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Abstract: This study added central pattern generators (CPGs) to 3D artificial animal (i.e., animat) articulated robots contained in a simulated
ecosystem. Specifically, Hopf and Matsuoka CPG equations were added to the hidden neuron calculations, and the effects of these augmentations
on robot behavior were analyzed. The results indicated that robots utilizing sum-and-squash neurons with the CPG equations in the hidden neuron
equation performed better than robots using only sum-and-squash neurons without CPGs. The rhythmic motor patterns generated by the CPG
dynamics helped the articulated robots to move around the environment, as well as to better accomplish survival and reproduction. The robots
equipped with CPGs were able to reproduce more often and with higher energy efficiency than the No CPG robots. The performance advantage in
birthrates of robots with CPGs over robots without CPGs increased as the simulation progressed. Overall, the addition of CPGs to the neurons of

3D articulated robots provided useful rhythmic movement that proved beneficial for movement, survival, and reproduction.
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1. Introduction

Biological neural networks and animal brains contain certain
neural circuits and neurons called central pattern generators (CPGs).
CPGs are capable of producing rhythmic outputs endogenously, i.e.,
without rhythmic sensory input, although in some cases they work with
and can be modulated by sensory input [1].

This automatic generation of rhythmic patterns internally is
useful to animals because it allows their body to move in rhythmic
ways, which helps them in navigating the environment. For example,
the rhythmic CPG signals can be routed to the motor neurons to produce
regular movements which propel the body such as walking gaits,
flapping wings, and slithering or swimming motions.

Consequently, CPGs are also a topic of interest in robotics, where
it is desired for the robot to move around so it can accomplish tasks.
The more complex the robot, the more complex it can be to control.
For example, in a quadruped robot, each leg can have up to 3 degrees
of freedom (DOF). A control program for the quadruped will have to
control at least 3 DoF * 4 legs = 12 degrees of freedom. The more
degrees of freedom it has to control, the larger the search space of
possible movements, not only allowing more freedom of movement but
also potentially increasing the time it takes to reach a valid solution.
CPGs allow for a reduction in the dimensionality of the input, allowing
the network to simply modulate the outputting smooth rhythmic signals
to the muscles/joints, rather than trying to control every individual
muscle/joint with high-precision low-level control. By explicitly adding
CPGs to robot control, the complexity of control is reduced, creating a
smaller optimization space, therefore accelerating optimization time.
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This study tested the effects of adding evolving CPGs to
articulated robots in an animat ecosystem. This study used the open-
source ERAIASON animat ecosystem [2].

For optimization, evolutionary algorithms were used over gradient-
based algorithms for a few reasons. Firstly, evolutionary algorithms (EAs)
are highly general; it is easy to add CPGs, or any other parameterized
system, into the evolutionary process for optimization. Secondly,
evolutionary algorithms are on average better at global exploration
than gradient-based algorithms [3], because updates in gradient-based
algorithms are more localized to the current best solution, whereas
gradient-free algorithms have the opportunity to escape local optima.

2. Literature Review

Marder and Bucher [4] described two mechanisms of CPGs,
pacemaker neurons and reciprocal inhibition. The function of both is to
control multiple muscles in a repetitive manner using only one chemical
signal. In pacemaker neurons, the neurons are connected so they fire
together; that way, a signal that triggers one neuron triggers all of the
connected neurons. With reciprocal inhibition, you have two sets of
neurons A and B which are coupled. When neurons in A are activated,
they suppress/inhibit B. Some biological process eventually allows B to
trigger, which suppresses A. Similarly, A can eventually become active
again, triggering B. This cycle of activation and inhibition can result in
a rhythmicity.

Lu et al. [5] described a system of differential equations that
incorporated time delays and the strength of synaptic interfaces over
time. To make sure that their system was still oscillatory and a closed
loop, they used Grunwald-Letnikov fractional derivatives. They then
experimented with different fractional orders of their derivatives.

Buono and Golubitsky [6] described a model for controlling
quadruped motion using CPGs. The model was described geometrically
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as a cube-like structure, where the four corners of each face represent
the four legs and their CPGs, and the top and bottom faces represent two
phases of quadruped locomotion. The four CPGs were explicitly coupled.
They show that this model can result in various gaits such as pacing,
trotting, and walking. Two limitations to this model are that it cannot
result in jumping; and that each leg only has one CPG available to it.

Bellegarda and Ijspeert [7] use deep reinforcement learning to
train a sim-to-real quadruped robot by learning the parameters of CPG
neurons. The authors trained it in simulation and tested it on a Unitree
Al quadruped, and found that it was robust to disturbances even not
experienced during training, such as uneven terrain and added mass.

Ijspeert [8] used a genetic algorithm to evolve a CPG system and
applied it to a salamander-like physical robot to observe its gait. Their
model used a set of differential equations that describe the interactions
between the neurons in the CPG. Each neuron had its own bias and
time constant, and had weights for its connections to other neurons. A
“chromosome” of a neuron described the bias, time constant, and weights.
The genetic algorithm optimized the chromosome for each neuron.

Bongard [9] allowed neural networks to evolve controllable
“CPG neurons”, which output a sinusoidal signal. The frequency of
a CPG neuron’s signal was able to be controlled by incoming neural
signals, such that positive inputs caused a higher frequency, whereas
negative inputs caused a lower frequency. The phase was set relative to
the time step when the neuron was formed during neurogenesis.

Wu et al. [10] implemented a CPG controller for the stable
locomotion of biped robots. They designed Hopf-style oscillators whose
outputs were transformed into motor outputs via a multivariate linear
mapping model, rather than neural networks. They showed the ability
of their simulated biped robots to walk on flat surfaces and uphill.

While the last few studies mentioned used EAs to evolve CPGs,
they didn’t include evolutionary forces such as food dependency,
meaning that it was not as imperative for the robots to move in multiple
directions. Their fitness functions also take a more localized approach;
for example, Ijspeert [8] considers the number of extrema in the CPG
oscillation, as well as the phase difference.

This paper studies evolution in virtual articulated quadrupeds in the
context of an ecosystem, where quadrupeds must move towards virtual
food blocks and must actively stop at them to eat in order to survive.
The food blocks are scattered throughout the environment, meaning that
the quadrupeds must be able to change direction. This study compares
quadrupeds with evolving CPGs to those without, in order to see if the
CPGs still made a significant improvement to their locomotion ability.

The rest of our paper is organized as follows. Section 3.1
describes the quadruped and its kinematics. Section 3.2 describes the
CPG models used. Section 3.3 describes the sensors and motors of
the quadrupeds, and Section 3.4 describes the training environment.
Section 3.5 describes the EA used. Section 4 describes our results using
both graphs and statistics, and Section 5 describes possible future work.

3. Research Methodology

3.1. Experimental overview

In this section, we will discuss our experimental design.

A new animat was born with 25 energy, which is 1/4 the amount
contained in a fully grown food block. Consequently, to reproduce, the
parent(s) had to contribute 25 energy to the offspring. Energy drained
a rate of 0.05 energy per 0.02 seconds, or 2.5 energy per second. This
meant that a robot had about 10 seconds to begin eating food if it was
to survive. A robot was not permitted to live for more than 90 seconds,
regardless of its energy levels.

Figure 1 shows a block diagram of our experimental design.
Algorithm 1 shows the high-level algorithm. Neural networks were

evolved to control fixed-morphology articulated animal (“animat”)
robots which lived together in a shared ecosystem. Each animat had
to consume energy to stay alive, while using CPGs in their hidden
neurons to control the robotic limbs to locomote towards new energy
sources. The population persisted either by autonomous reproduction,
sexually or asexually, which costed energy. Or, when autonomous
reproduction was insufficient to maintain a minimum level of animats,
the population was supplemented via evolutionary algorithm. The goal
of the simulation experiment was to evolve robots to become better
capable of survival and reproduction.

Figure 1
The high-level flow of energy and control in the ecosystem
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Animat > CPGs > Food
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Algorithm 1
High-level simulation loop

while simulation is running do
if population.count < population_threshold then
Generate new animat from evolutionary algorithm
end if

for animat in population do
dead « (energy < 0) Vv (health < 0) vV (age > MAX_AGE)

if dead then
remove animat from simulation and population
compute novelty score
probabilistically add to novelty search archive
compute fitness score
add to reproduction pools

else
Update robot sensors for animat
Compute next state of neural network for animat
Update robot motors for animat

end if

end for
end while

3.2. Robot

The robots were hand-designed into a quadruped form, such that
the robot had 2 torso segments, 4 legs each consisting of a “quad”,
“calf”, and “foot” segment (see Figure 2) and a “head” segment on
which the vision sensor was attached (see Figure 3). The robot’s joints
were ball joints, which could rotate on X, Y, and Z axes between [—30,
30] degrees.

The simulations had a time step of 0.02 seconds.

3.3. Neural network and CPGs

The neural network of a robot was updated every 0.04 seconds.
The initial neuroevolution of augmenting topologies (NEAT) genomes
(neural networks) were not completely disconnected. Instead, the 27
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Figure 2
Quadruped robot used in simulations

Note: The “eyeballs” are decorative, simply used to indicate the position of the
visual sensor.

Figure 3
Vision simulation via a circular raycast array

Note: Vision was simulated using a circular arrangement of raycasts emanating
from the robot’s “head” segment.

vision neurons were sparsely connected to the motor outputs, where
each potential connection had a 30% chance to form.

For our CPG models, versions of the Hopf and Matsuoka
oscillator differential equations were implemented in our hidden
neuron calculations. The coefficients of these equations were evolved
as evolutionary parameters in each individual neuron. This allowed
evolution to decide the characteristics of the sinusoidal signal produced
by the equations. Furthermore, the input signal /(f) into the hidden
neuron at time t, coming “externally” from other neurons, was allowed
to influence the CPG output as detailed in the sections below.

The output of the CPG oscillation /,,, (¢) was scaled by an evolved
gain parameter G, then mixed with the raw input signal /(¢) using a per-
neuron evolved parameter blend € [0, 1] for use in a weighted average,
as follows:

It (t) = blend x I(t) + (1 — blend) x G x Icpg 1)

Then, I,.(t) was squashed through a non-linear activation
function, hypertangent, to get the final hidden neuron output O € (-1,

1):
O(t) = tanh(Ine(t)) 2

The high-level process can be seen in Algorithm 2.

3.3.1. Hopf
One of our CPG models implemented a Hopf adaptive oscillator
[11] in the hidden neurons. The original Hopf equations are:

Fo(t) = (1= r()°)a(t) - w(Oy(t) + F(B)+

Tsin(0(t) — ¢(t)) )

Sy =(1—r()y(t) + w(t)a(t) @)

Folt) = —eF(©) 43 ®

L a(t) = ne(t)F(t) ©

(1) = sin (420, — 0(1) ~ 6(0)) ()
Algorithm 2

Steps for updating neuron activation with CPGs at timestep ¢

Require: blend € [0, 1] is an evolved neuron parameter for blending
CPG values with neuron input

Require: G is an evolved neuron parameter for modulating CPG
influence

for neuron in network do

I<0

for synapse in incoming_connections do
W ¢ synapse.weight
incoming_neuron « synapse.from
a « incoming_neuron.activation_{t—1}
I«I+w*a

end for

I < I + bias

if neuron.type is hidden then
I_CPG « compute relevant CPG
I_net < blend x I + (1 — blend) x G x I_CPG
neuron.activation_t « tanh(I_net)

else
neuron.activation_t < tanh(I)

end if

end for

where, for a given hidden neuron CPG, w is the frequency of the
oscillation, o is the amplitude of the oscillation, 8 is the oscillator
phase, and ¢ is the phase difference between oscillator i and a reference
oscillator.

4 is a parameter that modulates the oscillation amplitude, y is a
parameter which controls the speed of recovery after perturbation, F(z)
is an external learning signal, and 7 and € are coupling constants.

Since this experiment did not implement explicit neuron coupling
or a reference oscillator, ¢(7) = 0, therefore Equation (7) was ignored
and set ¢ = 0 in Equation (3).

This experiment did not utilize an external learning signal, so
F(¢) = 0, causing Equations (5) and (6) to be ignored, and the term
€F(t) modulating x in Equation (3) to disappear. Adaptation and external
driving of the oscillatory signal by other neurons were still permitted, by
adding a new term u(¢) to Equation (3), scaled by an evolved parameter ¢
similarly to how F(¢) was scaled. The term u(#) represents the incoming
signal into the neuron from other neurons. It was calculated using the
original input /() to the hidden neuron, normalized and clamped to [—1,
1] using an evolved normalization parameter maz_input € [0.1,20],

I(t)
such that u(?) = 7oz sput € [F1.11.

Since Equation (7) is zero, w never changes, so the function w(?)
in Equation (5) becomes a constant « (which here, was evolved).

One is now left with two equations for a simplified Cartesian
Hopf oscillator in hidden neuron i:

Fa(t) = (1= r(®))a(t) - wy(t) + eu(t)+ ©
Tsin(6(t))

Sy(t) = (1= 1(0)? ) y(t) + wat) ©)

One can convert these from Cartesian form (x,y) to polar form
(r, 0), allowing the external signal u(%) to directly specify the amplitude
and frequency. Thus, it is possible solve for % r(f)and % o(1).
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Starting with the standard polar substitution: Table 1
The allowed parameter ranges for evolved Hopf parameters
r(t)? = 2(t)” +y(t)? (10) " parameter name Parameter range
— oK (0.1, 1]
T(t) - iE(t) + y(t) ( ) ,Y [0133]
a(t)da() () 4ut) _ 1 d d o) [0.1,2]
#T(t) = —F—=— = o |z(t) F(t) +y(t) Fy(t
for(t) = LIRS (0 2(0) +4(0) () ‘ o
=& [m(t) ('y(,u - r(t)Z)x(t) — wy(t) + eu(t) + mn(e(t))) (12) [0,2]
2
u(t) (7 (1 — (0 )utt) + (1)) . [0.27]
p [-0.5,0.5]
. G [-1,1]
Lr(t) = 75 [12(t)? (1 = 7)) + () 7sin(6(2)) )
—n(Oy(®) + wr(Ou(®) + eatyult) + 1w(t)* (1~ r(0?)] , R
Matsuoka [12]. Rather than hardcoding mutually inhibitory pairs in
) , , Matsuoka’s study, the network topology was permitted to evolve in
dr(t) = T(lt) [’Y p—r(t) )(w(t) +y(t) ) (14) this experiment. In this way, a setup of inhibiting pairs could appear
+ex(t)u(t) + z(t)rsin(6(t))] if necessary, while also allowing the possibility for other useful
connectivity patterns to emerge.
The original Matsuoka equations were written as:
&1t = 35 [1(5 = r®)r(t) + eatyut) + aWrsin(6(t)]  (15)
T%w(t) + 2(t) = ¢ — ay;(t) — bu(t) (26)
Lr(t) = (= (1)) r(®) + 2B (eult) + Tsin(0(1))  (16) )
T4u(t) + v(t) = y(t) @7
Using x/r = cos(8), the final differential equation used to update
the oscillator’s amplitude » was: y(t) = maz(0,z(t)) (28)

Lr(t) = (1 = ()7 (8) + cos(6) (eu(t) + Tsin(0(1))  (17)
For % 0(1), starting with the standard polar substitution:
6(t) = tan ! (£3) (18)
() 400U 420

(1) = T (19)
20(6) =~ [2(0)$3(0) — y(0) (0] (20)
#00) = St [ (1~ ) y®(®) + we(t) on

(1= 7)) y(t)a(t) + wy(t)? — eult)y(t) — msin(6(t))y(t)]
£0t) = o [w(a(0)” + 9(0)”) — eult)y(t) - rsin(@@)y®)] (22)
#000) = w — eXru(t) — 7 Xy sin(0(1)) 23)
L0(t) = w — L8 (S5u(t) + Ty sin(6(1))) (24)

Using y/r = sin(6), the final differential equation used to update
the oscillator’s phase 6 was:

L0(t) =w— 2in(®) (eu(t) + Tsin(0(t))) (25)

Equipped with r and 0, the Hopf output was ultimately calculated
as Icpg(t) = r(t)sin(9 + 00)
The parameter ranges which were allowed are listed in Table 1.

3.3.2. Matsuoka
For the Matsuoka simulations, each hidden neuron implemented
a Matsuoka-style adaptive neuron model, based on the equations from

where, for a hidden neuron CPG at time #, x(¢) is its membrane potential,
¥(¢) is its firing rate, and v(¢) is its adaptation/fatigue property. a, b, ¢
are its configurable coefficients, and 7 and 7 are its configurable time
constants, which in these simulations were evolved for each individual
neuron.

The Matsuoka output Iopg(t) was calculated at each time step to
let it contribute towards the hidden neuron’s activation. The equation to
update a neuron’s Matsuoka model at each time step can be determined
by simply rearranging the above equations:

29
(30)

Since there was no hardcoded single neuron coupling, the value of
the coupled neuron y;(t) was simulated by using the sum of all external
weighted inputs to the neuron. For use in the CPG equations, the
external input signal /(t) to the hidden neuron at time t was normalized
by dividing it by some evolved parameter maz_input € [0.1,20] then
clamping the result y;(t) = %ﬁmt e[-1,1].

The parameter ranges which were allowed are listed in Table 2.

Table 2
The allowed parameter ranges for evolved Matsuoka parameters

Parameter name Parameter range

T [0.3,2]
T [0.1,1]
a [-5,5]
b [1.5,5]
c [-1,1]
G [0.1,2]
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3.4. Sensorimotor

In order to navigate the environment, the animats had sensor
input to collect data. The sensors provided were as follows:

1) 6 touch sensors on each segment (1 per face)

2) 4 rotation sensors on each segment (corresponding to the canonical
quaternion)

3) 1 energy sensor

4) 1 health sensor

5) 9 visual sensor raycasts, each with 3 sensor neurons (corresponding
to the 3 possible items to detect: floor, food, and robot)

6) 1 mouth sensor (detecting if food is being successfully eaten)

7) 1 sinewave sensor (inputting a predefined sinewave)

8) 1 pain sensor (detecting if the robot is being attacked)

The motors were as follows:

1) 3 motor neurons per joint; 1 for each rotation axis

2) 1 asexual reproduction (“clone”) motor neuron

3) 1 sexual reproduction (“mate”) motor neuron

4) 1 fight motor neuron (to attack other animats, to decrease their health

3.5. Environment

The environment was a flat plane covered in 150 food blocks
and contained a minimum of 50 animats at any given time. When fully
consumed, a new food block is spawned. A new food block started
from containing 1 unit of energy, and gradually “grew” to contain more
energy at a rate of 0.01 energy every 0.02 seconds (or 0.5 food per
second), up to a maximum of 100 energy.

3.6. Evolutionary algorithm

3.6.1. Genetic encoding

For genetic encoding, the direct encoding NEAT was used [13],
which starts with a minimal network, represented by a list of neurons
and connections, and complexifies the network over the evolutionary
process by incrementally augmenting the topology with additional
neurons and connections.

Our minimal networks sparsely connected random vision neurons
to random motor neurons with 30% chance to form each connection.
Each network was additionally seeded with 10 random connections and
3 hidden neurons. During mutation, there was a 20% chance to add a
new connection, and a 10% chance to add a new node.

For connection mutation: every connection weight had a 90%
chance to be perturbed by a small value selected from a Gaussian
distribution centered at zero with standard deviation 0.2, otherwise
it was replaced with a random value in range [—5, 5]. Each enabled
connection had a 1% chance to become disabled, and each disabled
connection had a 0.2% chance to become re-enabled.

For node mutation: each bias had a 50% chance to be mutated,
in which case it had a 90% chance to be perturbed by a small value
selected from a Gaussian distribution centered at zero with standard
deviation 0.2, otherwise it was replaced with a random value in range
[=5, 5]. There was a 50% chance to mutate every CPG parameter in
the node. For a CPG parameter with range [R ., R ], there was a
97% chance to be perturbed by a small value selected from a Gaussian
distribution centered at zero with standard deviation 0.1*(R _— R, ),
otherwise it was replaced with a random value in range [R ., R ].

For recombination: firstly, one parent was chosen (50/50 chance)
from which to select disjoint genes (aka the “disjoint parent”). All
sensorimotor neurons were copied from that parent. If both parents
contained a connection with the same ID, the connection values were
copied from one parent with 50/50 chance. If the connection was

enabled in one parent and disabled in the other, there was a 75% to
inherit it as disabled, otherwise it was enabled. If one or both nodes
connected by that connection did not yet exist in the offspring genome,
then the node from that parent was copied as well. If the connection ID
was disjoint, belonging to only one parent, then it was copied only if it
belonged to the “disjoint parent”.

3.6.2. Evolutionary search

The explicit evolutionary search was a combination of objective-
based (fitness-based) search, novelty search [14], roulette-wheel
selection, and tournament selection.

Rather than evaluating solutions one cohort/generation at a time
as in traditional evolutionary search, since animats could die at any
moment rather than after a fixed evaluation period, instead an “on-
line” or “steady state” genetic algorithm was utilized which maintains
a constant-number population of solutions/animats all contained in
the same shared environment. The population of animats would die if
they 1) expended all their energy, 2) reached a maximum age (here,
90 seconds), and 3) had their health reduced to zero by another animat
attacking. Animats could interact with objects (e.g., eat food and mate/
fight another animat) only if they detected the object in their vision
sensor at a short proximity range of 2 meters or less.

When the population dropped below some minimum number
popmin (here popmin = 50), the EA created a new animat via mutation
or recombination by pulling one or two “parents” from pools of stored
animats. There were 3 pools or “tables” which could be taken from,
containing the genomes of dead animats: Fitness Hall of Fame table
(containing the fittest animats in the simulation run’s history, ranked by
fitness), Novelty Hall of Fame table (containing the most novel known
animats at the current moment, ranked by novelty), and Fitness Recent
Population table (containing the most recent population of animats as
first-in-first-out [FIFO], stored with their fitness). To select an animat
for reproduction, first one of the three random tables was selected.
Then, according to a 50/50 random chance, either standard roulette-
wheel (probabilistic) selection or tournament selection (k = 7) was
performed on that table.

Animats could also reproduce autonomously, as long as they
had enough energy to gift to the offspring. Asexual reproduction, with
simple genome cloning and mutation, could be performed by the animat
at any time, costing 1/4 of a full-sized food block (25 energy, since each
food block contains 100 energy at maximum size). Sexual reproduction,
with genome recombination, required 2 animats, 1 looking at the other
and both expressing their “mate” neuron, but only costing half the
energy (since half was gifted from each parent).

An animat generated by another animat was spawned near its
parent(s). A new animat generated by the EA, on the other hand, was
spawned in a random location in the environment, at least 8§ meters
away from any food block.

Our objective-based fitness function, to compute fitness score F
for an animat, was as follows:

F=(d+d*l+1xf+f)*(1+R) (31)
where d € [0, 1] (“displacement score”) was the displacement of the
animat from its birthplace at the time of its death, / € [0,1] (“look
score”) was the proportion of time that the animat spent looking at food
(closer proximity increased this score), '€ [0, ©) (“food score”) was the
amount of food blocks the animat ate during its lifetime, and R € [0, )
(“reproduction score”) was the number of times the animat reproduced
in its lifetime.

Our novelty function, to compute the behavioral difference D
between 2 animat behaviors 7 and j at a given moment in time was:
(32)

D = |food_seen; — food_seen;| + ||pos; — pos;||
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where food_seen is the maximum value of a visual sensor that detects
food during that time of its life, and pos is a 2D vector that represents
the offset XZ of the animat from its birthplace during that time of its life.
These behavioral difference scores are summed and averaged (using the
shorter lifespan of the 2 animats). Conceptually, this equation says “two
animats are different if one animat was looking at food at a different
distance than the other animat, or if one animat moved to a different
relative location than the other animat”. This was meant to cover the
full spectrum of useful behaviors: moving all around the map, and being
near/far from food while looking at it. Combined, these factors enable
a behavior where the animats walk towards food and eat it in various
ways, which simultaneously results in high fitness scores F.

To compute the novelty of an animat, the average behavioral
distance was found between it and the k-nearest-neighbor animats in a
“novelty archive” data structure. Every animat had a 10% chance to be
added to the novelty archive when it died.

4. Results

Simulations were ran under each condition (No CPG, Hopf, and
Matsuoka) for 6 trials each (for 480 * 8 seconds ~ 1.06 hours per trial),
then computed the average across trials for analysis.

4.1. Graphical analysis

Visual inspection of the smoothed birthrate data (Figures 4 and 5)
shows that both CPG methods, Hopf and Matsuoka, allowed the robots
to perform better than the robots without CPG augmentation. The area
under the curve (Figure 4) shows that the area under the curve was =
400 for No CPG = 800 for Hopf, and = 1000 for Matsuoka.

Figure 4
Birthrate per 1000 robots per 8 seconds
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124
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0 100 200 300 400 500
Index
Hopf (original)
—— Hopf (smoothed)
Matsuoka (original)

—— Matsuoka (smoothed)
No CPG (original)
—— No CPG (smoothed)

Note: Performance comparison for “births per 1000 robots per 8 seconds”,
original curve and smoothed curve (window = 10).

On the raw metrics, the CPG robots usually outperformed the No
CPG robots. The best Hopf and Matsuoka robots were able to achieve
higher fitness scores (Figure 6) by the end of the simulation (No CPG: =
90, Hopt: = 150, Matsuoka: ~ 300). The CPG methods also allowed the
best robots to reproduce in higher quantities (Figure 7) by the end of the
simulation (No CPG: = 3.5 births/lifetime, Hopf: =~ 4.75 births/lifetime,
Matsuoka: =~ 7 births/lifetime).

Surprisingly, despite the greater ability of Hopf to reproduce
compared to No CPG, the best Hopf robots actually ate less food
(Figure 8) than the No CPG method (No CPG: = 250 food/lifetime,
Hopf: = 175 food/lifetime, Matsuoka: =280 food/lifetime). This result
is hard to explain from just the data. Possible explanations may be that
Hopf robots had better control over when to reproduce using CPGs, and
so they were able to more efficiently trigger reproductions than the No

Figure 5
Total area under curve (AUC) for birthrate

Area Under Curve (AUC)

Hopf Matsuoka No CPG

Figure 6
Fitness score in fitness hall of fame

0 100 200 300 400 500
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— Hopf (max) - Matsuoka (mean)
----- Hopf (mean) —— No CPG (max)
—— Matsuoka (max) - No CPG (mean)
Figure 7

Times reproduced in fitness hall of fame

Value

0 100 200 300 400 500

Index
— Hopf (max) Matsuoka (mean)
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—— Matsuoka (max) -+ No CPG (mean)

CPG robots, who instead had to rely on fixed neuron bias or sensory
stimulation to activate their reproduction. In the prior case, fixed neuron
bias, the robot either reproduces always and may drain its energy too
fast, or never reproduces. In the latter case, where specific sensory
stimulation is required to reproduce, the robot may never or only rarely
achieve the proper stimulation. These are only speculative explanations
for the somewhat counterintuitive result.

4.2. Statistical significance tests

To assess whether the use of CPGs significantly improved robot
birthrates in our simulations, the raw birthrate data was recorded (see
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Figure 8
Food eaten in fitness hall of fame

0 100 200 300 400 500

Index
— Hopf (max) - Matsuoka (mean)
~~~~~ Hopf (mean) —— No CPG (max)
—— Matsuoka (max) - No CPG (mean)

Figure 4) and analyzed with a significance level of 0.05. Wilcoxon
signed-rank tests (using SCIPY Python package) were conducted
to compare the birthrates between the CPG and No CPG conditions.
The results revealed a statistically significant advantage for both the
Hopf-based method (W =38 826.5, p = 1.14x107'%) and the Matsuoka-
based method (W = 62 659.0, p = 3.79 x 107%), indicating that CPGs
consistently outperformed the non-CPG baseline across time, allowing
robot populations to achieve higher birthrates.

Next was to see whether the benefit on birthrate remained
constant, decreased, or increased over the course of simulation. To do
this, the statistical analysis was performed on the difference between
the CPG and No CPG methods (see Figure 9), with a significance level
of 0.05.

Figure 9
Birthrates difference across all three methods

Birthrate

— Hopf
—— Matsuoka
— No CPG

Note: Smoothed, window=10.

The Kwiatkowski—Phillips—Schmidt—Shin (KPSS) test was
performed on the differences between birthrate data using the KPSS
function in Python’s STATSMODELS library. The KPSS was run on
the time series differences between the birthrate using CPGs and the
birthrate not using CPGs. The regression parameter was set to “ct”,
meaning that it tested if the time series was stationary around a trend.

For Hopf vs. No CPG, the KPSS p-value calculated was around
0.0206. The same was done for the Matsuoka vs. No CPG birthrate data.
The function was able to find that the actual p-value was less than 0.01;
however, it was not able to calculate the exact p-value due to internal
interpolation errors inherent to the function. However, the test statistic was
0.248858, higher than the critical value of 0.146. Therefore, in both cases,

! Statsmodels. (2025). Statsmodels (Version 0.15.0) [Software]. https://www.statsmodels.org/dev/
generated/statsmodels.tsa.stattools.kpss.html

the difference between the CPG vs. No CPG time series is nonstationary.
That is to say, the magnitude of the CPG benefit changed over time.

To determine in what direction the magnitude of benefit
was changing, Mann-Kendall trend tests were performed (using
PYMANNKENDALL Python package [15]) and linear regression
(using SCIPY Python package®) on the birthrate differences between
the methods. The tests determined the gap between the CPG and non-
CPG methods increased over time. For Hopf vs. No CPG, both Mann-
Kendall trend analysis (trend = increasing, slope = 0.0027, p = 4.73 x
107'") and linear regression (slope = 0.0051, p=1.24 x 107'°, R2=0.083)
determined that the gap was increasing over time. Similarly, for Matsuoka
vs. No CPG, both Mann-Kendall trend analysis (trend=increasing, slope
=0.0072, p = 0.00) and linear regression (slope = 0.0096, p = 9.81 x
1073, R2 = 0.278) determined the gap was increasing over time.

The authors also generated the gain portion of a Bode plot in
order to see how robust the animats were to changes in the location
of the closest food (after two hours of evolution). This was done by
treating the input signal as a sum of delta functions, where a delta
function was added each time the simulation spawned a new food
source which was closer to the animat than the previously spawned
food source. The output signal was how much the animat’s distance
changes based on how much it was able to compensate for the change.
The authors took the Fourier transform on the input and output signals
in order to break both signals down into their individual frequencies
and to see what the gain was for each frequency. The resulting Bode
plot is shown in Figure 10. There is a frequency range where the gain
is relatively higher, indicating that within this range, animats were less
able to quickly adapt to the location change.

Figure 10

Bode plot gain showing response to food frequency changes
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In conclusion, these analyses demonstrate that the CPG-based
controllers outperformed the baseline of No CPGs, and the performance
difference between the populations also grew over time.

5. Future Directions

In the future, it would be interesting to test CPGs in other
frameworks.

For example, how do CPGs affect real-time learning rules such
as Hebbian rules, which learn according to neural activation patterns?
Since the neural activation patterns become more rhythmic with CPGs,

2 SciPy. (2025). SciPy (Version 1.16.2) [Software]. https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.linregress.html
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will the Hebbian plasticity still be meaningful and useful, or instead
overshadowed by the rhythmic pattern? This is perhaps one of the most
promising next steps, since it is relatively simple to add and combines
multiple “realistic”’/naturalistic aspects of neuron function.

Soft voxel robots (SVRs) [16] are an alternative to articulated
robots and have different properties, namely that they are squishy/soft
and made of voxels. It has been shown that soft voxel robots are viable
for animat simulations such as performed here [2, 17]. Consequently,
it would also be interesting to test these CPG equations on soft voxel
robots for the food-seeking and reproduction tasks, since SVRs are
known to benefit from rhythmic actuation.

One can also consider using CPGs to augment the abilities
of symbolic reasoning systems, such as non-axiomatic reasoning
system (NARS) [18, 19]. Though NARS, being general-purpose, may
technically be able to handle low-level sensorimotor processes (e.g.,
NARS can process pixel-level vision activations using logical inference),
it is a difficult task for the system that consumes many of the system’s
resources. The full-scale and fluid control of low-level processes using
symbolic reasoning systems is still a difficult research problem. Since
CPGs produce rhythmic motor (low-level) movements or patterns that
can be triggered by higher-level control processes, CPGs could be useful
in symbolic and neurosymbolic Al. For example, NARS making high-
level decisions and plans could use CPGs to trigger specific low-level
motor movement patterns at specific times, depending on the results of its
logical reasoning. This would free the higher-level control and reasoning
processes from needing to manage all low-level motor intricacies,
allowing NARS more freedom to focus on higher-level processes like
planning and goal management, at a higher level of abstraction and
generalization. Such CPGs or sinewaves could be integrated into the
genetic language of a reasoning system, which could give rise to different
species with different motor patterns, and allow NARS (or other logical
reasoning systems) to control complex robots more easily.

A preliminary experiment was run with an addition to the reward
function, which was changed to multiply the look score by a factor
called “norm control”, to encourage keeping robots upright; the norm
control is first derived from:

normcontrol = ,/tilti + tilt;

Then normcontrol is given an upper bound u, where u = K *
speed, where K is derived from a linear quadratic regulator (LQR)
control, and 4 = %, B=1,0=0.5,R=0.5. In our experiment,
the algorithm provided in the study of Chu et al. [20] was used to solve
the discrete-time Riccati equation in the LQR. The LQR control for this
upper bound penalized tipping less since if normcontrol is unbounded,
the animats would stand still and upright to prevent risk of tipping over.
The birthrate results of the preliminary test are graphed in Figure 11.

(33)

Figure 11
The birthrate results of a single run with the normcontrol

parameter
40

30

| Ly B

250 500 750 1000 1250
Time

6. Conclusion

In conclusion, the robots performed better overall with a CPG
model attached to their hidden neurons than without a CPG model. Both
our Hopf and Matsuoka CPG models provided a similar performance
benefit as each other, with the Matsuoka doing better than the Hopf in
our trial (in terms of birthrates).

Qualitatively, the robots with CPGs moved more rhythmically,
reliably, and smoothly than the robots without CPGs. Yet, the CPG
robots were still capable of motor control, such as being able to “switch
off” their sinusoidal movements when necessary, such as to stop and
fully devour a food block.

Quantitatively, the CPG robots outperformed No CPG robots in
the birth and fitness metrics. The Hopf robots had greater reproductive
efficiency, able to produce more offspring than No CPG robots while
eating less food. Our statistical analysis discovered that the birthrate
advantage conferred by CPGs on the animat populations was not
constant, but increased over the course of the simulation.

Overall, the data showing improvement in robot survival and
reproduction due to CPGs lends credence to the implementation of CPG
equations in articulated robots as a potential performance improvement,
even for tasks more complicated than locomotion, requiring control
such as targeted locomotion (object-seeking).
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