
Received: 3 April 2023 | Revised: 8 June 2023 | Accepted: 12 June 2023 | Published online: 14 June 2023

RESEARCH ARTICLE

Efficiently Generating Bounded Solutions
for Very Large Multiple Knapsack
Assignment Problems

Francis J. Vasko1,* , Yun Lu1, Emre Shively-Ertas2 and Myung Soon Song1

1Department of Mathematics, Kutztown University, USA
2Computer Science Department, Kutztown University, USA

Abstract: The multiple knapsack assignment problem (MKAP) is an interesting generalization of the multiple knapsack problem which has
logistical applications in transportation and shipping. In addition to trying to insert items into knapsacks in order to maximize the profit of the
items in the knapsacks, the MKAP partitions the items into classes and only items from the same class can be inserted into a knapsack. In the
literature, the Gurobi integer programming software has solved MKAPs with up to 1240 variables and 120 constraints in at most 20 min on a
standard PC. In this article, using a standard PC and iteratively loosening the acceptable tolerance gap for 180 MKAPs with up to 20,100
variables and 1120 constraints, we show that Gurobi can, on average, generate solutions that are guaranteed to be at most 0.17% from the
optimums in 43 s. However, for very large MKAPs (over a million variables), Gurobi’s performance can be significantly improved when an
initial feasible solution is provided. Specifically, using from the literature, a heuristic and 42MKAP instances with over 6million variables and
nearly 90,000 constraints, Gurobi generated solutions guaranteed to be, on average, within 0.21% of the optimums in 10 min. This is a 99%
reduction in the final solution bound (gap between the best Gurobi solution and the best upper bound) compared to the approach without initial
solution inputs. Hence, a major objective of this article is to demonstrate for what size MKAP instances providing Gurobi with an initial
heuristic solution significantly improves performance in terms of both execution time and solution quality.

Keywords: multiple knapsack assignment problem, Gurobi integer programming software, simple sequential increasing tolerance
methodology, initial feasible solution

1. Introduction

The 0-1 multiple knapsack problem has been widely studied in
the operations research (OR) literature with classic works by
Martello and Toth (1990) and Kellerer et al. (2004). Additional
key results are discussed in Chekuri and Khanna (2005),
Fukunaga (2008), Fukunaga (2011) Fukunaga and Korf (2007),
Lalami et al. (2012), Samir et al. (2015), and Yamada and
Takeoka (2009). Please see Dell’Amico et al. (2019), Lalonde
et al. (2022), Sur et al. (2022), and Shively-Ertas et al. (2023) for
recent results on the multiple knapsack problem.

For the multiple knapsack problem, the idea of partitioning the
items into classes and allowing only items of the same class to be
inserted into a knapsack was first introduced by Kataoka and
Yamada (2014) and referred to as the multiple knapsack
assignment problem (MKAP). In order to generate solutions
guaranteed to be close to the optimums for MKAP with as many
as several million variables and nearly 90,000 constraints, a
strategy that will focus on using the Gurobi integer programming
software in an iterative manner that takes advantage of an initial
feasible heuristic solution (sometimes called a warm start) input to
Gurobi will be discussed. Additionally, we will demonstrate that

warm starting Gurobi with an initial feasible solution does not
significantly improve Gurobi’s performance when solving
MKAPs until the problem size exceeds a million variables. In
other words, when solving MKAPs available from the literature
(Martello & Monaci, 2020) with less than 800,000 variables,
warm starting Gurobi with an initial feasible solution does not
provide a significant benefit in either solution quality or
execution time.

It is common in the OR literature and in OR practice for integer
programming software to be used in a “single pass” mode in which
the default gap (difference between the upper bound and the best
solution for a maximization problem) tolerance is not modified
during the software execution. Recent research (discussed in
Section 2) has documented that automatically loosening the
acceptable gap when executing integer programming software can
result in obtaining solutions that are guaranteed to be very close
to optimum in a timely manner for a variety of binary integer
programming (BIP) problems. This strategy is called the simple
sequential increasing tolerance (SSIT) matheuristic. However, all
previous research has used SSIT in a cold start mode (no initial
feasible solution provided to the software). This article is the first
to demonstrate when warm starting SSIT provides a significant
benefit in solution quality and execution time. Because SSIT does
not require the time commitment for algorithm development,*Corresponding author: Francis J. Vasko, Department of Mathematics,

Kutztown University, USA. Email: vasko@kutztown.edu

Journal of Computational and Cognitive Engineering
2024, Vol. 3(1) 1–7

DOI: 10.47852/bonviewJCCE3202921

© The Author(s) 2023. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://orcid.org 0000-0001-8975-0999
mailto:vasko@kutztown.edu
https://doi.org/10.47852/bonviewJCCE3202921
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

computer code generation, and testing, it can be particularly
beneficial to OR practitioners who need to solve and implement
solutions to real-world problems in a cost-effective manner.

1.1. Mathematical programming formulation

Wewill now provide a mathematical programming formulation
for the MKAP discussed in Martello and Monaci (2020).
Specifically, we assume that all item weights are positive and
without loss of generality that all input data are positive integers.
Let N = {1, 2, : : : , n} denote the set of items, M = {1, 2, : : : , m}
denote the set of knapsacks, wj and pj denote the weight and profit of
item j∈N, respectively, and the capacity of knapsack i ∈ M is ci.
However, items are divided into r mutually disjoint subsets of
items Sk where k∈K= {1, : : : , r}. For each knapsack i∈M and
item j∈N, let xij be a binary variable taking the value one if
and only if item j is inserted into knapsack i. Similarly, for each
knapsack i∈M and class k∈K, let yik be a binary variable taking
the value one if and only if knapsack i is assigned to class k. The
MKAP mathematical formulation is

max
X

j2N
pj
X

i2M
xij (1)

X

i2M
xij � 1 j 2 N (2)

X

k2K
yik � 1 i 2 M (3)

X

j2Sk
wjxij � ciyik i 2 M; k 2 K (4)

xij 2 0; 1f g i 2 M; j 2 N (5)

yik 2 0; 1f g i 2 M; k 2 K: (6)

The objective function (1) maximizes the sum of the profits of the
items inserted into the knapsacks. Constraints (2) require that each
item is inserted into at most one knapsack, and constraints (3)
require that each knapsack is assigned to at most one item class.
For each knapsack i, the associated constraints (4) require that: (i)
only items of the class assigned to knapsack i (if any) can be
inserted into it and (ii) the capacity of the knapsack is not
exceeded. This model has mn + mr binary variables and n + m +
mr constraints.

1.2. Background and applications

We now review the existing MKAP literature. Kataoka and
Yamada (2014) discuss how the MKAP is encountered in marine
cargo planning to allocate ships to destinations. Zhen et al. (2018)
also use the MKAP as a core problem in a different maritime
shipping application involving a barge transport system. Dimitrov
et al. (2017) modeled the emergency relocation of items using
single trips as two special cases of the MKAP. They were able to
use the distinct structures of these specific applications to develop
efficient solution approaches.

Kataoka and Yamada (2014) developed a very fast constructive
heuristic (referred to as KY) that works well at generating solutions
for large MKAPs. They also provide an upper bound on their KY
solution which allows the user to measure the quality of their
solution without knowing the optimum. However, Kataoka and
Yamada (2014) note that “the quality of the heuristic solution is

unsatisfactory for these SMALL instances, with relative errors
sometimes higher than 100%.” Although, in this article, MKAP
solutions that are close to the optimums for a variety of instance
sizes will be discussed, OR practitioners should be aware that
there are MKAP instances with as few as 50 items that are
difficult to solve (Kataoka & Yamada, 2014) using integer
programming software. Kataoka and Yamada (2014) graciously
shared their KY computer code which we used to generate
starting feasible solutions as input for Gurobi. Lalla-Ruiz and Voß
(2015) used a biased random-key genetic algorithm to solve the
MKAP and tested their Genetic Algorithm (GA) on MKAPs with
up to 1240 variables and 120 constraints. Martello and Monaci
(2020) introduced a constructive heuristic and metaheuristic
refinement (referred to as MM) to generate solutions for the
MKAP. Also, Martello and Monaci (2020) introduced 3660 new
MKAP instances which they made available to us for test purposes.

In the next section, we will outline a strategy of inserting
Kataoka and Yamada’s (2014) KY heuristic as a starting solution
(warm start) for Gurobi and then iteratively loosening the solution
tolerance to efficiently obtain solutions guaranteed to be close to
the optimums. We will also discuss the MKAP instances made
available to us by Martello and Monaci (2020). We will use a
subset of these instances (a total of 594 MKAPs) to demonstrate
that warm starting Gurobi with the KY heuristic provides a
computational advantage when solving very large (over a million
variables) MKAPs.

2. A Kataoka and Yamada Initial Feasible
Solution and Iterative Gurobi Methodology

After inputting the problem objective function and constraints,
the most straightforward way to use Gurobi to solve an integer
programming problem is to use all the default parameter settings
(including the default tolerance of 0.01%) and setting a maximum
execution time. We will refer to this as the base case use of
Gurobi and, in this case, no feasible solution is input as a starting
point (referred to as a “cold start”) for the Gurobi solution
process. If Gurobi terminates before the maximum execution time
is reached, then the tolerance of 0.01% has been achieved. In
other words, for a maximization problem the difference between
the best solution generated and the final upper bound will be less
than 0.01% (the answer is considered optimum). However, if
Gurobi terminates because the maximum execution time was
reached, the tolerance of 0.01% was not achieved. In this case, the
quality of the best solution generated can be measured by
comparing the final upper bound to the best solution generated
and calculating the gap= 100 × (final upper bound − best
solution)/(final upper bound). If the execution time is considered
excessive or the gap is too large, then one alternative is to try to
fine-tune some of Gurobi’s 57 parameters in hopes of improving
Gurobi’s performance when solving this problem. The difficulty
with trying to fine-tune Gurobi parameters is the large number of
possible settings (over 2 × 1034 possible parameter settings). To
aid in fine-tuning the Gurobi parameters, Gurobi provides an
automatic parameter tuning tool which will automatically try
many different parameter settings and return the most promising
settings. However, for a large integer program, this function may
need to execute for 12–24 h or longer and there is no guarantee
that the best parameter settings found will significantly reduce
execution time or the gap.

Alternatively, McNally (2021) found that for several difficult
BIP problems, using all default parameter settings except for the
tolerance, solutions guaranteed to be close to the optimums could

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 1 2024

02

be quickly generated if the gap tolerance was automatically loosened
during the execution of the integer programming software. He called
this strategy the simple sequential increasing tolerance methodology
or SSIT. SSIT is considered a matheuristic because it uses math
programming combined with a heuristically determined sequence
of tolerances and execution times. SSIT takes advantage of the
power of the general-purpose exact solution software and requires
no problem-specific algorithm. In other words, when solving a
BIP, the OR practitioner does not need to develop an algorithm
and computer code specific to that problem. Instead, the OR
practitioner simply needs to input the mathematical formulation of
the problem into the integer programming software. This can be a
tremendous time and cost savings. OR practitioners using the
SSIT strategy with commercial integer programming software to
solve industrial applications will see their models’ performances
automatically improve when newer versions of the general-
purpose software are implemented. In contrast, if an OR
practitioner develops and codes a problem-specific solution
algorithm and implements it in an industrial computing platform,
the only way its performance will improve is if a faster computing
platform is implemented.

When SSIT is being considered for solving a BIP problem, the
first step is to solve several sample problems using the integer
programming software with the default tolerance (0.0001 for
Gurobi) that will be used. By studying the software engine logs,
the OR practitioner can decide what tolerances and execution
times to use for each tolerance. If the problems solve quickly with
the software, no SSIT strategy may be required. For example,
suppose after some preliminary experimentation, the user decided
that instead of the fixed 0.0001 tolerance, the following sequence
of tolerances would be used: 0.0001 for only 1 min, if no suitable
solution was obtained in 1 min, then the tolerance would be
automatically loosened to 0.001 for 1 min. Again, if Gurobi did
not terminate before the end of 2 min total execution time, the
tolerance would be loosened to 0.005 for 4 min. If Gurobi did not
terminate before the end of 6 min of total execution time, then the
tolerance would be loosened to 0.01 and executed for 4 min. Only
if Gurobi required the full 10 min of execution time would the
final gap be greater than 1%. Additionally, if the solution time
was less than 1 min, then an optimal solution was obtained.
Successful applications of SSIT to solve several BIPs have been
documented in the literature. For example, McNally et al. (2021)
used SSIT to solve the set k-covering and set variable k-covering
problems (SVKCPs), and Shively-Ertas et al. (2023) used SSIT to
solve the multiple knapsack problem. For all these applications,
SSIT was cold started (no initial feasible solution inputted) and
typically generated solutions guaranteed to be within 0.10% of the
optimums in about a minute on standard PCs. The real advantage
to using SSIT with integer programming software is its ability to

quickly generate solutions guaranteed to be close to the
optimums. For example, McNally et al. (2021), for 65 SVKCPs,
compared a SSIT strategy to running the integer programming
software (CPLEX) with the 0.0001 default tolerance. The SSIT
solutions were off from the solutions obtained using the default
tolerance by only 0.04% (statistically insignificant). However, the
SSIT execution time was only 1.2% of the required running time
in the default mode—a very significant reduction in execution
time from 1055 s to only 12 s.

SSIT strategies (tolerances and execution times for each
tolerance) are robust in that they are tailored to the problem and
user needs. An industrial application that needs to be solved
quickly in a real-time production environment will use a SSIT
strategy different from a production planning application that is
only solved once per day. In fact, when SSIT was used to solve
the very difficult multi-demand multidimensional knapsack
problem (Dellinger et al., 2022), three different SSIT strategies
were used based on the predicted difficulty of the problem being
solved. Up to now, there have been no published examples in
which SSIT was used to solve BIPs and an initial feasible solution
was provided to the integer programming software. More details
about SSIT can be found in McNally et al. (2021).

Having obtained the constructive heuristic (KY) from Kataoka
and Yamada (2014), we try to determine when warm starting Gurobi
with the KY heuristic solution combined with using a SSIT strategy
would result in significantly better results (reduced gap and
execution time) compared to just cold starting Gurobi with a SSIT
strategy. Our results are documented in the next section.

3. Presentation of Results

3.1. Martello and Monaci’s 3660 MKAP test
instances

In addition to 360 small MKAP instances from the literature
(Kataoka & Yamada, 2014), Martello and Monaci (2020)
generated 3660 MKAP instances that are divided into 6 sets
(SET2, SET3, SET4, SET5, SET6, and SET7). SET1 is omitted
from our analyses because all instances are small and similar to
the instances in SET7. Martello and Monaci (2020) graciously
allowed us to access these 3660 MKAP instances. Specifications
of these MKAP instances are summarized in Tables 1 and 2. For
each combination of r, m, n, and family (correlation classes—
uncorrelated, weakly correlated, and strongly correlated), there are
10 instances of each MKAP. Also, SET3 and SET6 have different
rho values (0.25, 0.50, 0.75), and SET5 has different R values
(100, 1000, 10,000). The rho value is one of two parameters that
are used to determine the capacity of the knapsack based on the
sum of the item weights—the smaller the rho value, the smaller

Table 1
MKAP data sets obtained from Martello and Monaci

Data set Number of instances r values m values n values

SET2 600 2, 5 10, 20 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000
SET3 360 50, 100 200, 400, 800 4000, 8000
SET4 360 50, 100 200, 400, 800 4000, 8000
SET5 1080 50, 100 200, 400, 800 4000, 8000
SET6 720 50, 100 200, 400, 800 4000, 8000
SET7 540 2 10, 20 20, 40, 60

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 1 2024

03

the capacity of the knapsack. R denotes the range of wj, i.e., the
weight wj is distributed uniformly random over the integer
interval [1, R]. Extensive details of how these MKAP instances
are generated are provided in Martello and Monaci (2020). As
noted earlier, the number of binary variables in a MKAP is mn +
mr and the number of constraints is n +m + mr. To
experimentally determine the feasibility of using a Gurobi-based
solution strategy to solve these MKAP instances, we decided that
a proper subset of these 3660 instances would be adequate. In our
analyses, we will start with the small instances first (SET7), next
the medium-sized instances (SET2), and then the large instances
(SET3, SET4, SET5, and SET6). For SET7, there are 54
categories with 10 instances in each category. For our
experiments, for SET7, we randomly chose three instances from
each category for a total of 162 (54 × 3) MKAP instances. For
SET2, there are 60 categories with 10 instances in each category.
For our experiments, for SET2, we randomly chose three from
each category for a total of 180 (60 × 3) MKAP instances. For
SET3, SET4, SET5, and SET6 which contained large MKAP
instances, we only randomly selected one MKAP instance from
each category for a total of 252 very large MKAP instances.

3.2. Gurobi results using 594 MKAP instances

All executions of Gurobi (9.5) were on a PCwith specifications:
an AMD Ryzen 7 3700x 8-Core Processor and 16 GB RAM on
Windows 11 Home 64-bit and 4 software threads.

To analyze the 162 MKAP instances selected from SET7, we
considered two scenarios both with Gurobi cold started. Based on
some preliminary computations, we determined that there was no
advantage to warm starting Gurobi for these small MKAPs so
only cold starts were used. First, a base-case scenario in which
Gurobi was executed for a maximum of 1200 s with all default
parameter settings (tolerance= 0.0001). The second scenario was
a SSIT scenario with the following tolerances and execution
times: 0.001 for 60 s, 0.005 for 180 s, 0.01 for 180 s, and 0.02 for
180 s. Note that the goal here is not to obtain proven optimal
solutions (within 0.01% tolerance) but to obtain tightly bounded
solutions relatively quickly. The results are summarized in
Tables 3 and 4. Since these are small MKAPs with at most 1240
binary variables and 120 constraints, it is not surprising that
excellent results were achieved by both scenarios. These instances
were also successfully solved in Martello and Monaci (2020). The
Wilcoxon signed rank test shows that the difference of objective
function values between the base case and the SSIT scenario is
statistically significant at α= 5%. However, the advantage of

using SSIT is that it required only 8% of the execution time of the
base case, and solutions were still guaranteed to be at most 0.1%
from the optimums. If time is a concern in solving a real-world
MKAP application, then this SSIT strategy is very advantageous.
However, if a better solution bound than, on average, 0.09% is
required, then an alternative SSIT strategy that starts with a tighter
tolerance can be used and still requires significantly less time than
the base case.

The medium-sized MKAP instances in SET2 have at most
20,100 binary variables and 1120 constraints. For each of the two
scenarios analyzed in Tables 3 and 4 (SET7), we now do two sub
scenarios—warm and cold starts. We were interested in
determining the benefit of warm starting Gurobi with the KY
heuristic which we had obtained from Kataoka and Yamada
(2014). The MKAP solutions generated by the Kataoka and
Yamada (2014) constructive heuristic (KY) required negligible

Table 2
MKAP data sets obtained from Martello and Monaci

Maximum size of MKAP instances

Data set Brief description Number of variables Number of constraints

SET2 Increasing n values 20,100 1120
SET3 Large, uncorrelated instances with different rho values 6,480,000 88,800
SET4 Large instances of different correlation families 6,480,000 88,800
SET5 Large instances of different correlation families and

different values of R
6,480,000 88,800

SET6 Large binary and uncorrelated instances with different
rho values

6,480,000 88,800

SET7 New small instances 1240 120

Table 3
SET7 base case summary results by correlation
families: Maximum values, n= 60, m= 20, r= 2,

#variables= 1240, # constraints= 120

Correlation class
Number of
instances

Time
(s)

Average
gap

Uncorrelated 54 248 0.04%
Weakly correlated 54 250 0.03%
Strongly
correlated

54 333 0.07%

Overall 162 277 0.05%

Table 4
SET7 SSIT strategy summary results by correlation
families: Maximum values, n= 60, m= 20, r= 2,

#variables= 1240, # constraints= 120

Correlation class
Number of
instances

Time
(s)

Average
gap

Uncorrelated 54 15 0.09%
Weakly correlated 54 21 0.09%
Strongly
correlated

54 29 0.10%

Overall 162 21 0.09%

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 1 2024

04

time to execute. The results for these four scenarios are summarized in
Tables 5 and 6. A comparison in base cases shows negligible
advantage to warm starting Gurobi for these 180 medium-sized
MKAP instances. Similar results hold when comparing the SSIT
scenarios. Base case results were guaranteed, on average, to be at
most 0.10% (cold start) and 0.09% (warm start) from the optimums
with the SSIT scenarios guaranteed, on average, to be at most
0.17% (cold start) and 0.14% (warm start) from the optimums with
the SSIT scenarios requiring only about 6% of the execution time
of the base cases (6.3% for the cold start and 5.7% for the warm
start). Again, if time is a concern in solving a real-world MKAP
application, then the SSIT strategy is very advantageous.

Up to this point, warm starting Gurobi with the Kataoka and
Yamada (2014) constructive heuristic has had no significant impact on
Gurobi performance. However, we will now consider the large
MKAP instances that make up SET3, SET4, SET5, and SET6. The
smallest instances in these data sets contain 810,000 binary variables
and 14,200 constraints. The largest instances in these data sets contain

6,480,000 binary variables and 88,800 constraints. Preliminary
empirical analyses indicated that using the base case scenario for these
instances could be very time consuming. Specifically, the base case
could require 10 times (or more) as long to execute in order to obtain
results similar to SSIT. Because of the size of these instances, we
increased the execution time of SSIT for each tolerance. Specifically,
when using SSIT to solve these large MKAP instances, the execution
times are 600, 600, 300, and 300 s for tolerances 0.001, 0.005, 0.01,
and 0.02, respectively. The warm start and cold start Gurobi SSIT
results for the 252 MKAP instances selected from SET3, SET4,
SET5, and SET6 are summarized in Tables 7 and 8. The results are
summarized by data sets, correlation families, and the number of
variables in the MKAP. Both the average final gaps by class and the
maximum final gap for a MKAP in the class are reported.

In all cases, the warm start runs considerably improve the Gurobi
performance. It is interesting to note that for these 252 MKAP
instances, the final Gurobi objective function value, on average, is
only improved over the initial KY objective function value by

Table 5
SET2 cold start summary results by correlation families: Maximum values, n= 1100, m= 20, r= 5,

#variables= 20,100, # constraints= 1120

Cold start Warm start

Correlation class Number of instances Time (s) Gap* Time (s) Gap*

Uncorrelated 60 591 0.07% 36 0.15%
Weakly correlated 60 780 0.10% 38 0.16%
Strongly correlated 60 690 0.13% 56 0.21%
Overall 180 680 0.10% 43 0.17%

Table 6
SET2 warm start summary results by correlation families: Maximum values, n= 1100, m= 20, r= 5,

#variables= 20,100, # constraints= 1120

Cold start Warm start

Correlation class Number of instances Time (s) Gap* Time (s) Gap*

Uncorrelated 60 566 0.07% 29 0.13%
Weakly correlated 60 707 0.07% 30 0.13%
Strongly correlated 60 682 0.13% 53 0.18%
Overall 180 652 0.09% 37 0.14%

*These are average over all MKAPs in the correlation class

Table 7
SET3, SET4, SET5, and SET6 SSIT cold start summary results: Maximum values, n= 8000, m= 800, r= 100,

#variables= 6,480,000, # constraints= 88,800

SET # instances Time(s) Average gap Maximum gap

SET3 36 1554 9.59% 129%
SET4 36 1498 6.29% 70%
SET5 108 1470 4.39% 83%
SET6 72 1451 6.71% 128%
Correlation family
Uncorrelated 120 1542 7.50% 129.0%
Weakly correlated 48 1457 3.73% 41.0%
Strongly correlated 48 1421 4.74% 46.0%
Binary 36 1388 6.17% 128.0%

#variables
0.8 million to 3 million 126 1418 1.44% 4.7%
More than 3 million to 6 million 84 1491 1.83% 5.4%
More than 6 million 42 1649 28.43% 129.0%
SETS 3–6 252 1481 6.07% 129.0%

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 1 2024

05

0.07% with a maximum improvement of 5%. Hence, the high quality
of the initial KY solution input to Gurobi allows it to efficiently search
the solution space. Among all sets 3–6, SET3 demonstrated the most
improvement from using the warm start. Specifically, the execution
time was reduced by 60% and the gap was reduced by 96%.
Among all correlation families, the weakly correlated family
demonstrated the most improvement from using the warm start in
terms of execution time reduction (66%), but the uncorrelated
family demonstrated the most improvement from using the warm
start in terms of gap reduction (96%). The maximum SSIT
execution time was 1800 s and only 12 warm start instances
required the full 1800 s. However, there were 79 cold start
instances that required the full 1800 s. The largest final gaps were
4.8% for the warm start case and 129% for the cold start case.

In Table 9, the gap reductions and execution time reductions when
warm starts are used instead of cold starts are summarized based on
MKAP instance size. The most dramatic warm start improvement in
Gurobi performance is when the number of variables exceed 6
million. In this case, warm starting Gurobi with the SSIT strategy
obtained solutions that were guaranteed, on average, to be within
0.21% of the optimums in 10 min on a standard PC. This was an
average gap reduction of 99%with an execution time reduction of 64%.

4. Conclusion and Future Work

Previously in the literature (Martello&Monaci, 2020), Gurobi had
been used with no initial feasible solution (cold start) and all default
parameter values to solve MKAPs with up to 1240 binary variables
and 120 constraints. In this article, by solving 594 MKAP instances
from the literature, we determined when warm starting Gurobi with a
feasible solution generated by a constructive heuristic of Kataoka and
Yamada (2014) provided a significant computational and solution

quality advantage compared to cold starting Gurobi. Additionally, we
demonstrated that using a strategy (SSIT) that automatically
iteratively loosens the Gurobi tolerance parameter, bounded solutions
for MKAPs could be generated quickly. Moreover, when using
Gurobi to solve very large MKAP instances (over a million
variables), the substantial benefit of combining the SSIT strategy
with inputting a feasible solution generated by a constructive
heuristic of Kataoka and Yamada (2014) is clearly established.
Specifically, solutions for 42 MKAPs from the literature (Martello &
Monaci, 2020) with over 6 million binary variables and nearly
90,000 constraints were generated, on average, in 10 min on a
standard PC and the solutions were guaranteed, on average, to be at
most 0.21% from the optimums. This is a 99% solution quality
improvement compared to using Gurobi with cold start.

Furthermore, it is interesting to note that when solving MKAP
instances from the literature with up to 20,100 variables (the next
largest MKAP instances in the literature have 810,000 variables),
inputting an initial feasible solution to Gurobi provided no
computational advantage over just cold starting Gurobi. An
interesting future research topic would be to determine if there is an
advantage to warm starting Gurobi when trying to solve MKAPs
with between 20,100 and 810,000 binary variables. However, the
first step would be to appropriately define these MKAPs.

Although it has been demonstrated that Gurobi with the SSIT
strategy can be used successfully to quickly generate bounded
solutions for a variety of MKAP instance sizes, as stated earlier, OR
practitioners should be aware that there are small MKAP instances
(50 variables, for example) that can be difficult to solve.
Additionally, although not currently documented in the OR
literature, the authors are aware of very hard 0-1 knapsack problems
with as few as 400 variables that even after 6 h of Gurobi execution
time on a standard PC still have a gap of about 3%. The authors are

Table 9
SSIT summary improvement results by number of variables: Maximum values, n= 8000, m= 800, r= 100,

#variables= 6,480,000, # constraints= 88,800

Number of variables Number of instances Gap reduction Execution time reduction

0.8 million to 3 million 126 43% 56%
More than 3 million to 6 million 84 67% 48%
More than 6 million 42 99% 64%

Table 8
SET3, SET4, SET5, and SET6 SSIT warm start summary results: Maximum values, n= 8000, m= 800, r= 100,

#variables= 6,480,000, # constraints= 88,800

SET # instances Time(s) Average gap Maximum gap

SET3 36 621 0.35% 2.6%
SET4 36 644 0.29% 1.1%
SET5 108 609 0.28% 1.3%
SET6 72 786 0.75% 4.8%
Correlation family
Uncorrelated 120 589 0.30% 3.0%
Weakly correlated 48 492 0.21% 1.2%
Strongly correlated 48 795 0.40% 1.3%
Binary 36 1002 1.18% 4.8%

#Variables
0.8 million to 3 million 126 617 0.38% 4.7%
More than 3 million to 6 million 84 773 0.61% 4.8%
More than 6 million 42 600 0.21% 2.7%
SETS 3–6 252 667 0.43% 4.8%

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 1 2024

06

currentlyexploring ifGurobi canbeused togenerateboundedsolutions
(guaranteed within 1% of the optimum) in a timely manner for such
difficult problems. Moreover, the authors are actively trying to
characterize when a 0-1 knapsack problem is difficult to solve.

Finally, the real motivation for this work was to demonstrate how
ORpractitioners can effectively and efficiently use commercial integer
programming software, like Gurobi, in a relatively straightforward
manner to solve industrial size problems. Specifically, since SSIT
does not require the time commitment for algorithm development,
computer code generation, and testing, it can be particularly
beneficial to OR practitioners who need to solve and implement
solutions to real-world problems in a cost-effective manner.

Acknowledgements

We are sincerely grateful to Seiji Kataoka and Takeo Yamada for
providinguswith theirC-code for their constructive heuristic (referred to
asKY in our article) for theMKAP.We are also very grateful to Silvano
Martello and Michelle Monaci for allowing us to access the MKAP
instances discussed in their 2020 Omega article. Additionally, we are
grateful to Silvano Martello and Michelle Monaci for sharing the
MKAP solutions from the algorithms discussed in their article.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

References

Samir, B. A. L. B. A. L., Yacine, L., & Mohamed, B. (2015). Local
search heuristic for multiple knapsack problem. International
Journal of Intelligent Information Systems, 4(2), 35–39.

Chekuri, C., & Khanna, S. (2005). A polynomial time approximation
scheme for the multiple knapsack problem. SIAM Journal on
Computing,35(3), 713–728. https://doi.org/10.1137/S0097539700
382820

Dell’Amico, M., Delorme, M., Iori, M., & Martello, S. (2019).
Mathematical models and decomposition methods for the multiple
knapsack problem. European Journal of Operational Research,
274(3), 886–899. https://doi.org/10.1016/j.ejor.2018.10.043

Dellinger, A., Lu, Y., Song, M. S., & Vasko, F. J. (2022). Generating
bounded solutions for multi-demand multidimensional knapsack
problems: A guide for operations research practitioners.
International Journal of Industrial Optimization, 3(1), 1–17.
https://doi.org/10.12928/ijio.v3i1.5073

Dimitrov, N. B., Solow, D., Szmerekovsky, J., & Guo, J. (2017).
Emergency relocation of items using single trips: Special
cases of the multiple knapsack assignment problem. European
Journal of Operational Research, 258(3), 938–942. https://
doi.org/10.1016/j.ejor.2016.09.004

Fukunaga,A.S. (2008). Integrating symmetry, dominance, andbound-
and-bound in amultiple knapsack solver. In Integrationof AI and
OR Techniques in Constraint Programming for Combinatorial

Optimization Problems: 5th International Conference, 5,
82–96. https://doi.org/10.1007/978-3-540-68155-7_9

Fukunaga, A. S. (2011). A branch-and-bound algorithm for hard
multiple knapsack problems. Annals of Operations Research,
184(1), 97–119. https://doi.org/10.1007/s10479-009-0660-y

Fukunaga, A. S., & Korf, R. E. (2007). Bin completion algorithms
for multicontainer packing, knapsack, and covering problems.
Journal of Artificial Intelligence Research, 28, 393–429.
https://doi.org/10.1613/jair.2106

Kataoka, S., & Yamada, T. (2014). Upper and lower bounding
procedures for the multiple knapsack assignment problem.
European Journal of Operational Research, 237(2), 440–
447. https://doi.org/10.1016/j.ejor.2014.02.014

Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack
problems. Germany: Springer.

Lalami, M. E., Elkihel, M., El Baz, D., & Boyer, V. (2012). A
procedure-based heuristic for 0-1 multiple knapsack problems.
International Journal of Mathematics in Operational Research,
4(3), 214–224. https://doi.org/10.1504/IJMOR.2012.046684

Lalla-Ruiz, E.,&Voß, S. (2015).Abiased random-key genetic algorithm
for the multiple knapsack assignment problem. In Learning and
Intelligent Optimization: 9th International Conference, 218–222.
https://doi.org/10.1007/978-3-319-19084-6_19

Lalonde, O., Cote, J. F., & Gendron, B. (2022). A branch-and-price
algorithm for the multiple knapsack problem. INFORMS
Journal on Computing, 34(6), 3134–3150. https://doi.org/10.
1287/ijoc.2022.1223

Martello, S., & Monaci, M. (2020). Algorithmic approaches to the
multiple knapsack assignment problem. Omega, 90, 102004.
https://doi.org/10.1016/j.omega.2018.11.013

Martello, S., & Toth, P. (1990).Knapsack problems: Algorithms and
computer implementations. USA: John Wiley & Sons.

McNally, B. (2021).A simple sequential increasing tolerancematheuristic
that generates bounded solutions for combinatorial optimization
problems. Master's Thesis, Kutztown University of Pennsylvania.

McNally, B., Lu, Y., Shively-Ertas, E., Song, M. S., & Vasko, F. J.
(2021). A simple and effective methodology for generating
bounded solutions for the set K-covering and set variable
K-covering problems: A guide for OR practitioners. Review
of Computer Engineering Research, 8(2), 76–95. https://doi.
org/10.18488/journal.76.2021.82.76.95

Shively-Ertas, E., Lu, Y., Song,M., &Vasko, F. (2023). Using general-
purpose integer programming software to generate bounded
solutions for the multiple knapsack problem: A guide for or
practitioners. International Journal of Industrial Optimization,
4(1), 16–24. https://doi.org/10.12928/ijio.v4i1.6446

Sur, G., Ryu, S. Y., Kim, J., & Lim, H. (2022). A deep reinforcement
learning-based scheme for solving multiple Knapsack
problems. Applied Sciences, 12(6), 3068. https://doi.org/10.
3390/app12063068

Yamada, T., & Takeoka, T. (2009). An exact algorithm for the fixed-
charge multiple knapsack problem. European Journal of
Operational Research, 192(2), 700–705. https://doi.org/10.
1016/j.ejor.2007.10.024

Zhen, L., Wang, K., Wang, S., & Qu, X. (2018). Tug scheduling for
hinterland barge transport: A branch-and-price approach.
European Journal of Operational Research, 265(1), 119–132.
https://doi.org/10.1016/j.ejor.2017.07.063

How to Cite: Vasko, F. J., Lu, Y., Shively-Ertas, E., & Song, M. S. (2024).
Efficiently Generating Bounded Solutions for Very Large Multiple Knapsack
Assignment Problems. Journal of Computational and Cognitive Engineering,
3(1), 1–7. https://doi.org/10.47852/bonviewJCCE3202921

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 1 2024

07

https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1016/j.ejor.2018.10.043
https://doi.org/10.12928/ijio.v3i1.5073
https://doi.org/10.1016/j.ejor.2016.09.004
https://doi.org/10.1016/j.ejor.2016.09.004
https://doi.org/10.1007/978-3-540-68155-7_9
https://doi.org/10.1007/s10479-009-0660-y
https://doi.org/10.1613/jair.2106
https://doi.org/10.1016/j.ejor.2014.02.014
https://doi.org/10.1504/IJMOR.2012.046684
https://doi.org/10.1007/978-3-319-19084-6_19
https://doi.org/10.1287/ijoc.2022.1223
https://doi.org/10.1287/ijoc.2022.1223
https://doi.org/10.1016/j.omega.2018.11.013
https://doi.org/10.18488/journal.76.2021.82.76.95
https://doi.org/10.18488/journal.76.2021.82.76.95
https://doi.org/10.12928/ijio.v4i1.6446
https://doi.org/10.3390/app12063068
https://doi.org/10.3390/app12063068
https://doi.org/10.1016/j.ejor.2007.10.024
https://doi.org/10.1016/j.ejor.2007.10.024
https://doi.org/10.1016/j.ejor.2017.07.063
https://doi.org/10.47852/bonviewJCCE3202921

	Efficiently Generating Bounded Solutions for Very Large Multiple Knapsack Assignment Problems
	1. Introduction
	1.1. Mathematical programming formulation
	1.2. Background and applications

	2. A Kataoka and Yamada Initial Feasible Solution and Iterative Gurobi Methodology
	3. Presentation of Results
	3.1. Martello and Monaci's 3660 MKAP test instances
	3.2. Gurobi results using 594 MKAP instances

	4. Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

