.5,0.5]
G [-1,1]

Table 1
The allowed parameter ranges for evolved Hopf parameters

Parameter name Parameter range
T [0.3,2]
τ [0.1,1]
a [-5,5]
b [1.5,5]
c [-1,1]
G [0.1,2]

Table 2
The allowed parameter ranges for evolved Matsuoka parameters
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3.4. Sensorimotor
In order to navigate the environment, the animats had sensor 

input to collect data. The sensors provided were as follows:

1)  6 touch sensors on each segment (1 per face)
2)  4 rotation sensors on each segment (corresponding to the canonical 

quaternion)
3)  1 energy sensor
4)  1 health sensor
5)  9 visual sensor raycasts, each with 3 sensor neurons (corresponding 

to the 3 possible items to detect: floor, food, and robot)
6)  1 mouth sensor (detecting if food is being successfully eaten)
7)  1 sinewave sensor (inputting a predefined sinewave)
8)  1 pain sensor (detecting if the robot is being attacked)

The motors were as follows:

1)  3 motor neurons per joint; 1 for each rotation axis
2)  1 asexual reproduction (“clone”) motor neuron
3)  1 sexual reproduction (“mate”) motor neuron
4)  1 fight motor neuron (to attack other animats, to decrease their health

3.5. Environment 
The environment was a flat plane covered in 150 food blocks 

and contained a minimum of 50 animats at any given time. When fully 
consumed, a new food block is spawned. A new food block started 
from containing 1 unit of energy, and gradually “grew” to contain more 
energy at a rate of 0.01 energy every 0.02 seconds (or 0.5 food per 
second), up to a maximum of 100 energy.

3.6. Evolutionary algorithm
3.6.1. Genetic encoding

For genetic encoding, the direct encoding NEAT was used [13], 
which starts with a minimal network, represented by a list of neurons 
and connections, and complexifies the network over the evolutionary 
process by incrementally augmenting the topology with additional 
neurons and connections.

Our minimal networks sparsely connected random vision neurons 
to random motor neurons with 30% chance to form each connection. 
Each network was additionally seeded with 10 random connections and 
3 hidden neurons. During mutation, there was a 20% chance to add a 
new connection, and a 10% chance to add a new node.

For connection mutation: every connection weight had a 90% 
chance to be perturbed by a small value selected from a Gaussian 
distribution centered at zero with standard deviation 0.2, otherwise 
it was replaced with a random value in range [−5, 5]. Each enabled 
connection had a 1% chance to become disabled, and each disabled 
connection had a 0.2% chance to become re-enabled.

For node mutation: each bias had a 50% chance to be mutated, 
in which case it had a 90% chance to be perturbed by a small value 
selected from a Gaussian distribution centered at zero with standard 
deviation 0.2, otherwise it was replaced with a random value in range 
[−5, 5]. There was a 50% chance to mutate every CPG parameter in 
the node. For a CPG parameter with range [Rmin, Rmax], there was a 
97% chance to be perturbed by a small value selected from a Gaussian 
distribution centered at zero with standard deviation 0.1*(Rmax − Rmin), 
otherwise it was replaced with a random value in range [Rmin, Rmax].

For recombination: firstly, one parent was chosen (50/50 chance) 
from which to select disjoint genes (aka the “disjoint parent”). All 
sensorimotor neurons were copied from that parent. If both parents 
contained a connection with the same ID, the connection values were 
copied from one parent with 50/50 chance. If the connection was 

enabled in one parent and disabled in the other, there was a 75% to 
inherit it as disabled, otherwise it was enabled. If one or both nodes 
connected by that connection did not yet exist in the offspring genome, 
then the node from that parent was copied as well. If the connection ID 
was disjoint, belonging to only one parent, then it was copied only if it 
belonged to the “disjoint parent”.

3.6.2. Evolutionary search
The explicit evolutionary search was a combination of objective-

based (fitness-based) search, novelty search [14], roulette-wheel 
selection, and tournament selection.

Rather than evaluating solutions one cohort/generation at a time 
as in traditional evolutionary search, since animats could die at any 
moment rather than after a fixed evaluation period, instead an “on-
line” or “steady state” genetic algorithm was utilized which maintains 
a constant-number population of solutions/animats all contained in 
the same shared environment. The population of animats would die if 
they 1) expended all their energy, 2) reached a maximum age (here, 
90 seconds), and 3) had their health reduced to zero by another animat 
attacking. Animats could interact with objects (e.g., eat food and mate/
fight another animat) only if they detected the object in their vision 
sensor at a short proximity range of 2 meters or less.

When the population dropped below some minimum number 
popmin (here popmin = 50), the EA created a new animat via mutation 
or recombination by pulling one or two “parents” from pools of stored 
animats. There were 3 pools or “tables” which could be taken from, 
containing the genomes of dead animats: Fitness Hall of Fame table 
(containing the fittest animats in the simulation run’s history, ranked by 
fitness), Novelty Hall of Fame table (containing the most novel known 
animats at the current moment, ranked by novelty), and Fitness Recent 
Population table (containing the most recent population of animats as 
first-in-first-out [FIFO], stored with their fitness). To select an animat 
for reproduction, first one of the three random tables was selected. 
Then, according to a 50/50 random chance, either standard roulette-
wheel (probabilistic) selection or tournament selection (k = 7) was 
performed on that table.

Animats could also reproduce autonomously, as long as they 
had enough energy to gift to the offspring. Asexual reproduction, with 
simple genome cloning and mutation, could be performed by the animat 
at any time, costing 1/4 of a full-sized food block (25 energy, since each 
food block contains 100 energy at maximum size). Sexual reproduction, 
with genome recombination, required 2 animats, 1 looking at the other 
and both expressing their “mate” neuron, but only costing half the 
energy (since half was gifted from each parent).

An animat generated by another animat was spawned near its 
parent(s). A new animat generated by the EA, on the other hand, was 
spawned in a random location in the environment, at least 8 meters 
away from any food block.

Our objective-based fitness function, to compute fitness score F 
for an animat, was as follows:

where d ∈ [0, 1] (“displacement score”) was the displacement of the 
animat from its birthplace at the time of its death, l ∈ [0,1] (“look 
score”) was the proportion of time that the animat spent looking at food 
(closer proximity increased this score), f ∈ [0, ∞) (“food score”) was the 
amount of food blocks the animat ate during its lifetime, and R ∈ [0, ∞) 
(“reproduction score”) was the number of times the animat reproduced 
in its lifetime.

Our novelty function, to compute the behavioral difference D 
between 2 animat behaviors i and j at a given moment in time was:

(31)

(32)
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where  is the maximum value of a visual sensor that detects 
food during that time of its life, and pos is a 2D vector that represents 
the offset XZ of the animat from its birthplace during that time of its life. 
These behavioral difference scores are summed and averaged (using the 
shorter lifespan of the 2 animats). Conceptually, this equation says “two 
animats are different if one animat was looking at food at a different 
distance than the other animat, or if one animat moved to a different 
relative location than the other animat”. This was meant to cover the 
full spectrum of useful behaviors: moving all around the map, and being 
near/far from food while looking at it. Combined, these factors enable 
a behavior where the animats walk towards food and eat it in various 
ways, which simultaneously results in high fitness scores F.

To compute the novelty of an animat, the average behavioral 
distance was found between it and the k-nearest-neighbor animats in a 
“novelty archive” data structure. Every animat had a 10% chance to be 
added to the novelty archive when it died.

4. Results
Simulations were ran under each condition (No CPG, Hopf, and 

Matsuoka) for 6 trials each (for 480 * 8 seconds ≈ 1.06 hours per trial), 
then computed the average across trials for analysis.

4.1. Graphical analysis
Visual inspection of the smoothed birthrate data (Figures 4 and 5) 

shows that both CPG methods, Hopf and Matsuoka, allowed the robots 
to perform better than the robots without CPG augmentation. The area 
under the curve (Figure 4) shows that the area under the curve was ≈ 
400 for No CPG ≈ 800 for Hopf, and ≈ 1000 for Matsuoka.

On the raw metrics, the CPG robots usually outperformed the No 
CPG robots. The best Hopf and Matsuoka robots were able to achieve 
higher fitness scores (Figure 6) by the end of the simulation (No CPG: ≈ 
90, Hopf: ≈ 150, Matsuoka: ≈ 300). The CPG methods also allowed the 
best robots to reproduce in higher quantities (Figure 7) by the end of the 
simulation (No CPG: ≈ 3.5 births/lifetime, Hopf: ≈ 4.75 births/lifetime, 
Matsuoka: ≈ 7 births/lifetime).

Surprisingly, despite the greater ability of Hopf to reproduce 
compared to No CPG, the best Hopf robots actually ate less food 
(Figure 8) than the No CPG method (No CPG: ≈ 250 food/lifetime, 
Hopf: ≈ 175 food/lifetime, Matsuoka: ≈280 food/lifetime). This result 
is hard to explain from just the data. Possible explanations may be that 
Hopf robots had better control over when to reproduce using CPGs, and 
so they were able to more efficiently trigger reproductions than the No 

CPG robots, who instead had to rely on fixed neuron bias or sensory 
stimulation to activate their reproduction. In the prior case, fixed neuron 
bias, the robot either reproduces always and may drain its energy too 
fast, or never reproduces. In the latter case, where specific sensory 
stimulation is required to reproduce, the robot may never or only rarely 
achieve the proper stimulation. These are only speculative explanations 
for the somewhat counterintuitive result.

4.2. Statistical significance tests
To assess whether the use of CPGs significantly improved robot 

birthrates in our simulations, the raw birthrate data was recorded (see 
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 Figure 6
Fitness score in fitness hall of fame

 Figure 7
Times reproduced in fitness hall of fame

 Figure 5
Total area under curve (AUC) for birthrate 

 Figure 4
Birthrate per 1000 robots per 8 seconds

Note: Performance comparison for “births per 1000 robots per 8 seconds”, 
original curve and smoothed curve (window = 10).
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Figure 4) and analyzed with a significance level of 0.05. Wilcoxon 
signed-rank tests (using SCIPY Python package) were conducted 
to compare the birthrates between the CPG and No CPG conditions. 
The results revealed a statistically significant advantage for both the 
Hopf-based method (W = 38 826.5, p = 1.14×10−16) and the Matsuoka-
based method (W = 62 659.0, p = 3.79 × 10−29), indicating that CPGs 
consistently outperformed the non-CPG baseline across time, allowing 
robot populations to achieve higher birthrates.

Next was to see whether the benefit on birthrate remained 
constant, decreased, or increased over the course of simulation. To do 
this, the statistical analysis was performed on the difference between 
the CPG and No CPG methods (see Figure 9), with a significance level 
of 0.05.

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test was 
performed on the differences between birthrate data using the KPSS 
function in Python’s STATSMODELS library. The KPSS was run on 
the time series differences between the birthrate using CPGs and the 
birthrate not using CPGs. The regression parameter was set to “ct”, 
meaning that it tested if the time series was stationary around a trend.1 

For Hopf vs. No CPG, the KPSS p-value calculated was around 
0.0206. The same was done for the Matsuoka vs. No CPG birthrate data. 
The function was able to find that the actual p-value was less than 0.01; 
however, it was not able to calculate the exact p-value due to internal 
interpolation errors inherent to the function. However, the test statistic was 
0.248858, higher than the critical value of 0.146. Therefore, in both cases, 

1  Statsmodels. (2025). Statsmodels (Version 0.15.0) [Software]. https://www.statsmodels.org/dev/
generated/statsmodels.tsa.stattools.kpss.html

the difference between the CPG vs. No CPG time series is nonstationary. 
That is to say, the magnitude of the CPG benefit changed over time.

To determine in what direction the magnitude of benefit 
was changing, Mann-Kendall trend tests were performed (using 
PYMANNKENDALL Python package [15]) and linear regression 
(using SCIPY Python package2) on the birthrate differences between 
the methods. The tests determined the gap between the CPG and non-
CPG methods increased over time. For Hopf vs. No CPG, both Mann-
Kendall trend analysis (trend = increasing, slope = 0.0027, p = 4.73 × 
10−11) and linear regression (slope = 0.0051, p = 1.24 × 10−10, R2 = 0.083) 
determined that the gap was increasing over time. Similarly, for Matsuoka 
vs. No CPG, both Mann-Kendall trend analysis (trend=increasing, slope 
= 0.0072, p = 0.00) and linear regression (slope = 0.0096, p = 9.81 × 
10−36, R2 = 0.278) determined the gap was increasing over time.

The authors also generated the gain portion of a Bode plot in 
order to see how robust the animats were to changes in the location 
of the closest food (after two hours of evolution). This was done by 
treating the input signal as a sum of delta functions, where a delta 
function was added each time the simulation spawned a new food 
source which was closer to the animat than the previously spawned 
food source. The output signal was how much the animat’s distance 
changes based on how much it was able to compensate for the change. 
The authors took the Fourier transform on the input and output signals 
in order to break both signals down into their individual frequencies 
and to see what the gain was for each frequency. The resulting Bode 
plot is shown in Figure 10. There is a frequency range where the gain 
is relatively higher, indicating that within this range, animats were less 
able to quickly adapt to the location change.

In conclusion, these analyses demonstrate that the CPG-based 
controllers outperformed the baseline of No CPGs, and the performance 
difference between the populations also grew over time.

5. Future Directions
In the future, it would be interesting to test CPGs in other 

frameworks.
For example, how do CPGs affect real-time learning rules such 

as Hebbian rules, which learn according to neural activation patterns? 
Since the neural activation patterns become more rhythmic with CPGs, 

2  SciPy. (2025). SciPy (Version 1.16.2) [Software]. https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.linregress.html
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 Figure 8
Food eaten in fitness hall of fame

 Figure 9
Birthrates difference across all three methods

Note: Smoothed, window=10.

 Figure 10
 Bode plot gain showing response to food frequency changes

Note: The gain part of the Bode plot, which shows the animats’ response to 
difference frequencies at which the location of the closest food changes (e.g. if a 
new food source spawns close by).

https://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.kpss.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.kpss.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
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will the Hebbian plasticity still be meaningful and useful, or instead 
overshadowed by the rhythmic pattern? This is perhaps one of the most 
promising next steps, since it is relatively simple to add and combines 
multiple “realistic”/naturalistic aspects of neuron function.

Soft voxel robots (SVRs) [16] are an alternative to articulated 
robots and have different properties, namely that they are squishy/soft 
and made of voxels. It has been shown that soft voxel robots are viable 
for animat simulations such as performed here [2, 17]. Consequently, 
it would also be interesting to test these CPG equations on soft voxel 
robots for the food-seeking and reproduction tasks, since SVRs are 
known to benefit from rhythmic actuation.

One can also consider using CPGs to augment the abilities 
of symbolic reasoning systems, such as non-axiomatic reasoning 
system (NARS) [18, 19]. Though NARS, being general-purpose, may 
technically be able to handle low-level sensorimotor processes (e.g., 
NARS can process pixel-level vision activations using logical inference), 
it is a difficult task for the system that consumes many of the system’s 
resources. The full-scale and fluid control of low-level processes using 
symbolic reasoning systems is still a difficult research problem. Since 
CPGs produce rhythmic motor (low-level) movements or patterns that 
can be triggered by higher-level control processes, CPGs could be useful 
in symbolic and neurosymbolic AI. For example, NARS making high-
level decisions and plans could use CPGs to trigger specific low-level 
motor movement patterns at specific times, depending on the results of its 
logical reasoning. This would free the higher-level control and reasoning 
processes from needing to manage all low-level motor intricacies, 
allowing NARS more freedom to focus on higher-level processes like 
planning and goal management, at a higher level of abstraction and 
generalization. Such CPGs or sinewaves could be integrated into the 
genetic language of a reasoning system, which could give rise to different 
species with different motor patterns, and allow NARS (or other logical 
reasoning systems) to control complex robots more easily.

A preliminary experiment was run with an addition to the reward 
function, which was changed to multiply the look score by a factor 
called “norm control”, to encourage keeping robots upright; the norm 
control is first derived from:

Then  is given an upper bound u, where u = K ∗ 
speed, where K is derived from a linear quadratic regulator (LQR) 
control, and A = , B = 1, Q = 0.5, R = 0.5. In our experiment, 
the algorithm provided in the study of Chu et al. [20] was used to solve 
the discrete-time Riccati equation in the LQR. The LQR control for this 
upper bound penalized tipping less since if normcontrol is unbounded, 
the animats would stand still and upright to prevent risk of tipping over. 
The birthrate results of the preliminary test are graphed in Figure 11.

6. Conclusion
In conclusion, the robots performed better overall with a CPG 

model attached to their hidden neurons than without a CPG model. Both 
our Hopf and Matsuoka CPG models provided a similar performance 
benefit as each other, with the Matsuoka doing better than the Hopf in 
our trial (in terms of birthrates).

Qualitatively, the robots with CPGs moved more rhythmically, 
reliably, and smoothly than the robots without CPGs. Yet, the CPG 
robots were still capable of motor control, such as being able to “switch 
off” their sinusoidal movements when necessary, such as to stop and 
fully devour a food block.

Quantitatively, the CPG robots outperformed No CPG robots in 
the birth and fitness metrics. The Hopf robots had greater reproductive 
efficiency, able to produce more offspring than No CPG robots while 
eating less food. Our statistical analysis discovered that the birthrate 
advantage conferred by CPGs on the animat populations was not 
constant, but increased over the course of the simulation.

Overall, the data showing improvement in robot survival and 
reproduction due to CPGs lends credence to the implementation of CPG 
equations in articulated robots as a potential performance improvement, 
even for tasks more complicated than locomotion, requiring control 
such as targeted locomotion (object-seeking).
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