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Abstract: This paper employs switching-algebraic techniques for the calculation of a fundamental index of voting powers, namely the total
Banzhaf power. This calculation involves two distinct operations: (a) Boolean differencing or differentiation and (b) computation of the weight
(the number of true vectors or minterms) of a switching function. Both operations can be considerably simplified and facilitated if the pertinent
switching function is symmetric or it is expressed in a disjoint sum-of-products form. We provide a tutorial exposition on how to implement
these two operations, with a stress on situations in which partial symmetry is observed among certain subsets of a set of arguments. We
introduce novel Boolean-based symmetry-aware techniques for computing the Banzhaf index by way of two prominent voting systems.
These are scalar systems involving six variables and nine variables, respectively. This paper is a part of our on-going effort for
transforming the methodologies and concepts of voting systems to the switching-algebraic domain and subsequently utilizing switching-
algebraic tools in the calculation of pertinent quantities in voting theory.
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1. Introduction

Weighted voting systems constitute a major class of yes–no
systems, in which a weight is assigned to each voter, and a
suitable quota or threshold is selected. A bill (proposal, resolution,
or amendment) is accepted (passed) if the sum of weighted votes
in favor of it reaches or goes beyond the selected threshold
(Gelman et al., 2002; Taylor & Pacelli, 2008; Wallis, 2014).
The voting power of an individual voter V in a voting system is the
probability that this specific voter is decisive, which is decided by the
number of ways the voter can bring about a swing in the outcome and
ultimately by the rule for aggregating votes into a single two-valued
Boolean outcome f Xð Þ. Here, the binary vector X ¼ X1 X2 . . .½
Xn�T is an n-tuple of the binary votes Xi 1 � i � nð Þ expressed
by the voters, where Xi is 1 or 0 if voter i is among the proponents
(a yes-voter) or among the opponents (a no-voter), respectively.
Many indices of voting power are in use nowadays. Two of these
are effectively the mainstream standard ones. These are the Banzhaf
index (Banzhaf, 1964; Kirsch & Langner, 2010; Rushdi &
Ba-Rukab, 2017; Yamamoto, 2012) (also occasionally referred to as
the Penrose–Banzhaf index (Penrose, 1946), the Banzhaf–Coleman
index (Coleman, 2012), or the Penrose–Banzhaf–Coleman index)
and the Shapley–Shubik power index (Shapley & Shubik, 1954).
These two indices are based on coalitional and permutational

considerations, respectively. Usually, a change in the voting scheme
that increases the power of a voter on one particular index tends to
increase this power on the other index as well, and vice versa.

Our main concern in this paper is the switching-algebraic
computation of the Banzhaf index or Banzhaf voting power of a
voter V in a weighted voting system, which is typically called the
total Banzhaf power TBP Vð Þ of the individual voter V (Taylor &
Pacelli, 2008). It is the number of times voter V is decisive, i.e., the
number of winning states or configurations in which this voter is
among the proponents (yes-voters) of the debated proposal such that
a switch of the voter to join the opponents (no-voters) changes the
system state from one ofwinning (proposal approval) to that of losing
(proposal rejection). Rushdi and Ba-Rukab (2017) coined the name
of a “primitive coalition” for each of the 2n states or configurations
for an n-member weighted voting system. The total Banzhaf power
TBP Vð Þ is then the number of primitive winning coalitions (PWCs)
of which voter V is a member such that when V switches sides (from a
proponent to an opponent), the coalition swings to a primitive losing
coalition (PLC). In the sequel, we employ the typical assumption that
the variables Xi 1 � i � nð Þ are statistically independent. This
assumption is basically associated with the supposition that the
primitive coalitions, states, or configurations are equally probable.

The raw value for the total Banzhaf power of voter number
m has the following switching-algebraic definition (Rushdi &
Ba-Rukab, 2017; Yamamoto, 2012):

TBP Xmð Þ ¼ wt
@f Xð Þ
@Xm

� �
; 1 � m � nð Þ: (1)
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Here, the symbol @f Xð Þ
@Xm

denotes the partial derivative of the voting sys-
tem Boolean function f Xð Þw.r.t. its argumentXm (see Appendix A),
while the symbol wt . . .ð Þ denotes the weight or number of true vec-
tors of a switching function (see Appendix B). The most appealing
normalization of the aforementioned raw value TBP Xmð Þ is obtained
through dividing the raw value by the sum of all such values. This
yields the following normalized total Banzhaf power:

NTBP Xmð Þ ¼ TBP Xmð Þ=
X

n
k¼1

TBP Xkð Þ; 1 � m � nð Þ: (2)

The resulting normalized powers are now situated within the real unit
interval [0.0, 1.0], which allows a probability interpretation for them
and also facilitates comparison with other types of voting powers
such as the Shapley–Shubik indices (Strafiin, 1988). There are sev-
eral algorithms for calculating the Banzhaf power index that usually
employs recursion and problem decomposition into sub-problems,
e.g., techniques of dynamic programming (Matsui & Matsui,
2000), enumeration methods (Matsui & Matsui, 2000), and generat-
ing function methods (Bilbao et al., 2000, Bilbao et al., 2002). There
are also other algorithms for approximating this index via random
sampling and Monte Carlo simulations (Bachrach et al., 2010;
Rodrigues & Wilhelm, 2016). The technique to be proposed herein
is a switching-algebraic technique that is basically an enumeration
method. This technique tries to make the most of recent develop-
ments in switching theory as well as of symmetry features that are
inherent to many weighted voting systems.

The topic of this paper is related to certain topics within
reliability theory in a few ways.

(a) First, we note that the Banzhaf index and other voting indices are
sometimes utilized as importance measures in reliability theory,
and there is a striking similarity between the Banzhaf index and
the Birnbaum importance measure of reliability systems
(Armstrong, 1995; Aven & Nøkland, 2010; Boland &
El-Neweihi, 1995; Freixas & Puente, 2002; Kuo & Zhu, 2012;
Zhu & Kuo, 2014).

(b) Moreover, our earlier explorations of the reliability of threshold
systems (Rushdi, 1990) indicate the existence of a handy
methodology for the study of weighted voting systems, namely the
methodology set by the theory of threshold switching functions
(Crama & Hammer, 2011; Lee, 1978; Muroga, 1971; Rushdi,
1990). This theory has already matured within digital-design
circles and can be fruitfully utilized in, and appropriately adapted
to, the study of both threshold reliability systems and weighted
voting systems.

(c) Finally, the computation of the Banzhaf voting index involves
two distinct operations: (a) Boolean differencing or
differentiation (Lee, 1978; Rushdi & Rushdi, 2017;
Yamamoto, 2012) and (b) computation of the weight (the
number of true vectors or minterms) of a switching function
(Crama & Hammer, 2011; Lee, 1978; Muroga, 1971). We
simplify and facilitate both operations by expressing the
pertinent switching function in a disjoint sum-of-products
(s-o-p) form (Abraham,1979; Bennetts, 1982; Dotson &
Gobien, 1979; Rushdi & Rushdi, 2017; Schneeweiss, 1977,
Schneeweiss, 1989) by borrowing techniques of disjointness
from the reliability literature.

The remainder of this paper is structured as follows. Section 2
explains some of the basic concepts and nomenclature. Section 3
explores Banzhaf indices for symmetric switching functions
(SSFs). Section 4 introduces novel Boolean-based symmetry-
aware techniques for computing the Banzhaf index by way of two

prominent voting systems. These are scalar systems describing
6-variable and 9-variable versions of the European Economic
Community (EEC). To make the paper self-contained, we
supplement and support its main text with two appendices.
Appendix A introduces the concept and calculus of the Boolean
difference (Boolean derivative). Appendix B discusses the concept
and properties of the weight of a switching function and then
highlights a variety of methods and shortcuts for computing it.

2. Basic concepts and nomenclature

A yes–no voting system: A voting system, which offers a choice
between adopting a potentially forthcoming alternative (an
amendment, a resolution, or a bill), versus the status quo, which
stands as an already existing alternative (Taylor & Pacelli, 2008).
This system is described herein by a switching (two-valued
Boolean) threshold function f Xð Þ, such that f Xð Þ ¼ 1 if the resolu-
tion considered is passed and f Xð Þ ¼ 0 if the resolution is rejected.
The function f Xð Þ is similar to the success function of a coherent
threshold reliability system (Rushdi, 1990; Rushdi & Rushdi,
2017). Here, the binary vectorX ¼ X1 X2 . . . Xn½ �T is an n-tuple
of the votesXi 1 � i � n½ � cast by voters, where the value ofXi is an
indicator whether voter i approves (Xi ¼ 1) or disapproves (Xi ¼ 0)
the debated resolution.

A coalition: Any set comprised solely of yes-voters in a yes–no
voting system. The coalition is winning if the disputed alternative
in question is upheld (i.e., if the specific amendment, resolution,
or bill considered is passed), and otherwise the coalition is losing.
The two extreme cases for a coalition are the empty coalition, to
which no voter belongs, and the grand coalition, to which all
voters belong (Nurmi, 1997; Taylor & Pacelli, 2008).

A primitive coalition: A specification of the status or configuration
of all voters (possibly including both types of voters (yes-voters and
no-voters) (Rushdi & Ba-Rukab, 2017). This can be a PWC, which
corresponds to a true vector (minterm) of f Xð Þ, or a PLC, which cor-
responds to a false vector (minterm) of f Xð Þ. The concept of a primi-
tive coalition coincides with those of a line of a truth table or a cell of
a Karnaugh map of f Xð Þ. Two prominent primitive coalitions are the
all-0 primitive coalition (which coincides with the empty coalition),
and the all-1 primitive coalition (which coincides with the grand
coalition). The concept of a primitive coalition is quite convenient
for Boolean-based analysis, but it is admittedly alien to voting
theory. A primitive coalition is typically a mixture of yes-voters
and no-voters (typically expressed by a product of uncomplemented
literals and complemented ones). By contrast, the concept of a coali-
tion is popular in voting theory. It concerns solely yes-voters (and
hence it is expressed by a product of uncomplemented literals only).

A dummy voter: A voter P who has no say in the outcome of the
voting system, since TBP Pð Þ is strictly equal to 0. This voter has no
power whatsoever, since he or she cannot influence the passing of a
resolution in any case. The existence of a dummy voter defeats the
purpose of the voting system, which should allow each individual
voter some plausible chance, however small, to affect or influence
the decisions made by the system. If the voting system has a dictator
or a dictating clique, then the remaining voters are definitely all dum-
mies. The non-permanent members of the United Nations Security
Council (UNSC) are not dummies in the technical sense of the
word, albeit they are definitely almost dummies. The TBP of a
non-permanent member is alarmingly negligible compared to that
of a permanent member, but it is not strictly equal to 0. The TBP
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of all ten non-permanent members of the UNSC put together is
slightly less than that of a single permanent member. The voting
power in the UNSC is divided into six shares, with five of them
divided evenly among the permanent members, and with the sixth
share split into sub-shares circulating among alternating representa-
tives of the rest of the world.

A SSF: A two-valued Boolean function is depicted (Muroga, 1979;
Rushdi & Rushdi, 2017) as

f Xð Þ ¼ Sy n;A;Xð Þ ¼ Sy n; a1; a2; . . . ; amf g; X1; X2; . . . ; Xnð Þ: (3)

The SSF in (3) is completely characterized by its number of inputs n,
its inputs X ¼ [X1; X2; . . . ; Xn]T, and its characteristic set

A ¼ a0; a1; . . . ; amf g � I nþ1 ¼ 0; 1; 2; . . . ; nf g; m � nf g:
(4)

This function has the value 1 if and only if the arithmetic sum
Pn
j¼1

Xj

belongs to the characteristic set A, and has the value 0, otherwise.
Symmetry is preserved by each of the unary operation NOT and
binary operations AND, OR, and XOR. Specifically, the complement
f̄ of the SSF in (3) is also symmetric, and it possesses a characteristic
set A� that complements the original characteristic set A w.r.t. the
universe I nþ1 ¼ 0; 1; 2; . . . ; nf g. The complementary set A� is
given by the set difference I nþ1=Að Þ, also denoted as I nþ1 � Að Þ, or

A ¼ 0; 1; 2; . . . ; nf g � a0; a1; . . . ; amf g (5)

and hence, f can be expressed as

f Xð Þ ¼ Sy n; A;Xð Þ: (6)

Moreover, the ANDing, ORing, and XORing of two SSFs
Sy n;A1;Xð Þ and Sy n;A2;Xð Þ (which share the same arguments X,
and are of characteristic sets A1 and A2, respectively) result in SSFs
whose characteristic sets are equal to the intersection, union, and
XORing of the original sets A1 and A2, respectively, i.e.,

Sy n;A1;Xð Þ Λ Sy n;A2;Xð Þ ¼ Sy n;A1 \ A2;Xð Þ; (7)

Sy n;A1;Xð Þ V Sy n;A2;Xð Þ ¼ Sy n;A1 [ A2;Xð Þ; (8)

Sy n;A1;Xð Þ � Sy n;A2;XÞ ¼ Sy n;A1 � A2;XÞ:ðð (9)

A threshold switching function: A switching function f Xð Þ of n
variables is characterized by nþ 1ð Þ (rather than 2n) coefficients,
namely a threshold T and weightsW ¼ [W1; W2; . . . ; Wn]

T, such
that (Rushdi, 1990)

f Xð Þ ¼ 1 iff F Xð Þ ¼
X

n
i¼1

WiXi � T: (10)

A threshold switching functionmight be described as scale-invariant,
since multiplying every weight and the threshold by the same
positive constant does not change the function. A weighted voting
system characterized by f Xð Þ is typically denoted by ðT ;W1;
W2; . . . ; WnÞ.

A semi-coherent switching function: A switching function f Xð Þ
possessing the property of monotonicity, i.e., it is a monotonically
non-decreasing function. Since monotonicity implies causality (for

non-constant functions representing non-fictitious systems), a
semi-coherent f Xð Þ possesses the property of causality as well.

A (fully) coherent switching function: A semi-coherent switching
function f Xð Þ that additionally possesses the property of component
relevancy (for all components). Such a coherent function f Xð Þ is a
unate function of an all-positive polarity (Crama & Hammer,
2011), which can have a s-o-p representation consisting solely of
uncomplemented literals. It has a unique and canonical minimal
sum (disjunction of a minimal number of prime implicants that
collectively cover it) that exactly equals its complete sum (disjunc-
tion of all prime implicants).

A coherent threshold switching function: A threshold switching
function with strictly positive weights and threshold. It is used to
describe the decision made by a weighted voting system, or the
success of a threshold reliability system (Rushdi, 1990), also
called a weighted-k-out-of-n system. In particular, the success
S k; n;Xð Þ of a k-out-of-n: G reliability system is a symmetric coher-
ent threshold function with unit weights and a threshold equal to k
(Rushdi, 1990), since

S k; n;Xð Þ ¼ 1f g iff
X

n
i¼1

Xi � k
n o

(11)

Monotonicity: For a switching function f Xð Þ, monotonicity means
that it is monotonically non-decreasing, i.e.,

f XÞ � f Yð Þ for X � Yð (12a)

or equivalently

f ðX jXi ¼ 1Þ � f ðX jXi ¼ 0Þ: (12b)

If a set of yes-voters constitutes a winning coalition, then any
superset of yes-voters is a winning coalition as well. If a set of
yes-voters forms a losing coalition, then any subset of yes-voters
is also a losing coalition.

Causality: For a switching function f Xð Þ, causality means that it is 0
when its argument is the all-0 vector, and it is 1 when its argument is
the all-1 vector, i.e.,

f 0ð Þ ¼ 0f gΛ f 1ð Þ ¼ 1f g (13)

For a yes–no voting system, causality means that the empty and
grand coalitions (corresponding to the all-0 and the all-1 primitive
coalitions, respectively) are losing and winning ones, respectively.

Component relevancy (for all components): For a switching
function f Xð Þ, component relevancy means that

@f Xð Þ
@Xi

¼ f XjXi ¼ 0ð Þ � f XjXi ¼ 1ð Þ 6¼ 0 identically for 1 � i � n;

(14a)

i.e., there exists at least one instance of X such that

f XjXi ¼ 0ð Þ � f XjXi ¼ 1ð Þ 6¼ 0; for 1 � i � n: (14b)

For a yes–no voting system, component relevancy means that no
voting member is dummy. This means that every voting member
must belong to a winning coalition that becomes a losing one if
that member alone defects from it. In other words, the defection
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of the member is decisive or critical for the winning status of the
coalition.

3. Banzhaf indices for SSFs

A SSF Sy n;A;Xð Þ is characterized by its Boole–Shannon
expansion about any of its variables Xm 1 � m � nð Þ. This expan-
sion might be stated as follows (Rushdi & Rushdi, 2017):

Sy n;A;Xð Þ ¼ Xm Sy n� 1;B;X=Xmð Þ
_ Xm Sy n� 1;C;X=Xmð Þ; 1 � m � nð Þ; (15)

where the two sets B and C are both subsets of the set of the first n
non-negative integers I n ¼ 0; 1; 2; . . . ; n� 1f g; and they are pre-
cisely defined as

B ¼ A \ I n; (16)

D ¼ a0 � 1; a1 � 1; . . . ; am � 1f g; (17)

C ¼ D \ I n: (18)

The definitions of the two sets B and C might be restated
as follows:

B ¼ A if am 6¼ n; (19a)

B ¼ A� nf g if am ¼ n; (19b)

C ¼ D if a0 6¼ 0; (20a)

C ¼ D � �1f g if a0 ¼ 0: (20b)

The Boole–Shannon expansion (15) is conveniently applicable
within a specific region of useful validity, in which the
characteristic set A is a strict subset of the universal set I nþ1 and a
strict superset of the empty set φ. Within this region of useful valid-
ity, the expansion can be recursively applied till one of the following
boundaries A ¼ I nþ1ð Þ or A ¼ φð Þ is reached. At the boundaries, the
recursion is terminated by one of the boundary conditions

Sy n; I nþ1;Xð Þ ¼ 1; (21)

Sy n; φ ;Xð Þ ¼ 0; (22)

where I nþ1 is the set of the first nþ 1ð Þ non-negative integers, and
φ ¼ fg is the set to which no element belongs.

The two terms in the RHS of (15) are disjoint since Xm appears
in the first termwhileXm appears in the second. Therefore, it is legiti-
mate to replace the OR operator (_) by an XOR operator (�) in (15),
namely

Sy n;A;Xð Þ ¼ Xm Sy n� 1;B;X=Xmð Þ
� Xm Sy n� 1;C;X=Xmð Þ; 1 � m � nð Þ; (23)

Hence, the Boolean derivative of the SSF Sy n;A;Xð Þ w.r.t. Xm is
readily obtained (see Appendix A) as another SSF given by

@Sy n;A;Xð Þ
@Xm

¼ Sy n� 1;B;X=Xmð Þ

� Sy n� 1;C ;X=Xmð Þ ; 1 � m � nð Þ;
(24)

@Sy n;A;Xð Þ
@Xm

¼ ¼ Sy n� 1;B� C;X=Xmð Þ; 1 � m � nð Þ:
(25)

The total Banzhaf power is given (according to (1), (25), and (B.13))
by

TBP Xmð Þ ¼ wt
@Sy n;A;Xð Þ

@Xm

� �

¼
X

a2B�C
C n� 1; að Þ; 1 � m � nð Þ: (26)

and hence the normalized total Banzhaf power is given

NTBP Xmð Þ ¼ 1
n
; 1 � m � nð Þ; (27)

as expected. In retrospect,wenote thatwemight not have really needed
to carry out the aforementioneddetailed calculations, becausewe could
have deduced directly from the symmetry of the voting system that the
voting powers of the voters are going to be equal. Though the
computations of this section are not particularly useful for their own
sake, they are potentially of notable benefit in handling certain
voting systems that possess dominant partial symmetries among
voters, which is the case for many notable voting systems, including
each of the two voting systems in Section 4.

4. Examples of weighted voting systems

4.1. The EEC

The EEC is the first ancestor (that lasted from 1958 to 1973) of
the present-day European Union (EU). It is a weighted voting system
of six members, which is described by a threshold T ¼ 12, and a vec-
tor of six weights

W ¼ WF WG WI WB WN WL½ �T
¼ 4 4 4 2 2 1½ �T ; (28)

where the subscripts F, G, I, B, N, and L, respectively, denote the west
European countries of France, Germany (then West Germany), Italy,
Belgium, the Netherlands, and Luxembourg (Rushdi & Ba-Rukab,
2017). The system is described by a threshold switching function,
whose minimal or complete sum is (Rushdi & Ba-Rukab, 2017)

f F;G; I;B;N; Lð Þ ¼ FGI _ FGBN _ FIBN _ GIBN: (29)

The function f F;G; I;B;N; Lð Þ is independent of (vacuous in) the
variable L. This function is not a genuine 6-variable function as it
degenerates into a 5-variable one. Luxembourg is, in fact, a dummy

voter within the EEC system, such that @f
@L ¼ 0 and subsequently

TBP Lð Þ ¼ 0. This finding does not follow immediately from a hasty,
superficial, and cursory inspection of the weights in (28).

The function f F;G; I;B;N; Lð Þ can be rewritten in terms of
SSFs as

f F;G; I;B;N; Lð Þ ¼ Sy 3; 3f g; F; G; Ið Þ
_ Sy 3; 2; 3f g; F; G; Ið Þ BN: (30)

We convert this expression into a disjoint s-o-p one by multiplying
the second term by the complement of the first term (according to the
reflection law (Muroga, 1979; Rushdi & Rushdi, 2017)), namely
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f F;G; I;B;N; Lð Þ ¼ Sy 3; 3f g; F; G; Ið Þ _ Sy 3; 0; 1; 2f g; F; G; Ið Þ
Sy 3; 2; 3f g; F; G; Ið Þ BN ¼ Sy 3; 3f g; F; G; Ið Þ _ Sy 3; 2f g; F; G; Ið Þ BN:

(31)

Since the two terms in (30) are now disjoint, we can replace the OR
operator (_) by an XOR operator (�), namely

f F;G; I;B;N; Lð Þ ¼ Sy 3; 3f g; F; G; Ið Þ � Sy 3; 2f g; F; G; Ið Þ BN: (32)

Due to partial symmetries, we note that TBP Fð Þ ¼ TBP Gð Þ ¼
TBP Ið Þ; and TBP Nð Þ ¼ TBP Bð Þ: Hence, it suffices to compute
the Boolean derivative w.r.t. one of the variables F; G; and
I (say F), and one of the variables B and N (say B), namely

@f
@F

¼ ðSy 2;φ; G; Ið Þ � Sy 2; 2f g;G; Ið ÞÞ � ðSy 2; 2f g; G; Ið Þ � Sy 2; 1f g;G; Ið ÞÞ BN:

¼ Sy 2; 2f g;G; Ið Þ ð1� BNÞ � Sy 2; 1f g; G; Ið Þ BN: (33)

@f
@B

¼ f Xð Þ ¼ Sy 3; 2f g; F; G; Ið Þ N: (34)

which correspond to total Banzhaf powers of

TBP Fð Þ ¼ wt
@f
@F

� �
¼ 1ð Þ 4� 1ð Þ þ 2ð Þ 1ð Þ ¼ 5; (35)

TBP Bð Þ ¼ wt
@f
@B

� �
¼ 3ð Þ 1ð Þ ¼ 3: (36)

Finally, the vectors of total Banzhaf powers and normalized total
Banzhaf powers are

TBP ¼ 5 5 5 3 3 0½ �T ;

NTBP ¼ 5
21

5
21

5
21

3
21

3
21

0

� �
T
:

(37)

4.2. The Extended European Economic
Community (EEEC)

The EEEC is again a predecessor of the contemporary EU
(Rushdi & Ba-Rukab, 2017). This 9-member weighted voting
system emerged in 1973 when the EEC was extended through the
addition of three new member countries, which are the United
Kingdom of Britain (R), Denmark (D), and Ireland (E). The
weight vector was updated for this new system to become:

W 0 ¼ W 0
F W 0

G W 0
I W 0

R W 0
B W 0

N W 0
D W 0

E W 0
L½ �T

¼ 10 10 10 10 5 5 3 3 2½ �T ; (38)

while the threshold was reset to T 0 ¼ 41: The system is described by
a threshold switching function, whose minimal or complete sum is
(Rushdi & Ba-Rukab, 2017)

f F;G; I;R;B;N;D; E; Lð Þ ¼ BNL _ BNE _ BND _ NED _ BEDð Þ
FGI _ FGR _ FIR _ GIRð Þ _ B _ N _ D _ E _ Lð Þ FGIR:

¼ BNL _ BNE _ BND _ NDE _ BDEð Þ Sy 4; 3; 4f g; F;G; I;Rð Þ
_ B _ N _ D _ E _ Lð Þ Sy 4; 4f g; F; G; I; Rð Þ

¼ BNL _ BNE _ BND _ NDE _ BDEð Þ ðSy 4; 3f g; F; G; I; Rð Þ
_ Sy 4; 4f g; F; G; I; Rð Þ
_ B _ N _ D _ E _ Lð Þ Sy 4; 4f g; F; G; I; Rð Þ:

(39)

The function f F;G; I;R;B;N;D; E; Lð Þ is a genuine function of its
nine arguments, and hence, none of the voters it represents is dummy.
Noting that

BNL _ BNE _ BND _ NDE _ BDEð Þ � B _ N _ D _ E _ Lð Þ;
(40)

we reduce the expression of f F;G; I;R;B;N;D;E; Lð Þ in (39) to

f F;G; I;R;B;N;D;E; Lð Þ ¼ BNL _ BNE _ BND _ NDE _ BDEð Þ
Sy 4; 3f g; F; G; I; Rð Þ _ B _ N _ D _ E _ Lð Þ
Sy 4; 4f g; F; G; I; Rð Þ:

(41)

The two terms in the RHS of (41) are mutually disjoint, and it is
immaterial to separate them with an OR or an XOR. Furthermore,
we employ disjointing techniques to replace other ORs by XORs,
and hence we rewrite (41) as the following easy-to-differentiate
expression:

f F;G; I;R;B;N;D; E; Lð Þ ¼ BNL � BNEL � BNDE L� BNDE � BDEN
� �
Sy 4; 3f g; F; G; I; Rð Þ � 1� B N D E L

� �
Sy 4; 4f g; F; G; I; Rð Þ

(42)

Due to partial symmetries, we note that TBP Fð Þ ¼ TBP Gð Þ ¼
TBP Ið Þ ¼ TBP Rð Þ; TBP Bð Þ ¼ TBP Nð Þ; and TBP Dð Þ ¼ TBP Eð Þ:
Hence, it suffices to compute the Boolean derivative w.r.t. one of
the variables F; G; I and R (say F), one of the variables B and N
(say B), one of the variables D and E (say D), and L, namely

@f
@F

¼ BNL � BNEL � BNDE L� BNDE � BDEN
� �ðSy 3; 3f g;G; I; Rð Þ
� Sy 3; 2f g;G; I; Rð Þ � 1� B N D E L

� �
Sy 3; 3f g;G; I; Rð Þ

¼ 1� B N D E L � BNL � BNEL � BNDE L� BNDE � BDEN
� �
Sy 3; 3f g;G; I; Rð Þ � BNL � BNEL � BNDE L� BNDE � BDEN

� �
Sy 3; 2f g;G; I; Rð Þ

(43)

@f
@B

¼ NL � NEL � NDE L� NDE � DEN
� �
Sy 4; 3f g; F; G; I; Rð Þ � N D E L Sy 4; 4f g; F; G; I; Rð Þ:

(44)

@f
@D

¼ BNE L� BNE � BEN
� �

Sy 4; 3f g; F; G; I; Rð Þ
� B N E L Sy 4; 4f g; F; G; I; Rð Þ (45)
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@f
@L

¼ BN � BNE � BNDE
� �

Sy 4; 3f g; F; G; I; Rð Þ
� B N D E Sy 4; 4f g; F; G; I; Rð Þ

¼ BND E Sy 4; 3f g; F; G; I; Rð Þ
� B N D E Sy 4; 4f g; F; G; I; Rð Þ: (46)

which correspond to total Banzhaf powers of

TBP Fð Þ ¼ wt
@f
@F

� �
¼ 32� 1þ 4þ 2þ 1þ 2þ 2ð Þð Þ

1ð Þ þ 4þ 2þ 1þ 2þ 2ð Þ 3ð Þ ¼ 20þ 33 ¼ 53;

(47)

TBP Bð Þ ¼ wt
@f
@B

� �
¼ 7ð Þ 4ð Þ þ 1ð Þ 1ð Þ ¼ 29: (48)

TBP Dð Þ ¼ wt
@f
@D

� �
¼ 1þ 2þ 2ð Þ 4ð Þ þ 1ð Þ 1ð Þ ¼ 21: (49)

TBP Lð Þ ¼ wt
@f
@L

� �
¼ 1ð Þ 4ð Þ þ 1ð Þ 1ð Þ ¼ 5: (50)

whereweobtained theweightof the leading function in (44)byexpand-
ing this function into4 subfunctionswith easy-to-computeweights that
add to the weight of the parent function, namely

wt NL � NEL � NDE L� NDE � DEN
� �
¼ wt NL � NEL � NDE L� DE

� �
¼ wt NLð Þ þ wt NL � NL

� �þ wt NL � NL
� �þ wt NL � NL� 1

� �
¼ 1þ 2þ 2þ 2 ¼ 7

(51)

Finally, the vectors of total Banzhaf powers and normalized total
Banzhaf powers are

TBP ¼ 53 53 53 53 29 29 21 21 5½ �T ;
(52)

NTBP ¼ 53
317

53
317

53
317

53
317

29
317

29
317

21
317

21
317

5
317

� �
T
:

(53)

5. Conclusions

This paper gives a brief overview of switching-algebraic
techniques for computing the Banzhaf voting power. This paper
focuses on comprehending the inherent properties of a voting
system by analyzing outcomes through the voting power approach
and is hence capable of ferreting out hidden facts that are not
otherwise self-evident. This paper also attempts to make the most
of symmetry considerations, which are typically present in many
voting systems of practical importance. Moreover, this paper also
offers a useful tutorial coverage of the subject matter of weighted
voting systems, and it translates many concepts of this subject
matter to the switching-algebraic domain.

In the foregoing computation, we made the explicit assumption
that variables in the considered systems are statistically independent.
For future work, we need to relax this assumption, and to consider the
issues of alliances and partisan identification and commitment,

which leads to similar voting patterns among many voters
(analogous to common-cause effect in reliability studies).

For more future work, we plan to employ switching-algebraic
techniques to tackle other standard voting systems such as the
voting system of the UNSC (O’neill, 1996) and the vector-
weighted 537-variable system that describes the federal voting
system of the United States of America (the system comprising
the President and Vice-President of the USA plus the Congress
(the Senate and the House of Representatives)) (Taylor & Pacelli,
2008). We are going also to explore some of the paradoxes
associated with voting powers, such as the paradox of
redistribution, the paradox of new members, the quarrelling
paradox, the donation paradox, and the paradox of large size
(Brams & Affuso, 1976, Brams & Affuso, 1985; Felsenthal &
Machover, 1995; Fischer & Schotter, 1978; Laruelle &
Valenciano, 2005; Rizzo, 2003; Van Deemen & Rusinowska,
2003). The power indices are utilized herein in a descriptive sense
but could be otherwise used in a normative sense, which gives
rise to a design or inverse problem that deals with the allocation
of power to the voters according to the pre-established target
(Alon & Edelman, 2010; Kurz, 2012, Kurz, 2016; Pavlou, 2020;
Rizzo, 2003; Weber, 2016).
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Appendix A: The Boolean Difference or Derivative

A switching function (a two-valued Boolean function) on n
variables is a mapping from Bn

2 ¼ 0; 1f gn into B2 ¼ 0; 1f g that is
denoted by f Xð Þ ¼ f X1; X2; � � � ; Xi; . . . ;Xn�1; Xnð Þ. The partial
derivative (or Boolean difference) of f Xð Þ w.r.t. Xi (1 � i � n)
is (Yamamoto, 2012; Rushdi & Ba-Rukab, 2017; Lee, 1978; Crama
& Hammer, 2011; Muroga, 1979)

@f
@Xi

¼ f X1; X2; � � � ; X
�
i; . . . ;Xn�1; Xn

� �

� f X1; X2; � � � ; Xi; . . . ;Xn�1; Xnð Þ (A.1)

This can be seen to be equivalent to

@f
@Xi

¼ f ðXjXi ¼ 0Þ � f ðXjXi ¼ 1Þ (A.2)

where

f XjXi ¼ 0ð Þ ¼ f X1; X2; � � � ; 0; . . . ;Xn�1; Xnð Þ ¼ f Xð Þ=X� i

(A.3a)

f XjXi ¼ 1ð Þ ¼ f X1; X2; � � � ; 1 ; . . . ;Xn�1; Xnð Þ ¼ f Xð Þ=Xi;

(A.3b)

are called subfunctions, restrictions, or quotients (ratios) of f Xð Þ.
Their Karnaugh maps are obtained by splitting the Karnaugh map
of f Xð Þ into two halves, viz., the asserted domains for X

�
i and Xi.

The Boolean difference is then obtained by folding one of these

two halves onto the other and performing XORing cell wise. Some
of the important properties of the Boolean difference are (for A
and B being independent of Xi)

ff Xð Þ ¼ f1 Xð Þ � f2 Xð Þg ! @f Xð Þ
@Xi

¼ @f1 Xð Þ
@Xi

� @f2 Xð Þ
@Xi

� 	
;

(A.4)

ff Xð Þ ¼ f1 Xð Þ _ f2 Xð Þg ! @f Xð Þ
@Xi

¼ f
�
1 Xð Þ @f2 Xð Þ

@Xi
� @f1 Xð Þ

@Xi
f
�
2 Xð Þ � @f1 Xð Þ

@Xi

@f2 Xð Þ
@Xi

� 	
;

(A.5)

@f
@Xi

¼ @f

@X
�
i

¼ @f
�

@Xi
¼ @f

�

@X
�
i

; (A.6)

@ðAXiÞ
@Xi

¼ @ðAXiÞ
@X
�
i

¼ A; (A.7)

@ Bð Þ
@Xi

¼ @ Bð Þ
@X
�
i

¼ 0: (A.8)

Equation (A.4) indicates that the partial differentiation operator ( @
@Xi

)
commutes with the XOR operator (). By contrast, the partial differ-
entiation operator does not commute with the OR operator, and a
quite involved formula is needed (A.5) to differentiate an ORed
expression. That is the reason why we prefer to pre-process a switch-
ing function before differentiating it by converting it first to a disjoint
sum-of-products form and then replacing OR operators by
XOR ones.

Appendix B: Computing the Weight of a Switching Function

We interpret a switching function f Xð Þ ¼ f X1;ð
X2; � � � ; Xn�1; XnÞ as the output column f of its truth table, which
is a binary vector of length 2n, namely

f ¼ f 0; 0; . . . 0; 0ð Þ f 0; 0; . . . ; 0; 1ð Þ f 0; 0; ::; 1 ; 0ð Þ . . . f 1; 1; ::; 1 ; 1ð Þ½ �T :
(B.1)

The weight wt fð Þ of the switching function f Xð Þ is then defined
as the number of ones in this truth-table vector f. This weight is
naturally bounded by 0 � wt fð Þ � 2n. If the weight is normalized
by 2n, then it is called the syndrome s fð Þ of the switching function
f Xð Þ and is bounded by 0 � s fð Þ � 1. The syndrome might be
interpreted as a probability, and it serves as the first of the 2n spectral
coefficients of f Xð Þ.

The real transform R pð Þ ¼ R p1; p2; � � � ; pnð Þ of a switching
function f (X), referred to by R‘ fð Þ; is defined to enjoy two character-
istics (Heidtmann, 1991; Jain, 1996; Kumar & Breuer, 1981;
Papaioannou & Barrett, 1975; Rushdi & Rushdi, 2017), namely:

(a). R pð Þ is a multi-affine continuous real function of n continuous
real variables p ¼ p1 p2 � � � pn½ �T . If all arguments other than
argument pi 1 � i � nð Þ are kept constant, then R pð Þ takes the form
ðAiþ Bi piÞ (with Ai and Bi being constants), i.e., it reduces to a
straight-line relation or a first-degree polynomial in the
argument pi.

(b). R pð Þ shares the same “truth table” with f(X), i.e.

R p ¼ tj
� � ¼ f X ¼ tj

� �
; for j ¼ 0; 1; . . . ð2n � 1Þ; (B.2)

where tj is the jth input line of the truth table; tj is an n-vector of
binary components such that

Xn
i¼1

2n��itji ¼ j; for j ¼ 0; 1; . . . ; ð2n � 1Þ: (B.3)

We emphasize that characteristic (b) above is not sufficient by itself
to produce a unique R pð Þ unless it is augmented by the requirement
(a) that R pð Þ be multi-affine (Rushdi & Rushdi, 2017). If both the
real transform R and its arguments p are restricted to binary values
(i.e., if R : 0; 1f gn ! 0; 1f g), then R becomes the multilinear
form of a switching function studied extensively by Schneeweiss
(Schneeweiss, 1977, Schneeweiss, 1989), typically used to mimic the
structure function (Aven & Jensen, 1999; Barlow & Prochan, 1996;
Aven & Nøkland, 2010) in engineering study of system reliability.

The real transform R pð Þ might be viewed as a mapping
R pð Þ : Rn ! R, whereR is the entire real line. This transform is also
named the probability transform, a name which stems from the fact
that the mapping might be recast correctly as R pð Þ :
0:0; 1:0½ �n ! 0:0; 1:0½ �, and hence both R and p could be interpreted
as probabilities.



The following paragraph highlights a convenient way for
obtaining the real transform of a switching function f Xð Þ by first
expressing it in a disjoint sum-of-products (s-o-p) form (Rushdi &
Rushdi, 2017).

f Xð Þ ¼ Vm
k¼1 Dk; (B.4)

where

Di ^ Dj ¼ 0; 8i; j; (B.5)

Dk ¼ ^i2Ik1 Xi


 �
^i2Ik2 X

�
i


 �
; 8 k: (B.6)

Here, Ik1 and Ik2 are the sets of indices for uncomplemented literals
and complemented literals in the productDk. None of these literals is
redundant; otherwise, redundancy of a literal is eliminable through
idempotency of AND Xi ^ Xi ¼ Xi ;X

�
i ^ X

�
i ¼ X

�
i

� �
: The real

transform R pð Þ ¼ R‘ fð Þ is given by

R pð Þ ¼ R‘ fð Þ ¼
Xm
k¼1

T Dkf g pð Þ; (B.7)

where

T Dkf g pð Þ ¼
Y
i2Ik1

pi

0
@

1
A Y

i2Ik2
1� pið Þ

0
@

1
A; 8k; (B.8)

The RHS of (B.7) is obtained from that of (B.4) by replacing the
Boolean AND operator by the real multiplication operator, the
Boolean OR operator by the real addition operator, each un-
complemented Boolean variable Xi by the real variable pi, and each
complemented Boolean variable X

�
i by the real variable 1� pið Þ.

Once the real transform R pð Þ of the switching function f Xð Þ is
obtained, then its weight is readily expressed as

wt fð Þ ¼ 2n 	 R 2�1ð Þ ¼ 2n 	 R 2�1; 2�1; � � � ; 2�1ð Þ; (B.9)

where 2�1 means a vector of n elements, each of which is 2�1 ¼ 0:5.
Furthermore, if f Xð Þ is expressed by the disjoint s-o-p form (B.4),
then its weight is given by

wt fð Þ ¼
Xm
k¼1

wt Dkð Þ ¼ 2n 	
Xm
k¼1

T Dkf g 2�1ð Þ ¼
Xm
k¼1

2 n�‘ Dkð Þð Þ;

(B.10)

where ‘ Dkð Þ is the number of irredundant literals in the product Dk,
e.g., ‘ 1ð Þ ¼ 0; ‘ Xið Þ ¼ ‘ X

�
i

� � ¼ 1; ‘ XiXj

� � ¼ ‘ XiX
�
j

� � ¼ 2: The
logical value 0 is the identity of theORing operation and is not viewed
as a logical productDk at all. For convenience, we take ‘ 0ð Þ ¼ 1; so
were we to have a product Dk ¼ 0; we ensure that its weight is
wtðDkÞ ¼ 0: The minterm canonical form of f Xð Þ is a special case
of the disjoint expansion (B.4), for which m depicts the number of

minterms or the number of true configurations of f Xð Þ. Here
‘(Dk) = n, ∀k, and (B.10) produces the correct result wt fð Þ ¼ m in
this case.

If the function f Xð Þ is not available in the disjoint s-o-p
form (B.4), but in a general s-o-p form that is not necessarily
disjoint,

f Xð Þ ¼ V
np
i¼1Pi; (B.11)

then the weight of f Xð Þ is given by an appropriate version of the
inclusion–exclusion (IE) principle (Dohmen, 1999; Hao et al.,
2019; Rushdi & Rushdi, 2017) as follows

wt fð Þ ¼
X

np
i¼1

wt Pif g �
XX

1�i<j�np
wt Pi ^ Pj

� 

þ
XXX

1�i<j<k�np
wt Pi ^ Pj ^ Pk

� 

� . . .þ �1ð Þnp�1 wt ^np
i¼1Pi

� 
:

(B.12)

where the weight of a product is (according to (B.10)) equal to 2
raised to the power of the total number of variables minus the number
of irredundant literals in the product.

If the function f Xð Þ is a SSF Sy n;A;Xð Þ, then its weight can be
obtained by summing the combinatorial (binomial) coefficients n
choose a, denoted c n; að Þ, for all integers a that belong to the
characteristic set A, namely

wt Sy n;A;Xð Þð Þ ¼
X

a2A c n; að Þ: (B.13)

If a function f X;Yð Þ is a conjunction of two functions f1 Xð Þ and
f2 Yð Þ, where X and Y are non-overlapping sets of arguments, then
the weight of f X;Yð Þ is the arithmetic product of the weights of
f1 Xð Þ and f2 Yð Þ.

ff X;Yð Þ ¼ f1 Xð Þ ^ f2 Yð Þg ! fwt f X;Yð Þð Þ ¼ wtðf1 Xð ÞÞ 	 wtðf2 Yð ÞÞg:
(B.14)

If a function f Xð Þ is a disjunction (or XORing) of two disjoint func-
tions f1 Xð Þ and f2 Xð Þ, then its weight is the arithmetic sum of their
weights

ff Xð Þ ¼ f1 Xð Þ _ f2 Xð Þ ¼ f1 Xð Þ � f2 Xð Þ; f1 Xð Þ ^ f2 Xð Þ ¼ 0g
! fwt f Xð Þð Þ ¼ wtðf1 Xð ÞÞ þ wtðf2 Xð ÞÞg:

(B.15)

Moreover, if a switching function is expanded about m of its
arguments into 2m subfunctions (which are naturally disjoint), then
the weight of this parent function is the sum of the weights of these
subfunctions. The weights of a function (of n arguments) and its
complement add to 2n



wt f
�
Xð Þ� � ¼ wt 1 � f Xð Þð Þ ¼ 2n � wt f Xð Þð Þ: (B.16)

Example B.1:

The 2-out-of-3 function

f Xð Þ ¼ f X1; X2; X3ð Þ ¼ X1X2 _ X2X3 _ X1X3

¼ Sy 3; 2; 3f g;X1; X2; X3ð Þ (B.17)

is represented by the Karnaugh map in Figure B.1. The function is
covered with non-overlapping loops, and hence it is expressed by
the disjoint s-o-p expression

f X1; X2; X3ð Þ ¼ X1X2 _ X̄1X2X3 _ X1X̄2X3: (B.18)

Therefore, its weight is obtained correctly via (B.10) as

wt fð Þ ¼ 2 3�2 þ 23�3 þ 23�3 ¼ 2 þ 1 þ 1 ¼ 4 (B.19)

This weight might also be computed via the IE principle (B.12) as

wt fð Þ ¼ wt X1X2ð Þ þ wt X2X3ð Þ þ wt X1X3ð Þ � wt X1X2 ^ X2X3ð Þ
� wt X1X2 ^ X1X3ð Þ � wt X2X3 ^ X1X3ð Þ
þ wt X1X2 ^ X2X3 ^ X1X3ð Þ

¼ wt X1X2ð Þ þ wt X2X3ð Þ þ wt X1X3ð Þ � wt X1X2X3ð Þ
� wt X1X2X3ð Þ � wt X1X2X3ð Þ þ wt X1X2X3ð Þ

¼ 2 3�2 þ 23�2 þ 23�2 � 23�3 � 23�3 � 23�3 þ 23�3

¼ 2þ 2þ 2� 1� 1� 1þ 1 ¼ 4 (B.20)

Finally, we can recognize the symmetry of the function
f Xð Þ ¼ y n;A;Xð Þ, with n ¼ 3 and A ¼ 2; 3f g, and then employ
(B.13) to obtain

wt fð Þ ¼ c 3; 2ð Þ þ c 3; 3ð Þ ¼ 3þ 1 ¼ 4: (B.21)

For the characteristic set A, the corresponding sets in (23) are
B ¼ 2f g; C ¼ 1; 2f g; and B� C ¼ 1f g; and, hence the total
Banzhaf power of any of the arguments is given by

TBP Xmð Þ ¼ wt
@Sy n; 2; 3f g;Xð Þ

@Xm

� �
¼ C 2; 1ð Þ ¼ 2; 1 � m � 3ð Þ:

(B.22)

Figure B.1
AKarnaughmap representing a 2-out-of-3 function with disjoint
coverage. As usual, 0 entries within the map are left blank
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