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Improved PCNN Polarization Image Denoising
Method Based on Grey Wolf Algorithm and
Non-Subsampled Contourlet Transform

Yuhai Li1, Yuxin Sun1,* and Kai Feng1

1Science and Technology on Electro-Optical Information Security Control Laboratory, China

Abstract: In this article, an adaptive pulse-coupled neural network (PCNN) polarization image denoising method based on Grey Wolf
Optimization (GWO) and Non-subsampled Contourlet Transform (NSCT) is proposed. Different from the traditional PCNN denoising
method, the captured polarization image was firstly devised by the NSCT and enforced band-decomposition to denoised by PCNN. The
evaluable index of the image was used for quantitative analysis. Then, GWO is used to update PCNN inherent voltage constant and
attenuation time constant and neurons connected intensity factor three model parameters, after looking for multiple optimal solutions,
and then to polarized image denoising to achieve the best effect. This method not only avoids the image edge blurring caused by the
traditional image denoising method, but also solves the problem that the parameters of the PCNN are difficult to accurately estimate.
Hence, it is more suitable for polarization images containing noise. The experiment and the quantitative analysis of image evaluation
indices showed that NSCT-GWO-PCNN effectively suppresses the noise in polarization image by reducing salt-and-pepper noise while
protecting edges.
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1. Introduction

In recent years, polarized light has been widely used to obtain
multi-dimensional information about objects in the fields of object
detection and sensing. Most polarization images must be
processed and transmitted to provide useful information about
the target, expand the detection range, and perform polarization
light navigation based on the relations among polarization
channels. However, in the process of obtaining a polariz-
ation image, because of the uneven distribution of the
polarization camera micro-polarization array and high levels of
noise in weak sunlight, the quality of the polarization image
will be severely reduced, and polarization information is
extremely difficult to extract [1]. Therefore, to improve the
discriminability of polarization images, effective denoising
needs to be performed.

The pulse-coupled neural network (PCNN) is an effective
nonlinear digital data analysis method that consists of complex
models of the input and feedback systems. It has the functional
features of synchronous firing of neurons in multiple states and
synchronous spike release. It can search for and isolate noise
points according to the firing patterns of different neurons. High-
intensity noise points are eliminated by nonlinear transformation
and modulation, and hence this method has been applied in image
denoising. Lindblad and Kinser [2] modified the PCNN firing

model and changed the cyclic firing to one firing event to locate
impulse noise using a PCNN; Shi et al. [3] further adapted the
method for image filtering by improving the hard-limiting
function of the PCNN; Li et al. [4] proposed an improved PCNN
and Otsu-based image enhancement method, which increases the
signal-to-noise ratio (SNR) after image filtering; Fang et al. [5]
reduced the time complexity of PCNNs by simplifying the model,
threshold lookup table, and overall calculations in a specific
implementation of a PCNN; Guo et al. [6] conducted in-depth
research on the use of PCNNs for binary image denoising and
image smoothing and proposed an image denoising algorithm
based on PCNN; and Wang et al. [7] used the parallel computing
power of quantum computing to solve the problem of large
computation amount in neural network. Based on the PCNN, the
authors propose the quantum PCNN.

Few works exist on denoising algorithms for polarization
images. Gilboa et al. [8] proposed an interpolation algorithm
based on the Gaussian regression process to denoise polarization
images. The algorithm also verifies that the accuracy of the
denoised polarization image will be affected if noise is not
considered. Zhang et al. [9] proposed a denoising algorithm for
polarization images based on principal component analysis (PCA).
The algorithm exploits the fact that the four polarization channels
of an ideal noise-free polarization image are correlated, while the
noise is random and uncorrelated. The covariance matrix between
the two polarization channels is projected onto the PCA domain,
and poor correlation among the four polarization channels is
eliminated as noise using the dimensionality reduction
characteristics of PCA. Deng et al. [10] proposed a new working
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mode for the PCNN, where the refiring of fire-extinguishing neurons
is only allowed when all firing neurons are extinguished. They also
work out the constraint conditions of the parameter settings under
this mode. The polarization image denoising methods often cause
blurring at the images of different polarization channels, and it is
difficult to estimate the parameters of the denoising model using
the PCNN algorithms.

Many important parameters need to be precisely setwhenPCNN is
used for image denoising, but these parameters can only be estimated
manually through the amount of experiments, which requires not
only a large workload but also low model accuracy. Non-subsampled
Contourlet Transform (NSCT) can achieve multi-bands
decomposition of effective information separation in polarization
images. Grey wolf optimization (GWO) is used to optimize the
fitness function of PCNN to improve the model search efficiency
and generalization ability, which finally solves the above problems.

In summary, this article proposes an adaptive PCNN polarized
image denoising method based on GWO and NSCT. Firstly,
polarization image decomposed by NSCT. Then, after successive
hierarchical screening and multiple iterations of GWO, the
parameters of the PCNN are optimized globally accurately, which
not only effectively solves the problem of setting the key
parameters of the PCNN but also greatly improves the
computational speed of the whole model. The optimized PCNN
with GWO is used to denoise different parameters, which finally
eliminated the high-intensity noise and makes the whole denoising
process more effective. The results show that the proposed
polarization image denoising method not only extracts and
preserves the image details but also effectively suppresses the noise.

2. NSCT-GWO-PCNN-Related Work

2.1. PCNN biologically inspired model

The PCNN is an effective nonlinear digital data analysis method
that consists of complex models of the input and feedback systems.
It has the functions of neuron-specific linear addition, biological
electrical pulse transmission, nonlinear modulation, synchronous
pulse release, and so on [11]. Unlike other neural networks,
PCNN can extract and isolate image pixel information without
learning or training parameters. The PCNN model consists mainly
of a branching tree system input, an operation linker, and a pulse
generator, as shown in Figure 1.

When a PCNN is used for data image processing, a two-
dimensional polarization image corresponds to a two-dimensional

PCNN neural network of the same size. The gray value of the pixel
corresponds to the initial external stimulus of the neuron at the
corresponding position [12, 13]. The gray value is used as the
dynamic input for each neuron and a dynamic threshold is set. If the
input gray value is greater than the neuron’s dynamic threshold, the
neuron is activated, that is, the neuron whose internal activation is
higher than the dynamic threshold enters the firing state. Because
the individual neurons of a PCNN are connected to other neurons,
the state of a single neuron affects the states of the surrounding
neurons. If a single neuron fires, an external excitation is fed to the
neighboring neurons. If the neighboring neurons are not firing and
their internal activation is above than the dynamical threshold after
external excitation, they will be in the activated firing state as a
single neuron.

To meet the needs of image denoising, a simplified PCNN
neuron model without leaky integrators in the input and
connection domains is used. There are three parameters to
determine: the inherent voltage constant VT , attenuation time con-
stant αT , and neuron connection intensity factor βT . The algorithm
of the simplified PCNN model is roughly as follows: First, input a
grayscale image to the PCNN model as follows [14]:

Fij½n� ¼ Iij (1)

where Fij represents the input signal of the PCNNmodel. Here, image
Iij is used as the input signal of the PCNN model, that is, point ði; jÞ
corresponds to the grayscale value of the image pixel. After the noisy
signal has been input, the internal activity term Uij is calculated as
follows:

Lij½n� ¼
X
B

WijiYk½n� 1� (2)

Uij½n� ¼ Fij½n�f1þ βTLij½n�g (3)

Then, internal activation Uij is compared with neuron dynamic
threshold Eij to generate a pulse output Yij as follows:

Yij½n� ¼ 1; Uij½n� > E½n� 1�
0; Uij½n� > E½n� 1�

�
(4)

When the state ofYij½n� is 1, the neuron is activated and outputs a high
value; when the state is 0, the neuron is in a dormant state and outputs
a low value.

When PCNN models are used for image denoising, several
neurons with a feedback structure are used for the firing
operations. The number of neurons is determined by the number
of pixels of the image, that is, the number of neurons in the
PCNN network is equal to the number of pixels in the input
polarization image. In the PCNN model, it is necessary to exploit
the influence of the peripheral neuron state on the central neuron
state and convert it into the signal intensity transmitted to the
central neuron, which is expressed by a weighted coefficient
matrix, defined as follows:

Wijkl ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ði� kÞ2 þ ðk� lÞ2
p (5)

where ði; jÞ and ðk; lÞ are the coordinates of the grayscale pixels of the
polarization image. The relationship between the complete PCNN
image denoising model and image pixels is illustrated in Figure 2.

Figure 1
PCNN model
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2.2. Non-Subsampled Contourlet Transform

The NSCT is a multi-scale geometric transformation. It can
provide information in any direction of the polarization
image, because it contains non-subsampling pyramid filter bank
and non-subsampling directional filter bank. The NSCT divides
the polarization image into many sub-bands. Background and
untextured areas of the polarization image belong to low-pass sub-
bands, and the edge details and noises belong to high-pass sub-bands.

The ideal passband support of the low-pass filter at the j-th stage
is the region ½�ðπ=2jÞ; ðπ=2jÞ�2 in NSCT.Accordingly, the ideal sup-
port of the equivalent high-pass filter is the opposite region of the
low-pass: ½�ðπ=2j�1Þ; ðπ=2j�1Þ�2n½�ðπ=2jÞ; ðπ=2jÞ�2 [15]. The
j-level equivalent filter that decomposes images can be expressed
by the following equation:

HðzÞ ¼ H1ðzÞ
QJ�2

j¼0 H0ðz2jÞ; 1 � j � 2JQJ�2
j¼0 H0ðz2jÞ; j ¼ 2J

(
(6)

Multi-scale analysis of polarization image can be performed by
convolving the equivalent filter [16]. The j-level decomposition of
polarization image in the k-th can produce a low-pass sub-bands
images and

PJ
j¼1 2

lj band-pass sub-bands images (lj represents the
direction decomposition at the j-level), and corresponding coeffi-
cients can be expressed as

cj0ðm; nÞ; cj;lðm; nÞðj0 � j � 1; l ¼ 1; 2; . . . ; 2ljÞ
n o

k
(7)

where cj0ðm; nÞ denotes low-pass sub-bands coefficients at the j0-th
scale; cj;lðm; nÞ denotes band-pass sub-bands coefficients at the j-th
scale and the l-th direction. Figure 3 shows the effect of NSCT band
decomposition. The purpose of this method is to adopt different
denoising strategies for images with different frequency sub-bands
to avoid the loss of important image details in the process of
denoising. Since most of the noise belong to the high-frequency
bands, radical denoising strategy is adopted for it, while the
low-frequency band is not processed or treated lightly.

2.3. GWO optimization algorithm

Heuristic optimization algorithms that have been inspired by
related physical phenomena, animal behaviors, have been widely
used in many scientific fields. GWO is a heuristic technique [17]

based on the behaviors of wolf packs proposed by Mirjalili et al.
[18]. GWO is inspired by the strategy wolves used to catch prey.
Since GWO can solve optimization functions, it can be further
applied to complex multivariate solving problems. For example,
PCNN contains a model with multiple parameters that must be
optimized. The initial phase of GWO in the search process is prey
encirclement. The formula for simulating the encircling process is
as follows [19, 20]:

~D ¼ ~C �~XPðtÞ � ~XðtÞ�� �� (8)

~Xðt þ 1Þ ¼ ~XPðtÞ �~A � ~D (9)

where t represents the current iteration, and ~XP, ~X are the position
vectors of the prey and gray wolves, respectively. Vectors ~A and
~C are calculated as follows:

~A ¼ 2~a �~r1 �~a (10)

~C ¼ 2 �~r2 (11)

where~r1 and~r2 are random vectors in [0,1]. Using these vectors, the
position can be updated randomly on the search domain; ~a is a
motion vector that decreases linearly during the iteration.

The wolf pack consists of four types of wolves: α, β, δ, and ω.
We assume that α, β, and δ knowmore about the location of the prey.
Therefore, the ω wolves must update their positions according to the
three best positions obtained so far [21]. The characteristics of the
wolves can be expressed numerically as

Figure 2
Relationship between image pixels and the PCNN

Image pixel PCNN neuron

Figure 3
NSCT band decomposition for polarization image
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~Dα ¼ ~C1 � ~Xα � ~X
�� ��

~Dβ ¼ ~C2 � ~Xβ � ~X
�� ��

~Dδ ¼ ~C3 � ~Xδ � ~X
�� ��

8><
>: (12)

~X1 ¼ ~Xα �~A1 � ~Dα

�� ��
~X2 ¼ ~Xβ �~A2 � ~Dβ

�� ��
~X3 ¼ ~Xδ �~A3 � ~Dδ

�� ��
8><
>: (13)

~Xðt þ 1Þ ¼
~X1 þ ~X2 þ ~X3

3
(14)

The initial solutions α, β, and δ are obtained individually, and the rest
of the solutions cancel out simultaneously. The average value of the
three optimal solutions is expressed as ~X. After the prey is attacked
and stops moving, the hunt process will stop. Then the above cycle

repeats. If A
!

< 1, the attack process ends; otherwise, if A
!

>; 1, the
gray wolf shifts its attention and begins to search for prey again.

3. NSCT-GWO-PCNN Polarization Image
Denoising Method

Polarization imaging is an emerging optical imaging technique. In
contrast to the arrays used for intensity imaging, the polarization array of
current optical polarization imaging devices has four polarization
angles: 0°, 45°, 90°, and 135°. A camera equipped with this
polarization array can collect four polarization images with different
illumination intensities according to the polarization information of
sunlight. A variety of target information can be obtained for
detection and navigation from the polarization characteristics of
sunlight in the obtained polarization image. Figure 4 shows a
polarization image of a scene on a sunny day taken by a polarization
camera. Polarization images with different intensities due to different
polarization angles after decomposition are also shown.

In the polarization images in Figure 3, there are particle noise
points in the light intensities under different polarization angles.
Therefore, the NSCT-GWO-PCNN denoising method proposed in
this article is used for noise removal. In contrast to denoising
conventional images, when processing polarization images, we
denoise the four polarization angle images separately and finally
merge the four images into a complete polarization image.

The flow chart of the proposed method based on NSCT-GWO-
PCNN is shown in Figure 5.

To combine the evaluation of the PCNN image denoising with
the GWO goal, the fitness function [22] is that each set of
optimization parameters must meet the requirements of the
objective function, and the parameter set with the largest fitness
value is obtained after screening, as follows:

h ¼ 10� log
2552

θ

� �
(15)

θ ¼ 10� log

���S� Y
���2
P

M � N

0
@

1
A (16)

where h is the fitness criterion, θ is themean squared error (MSE), S is
the original input image, S� Yk k is the pðp ¼ 2Þ norm of S� Y , and
M andN denote the dimensions of the original and denoised images.
The steps of the GWO-PCNN are listed in Algorithm 1.

Algorithm 1. NSCT-GWO-PCNN image denoising algorithm

Algorithm: NSCT-GWO-PCNN image denoising algorithm

Step 1: Border processing
Generate an edge symmetrical expansion so that the input image

ðm; nÞ is expanded to ðmþ 6; nþ 6Þ;
Step 2: NSCT

Compute NSCT band coefficients cj;lðm; nÞ
Step 3: GWO optimization of the PCNN parameters
αT , βT , VT

Initialize the number of wolves (i=1, 2, : : : , N) and maximum
number of iterations N , a, A, C; Set the PCNN parameters α, β, δ
wolves respectively, and solve the function fitness value h of every
group of parameters;

Maintain each pixel in a non-firing state;
If t < N , end after updating the location of the current search

agent, update, A, and C;
Solve the function fitness value of all search agents h;
t = t+1;
Update the first search agentYa, the second search agentYβ, and

the third search agent YV ;
End when t < N , otherwise continue to search for the three best

agents;
Step 4: Noise detection and processing

Calculate the value of Lij½n� for each neuron in the 3� 3 regions;
Adjust the threshold of Lij½n�;
Calculate the value of the Lij½n� modulation signal inside the

neuron;

Figure 4
Original polarization image and the decomposed images of each

polarized light channel
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If one neuron in the adjacent area is fired, and more than four
adjacent neurons are not fired at the same time, the brightness Uij½n�
of the pixel will decrease at the end of the step Δt;

Otherwise, the brightness value of the image pixel does not
change;
Step 5: Compare the values of and Eij½n�
Step 6: Record the output

Record the output state of neurons: activated or inactivated;
Step 7: Determine whether to loop

N ¼ N � 1, and N 6¼ 0, loop step 3;
otherwise, end the program.

4. Experiment and Analysis

4.1. Convergence and adaptation analysis

In order to verify the effectiveness of GWO improvement strategy,
four kinds of international benchmark test functions are selected for
simulation and comparison experiments. In order to ensure unbias,
the population number N of GWO is set as 30, and the total number
of iterations is set as 500. In order to eliminate the influence of
randomness, all experiments were run independently for 4 times, and
the mean value and STD (standard deviation) of the 4 times were
taken as the measurement standard of algorithm performance.

The mathematical formula of the test functions is shown in
Table 1, including two single-peak test functions (F1, F2) and two
multi-peak test functions (F3, F4). The single-peak test function is
a measure of the algorithm’s solving accuracy and convergence
speed, while the multi-peak test function can well represent the
algorithm’s global searching ability and the ability to avoid local
optimization. Figure 6 shows the two-dimensional search space of
partial single-peak and multi-peak test functions.

In order to prove the advantages of GWO convergence,
three classic, mainstream approaches, Genetic Algorithm (GA) [23],
Ant Colony Algorithm (ACO), and Particle Swarm Optimization
(PSO) [24] are also evaluated for comparison. Table 2 lists the test

Table 1
NSCT-GWO-PCNN image denoising algorithm

Number Functions Range

F1
f ðxÞ ¼ Pn

i¼1
xi

2 ½�100; 100�

F2 f ðxÞ ¼ max xij j; 1 � i � nf g ½�100; 100�
F3

f ðxÞ ¼ Pn
i¼1

xi2

4000 �
Qn
i¼1

cosð xiffi
i

p Þ þ 1
½�600; 600�

F4
f ðxÞ ¼ Pn

i¼1
xi

2 � 10 cosð2πxiÞ þ 10½ � ½�5:12; 5:12�

Figure 5
GWO-PCNN image processing
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Figure 6
Benchmark function

Table 2
Experimental results of comparison algorithms on four test functions

Number GA ACO PSO GWO

F1 Mean 3.45E-07 4.53E-07 5.85E-02 1.32E-08
STD 2.82E-07 2.37E-07 3.65E-02 2.63E-08

F2 Mean 8.64E-05 3.41E-05 5.64E-03 2.42E-06
STD 3.72E-05 6.78E-05 3.24E-03 1.58E-06

F3 Mean 358E-03 2.15E-11 4.58E-02 1.25E-12
STD 8.76E-03 5.35E-11 8.87E-02 4.53E-12

F4 Mean 7.83E-03 9.87E-3 2.78E-02 7.86E-04
STD 5.37E-03 2.35E-03 9.74E-02 7.27E-04
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results of each algorithm on the benchmark function. The results reveal
that GWO can converge faster than the PSO andACO and can complete
the global search optimization. GWO also obtains a better final solution
than GA. At the same time, according to the numerical results, GWO
obtained a higher solution accuracy, which indicates that the adaptive
position updating strategy of individual GWO is a better
improvement strategy.

Figure 7 shows the convergence curves of the four algorithms in
four search spaces. The problems of premature convergence and
early local fitness value cannot be ignored. For example, on F3,
GA falls into local optimal solution at the 200th iteration, and it
cannot jump out of local optimal solution until the end of
algorithm iteration. As can be seen from the convergence
diagram, GWO performs better than other algorithms. At the same

Figure 7
Convergence results of GWO, GA, ACO, and PSO
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time, it can be observed from most of the curves that GWO has a
good initial fitness value, indicating that the initialization strategy
of the algorithm in this article has played an obvious role in
enabling the algorithm to obtain the best fitness value.

4.2. Experimental denoising analysis

To further evaluate the NSCT-GWO-PCNN polarization image
denoising optimization method proposed in this article, the objective
function of the GWO was used to objectively evaluate the
image performance parameters using an evaluation index, that is,
the MSE. The degree of change in the image is measured by the
normalized MSE (NMSE) of the image, which has a range of
[0,1] after normalization and more clearly reveals the difference in
parameters among the images. The MSE is calculated as follows:

MSE ¼ 1
mn

Xm�1

i¼0

Xn�1

j¼0

½Iði; jÞ � Kði:jÞ�2 (17)

where Iði; jÞ represents the gray value corresponding to the pixel
points in row i and column j of the original polarization image;
Kði; jÞ represents the gray value corresponding to the pixel points
in row i and column j of the denoised polarization image. For NMSE
[25], higher values indicate that the denoising performance of the
image is worse.

The SNR is the ratio of the power spectrum of the signal to the
noise. A larger SNR indicates that the image contains less noise. SNR
is calculated as follows:

SNR ¼ 10 log10

Pm�1

i¼0

Pn�1

j¼0
Iði; jÞ2

Pm�1

i¼0

Pn�1

i¼0
½ði; jÞ � Kði; jÞ�2

2
6664

3
7775 (18)

The evaluation experiment in this study was run on a
MATLAB2022, a platform equipped with an Intel® Core™
i7-7700 CPU, 16 GB of memory, and a 64-bit operating system.

The experimental data were captured by the self-made
polarization camera. The polarization scene images include the
details of buildings and cars. The actual collection of the polarized
images is prone to noise interference. Moreover, the similarity
between the polarization images and the image target is poor
because of the precision of the polarization camera, lens dust, and
the photographer’s jitter. In addition, since the real image captured
by polarization camera has no ground truth to provide for reference,
it is often affected by uncertainties and imprecisions. Therefore, we
fuzzy the polarized light image according to Versaci et al. [26], so
as to improve the robustness of the method proposed. To enhance
the levels of noise of the images in the experiment, we added
salt-and-pepper noise to the original polarization image, because
when imaging the polarized light sensor, there will be statistical
fluctuations in some light quanta reaching the surface of the
polarized array. We used additive salt-and-pepper noise in our
enhanced noise experiments because polarization images are
granular. The number of gray levels of the polarization image was
set to 256, and the size of the image was increased to 244× 204.

In this experiment, the GWO algorithm was used to optimize the
inherent voltage constant VT , decay time constant αT , and neuron con-
nection strength factor βT of the PCNN model. The PCNN with adap-
tive parameters was used. The simulation is completed, which shows
that the method has a certain feasibility. The parameters for the initial
run of the PCNNmodel were manually set 0.5, 1, and 150, respectively.

After the PCNN completed the first image denoising, the GWO
algorithm was used to adaptively seek the optimal solution. The

process of seeking the optimal solution and the process of denoising
were carried out simultaneously. First, the number of iterations of
GWO algorithm was set to 100. The solution sets of PCNN
parameters optimized by the GWO algorithm are listed in Table 3.

In Table 3, the seven groups of solutions were optimized by the
GWO algorithm. We selected one of them as the optimal parameters
of PCNN for the polarization image denoising experiment.

Figures 8, 9, and 10 show the polarization images of three sets of
scenes and the decomposed images under four polarization angles. The
three sets of scenes all contain the polarization images of the scene and
the target and also include the sky scene to complete the polarized light
orientation experiment. It shows the scene polarization imagewith salt-
and-pepper noise and the four decomposed polarization angle images.
The experimental results after denoising and recombining the four
polarization angle images using the NSCT-GWO-PCNN algorithm
are shown in (f)–(i). It can be seen that the method proposed in this
article restores the details of the scene polarization image
completely. In the denoised polarization image, the edges of cars
and buildings in the scene have been enhanced, and the contrast of
the sky region has been enhanced by the neuron firing operation. In
addition, in the enhanced noise experiment, the salt-and-pepper
noise added to the original polarization image has also been
removed. From the polarization image with noise, it can be seen
that the polarization degree of the window is higher than the metal
surface of the car. All the methods proposed in this article can
restore the contour of the vehicle, and the overall polarization
degree of the vehicle is basically the same and does not change
with the change of the material. The method in this article keeps the
trend of polarization degree while removing noise. The polarization
information is recovered well and the average brightness is consistent.

In addition, to evaluate the advantages of the method in this
article, we also used a traditional median filter (MF), residual neural
network (ResNet), and the PCNN model with manually set
parameters to conduct a comparative denoising experiment. The
denoising performances of the four methods are shown in
Figure 11. The MF is a classic method for removing salt-and-
pepper noise in a polarization image. Because the polarization
image contains an image synthesized from four polarization angle
images, the MF can remove the noise to a certain extent from a
polarization image with a single angle, but if the polarization
images for all four angles are synthesized after denoising, the
denoising effect is not satisfactory. To denoising an image using the
traditional PCNN model, it is necessary to set the manual
parameters many times, which may achieve a good denoising
performance to a certain extent, but it does not fully leverage the
denoising potential of the PCNN model, and it is too difficult to
obtain parameters with good denoising performance. For ResNet,
only the contour of the polarization image has been recovered well.
The polarization degree of the whole car is basically the same and
does not change with the change of material. However, there is a

Table 3
GWO-optimized PCNN parameters

Number βT VT αT

1 0.7562 1.4475 258.4424
2 0.8563 1.0725 212.5581
3 0.9532 2.0127 233.4272
4 0.6994 2.1775 195.8413
5 0.8234 1.8645 196.4177
6 0.901 0.7753 173.8651
7 0.8427 1.9621 209.2786

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

08



Figure 8
NSCT-GWO-PCNN polarization image denoising results

Figure 9
NSCT-GWO-PCNN polarization image denoising results

Figure 10
NSCT-GWO-PCNN polarization image denoising results
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lot of noise in the important sky polarization information, which may
be caused by the poor training effect. The PCNN method basically
restores the contour of the image, but the details of the sky and the
car in the polarization image are still slightly blurred, and the high
polarization degree of the car roof is not well restored. In addition,
the polarization image after MF processing appears very serious
distortion. Although ResNet achieved good denoising effect, it has
spent huge training costs and resources, and this process is tedious.
Compared with these three methods, NSCT-GWO-PCNN has
higher denoising efficiency.

Finally, to objectively evaluate the GWO-PCNN denoising
algorithm, we computed the evaluation indicators in the objective
function of the GWO, which can objectively evaluate the
performance of image denoising and compare the GWO-PCNN
with the MF. The parameters are compared with the polarization
image denoised by the traditional PCNN model. Table 4 compares
the evaluation indices (NMSE, MSE, and SNR) of the results of
the polarization image in Figure 6. The results in the table show
that the NMSE and MSE of the polarization image processed by
the NSCT-GWO-PCNN algorithm are lower than those of the
other algorithms, and the SNR is substantially improved.
Therefore, it can be clearly seen from the experimental denoising
result images and evaluation indices that the NSCT-GWO-PCNN
denoising algorithm effectively suppresses image noise.

5. Conclusion

In this article, an improved PCNN polarization image denoising
method based on GWO and NSCT was proposed. Polarization
images were devised using the NSCT, and the PCNN parameters
were optimized by adaptive GWO, and denoising experiments
were carried out on decomposed polarization channel images.
Compared with three methods, the proposed method maintains the
edge and details of the image better, effectively removes the salt-
and-pepper noise added to enhance the levels of noise, and
performs better than three methods with respect to the objective
image evaluation indices.
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