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Abstract: This article discusses the results of an investigation into refined fuzzy soft sets, a novel variant of traditional fuzzy sets. Refined
fuzzy soft sets provide a versatile method of data analysis, inspired by the need to deal with uncertainty and ambiguity in real-world data. This
research expands on prior work in fuzzy set theory by investigating the nature and characteristics of refined fuzzy soft sets. They are useful in
decision-making, pattern recognition, image processing, and control theory because of their capacity to deal with uncertainty, ambiguity, and
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1. Introduction

Fuzzy set theory is a mathematical paradigm for dealing with
uncertainty and ambiguity in data and knowledge representation.
Zadeh (1965) initially proposed the idea of a fuzzy set as a method
of generalizing the standard definition of a set, which presupposes
that a member either belongs to or does not belong to a set. A
membership function that assigns a degree of membership between
[0,1] represents a fuzzy set, on the other hand, which permits
partial membership of an element in a set. Since its inception, fuzzy
set theory has been used in a variety of domains, including control
systems, decision-making, pattern recognition, image processing,
and many more. Intuitionistic fuzzy sets, type-2 fuzzy sets, and
fuzzy rough sets are all examples of more complicated models
based on fuzzy set theory. Fuzzy set theory's adaptability and utility
have led to its broad usage in a variety of real-world applications
investigated by some authors (De et al., 2000; Feng et al., 2010;
Garg & Rani, 2021; Karnik & Mendel, 2001).

Molodtsov (1999) was the first person to propose the idea of
soft sets as a wholly novel mathematical instrument for resolving
issues involving apprehensions about the future. According to
Molodtsov’s description from 1999, a soft set is a parametric
family of subsets of the universal set, in which each member is
regarded as a collection of approximation elements of the soft set.
Voskoglou (2023) suggested a parametric decision-making
approach employing soft sets and gray numerals, which extends
the soft set method. Kharal (2010) noted the distance and
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similarity measures for soft sets. Xiao (2018) proposes a hybrid
approach to using FSSs in decision-making that combines fuzzy
preference relations analysis based on belief entropy with the
Dempster-Shafer (D-S) evidential concept. Yang et al. (2013)
presented the idea of multi-FSSs as well as the ways in which
they can be used in decision-making. Chen et al. (2005) presented
the parameterization reduction of soft sets as well as the
applications. Utilizing Sanchez's technique, Jafar et al. (2020)
investigated the use of soft set interactions and soft matrices in
medical treatment. Numerous researchers are drawn to soft set
theory due to its various implications for disciplines such as
function smoothness, decision-making, statistical inference, data
processing, measurement concept, predicting, and operations
investigations (Dalkilic, 2021; Molodtsov, 2001; Peng, 2019;
Xiao et al., 2009; Zou & Xiao, 2008).

The real world is fraught with inaccuracy, ambiguity, and
uncertainty. In our everyday lives, we primarily interact with
ambiguous notions rather than precise ones. Interacting with
ambiguities iS a major issue in many disciplines, including
economics, medicine, social science, atmospheric science, and
engineering. Numerous scholars are now engaged in feature
vagueness in latest decades. Several classical speculations are well
renowned and efficaciously model uncertainty, including fuzzy
set concept (Zadeh, 1965), probability theory, vague set model (Gau
& Buehrer, 1993), rough set theory (Pawlak et al., 1995),
intuitionistic fuzzy set (Alaca et al., 2006), and interval-valued
fuzzy set (Gorzalczany, 1987). The concept of fuzzy soft set (FSS)
theory was initiated by Maji et al. (2001). Peng and Garg (2018)
presented three methods to address the interval-valued fuzzy soft
decision-making issue using weighted distance-based estimation,
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combinatorial distance-based evaluation, as well as similarity
measures. The notion of parameterized FSSs, as well as decision-
making, was postulated by Zhu and Zhan (2016). Zhao et al. (2017)
displayed an innovative decision-making method based on
intuitionistic FSSs. Das (2018) described weighted fuzzy soft
multisets as well as decision-making. Some other scholars
(Alcantud, 2022; Ejegwa & Agbetayo, 2023; Rahman et al., 2020;
Saced & Harl, 2023; Saced et al., 2023; Voskoglou, 2023) also
deliberated the fuzzy soft in distinct aspects.

Rahman et al. (2021) utilized a unique concept to classify the
key components for refined intuitionistic fuzzy sets, such as
subset, equal set, null set, and complement set, in addition to their
basic set-theoretic functions, such as union, intersection, extended
intersection, restricted union, restricted intersection, and restricted
difference. Alkhazaleh (2017) suggested the idea of the n-valued
refined neutrosophic soft set (n-VRNSs for short) as a
categorization of neutrosophic soft sets and identified certain
functions (notably subset, complement, union, intersection, AND,
and OR operations) on n-valued refined neutrosophic soft set
theory. However, Khalil et al. (2019) corrected the claims (3) and
(4) of Alkhazaleh's Proposition 3.6 and initiated two innovative
concepts describing “subset” and “equal” of n-VRNSs, in addition
to certain evidence and associated propositions. Smarandache
(2019) initiated the refined intuitionistic fuzzy set notion by
further partitioning invitation and non-membership significance.

The concept of refined fuzzy soft sets (RFSSs) offers a prom-
ising framework for dealing with uncertainty and incomplete infor-
mation in a wide range of applications. The development of :RFSSs
represents a significant advancement in the field of fuzzy set theory
and offers exciting opportunities for solving complex problems in
decision-making, pattern recognition, and other fields. By providing
a more nuanced and comprehensive representation of uncertainty,
RFSSs enable a deeper understanding of complex systems and phe-
nomena. This, in turn, has the potential to lead to more effective and
efficient solutions to real-world problems. With further research and
development, the applications of RFSSs are likely to continue to
expand, opening up new possibilities for innovation and discovery.
Therefore, the pursuit of research in this area represents an important
and meaningful opportunity for those seeking to make a significant
contribution to the field of mathematics and its applications in vari-
ous fields.

2. Preliminaries

2.1. Definition

According to the definition from Zadeh (1965), suppose U be a

set of alternates. A fuzzy set over U is a set defined by a function 7,
representing a mapping.

TA:lV]—>[O,1]

T, is known as the membership function of 4, and the value 7, (v) is
called the grade of membership of v € U. The value represents the

degree of v belonging to the fuzzy set A. Thus, a fuzzy set 4 over U
can be represented as follows:

A={(W\Ts(v): v e U,74(v) € [0,1]}.

Note that the set of all the fuzzy sets over U will be denoted by F(U).

2.2. Example

Nasreen wants to purchase a washing machine for her clothing
purpose. She has to evaluate a unique washing machine which
has all the specifications of a standard machine. Suppose

U= {n;, %y, 13,1, } be different brands of machine such that

1, = WashPro.

n, = Clean Tech.

13 = Aqua Wash.

n, = Elite Wash.

s = SmartSpin.

E = {v|,v,,v3,v,} be a set of parameters such that
v; = Expensive

v, = Beautiful

v3 = Cheap

v, = Very expensive

Then, the fuzzy set p over U can be written as

p={< 1,06 > <u,y,04> < n3,09 > < ny, 032>}

2.3. Definition

Based on the definition from Cagman et al. (2011), assume U is
a universe set and a set of attributes E with respect to U. Let P(U)
denote the power set of U and A C E. A pair (F, A) is called a soft
set over U, where F is a mapping given by F: A—P(D).
In other words, a soft set (F, A) over U is a family of subsets of U.

For v € A, F(v) may be considered as the set of v-approximate
elements of the soft sets (F, A). Thus (F, A) is defined as

(F,A) = {F(v) e P(U) : v € E,F(v) = ¢ if v ¢ A}.

2.4. Example

Consider Example 2.2, the soft set F, over U where
A = {v;,v,,v3} C E is stated as

Fy = {(n, {1, m2,13}), (va, {12, 14}), (vs, {1, 74 }) }

2.5. Definition

Based on the definition from Cagman et al. (2011), an FSS £,
over U is a set defined by a function 7,

T4 : E— P(U) such that 7,(v) = ¢ if v ¢ A.
Here, 7, is called fuzzy approximate function of the FFS §,, and

the value 7, (v) is a set called v-element of the FSS for all v € E.
Thus, an FSS ©, over U can be shown by the set of ordered pairs.

Dy = {(V,TA(V)) 1 VEE,TL(V) GP(LVJ)}.

Note that the set of all FSSs over U will be denoted by PS(U).
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2.6. Example

Consider Example 2.2, the FSS 4 where A = {v;,v,,v3} CE
over U stated as

o= {35250 (353 (o G553
A7 A\ 09704 /7 \V"02705/" V7 0.270.470.1

3. Basic Notions of RFSS

In this segment, the elementary essential properties of )*FSS are
investigated with examples.

3.1. Definition

AnRFSS 2, over U is a set defined by a function 7 A, Tepresent-
ing a mapping.

T4, : E = P(U) such that 7, (v) = ¢ if v ¢ A.

Here, 7,, is called fuzzy approximate function of the RFSS 2, . Thus,
an NFSS 2, over U can be represented by the set of ordered pairs.

2, = {(»,74,(v)) : YV EE, 2, (v) €P(U)}.

A; wherei=2,3,4....nand n € N. Throughout i = 2 in this paper
for better understandings.
Note that the set of all RFSSs over U will be denoted

by RFS(U).
Here, 24 a,,3p,5, and 1 ¢, represents RFSSs with two
memberships. One can extend the membership values to 3,4,5...n.

3.2. Example

Consider Example 2.2, the RFSS 2, 4, where A = {v;,v,,v5}
C E over U stated as

Hy My
v N
"1<09,01><05,04>])
Hy s
Va, ) )
<0.5,04><0.8,0.5 >

) s Hs
V41202,08>'<04,06>'< 08,05 >

3.3. Definition

RFSS Subset. Let 2, 4, and 1p 5 be two RFSS, then 1, 4,
Qg p,, if o, 4, (v)C T, 5, (v) forall v € E.

3.4. Remark

a4, QDBthdoes not apply the definition of the classical
subset; that is every element of 3, 4, is an element of 2 3, .

3.5. Example

Considering data given in Example 2.2, let 3, 4,and 1 5 be
two RFSSs such that.

26

9. =yl g dm
Az 71<02,04>))\""1<08,03 >

And
B _ . ", Ny n, My

Bs =~ I\ Z06,08>'<03,06>) ) \"¥1<06,04>'<03,06>
Then, for all veET, 4 (v)C T 5,(v) is valid. Hence,
A4,.4,< s, 8,

3.6. Definition

Empty RFSS. Let 2, 4, € RFS(U). If 24 4,(v) = ¢ for all
v € E, then 1, ,, is called an empty RFSS, denoted by 14 o,.

3.7. Definition

Letdy, 4, € RFS(0). If2, 4, (V) = Uforallv € A, thend, 4,
is called A-universal RFSS, denoted by 2, 4,.

If A = E, then the A-universal RFSS is called universal RFSS,
denoted by JELszl

3.8. Example

Assume that U = {®;,",, 13,14, s} IS a universal set and
1) 72, 73, 4,5 715
E = {vy,V,,V3,V,} is a set of all parameters.

) }JA,,AZ (v;) = ¢ and
- <0.6,0.4 >’<0.3,0.6 >
Ta,.4,(V4) = U, then the RFSS, 2, 4, is written by

Ay Ay —
Apa = . U) .
Aua {<V2’ {< 0.6,04>"<03,06 >}) (v, )}

If B = {vy,v3}, and Ty p,(vi) = &, Tp, 5,(V3) = ¢, then the RFSS
g, , is an RNFSS empty, that is, 1y 4, = Do.

If C={v,v2},7c(v1) = U, and Te(vy) = U, then the RFSS
1 is a C universal RFSS, that is, ¢ = ¢

If A= {VZ~,V37V4}:7A|,A1 (V2) = L - i

3.9. Definition

Let 3y, 4,28, 5 € RFS(U).
RESS — equal, written as 2, 4, = g p,,
Ta, A, (v) = T8, 5, (v) forall v € E.

Then, 1, 4, and 2y p, are
if and only if

3.10. Definition

Let1y, 4, € RFS(U). Then, the complement 3§ , of 1, 4, is
an RFSS such that.

Taparc (V) =75, 4, (v), forallv € E,

where 7§ , (v) is complement of the set Ty, 4, (V).

3.11. Example

Considering data given in Example 2.2, if we have 1, ,, and
g, p,are two RFSS such as
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P g g g
5 _ v H Hy v " My Hy "y
A #1<06,08>'<03,06>//) \'"1<06,04>"<03,06> <03,08>'<0.12,02 >
V15 My ’
And < 04,07 >
M L&)
R A S C R A #L) - <0.3,0.8>'<0.5,0.6 >’
Bube 71<06,08>'<03,06>)) \"*1<06,04>"<03,06 > Ap,.4,YU g, 5, = va, » ,
’ 3
<0.8,0.25 >
As Ty, 4,(V) = Tp, 5,(v) for all v € E. Hence % ",
<0.5,0.6 >’<0.1,0.8 >’
jAhAz = :Bl-Bz V3, Us
<0.3,0.6 >

i 9C
Now, complement of 3, 4, is 3% , .

x iyl M vadm M
Az 21<04,02>'<07,04>) )\ 1<04,06>'<0.7,04>

Similarly, one can find complement of g 5 .

4. Aggregation Operations of RFSS

This section describes the set-theoretic operations of RFSS by
utilizing the data presented in Example 2.2.

4.1. Definition

Let 25 4,,2p,5, € S‘EFS(&). Then, the union of 2, 4, and g p,
denoted by 21, 4,Ulp p, is defined by its fuzzy approximate
function.

Tas(V) = Ta(v) UTp(v) for all v e E

4.2. Example

Assuming data given in example 2.2, let

51 H
v
1<0.26,015>'<0.12,02>] )’

2 e
= ‘V s —
Af 71<02,025>[ )’
Hy Hs
14 N
*1<0.1,0.8>'<0.3,04 >
and
Hy Ny
V b b b
1<0.3,0.8>"<04,0.7 >
2 " H
- V b b b
Bi.B 21<0.3,0.8>'<0.5,0.6 >

Hy Hs
V3, ,
1< 05,06 >'<0.3,0.6 >

Be two RFSSs. Then, the union of 3, 4,and 1y p,is given as

Similarly, one can find union of more than two RFSSs.

4.3. Definition

Let2y 4,,38,8, € RFS(U). Then, the restricted union of 24, 4, and
g, 5, denoted by 2, 4 Uglp, 5, is given as

A5,.4,Ur3B, 8, = a4, N g, 5,

where

Ta, ,Az(v) = max{?Al(v),TAz (V)} for allv e E

4.4. Example

Assuming data given in Example 2.2, let

Hy o)
v
1<0.26,0.15>"<0.12,02 > )

3'A1>Az = %
vl
<0.2,0.25 >
and
Hy Ny
Vi, ) ?
11<03,08>"<04,0.7 >
. My H
= Vo, ) ?
BB, 1< 0.3,08>"<0.50.6 >

", Us
vV
1< 0.5,0.6 >"<0.3,0.6 >

Be two RFSSs. Then, the restricted union of 1, 4 and 1y pis
given as

Hi Yo
- <0.3,0.8 >7<0.12,0.2 >’
5,.4,Urs, 8, = v "
< 04,07 >
4.5. Definition
Let 24 4,.2p,35 € RFS(U). Then, the intersection of

2y, 4, and 2p 5 denoted by 2, 4,M3p 5, is defined by its fuzzy
approximate function.
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Tanp(V) = T5(v) N T(v) forallv € E.

4.6. Example

Considering data given in Example 2.2, let

Hy o)
Vi, ,
11<0.26,0.15>'< 0.12,0.2 >

) ¥
V b TN A A A b
Auhs 1< 02,025 >
Hy s
V.
>1<0.1,0.8>'<0.3,04 >
and
Vi,
1<03,08>'<04,07>)’
2 LS H
= Vo,
Bus 1< 03,08>'<0.5,06>[)

L) Hs
1%
*1<0.5,06>"<0.3,0.6 >

Be two RFSSs. Then, the intersection of 1, ,,and g g is
given as

Hy H
< 0.26,0.15 >"<0.12,0.2 >’

V1,
My H
<0.3,0.8>7<0.5,0.6 >’
JAI,AZﬁ:lBl.,BZ = V2 Uy ’

<0.8,0.25 >

H Hy
<0.5,0.6 >’<0.1,0.8 >’

V3,
Hs

<0.3,04 >

Similarly, one can find intersection of more than two JFSSs.

4.7. Definition

Let 24, 4,,28,8, € §)‘|‘:FS([\J/'). Then, the restricted intersection of
), 4, and g p denoted by 2 4 Mg, p, is as

44,68, B, = 2,4, N, B,
where

Taoa,(V) = min{'fAl(V)JA2 (v)} for allv € E.

28

4.8. Example

Assuming data given in Example 2.2, let

Hy o)
V b bl b
11<0.26,0.15>"<0.12,0.2 >

H3
VD S B
1< 02,025 >

3A1 A, —

and

Ky Hy
1% N
"1<03,08>"<04,07 > )’

2 Hy )
- V b b
BioBy 21<03,08>7<05,0.6 >

v L&) s
1< 05,06 >'<0.3,0.6 >

Be two RFSSs. Then, the restricted intersection of 24 4,and 2 g, is
given as

"y H
_ <0.26,0.15 >'< 0.12,0.2 >’
5,.4,Nep, 8, = V1 Y
<04,0.7 >
4.9. Definition
Let 24 4,,28,8 € %FS([?'). Then, the restricted difference

of 34, 4, and Jp p, denoted by 2, 4,—rIp, 5, iS as
DA,,AZ —R:1E51.132 = DAI.AZ —R:113,.B2

4.10. Example

Suppose example given in 2.2, let

Hy H
v
1<0.26,0.15>"<0.12,02 > )

M3
Vy,
<0.2,0.25 >

Al $A2 =

and

Hy Ny
V b b b
1< 03,08 >'<04,0.7 >

. Hy Hy
= Vo, 5 )
BB, 1<03,0.8>'<0.5,0.6 >

H s
vV
1< 0.5,0.6 >"<0.3,0.6 >

Be two RFSSs. Then, the restricted difference of 2, 4,and 2 p,is
given as
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M3

And

Hy H
V b b
1< 0.3,0.8>'<0.5,0.6
g, B,—R3A, 4, =

9]

M, Hs
V b b
*1<0.5,0.6><0.3,0.6
It can be easily observed.
DA, Ay _RDBl B, # 3B, B, —RZIA,Az
4.11. Proposition
Letd, 4,3 5 € RES(U). Then

. Ca_
L3545 :1]31,]32
2.2,C 2 4,

3. jAl aAZC DAlaAZ

4.2, 4,C I, p,and g 5, C A, ¢, = A, 4,< A,

4.12. Example

For (1), assuming data from Example 2.2, let

Hy H
V b b
11<0.26,0.15 >< 0.12,0.2 >

H3
V2,
<0.2,0.25 >

U4, =

Andl— =U
EL,E2

It can be observed that 2, 4, C 3~ .
ELE2

81 H
U Srrwearryad s L e
<0,0>'<0,0> <0,0>
", Hs
V37 DY b V47 AN A -
<0,0> < 0,0 >

for (2),24 =

It can be observed that 2,C 2, 4 and 2, 4, C Iy 4,

For (4),

" H
V b b
1< 0.50,0.30 >’ < 0.24,0.4 >

3
V2,
< 0.4,0.50 >

.8, =

)

il

H3

jl

)

And

Hy )

V ) b )
( ! {< 0.75,0.60 >’ < 0.5,0.6 >})
H3
V2,
<0.8,0.7 >

4,.4,C€ g, p,and g 5, C A ¢, = Iy 4,C Ao,

2cl.C2 =

It can be observed that

4.13. Proposition

Let 2y, 4,,2p, 5,5 3c,,c, € RFS(U) Then,
1. JAqu = DBth and DBuBz = :ICl,Cz = 3AlaAz = jchcz

2.2, 4,C 3 panddy , € Ay 4, © gy, = i3,
4.14. Proposition
Let 2, 4, € RFS(U). Then,
i z
1 (%) =2

2.2, =2;

4.15. Example

For (1), Let 2, 4, € RFS(U) such that

Hy H
v
11<0.26,015>'<0.12,02 >/ )’

) e
= V s —
Auhz 1<02,025>f )
Hy s
Vv
1<0.1,08>'<03,0.4 >
U H
v
1< 0.74,0.85 > < 0.88,0.8 > |
. )
2 4 )= _—
(a0.) (VZ’ {< 0.8,0.75 >})
v My Hs
31<0.9,02>"<0.7,0.6 >
My H
14
11<0.26,015>7<0.12,02 > )’
N\ A3
: c\c — -
((4.2.)9) (VZ’ {< 0.2,0.25 >})

Hy Hs
vV
*1<0.1,0.8>'<0.3,04 >
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Hence proved. % ",
<0.3,0.8>"<0.12,0.2 >’
. Wy )
. : S S
(:121,/42) =a4, <0407
~ ~ 0.3,0.8 >’<0.5,0.6 >’
(24,4,025,5,) 03¢, ¢, = v, SO >x3< 00> )
<08025>
A,
4.16. Proposition —05 065 =05 085
V3, R o
Let 35, 4,28, 5, ¢, ¢, € RFS(U). Then, <03,08>
1. JAerzO DAI‘AZ = JAI-AZ
2.3, 0% = 20 Now, RH.8 2, 4,0(3p, 502, ¢,)
3.2,,4,02: =2 " "y
<03 0.8 >'< 0.4, 07>
4. 35,4,U 3,8, = 3p, 5,V 4, { "2
N N 3,5, 02¢, ¢, = <03, 08> <03, 06>
5. 34,.4,Ur 2, 8, = i, 8,UrA, 4,
< 0.5, 06> < 0.5, 06>
- - ~ - R
6. (DAI‘AZUJBUBZ)UDCI?CZ = 3[\l>AZLJ(D'BITBZLJD'CI‘CZ) < O 3 0 8 >

v <0.3,0.8>" <01202>
1y

4.17. Example ( " }

For (5) <0.4,07 > 0 7 >
(JAl,AZ U:legz)Ulchc2 = DAI,AZU(JBI.BZUJCI,CZ) 30,003, 5,02, ¢,) = nd < 0.3,0.8 >’ < 0.5, 0 6>’
Let 24, 4, 28,8, 2c,.c, € RFS(U) such that n2< <08,025> 0 2 >
<05,06>'< 0.5,0.8 >’
" n, " "
v
(1’{< 0.26,0.15 >'< 012,02 > ) <03,08>

) M
= V b b
Az 21<0.2,0.25 >

Ny Hs
<0.1,0.8 >’<0.3,0.4 >

Similarly, one can also prove the other properties of 4.16 proposition.

4.18. Proposition
" Hy
<0.3,0.8 >'<04,0.7 >

|
}
w ¥ }
|

<0.3,0.8 >'<0.5,0.6 >
A, Hs
<0.5,0.6 >'<0.3,0.6 >

1. 3A1~Azﬁ JAI-,AZ = JAI:AZ

% Let 2y, 4,35, 5,+ 2, .c, € RFS(U). Then,

/N
=
A /_/H,_/H A

2. DA1~Azﬁ 3(1) - jq;

And
3. 3A1~Azﬁ :}‘: = 3A1~A2
] = v * s
G *1<05,06><02,08 > _ _
4.2, 4,N g p, =, 5,N A, 4,
LSt Hy
L <0.3,0.8> Kf 0.12,0.2 > ’ 5. JAl‘Azﬁs 2,5, = :Bl,Bzﬁs 4,
<04,0.7 >
n ®n ~ ~ ~ ~
. B < 03,108 > ) < 05,206 >7 6 (j'/\l‘Azm jBl‘Bz)m Jclvcz = jAl‘Azm(nBlszm 3Chcz)
(:lAhAz UDBPBZ) = V2, U3 )
<0.8,0.25 >
2 "y 4.19. Remark
<0.5,0.6 >’<0.1,0.8 >’ _
V3, s Let 2,4, € RFS(U). If 3y 4, #3p and 3y 4, # 3, then
<0.3,0.6 > 3A1~A2U3§\,,A2 # Jj and DAI‘AZI’TDL,AZ # .
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4.20. Example
M1 Y
To prove (5), < 0.26,0.15 >’ < 0.12,0.2 >’
5 My
~ ~ ~ - <0.4,07 >
(2n,.4,M38,5,)Mc, ¢, = 2a,4,1(35,5,M3c, ;) moo
~ ~ <0.3,0.8>'<0.5,0.6 >’
_ 24,4,0(38,5,Mc, c,) = V2 ’ 1 )
Let 24, 4,525, 8,5 2c,,c, € RFS| U ] such that 202025
o) ' My
<0.5,0.6>"<0.1,0.6 >’
V3, g
<0.2,0.4 >

3/\1-,Az =

(o
(n

And

3cl‘cz = {(V3

(+ (o))

o
(V {<026015> <o1202>}>

Hy
<0108> < 0.3, 04>

Hy
<0506> <0306>

8

ot o))
eotims =)
{ })

Hy Hs
"1<0.5,06>"<0.2,0.8 >

Consider L.H.S (:Al A, ﬁDBl B, ) ﬁ:cl G

(24,4, 5,) =

(2a,4,M28, 5,)M2c, ¢, =

Hy Hy
<0.26,0.15>'<0.12,0.2 >’
Hy
<0.4,0.7 >
M Hy
<0.3,0.8>'<05,0.6>"
A3

< 0.2,0.25 >
", My

<0.5,0.6 >'<0.1,0.8 >’
U5
<03,04>

Vs,

" H

1y Ny

V2,

<0.5,0.6>"<0.1,0.6 >’
V3, Hs

<02,0.4 >

Now, RH.S 2, 4,M(2p, M, c,)

g, 5, c, =

My My

(V“ {< 03,08> <0407 >})
i o)

(Vz’ {< 03,08>'<05,06 >})

H Ny
<0.5,0.6 >’<0.5,0.6 >’
s
<0.2,0.6 >

V3,

< 0.26,0.15 > < 0.12,0.2 >’

Hence proved.

(2a,.4,M3p, 5,)Mc, ¢, = 2a,.4,1(3s, 5,M3c, )

Similarly using example, one can also verify the above proposition
the results.

4.21. Proposition

Let2y, 4,,8,8, € %FS( ) Then, De Morgan's laws are valid as
follows:

1 (DAI Ay ODBI \By )Z = Ji\l.Az 53%1,32
2. (34,4,Mp, 5,)" =25, N U35 .-

Proof. The proofs can be obtained by using the respective
approximate functions. For all v € E,

(1 (5 () = T ()

I
=
o)
%,
o
<
=

The proof of (2) is similar.

4.22. Example

To prove (244,02, 5 )"

— 9t ®qT :
=32,., M, 5,0 We consider an
example.

Let 2y, 4,3, 5, € RFS(U) such that

A3
N — =
A {<02 0.25 >

V3,

a1
(V {<026015> <012, 02>})

<0108> <O304>}

Vs,
3 <0506> <0306>

{<03 0.8 >’ <0407>

(
(v )
g, B, = ( <0308> <0506>})
( )
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Then, L.H.S

Uy H
<0.3,0.8>’<0.12,02 >’
Vi, ]/[4 )
<04,0.7 >
ny Hy
<0.3,0.8>'<0.5,0.6 >’
A3 ’
<0.8,0.25 >
H Hy
<0.5,0.6 >’<0.1,0.8 >’
Hs
<0.3,0.6 >

3'/\1 Ay UD’Bl:Bz = V2

V3,

Hy H
<0.7,0.2>’<0.88,0.8 >’
My )
<0.6,0.3 >
My )
<0.7,02>'<05,04 >’
n3 )
<0.2,0.75 >
Hy Hy
<0.5,04>"<0.9,02 >’
Hs
<0.7,0.4 >

Vi,

(JA,,AZ D3131‘,32)& = V2,

V3,

Now, R.H.S

" N,
V bl b b
1< 0.74,0.85 > "< 0.88,0.8 >

e N T
(24,4,)° = (”2’ {< 0.8,0.75 >})

1%

1<0.9,02>'<0.7,0.6 >

i My

(V“ {< 0.7,02> < 06,03 >})
"y Y

(VZ’ {< 07,02> < 05,04 >})

, Hs
V b b
*1<0.5,04>'<0.7,04 >

(3s,5) =

My H
( <0.7,02>'<0.88,0.8 >’
V1, My 9
< 0.6,0.3 >
S H
¢ = <0.7,0.2 >’< 05,04 >’
:f\mz nglsz = Y2 H3 ’
< 0.2,0.75 >
) Ny

<0.5,0.4>"<09,02>’
V3, ){5

<0.7,0.4 >

Hence proved, L.H.S.=R.H.S. Similarly, we can also prove second
property.
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4.23. Proposition

Let 25, 4,,28,5,5 2c,.c, € %Fs(t?). Then,
1.25,4,0(38,5,M2c, ¢;) = (34,4,028,.5,)1 (34, 4,03, c,)

2. 24, 4,0(3p,8,02¢, ¢,) = (3a,.4,738, ,)0(35,.4,7c, c,)

Proof. Forall v € E,
(1): 7AG(B§c) (V) =Ts(v)U 'fBgC(v)

=TV U (Ts(v) NTc(v))
= (Ta(M) UTs(v)) N (Ta(v) UTc(v))

=7~ (v)N7

AUB AGC (V)

= T(AUB)FW(AGC) (v)-
Likewise, the proof of (2) can be in a similar way.

5. Conclusion

In this paper, RESSs represent a powerful and flexible tool for han-
dling uncertainty and incomplete information in a wide range of applica-
tions. By allowing for both degrees of membership and non-membership,
RFSSs provide a more nuanced and comprehensive representation of
uncertainty than traditional fuzzy sets or soft sets alone. Moreover, the
various operations that can be performed on RFSSs such as complement,
union, intersection, and projection enable powerful tools for manipulation
and analysis of these sets. With further research, it is likely that RFSSs
will continue to find new and innovative applications in decision-making,
image processing, pattern recognition, and many other fields.
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