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Improved PCNN Polarization Image
Denoising Method Based on Grey Wolf
Algorithm and Non-Subsampled
Contourlet Transform

Yuhai Li1, Yuxin Sun1,* and Kai Feng1

1Science and Technology on Electro-Optical Information Security Control Laboratory, China

Abstract: In this article, an adaptive pulse-coupled neural network (PCNN) polarization image denoising method based on Grey Wolf
Optimization (GWO) and Non-subsampled Contourlet Transform (NSCT) is proposed. Different from the traditional PCNN denoising
method, the captured polarization image was firstly devised by the NSCT and enforced band decomposition to denoised by PCNN. The
evaluable index of the image was used for quantitative analysis. Then, GWO is used to update PCNN inherent voltage constant and
attenuation time constant and neurons connected intensity factor three model parameters, after looking for multiple optimal solutions, and
then to polarized image denoising to achieve the best effect. This method not only avoids the image edge blurring caused by the traditional
image denoising method but also solves the problem that the parameters of the PCNN are difficult to accurately estimate. Hence, it is more
suitable for polarization images containing noise. The experiment and the quantitative analysis of image evaluation indices showed that
NSCT-GWO-PCNN effectively suppresses the noise in polarization image by reducing salt-and-pepper noise while protecting edges.
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1. Introduction

In recent years, polarized light has been widely used to obtain
multi-dimensional information about objects in the fields of object
detection and sensing. Most polarization images must be
processed and transmitted to provide useful information about the
target, expand the detection range, and perform polarization light
navigation based on the relations among polarization channels.
However, in the process of obtaining a polarization image,
because of the uneven distribution of the polarization camera
micro-polarization array and high levels of noise in weak sunlight,
the quality of the polarization image will be severely reduced, and
polarization information is extremely difficult to extract (Liu &
Chen, 2021). Therefore, to improve the discriminability of
polarization images, effective denoising needs to be performed.

The pulse-coupled neural network (PCNN) is an effective nonlinear
digital data analysis method that consists of complex models of the input
and feedback systems. It has the functional features of synchronous firing
of neurons inmultiple states and synchronous spike release. It can search
for and isolate noise points according to the firing patterns of different
neurons. High-intensity noise points are eliminated by nonlinear
transformation and modulation, and hence this method has been
applied in image denoising. Lindblad and Kinser (2005) modified the
PCNN firing model and changed the cyclic firing to one firing event

to locate impulse noise using a PCNN; Shi et al. (2001) further
adapted the method for image filtering by improving the hard-limiting
function of the PCNN; Li et al. (2005) proposed an improved PCNN
and Otsu-based image enhancement method, which increases the
signal-to-noise ratio (SNR) after image filtering; Fang et al. (2005)
reduced the time complexity of PCNNs by simplifying the model,
threshold lookup table, and overall calculations in a specific
implementation of a PCNN; Guo et al. (2009) conducted in-depth
research on the use of PCNNs for binary image denoising and image
smoothing and proposed an image denoising algorithm based on
PCNN; and Wang et al. (2022) used the parallel computing power of
quantum computing to solve the problem of large computation
amount in neural network. Based on the PCNN, the authors propose
the quantum PCNN.

Few works exist on denoising algorithms for polarization images.
Gilboa et al. (2014) proposed an interpolation algorithm based on the
Gaussian regression process to denoise polarization images. The
algorithm also verifies that the accuracy of the denoised polarization
image will be affected if noise is not considered. Zhang et al. (2017)
proposed a denoising algorithm for polarization images based on
principal component analysis (PCA). The algorithm exploits the fact
that the four polarization channels of an ideal noise-free polarization
image are correlated, while the noise is random and uncorrelated.
The covariance matrix between the two polarization channels is
projected onto the PCA domain, and poor correlation among the
four polarization channels is eliminated as noise using the
dimensionality reduction characteristics of PCA. Deng et al. (2019)
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proposed a newworkingmode for the PCNN,where the refiring of fire-
extinguishing neurons is only allowed when all firing neurons are
extinguished. They also work out the constraint conditions of the
parameter settings under this mode. The polarization image
denoising methods often cause blurring at the images of different
polarization channels, and it is difficult to estimate the parameters of
the denoising model using the PCNN algorithms.

Many important parameters need to be precisely setwhenPCNN is
used for image denoising, but these parameters can only be estimated
manually through the amount of experiments, which requires not
only a large workload but also low model accuracy. Non-subsampled
contourlet transform (NSCT) can achieve multi-bands decomposition
of effective information separation in polarization images. Grey wolf
optimization (GWO) is used to optimize the fitness function of
PCNN to improve the model search efficiency and generalization
ability, which finally solves the above problems.

In summary, this article proposes an adaptive PCNN polarized
image denoising method based on GWO and NSCT. Firstly,
polarization image decomposed by NSCT. Then, after successive
hierarchical screening and multiple iterations of GWO, the
parameters of the PCNN are optimized globally accurately, which
not only effectively solves the problem of setting the key
parameters of the PCNN but also greatly improves the
computational speed of the whole model. The optimized PCNN
with GWO is used to denoise different parameters, which finally
eliminated the high-intensity noise and makes the whole denoising
process more effective. The results show that the proposed
polarization image denoising method not only extracts and
preserves the image details but also effectively suppresses the noise.

2. NSCT-GWO-PCNN-Related Work

2.1. PCNN biologically inspired model

The PCNN is an effective nonlinear digital data analysis method
that consists of complex models of the input and feedback systems.
It has the functions of neuron-specific linear addition, biological
electrical pulse transmission, nonlinear modulation, synchronous
pulse release, and so on (Sang et al., 2016). Unlike other neural
networks, PCNN can extract and isolate image pixel information
without learning or training parameters. The PCNN model
consists mainly of a branching tree system input, an operation
linker, and a pulse generator, as shown in Figure 1.

When a PCNN is used for data image processing, a two-
dimensional polarization image corresponds to a two-dimensional

PCNN neural network of the same size. The gray value of the pixel
corresponds to the initial external stimulus of the neuron at the
corresponding position (Gu et al., 2002; Zhao et al., 2022). The
gray value is used as the dynamic input for each neuron and a
dynamic threshold is set. If the input gray value is greater than the
neuron’s dynamic threshold, the neuron is activated, that is, the
neuron whose internal activation is higher than the dynamic
threshold enters the firing state. Because the individual neurons of a
PCNN are connected to other neurons, the state of a single neuron
affects the states of the surrounding neurons. If a single neuron fires,
an external excitation is fed to the neighboring neurons. If the
neighboring neurons are not firing and their internal activation is
above than the dynamical threshold after external excitation, they
will be in the activated firing state as a single neuron.

To meet the needs of image denoising, a simplified PCNN
neuron model without leaky integrators in the input and
connection domains is used. There are three parameters to
determine: the inherent voltage constant VT , attenuation time con-
stant αT , and neuron connection intensity factor βT . The algorithm
of the simplified PCNN model is roughly as follows: First, input a
grayscale image to the PCNN model as follows (Wang et al., 2010):

Fij½n� ¼ Iij (1)

where Fij represents the input signal of the PCNNmodel. Here, image
Iij is used as the input signal of the PCNN model, that is, point ði; jÞ
corresponds to the grayscale value of the image pixel. After the noisy
signal has been input, the internal activity term Uij is calculated as
follows:

Lij½n� ¼
X
B

WijiYk½n� 1� (2)

Uij½n� ¼ Fij½n�f1þ βTLij½n�g (3)

Then, internal activation Uij is compared with neuron dynamic
threshold Eij to generate a pulse output Yij as follows:

Yij½n� ¼ 1; Uij½n� > E½n� 1�
0; Uij½n� > E½n� 1�

�
(4)

When the state ofYij½n� is 1, the neuron is activated and outputs a high
value; when the state is 0, the neuron is in a dormant state and outputs
a low value.

When PCNN models are used for image denoising, several
neurons with a feedback structure are used for the firing
operations. The number of neurons is determined by the number
of pixels of the image, that is, the number of neurons in the
PCNN network is equal to the number of pixels in the input
polarization image. In the PCNN model, it is necessary to exploit
the influence of the peripheral neuron state on the central neuron
state and convert it into the signal intensity transmitted to the
central neuron, which is expressed by a weighted coefficient
matrix, defined as follows:

Wijkl ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ði� kÞ2 þ ðk� lÞ2
p (5)

where ði; jÞ and ðk; lÞ are the coordinates of the grayscale pixels of the
polarization image. The relationship between the complete PCNN
image denoising model and image pixels is illustrated in Figure 2.

Figure 1
PCNN model
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2.2. Non-subsampled contourlet transform

The NSCT is a multi-scale geometric transformation. It can
provide information in any direction of the polarization
image, because it contains non-subsampling pyramid filter bank
and non-subsampling directional filter bank. The NSCT divides
the polarization image into many sub-bands. Background and
untextured areas of the polarization image belong to low-pass sub-
bands, and the edge details and noises belong to high-pass sub-bands.

The ideal passband support of the low-pass filter at the j-th stage
is the region ½�ðπ=2jÞ; ðπ=2jÞ�2 in NSCT.Accordingly, the ideal sup-
port of the equivalent high-pass filter is the opposite region of the
low-pass: ½�ðπ=2j�1Þ; ðπ=2j�1Þ�2n½�ðπ=2jÞ; ðπ=2jÞ�2 (Wang et al.,
2013). The j-level equivalent filter that decomposes images can be
expressed by the following equation:

HðzÞ ¼ H1ðzÞ
QJ�2

j¼0 H0ðz2jÞ; 1 � j � 2JQJ�2
j¼0 H0ðz2jÞ; j ¼ 2J

(
(6)

Multi-scale analysis of polarization image can be performed by
convolving the equivalent filter (Zhang & Guo, 2009). The j-level
decomposition of polarization image in the k-th can produce a
low-pass sub-bands images and

PJ
j¼1 2

lj band-pass sub-bands
images (lj represents the direction decomposition at the j-level),
and corresponding coefficients can be expressed as

cj0ðm; nÞ; cj;lðm; nÞðj0 � j � 1; l ¼ 1; 2; . . . ; 2ljÞ
n o

k
(7)

where cj0ðm; nÞ denotes low-pass sub-bands coefficients at the j0-th
scale; cj;lðm; nÞ denotes band-pass sub-bands coefficients at the j-th
scale and the l-th direction. Figure 3 shows the effect of NSCT band
decomposition. The purpose of this method is to adopt different
denoising strategies for images with different frequency sub-bands
to avoid the loss of important image details in the process of
denoising. Since most of the noise belong to the high-frequency
bands, radical denoising strategy is adopted for it, while the
low-frequency band is not processed or treated lightly.

2.3. GWO optimization algorithm

Heuristic optimization algorithms that have been inspired by
related physical phenomena, animal behaviors, have been widely
used in many scientific fields. GWO is a heuristic technique

(Gupta & Saxena, 2015) based on the behaviors of wolf packs
proposed by Mirjalili et al. (2014). GWO is inspired by the
strategy wolves used to catch prey. Since GWO can solve
optimization functions, it can be further applied to complex
multivariate solving problems. For example, PCNN contains a
model with multiple parameters that must be optimized. The
initial phase of GWO in the search process is prey encirclement.
The formula for simulating the encircling process is as follows
(Lu et al., 2018; Zhu et al., 2017):

~D ¼ ~C �~XPðtÞ � ~XðtÞ�� �� (8)

~Xðt þ 1Þ ¼ ~XPðtÞ �~A � ~D (9)

where t represents the current iteration, and ~XP, ~X are the position
vectors of the prey and gray wolves, respectively. Vectors ~A and
~C are calculated as follows:

~A ¼ 2~a �~r1 �~a (10)

~C ¼ 2 �~r2 (11)

where~r1 and~r2 are random vectors in [0,1]. Using these vectors, the
position can be updated randomly on the search domain; ~a is a
motion vector that decreases linearly during the iteration.

The wolf pack consists of four types of wolves: α, β, δ, and ω.
We assume that α, β, and δ knowmore about the location of the prey.
Therefore, the ω wolves must update their positions according to the
three best positions obtained so far (Banu & Baskaran, 2018). The
characteristics of the wolves can be expressed numerically as

Figure 2
Relationship between image pixels and the PCNN

Image pixel PCNN neuron

Figure 3
NSCT band decomposition for polarization image
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~Dα ¼ ~C1 � ~Xα � ~X
�� ��

~Dβ ¼ ~C2 � ~Xβ � ~X
�� ��

~Dδ ¼ ~C3 � ~Xδ � ~X
�� ��

8><
>: (12)

~X1 ¼ ~Xα �~A1 � ~Dα

�� ��
~X2 ¼ ~Xβ �~A2 � ~Dβ

�� ��
~X3 ¼ ~Xδ �~A3 � ~Dδ

�� ��
8><
>: (13)

~Xðt þ 1Þ ¼
~X1 þ ~X2 þ ~X3

3
(14)

The initial solutions α, β, and δ are obtained individually, and the rest
of the solutions cancel out simultaneously. The average value of the
three optimal solutions is expressed as ~X. After the prey is attacked
and stops moving, the hunt process will stop. Then the above cycle

repeats. If A
!

< 1, the attack process ends; otherwise, if A
!

>; 1, the
gray wolf shifts its attention and begins to search for prey again.

3. NSCT-GWO-PCNN Polarization Image
Denoising Method

Polarization imaging is an emerging optical imaging technique. In
contrast to the arrays used for intensity imaging, the polarization array of
current optical polarization imaging devices has four polarization
angles: 0°, 45°, 90°, and 135°. A camera equipped with this
polarization array can collect four polarization images with different
illumination intensities according to the polarization information of
sunlight. A variety of target information can be obtained for
detection and navigation from the polarization characteristics of
sunlight in the obtained polarization image. Figure 4 shows a
polarization image of a scene on a sunny day taken by a polarization
camera. Polarization images with different intensities due to different
polarization angles after decomposition are also shown.

In the polarization images in Figure 3, there are particle noise
points in the light intensities under different polarization angles.
Therefore, the NSCT-GWO-PCNN denoising method proposed in
this article is used for noise removal. In contrast to denoising
conventional images, when processing polarization images, we
denoise the four polarization angle images separately and finally
merge the four images into a complete polarization image.

The flow chart of the proposed method based on NSCT-GWO-
PCNN is shown in Figure 5.

To combine the evaluation of the PCNN image denoising with
the GWO goal, the fitness function (Cheng et al., 2018) is that each
set of optimization parameters must meet the requirements of the
objective function, and the parameter set with the largest fitness
value is obtained after screening, as follows:

h ¼ 10� log
2552

θ

� �
(15)

θ ¼ 10� log

���S� Y
���2
P

M � N

0
@

1
A (16)

where h is the fitness criterion, θ is themean squared error (MSE), S is
the original input image, S� Yk k is the pðp ¼ 2Þ norm of S� Y , and
M andN denote the dimensions of the original and denoised images.
The steps of the GWO-PCNN are listed in Algorithm 1.

Figure 4
Original polarization image and the decomposed images of each

polarized light channel

Figure 5
GWO-PCNN image processing
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Algorithm 1. NSCT-GWO-PCNN image denoising algorithm

Algorithm: NSCT-GWO-PCNN image denoising algorithm

Step 1: Border processing
Generate an edge symmetrical expansion so that the input image

ðm; nÞ is expanded to ðmþ 6; nþ 6Þ;
Step 2: NSCT

Compute NSCT band coefficients cj;lðm; nÞ
Step 3: GWO optimization of the PCNN parameters
αT , βT , VT

Initialize the number of wolves (i=1, 2, : : : , N) and maximum
number of iterations N, a, A, C; Set the PCNN parameters α, β, δ
wolves respectively, and solve the function fitness value h of every
group of parameters;

Maintain each pixel in a non-firing state;
If t < N, end after updating the location of the current search

agent, update, A, and C;
Solve the function fitness value of all search agents h;
t = t+1;
Update the first search agentYa, the second search agentYβ, and

the third search agent YV ;
End when t < N, otherwise continue to search for the three best

agents;
Step 4: Noise detection and processing

Calculate the value of Lij½n� for each neuron in the 3� 3 regions;
Adjust the threshold of Lij½n�;
Calculate the value of the Lij½n� modulation signal inside the

neuron;
If one neuron in the adjacent area is fired, and more than four

adjacent neurons are not fired at the same time, the brightness Uij½n�
of the pixel will decrease at the end of the step Δt;

Otherwise, the brightness value of the image pixel does not
change;
Step 5: Compare the values of and Eij½n�
Step 6: Record the output

Record the output state of neurons: activated or inactivated;
Step 7: Determine whether to loop

N ¼ N � 1, and N 6¼ 0, loop step 3;
otherwise, end the program.

4. Experiment and Analysis

4.1. Convergence and adaptation analysis

In order to verify the effectiveness of GWO improvement strategy,
four kinds of international benchmark test functions are selected for
simulation and comparison experiments. In order to ensure unbias,
the population number N of GWO is set as 30, and the total number
of iterations is set as 500. In order to eliminate the influence of
randomness, all experiments were run independently for 4 times, and
the mean value and STD (standard deviation) of the 4 times were
taken as the measurement standard of algorithm performance.

The mathematical formula of the test functions is shown in
Table 1, including two single-peak test functions (F1, F2) and two
multi-peak test functions (F3, F4). The single-peak test function is
a measure of the algorithm’s solving accuracy and convergence
speed, while the multi-peak test function can well represent the
algorithm’s global searching ability and the ability to avoid local
optimization. Figure 6 shows the two-dimensional search space of
partial single-peak and multi-peak test functions.

In order to prove the advantages of GWO convergence,
three classic, mainstream approaches, Genetic Algorithm (GA) (Miller

& Ziemiański, 2020), Ant Colony Algorithm (ACO), and Particle
Swarm Optimization (PSO) (Shen et al., 2017) are also evaluated for
comparison. Table 2 lists the test results of each algorithm on the
benchmark function. The results reveal that GWO can converge faster
than the PSO and ACO and can complete the global search
optimization. GWO also obtains a better final solution than GA. At
the same time, according to the numerical results, GWO obtained a
higher solution accuracy, which indicates that the adaptive position
updating strategy of individual GWO is a better improvement strategy.

Figure 7 shows the convergence curves of the four algorithms in
four search spaces. The problems of premature convergence and
early local fitness value cannot be ignored. For example, on F3,
GA falls into local optimal solution at the 200th iteration, and it
cannot jump out of local optimal solution until the end of
algorithm iteration. As can be seen from the convergence
diagram, GWO performs better than other algorithms. At the same
time, it can be observed from most of the curves that GWO has a
good initial fitness value, indicating that the initialization strategy
of the algorithm in this article has played an obvious role in
enabling the algorithm to obtain the best fitness value.

4.2. Experimental denoising analysis

To further evaluate the NSCT-GWO-PCNN polarization image
denoising optimization method proposed in this article, the objective
function of the GWO was used to objectively evaluate the
image performance parameters using an evaluation index, that is,
the MSE. The degree of change in the image is measured by the
normalized MSE (NMSE) of the image, which has a range of
[0,1] after normalization and more clearly reveals the difference in
parameters among the images. The MSE is calculated as follows:

MSE ¼ 1
mn

Xm�1

i¼0

Xn�1

j¼0

½Iði; jÞ � Kði:jÞ�2 (17)

where Iði; jÞ represents the gray value corresponding to the pixel
points in row i and column j of the original polarization image;
Kði; jÞ represents the gray value corresponding to the pixel points
in row i and column j of the denoised polarization image. For NMSE
(Chen et al., 2011), higher values indicate that the denoising perfor-
mance of the image is worse.

The SNR is the ratio of the power spectrum of the signal to the
noise. A larger SNR indicates that the image contains less noise. SNR
is calculated as follows:

SNR ¼ 10 log10

Pm�1

i¼0

Pn�1

j¼0
Iði; jÞ2

Pm�1

i¼0

Pn�1

i¼0
½ði; jÞ � Kði; jÞ�2

2
6664

3
7775 (18)

The evaluation experiment in this study was run on a
MATLAB2022, a platform equipped with an Intel® Core™
i7-7700 CPU, 16 GB of memory, and a 64-bit operating system.

Table 1
NSCT-GWO-PCNN image denoising algorithm

Number Functions Range

F1
f ðxÞ ¼ Pn

i¼1
xi

2 ½�100; 100�

F2 f ðxÞ ¼ max xij j; 1 � i � nf g ½�100; 100�
F3

f ðxÞ ¼ Pn
i¼1

xi
2

4000 �
Qn
i¼1

cosð xiffi
i

p Þ þ 1
½�600; 600�

F4
f ðxÞ ¼ Pn

i¼1
xi2 � 10 cosð2πxiÞ þ 10½ � ½�5:12; 5:12�
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Figure 6
Benchmark function

Table 2
Experimental results of comparison algorithms on four test functions

Number GA ACO PSO GWO

F1 Mean 3.45E-07 4.53E-07 5.85E-02 1.32E-08
STD 2.82E-07 2.37E-07 3.65E-02 2.63E-08

F2 Mean 8.64E-05 3.41E-05 5.64E-03 2.42E-06
STD 3.72E-05 6.78E-05 3.24E-03 1.58E-06

F3 Mean 358E-03 2.15E-11 4.58E-02 1.25E-12
STD 8.76E-03 5.35E-11 8.87E-02 4.53E-12

F4 Mean 7.83E-03 9.87E-3 2.78E-02 7.86E-04
STD 5.37E-03 2.35E-03 9.74E-02 7.27E-04
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The experimental data were captured by the self-made
polarization camera. The polarization scene images include the
details of buildings and cars. The actual collection of the polarized
images is prone to noise interference. Moreover, the similarity
between the polarization images and the image target is poor
because of the precision of the polarization camera, lens dust, and

the photographer’s jitter. In addition, since the real image captured
by polarization camera has no ground truth to provide for reference,
it is often affected by uncertainties and imprecisions. Therefore, we
fuzzy the polarized light image according to Versaci et al. (2022),
so as to improve the robustness of the method proposed. To
enhance the levels of noise of the images in the experiment, we

Figure 7
Convergence results of GWO, GA, ACO, and PSO
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added salt-and-pepper noise to the original polarization image, because
when imaging the polarized light sensor, there will be statistical
fluctuations in some light quanta reaching the surface of the
polarized array. We used additive salt-and-pepper noise in our
enhanced noise experiments because polarization images are
granular. The number of gray levels of the polarization image was
set to 256, and the size of the image was increased to 244× 204.

In this experiment, the GWO algorithm was used to optimize the
inherent voltage constant VT , decay time constant αT , and neuron con-
nection strength factor βT of the PCNN model. The PCNN with adap-
tive parameters was used. The simulation is completed, which shows
that the method has a certain feasibility. The parameters for the initial
run of the PCNNmodel weremanually set 0.5, 1, and 150, respectively.

After the PCNN completed the first image denoising, the GWO
algorithm was used to adaptively seek the optimal solution. The
process of seeking the optimal solution and the process of denoising
were carried out simultaneously. First, the number of iterations of
GWO algorithm was set to 100. The solution sets of PCNN
parameters optimized by the GWO algorithm are listed in Table 3.

In Table 3, the seven groups of solutions were optimized by the
GWO algorithm. We selected one of them as the optimal parameters
of PCNN for the polarization image denoising experiment.

Figures 8, 9, and 10 show the polarization images of three sets of
scenes and the decomposed images under four polarization angles. The
three sets of scenes all contain the polarization images of the scene and

Table 3
GWO-optimized PCNN parameters

Number βT VT αT

1 0.7562 1.4475 258.4424
2 0.8563 1.0725 212.5581
3 0.9532 2.0127 233.4272
4 0.6994 2.1775 195.8413
5 0.8234 1.8645 196.4177
6 0.901 0.7753 173.8651
7 0.8427 1.9621 209.2786

Figure 8
NSCT-GWO-PCNN polarization image denoising results

Figure 9
NSCT-GWO-PCNN polarization image denoising results
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the target and also include the sky scene to complete the polarized light
orientation experiment. It shows the scene polarization imagewith salt-
and-pepper noise and the four decomposed polarization angle images.
The experimental results after denoising and recombining the four
polarization angle images using the NSCT-GWO-PCNN algorithm
are shown in (f)–(i). It can be seen that the method proposed in this
article restores the details of the scene polarization image
completely. In the denoised polarization image, the edges of cars
and buildings in the scene have been enhanced, and the contrast of
the sky region has been enhanced by the neuron firing operation. In
addition, in the enhanced noise experiment, the salt-and-pepper
noise added to the original polarization image has also been
removed. From the polarization image with noise, it can be seen
that the polarization degree of the window is higher than the metal
surface of the car. All the methods proposed in this article can
restore the contour of the vehicle, and the overall polarization
degree of the vehicle is basically the same and does not change
with the change of the material. The method in this article keeps the
trend of polarization degree while removing noise. The polarization
information is recovered well and the average brightness is consistent.

In addition, to evaluate the advantages of the method in this
article, we also used a traditional median filter (MF), residual neural
network (ResNet), and the PCNN model with manually set
parameters to conduct a comparative denoising experiment. The
denoising performances of the four methods are shown in
Figure 11. The MF is a classic method for removing salt-and-
pepper noise in a polarization image. Because the polarization

image contains an image synthesized from four polarization angle
images, the MF can remove the noise to a certain extent from a
polarization image with a single angle, but if the polarization
images for all four angles are synthesized after denoising, the
denoising effect is not satisfactory. To denoising an image using the
traditional PCNN model, it is necessary to set the manual
parameters many times, which may achieve a good denoising
performance to a certain extent, but it does not fully leverage the
denoising potential of the PCNN model, and it is too difficult to
obtain parameters with good denoising performance. For ResNet,
only the contour of the polarization image has been recovered well.
The polarization degree of the whole car is basically the same and
does not change with the change of material. However, there is a
lot of noise in the important sky polarization information, which
may be caused by the poor training effect. The PCNN method
basically restores the contour of the image, but the details of the
sky and the car in the polarization image are still slightly blurred,
and the high polarization degree of the car roof is not well restored.
In addition, the polarization image after MF processing appears
very serious distortion. Although ResNet achieved good denoising
effect, it has spent huge training costs and resources, and this
process is tedious. Compared with these three methods, NSCT-
GWO-PCNN has higher denoising efficiency.

Finally, to objectively evaluate the GWO-PCNN denoising
algorithm, we computed the evaluation indicators in the objective
function of the GWO, which can objectively evaluate the
performance of image denoising and compare the GWO-PCNN

Figure 10
NSCT-GWO-PCNN polarization image denoising results

Figure 11
Denoising results with different methods
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with the MF. The parameters are compared with the polarization
image denoised by the traditional PCNN model. Table 4 compares
the evaluation indices (NMSE, MSE, and SNR) of the results of
the polarization image in Figure 6. The results in the table show
that the NMSE and MSE of the polarization image processed by
the NSCT-GWO-PCNN algorithm are lower than those of the
other algorithms, and the SNR is substantially improved.
Therefore, it can be clearly seen from the experimental denoising
result images and evaluation indices that the NSCT-GWO-PCNN
denoising algorithm effectively suppresses image noise.

5. Conclusion

In this article, an improved PCNN polarization image denoising
method based on GWO andNSCTwas proposed. Polarization images
were devised using the NSCT, and the PCNN parameters were
optimized by adaptive GWO, and denoising experiments were
carried out on decomposed polarization channel images. Compared
with three methods, the proposed method maintains the edge and
details of the image better, effectively removes the salt-and-pepper
noise added to enhance the levels of noise, and performs better than
three methods with respect to the objective image evaluation indices.
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