
Received: 1 February 2023 | Revised: 22 April 2023 | Accepted: 15 May 2023 | Published online: 24 May 2023

RESEARCH ARTICLE

A Survey on Recent Advancements in
Auto-Machine Learning with a Focus
on Feature Engineering

Ravishankar S1 and Gopi Battineni2,3,*

1Subject Matter Expert, CloudThat Technologies Pvt. Ltd., Bengaluru, India
2The Clinical Research Center, University of Camerino, Italy
3The Research Centre of the ECE Department, V. R. Siddhartha Engineering, India

Abstract:A study on the recent trends and progress in the area of automated machine learning (AutoML) is done in detail in this paper. AutoML
deals with the end-to-end automation of various steps in a machine learning pipeline. Some of the steps include feature selection, feature
engineering, neural architecture search, hyperparameter optimization, and model selection. The time and the specialized skill set required to
perform these tasks may be reduced to some extent with the help of automating all or some of these steps. Thus, a lot of research is going
on in the area of AutoML, and the recent research articles add justice to the same. A review of existing literature on AutoML with a focus
on feature engineering is presented in this paper to assist scientists in building better machine learning models “off the shelf” without
extensive data science experience. The use of AutoML in different sectors will also be discussed, as will existing applications of AutoML.
A review of published papers accompanied by describing work in AutoML from a computer science perspective was conducted.

Keywords: machine learning, feature engineering, model selection, performance metrics

1. Introduction

Feature engineering deals with the construction of new features
by applying some transformations to the existing feature. Feature
selection plays a crucial role in determining the most appropriate
feature subset of a problem and is considered to be an
optimization problem where meta-heuristic algorithms may be
used to solve it. As feature selection is a nondeterministic
polynomial-time (NP-hard) problem, a lot of meta-heuristics play
an important role here. Neural architecture search (NAS) is an
area to discover an optimal neural network architecture, thereby
eliminating the need for manual design. Hyperparameter
optimization (HPO) deals with finding the optimal set of discrete
and continuous hyperparameters. Model selection is the art of
finding out a suitable model from a list for solving a particular
problem. In this paper, we aim to review theseML concepts in detail.

Authors developed a binary variant of the Emperor Penguin
Optimizer (EPO) meta-heuristic approach to solve the discrete
search problem (Dhiman et al., 2021). In this approach, the
transition of locations of the emperor penguin is modeled using
S-shaped and V-shaped transfer functions, which are then mapped
into binary search space using the binarization method. Collision
avoidance as well as drift mechanisms are used in Binary
Emperor Penguin Optimizer (BPO). Then this meta-heuristic
method was applied to solve the problem of feature selection as

well. In a meta-heuristics approach, simulated annealing (SA) is
combined along with a Generalized Normal Distribution
Optimizer (GNDO) to overcome the issue of arriving at local
optimal solutions (Ahmed et al., 2022).

The approach named Binary Simulated Normal Distribution
Optimizer (BSNDO) uses SA to perform a local search to avoid
early convergence and achieve better results in terms of accuracy
for classification problems. The transfer function is used in meta-
heuristics to transform the continuous nature of optimization
problems into discrete, thereby helping in the feature selection
process. S- and V-shaped transfer functions are two commonly used
functions for this purpose, and both will output a probability of
selecting a particular feature (Dokeroglu et al., 2022). An improved
butterfly optimization algorithm (BOA) is proposed to deal with
high-dimensional feature selection problems (Long et al., 2022).
The previous versions of the BOA could solve only those
optimization problems with a smaller or limited number of features,
whereas this velocity-based BOA (VBOA) could overcome the
same problem by incorporating the velocity item and memory items
into consideration. The next candidate solution was made based on
the position update considering the above-mentioned items.

Automatic feature generation using deep neural networks
resulted in a lot of irrelevant features and identical features despite
several advantages over search-based methods. This problem was
solved by mapping the feature interactions to a graph network
where features were mapped to nodes and interactions were
mapped to edges (Wu et al., 2022). Local interactions between the

*Corresponding author: Gopi Battineni, The Clinical Research Center,
University of Camerino, Italy. Email: gopi.battineni@unicam.it

Journal of Computational and Cognitive Engineering
2023, Vol. 00(00) 1–7

DOI: 10.47852/bonviewJCCE3202720

© The Author(s) 2023. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://orcid.org/0000-0002-1495-3000
https://orcid.org/0000-0003-0603-2356
mailto:gopi.battineni@unicam.it
https://doi.org/10.47852/bonviewJCCE3202720
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

features were captured by constructing an adjacency matrix called
structure parameter matrix, and the interactions between the
feature parameters were considered as message passing between
the nodes of this matrix. Global feature interactions were captured
using the reinforcement learning technique called Q-learning to
automatically create an interaction layer based on the local
attention-based interaction layer.

A formal definition of automated machine learning (AutoML)
and a review of its use are provided in this paper using a variety of
feature engineering techniques (Waring et al., 2020). We will
discuss key technologies in AutoML during this article, as well as
how they can be used specifically in different industries. In this
review, we organized the papers based on what authors are
attempting to automate: automated feature engineering, HPO,
pipeline optimization, and neural architecture research. These four
categories will be discussed individually and how they can be applied.

The most recent developments in the AutoML field are
organized into the following four sections. Section 2 gives an
overview of the various NAS strategies, and Sections 3 and 4 talk
about the HPO and MS techniques, respectively. Finally, the
article ends with a conclusion Section 5.

2. Neural architecture search (NAS)

NAS refers to the combination of architecture optimization
(AO) along with the determination of NAS space and model
evaluation methods. The architecture of NAS is presented in
Figure 1. An automatic search space and search strategy selection
for a dataset based on the previous results by assuming that search
space and search strategy are often combined (Xue et al., 2022).

The NAS architecture can be either scaled up or scaled out. An
architecture that provides the capability to scale the performance and
capacity of a single NAS system according to the needs of the user is
referred to as a scale-up NAS architecture (Fang et al., 2021). NAS
controllers and storage need to be upgraded or addedwhen scaling up
a NAS system. There are two components to any NAS system that
are commonly used:

• Controllers: These are computer systems that contain components
such as networks, memory, and CPUs. File serving is managed by
a specialized operating system installed on the controller. There is

no restriction on how many storage devices can be connected to
each controller. The controllers can perform all I/O processing,
with some controllers performing all I/O processing, while others
act as spares, or they can be active/active with all controllers
accessing storage. Controllers configure RAID sets, create LUNs,
install file systems, and export file shares (Park et al., 2020).

• Storage: Persistent storage of data is required. To support different
requirements, NAS systems may have different types of storage
devices. SATA, SAS, and SSD can all be supported by the
same NAS system (Park et al., 2021).

Meta-features based on a probing model are used for search space
estimation, and a decision tree model is used for finding out the
search strategy. The inference latency issue of the cell-based
structure in CNN is also addressed here. The search space is
suitable for multi-objective AutoML across various platforms.
Layers Architecture Search Tree (LArST) is used to ensure search
space learning, thereby transferring a basic cell structure from a
benchmark dataset to any ImageNet dataset. Greedy and
Progressive Architecture Search (GPAS) uses a greedy approach
to find optimal architectures (Peng et al., 2020a).

This phase is followed by an evaluation phase. CNNs and
pretrained CNNs are not ideal for all image scene classification
like remote sensing as they suffer from overfitting due to the
limited availability of images. GPAS helps in finding the optimal
architecture, but it takes a huge computational cost for searching
the different architectures and arriving at an optimal one. Early
stopping and partial training methods are deployed to alleviate the
overfitting problem. Search happens in a progressive greedy
manner and finds the optimal architectures using a gradient-based
approach. Differential NAS (DNAS) finds layers and connections
between the layers, which together form a block (Zhang et al.,
2020a). These blocks are then searched to find out the optimal
one. Thus, the search space is already fixed. This causes less
architectural flexibility and a poor ability to generalize. It also
incurs huge computation costs and memory requirements.

Block Proposal Neural Architecture Search (BPNAS)
introduced a new two-phase search mechanism namely Block
Proposal Search (BPS) and Block Connection Search (BCS). An
evolutionary algorithm named Latency Evolutionary NAS
(LEvoNAS) is used to generate blocks with latency constraints.
These blocks are then used by the DNAS to find out the optimal
architecture with better search efficiency. Fast Network
Adaptation via Parameter Remapping and Architecture Search
(FNA++) is a method to modify the architecture and network
parameters of a pretrained network to a new network (Fang et al.,
2020). This adaptation strategy was applied to some of the
pretrained networks and NAS. It achieved faster search results for
image segmentation and object detection tasks. The network
adaptation strategy was implemented in manually designed mobile
net v2 and Resnet networks. MIGO-NAS considers the search
space as a multivariate geometric distribution (Zheng et al., 2021).
It reduces the error estimation in natural gradients computed in
multivariate geometric distribution by assigning a larger
magnitude to the natural gradient with a higher architecture rank.
The network generation is done using a dynamic programming
approach, which is useful in devices with limitations in computing
and memory. This approach helps to tackle the heavy computation
cost and the poor generalization capability of NAS.

One category of multi-objective NAS is to find the optimal
architecture search using some constraints (Wang & Guo, 2021).
This NAS method asks for user preferences in the architecture
selection process. Users can give preference for accuracy and

Figure 1
NAS architecture

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2023

02

latency values. In the learning or training phase, it collects
preferences from users and a coevolutionary algorithm is used to
find optimal search space. In the prediction phase, a response is
provided by the algorithm based on the user’s adapting preferences.
Authors developed a single-path NAS method where the search
cost for CNN design is reduced significantly (Stamoulis et al.,
2020). The one-shot supernet NAS method was improvised, hereby
finding the optimal subset of Kernel weights to be used in each
CNN layer. The accuracy–runtime trade-off was improved by
performing a search on the Squeeze-and-Excitation path in the
single-path encoding of one-shot supernet NAS. This method
achieved an accuracy of 75.62% on the ImageNet dataset with a
latency constraint of 80 ms. The NAS search cost was also
minimized to eight iterations/epochs which approximately takes 24
TPU hours, which is faster compared to the already existing works.

One-shot NAS minimizes the amount of time that is required for
training as weights are inherited from a supernet (Zhang et al., 2020b).
It uses a single-path training approach in the supernet training where
only one path in the supernet is trained in each iteration.But at the same
time, it suffers from catastrophic forgettingwhich leads to a decrease in
accuracy due to the weight sharing. Catastrophic forgetting is the
scenario where if the model is trained on a new task “X,” then it
forgets the learning that was done for task “Y.” An approach in
which this catastrophic forgetting is prevented by increasing the
model’s accuracy was presented by Kaushik et al. (2021) and
Kirkpatrick et al. (2017). A continual learning approach is used
where catastrophic forgetting is prevented by adding a
regularization term which will be the response from the previous
task. Differentiable NAS evolved from the fact that it was able to
transform the discrete architecture search space of NAS into a
continuous space where the gradient descent method could be used
to optimize the architecture concerning validation accuracy (Zhang
et al., 2020). This discrete-to-continuous space mapping has not
been proved theoretically.

Moreover, the architecture parameters were updated based on the
performance reward, which leads to a rich-get-richer problem as
architecture selection is biased as those with better performance
in the earlier stages would be used for training quite often. This
would also lead to a local optimum as those architectures at
the earlier stages have a high chance of being sampled. An
Exploration Enhancing Neural Architecture Search with Architecture
Complementation (EENAS) method was proposed in which a
variational autoencoder is used to map the architectures from
discrete space to continuous. Further, a probabilistic exploration
enhancement approach is used to address the rich-get-richer problem
by intelligent search space exploration. The high computational cost
of Neural AutoML is addressed by using the transfer Neural
AutoML approach where knowledge transfer from the previous
similar tasks is used to improve the computational speed (Wong
et al., 2018). RL-based architecture search methods are used to do
parallel programming on different jobs. The search strategy is then
transferred to do new jobs. One of the advantages of using this
approach is the reduction of the time to converge for different
datasets. Transfer learning approaches involve using the same
hyperparameter combinations learned on one domain like NLP on
other domains. Further enhancement to this approach involves
addressing the meta-overfitting on small datasets and noise immunity.

3. Hyperparameter optimization

Optimizing models is one of the most challenging aspects of
implementing machine learning solutions. Machine learning and
deep learning algorithms can improve models (Elshawi et al., 2019;

Yang & Shami, 2020). Various branches of machine learning and
deep learning have been dedicated to this. When optimizing
hyperparameters for ML algorithms, the goal is to find those
parameters that deliver the highest performance (Gambella et al.,
2021). This will be done when compared to those that perform the
least well on a validation set. An ML engineer sets hyperparameters
before training, unlike model parameters. In a neural network, the
weights are learned from training, whereas the number of trees is a
hyperparameter. It is advisable to view hyperparameters as settings
for an ML model that should be tuned so that it can solve a given
problem optimally.

Optimizing hyperparameters (or tuning hyperparameters) is the
process of identifying the correct combination of hyperparameters to
optimize model performance (Hamdia et al., 2021). A training
process runs multiple trials at the same time. The training
application is executed each time with the hyperparameters you
selected, within the limits you specified. After this process has been
completed, it will be possible to understand which hyperparameter
values will give the most accurate results for given model (Ali et al.,
2023; Bacanin et al., 2023; Daviran et al., 2023). The detailed
explanation of hyperparameter tuning can be visualized in Figure 2.

Table 1 represents a comparison of some of the existing HPO
methods against the computational cost, curse of dimensionality,
adaptive nature, and configuration space. The HPO problem can be
formulated as a constrained optimization problem if a limit on a
second performance measure is known as maximal memory
consumption (Feurer & Hutter, 2019). It is required to reduce human
effort, improve the performance of machine learning algorithms, and
improve the reproducibility and fairness of scientific studies. The
commonly used black-box function optimization methods such as
Bayesian optimization suffer from high computational costs. The
large models suffer from the curse of dimensionality, and function
evaluation becomes expensive. The hyperparameter configuration
space also consists of diverse types such as continuous and
categorical. In the case of a neural network, the number of layers, the

Figure 2
Hyperparameter optimization

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2023

03

number of units per layer, the learning rate, and themomentumare some
of the hyperparameters. The gradient-based loss functions cannot be
applied in the case of hyperparameters.

Modern multi-fidelity methods are used, which deploy cheaper
variants of the black-box function to approximate address the
above-mentioned problems. The Grid Search method suffers from
the curse of dimensionality, since the required number of function
evaluations grows exponentially with the dimensionality of the
configuration space (Feurer & Hutter, 2019). The increase in the
resolution of discretization results in an increase in the required
number of function evaluations. It is nonadaptive as well. The
Random Search (RS) method is also nonadaptive, since the search
is not adapted by considering the available results. Bayesian
optimization can be considered as the combination of a probabilistic
surrogate model and an acquisition function (which point to
evaluate next) (Wu et al., 2019). Some of the surrogate models are
the Gaussian Process (GP) and Random Forest Sequential Model-
Based Algorithm Configuration (RF-SMAC). GP is good for low-
dimensional and numerical configuration spaces. The RF model is
good for high-dimensional and discrete configuration spaces, and it
takes less computational time compared to GP. Gradient Boosting
Decision Tree can be an alternative to RF.

Some of the collaborative hyperparameter tuningmethods are local
search-based –ParamILS, estimation of distributionmethods –REVAC,
and surrogate-based (Bardenet et al., 2013). The challenge involved is to
determine optimal hyperparameters with high certainty. A model is built
from experience using surrogate-based models. A new Bayesian
optimization technique based on surrogate ranking and optimization
techniques is developed, which can be applied to similar groups of
objective functions. HyperNOMAD is a black-box optimization
algorithm used to optimize the hyperparameters of a neural network.
Hyperparameters can be floating point, integer, or categorical
(Lakhmiri et al., 2021). The different types of hyperparameters need
to be optimized before the learning process. The objective functions
can be expensive or noisy to evaluate in certain cases, where
derivative-free optimization (DFO) can be deployed.

In cases where a derivative does not exist, then variants of DFO
algorithms like model-based and direct search may be used.
HyperNOMAD is a DFO algorithm that performs direct search and
yields a better result by exploring large search spaces consisting of
categorical variables. (Yu et al., 2022) proposed a model in which
the efficiency of the HPO is improved by reducing the search space
complexity. The approach also uses a genetic-based search utilizing
the best hyperparameter configuration of the algorithms used for
solving similar types of problems.

4. Model selection

Table 2 shows a comparison of recent AutoML research works.
The objective or method is mentioned in the first column, and the
subsequent columns indicate the steps in an AutoML pipeline.

The benchmark datasets used along with the performance metrics
are given in the last column.

MS deals with choosing the right algorithm for a particular
task among the different existing ones. It is hard to distinguish
or separate between the MS and HPO as both are combined in
most of the works. A meta-learning-based approach model
selection in case of classification problems was proposed by
Yu et al. (2022). Meta-learning approaches suffer from human
bias in MS, which is eliminated by incorporating reinforcement
learning techniques. In this approach, a meta-learner accepts the
meta-features as a feature vector and the optimal algorithm as a
target. The meta-features are extracted using the reinforcement
learning approach named Deep Q-network, and the random
forest algorithm has been used as the classification model. The
authors claim this is the first approach in model selection to
utilize the reinforcement learning strategy. Despite the advantage
that manual labor is not here, it suffers from a few issues like the
limited number of meta-features, fixed set of algorithms, and the
approach being applicable on tabular datasets.

Researchers proposed an AutoML technique for generating
ensemble recommender systems (Gupta & Katarya, 2021). This is
the first research work in the field of recommender systems where
AutoML is deployed. Ensemble models were used in the area of
recommender systems and found to be useful compared to the
existing methods. One problem in using the ensemble methods is
the complex search space where an ensemble of a lot of models
needs to be evaluated and an optimal model needs to be found
from those. Particle swarm optimization (PSO) is one of the meta-
heuristics approaches which is used here to find out the optimal
models from the search space. A comparison of other existing
methods was performed based on the evaluation metrics such as
RMSE, MSE, and MAE. The proposed method achieved better
results in terms of these metrics.

In Collaborative Filtering for AutoMLmodel selection, amatrix
is constructed consisting of error values with models and
hyperparameters on rows and columns (Yang et al., 2019).
A model is then fitted with inputs as models and hyperparameters
and output as cross-validation (CV) errors. The model learns the
latent meta-features and then predicts the CV error. Meta-features
can be the number of samples or model performance (Chiroma
et al., 2023; Varghese et al., 2023). The problems addressed here
are the time-constrained initialization and active learning.

4.1. Limitations

It is imperative to address a few significant limitations of the
current work. To begin with, the database search did not capture
all related papers; therefore, it was not able to retrieve all eligible
articles. Identifying the relevant literature on AutoML combined
with feature engineering techniques might not be possible with the
limited works selected for this analysis. Meanwhile, in this

Table 1
Comparison of some of the existing HPO methods

Methods Computational cost
Curse of

dimensionality Adaptive
Discrete

configuration space

Grid Search (Shekar & Dagnew, 2019) High Yes No No
Random Search (Bergstra & Bengio, 2012) Less No No No
Bayesian (Masum et al., 2021) Less Yes Yes No
Gaussian Process (Blum & Riedmiller, 2013) High No Yes No
Random Forest (Bergstra & Bengio, 2012) Less Yes Yes Yes
Genetic Algorithm (Di Francescomarino et al., 2018) Less No Yes No

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2023

04

review, we used the Google Scholar database, which limits the
coverage of other journals related to the topic.

5. Conclusion

A brief literature review of the recent developments in the area of
AutoML has been done in this paper. More emphasis has been on the
steps of the ML pipeline like FS, FE NAS, HPO, and MS. AutoML
makes the design decision on various phases of the ML pipeline easier
compared to the traditional way. All parts of the ML pipeline could be
automated so that users may build efficient applications. Machine
learning algorithms need to be simplified further so that they can be
applied by people with little or no background in machine learning. In
this respect, AutoML represents a significant and promising step

forward. AutoML is an excellent tool for developing models with
acceptable discriminatory power. In biomedical environments, there
are a number of limitations when using AutoML methods, including
their inability to handle large and diverse datasets. In healthcare,
AutoML has already been used in some cases, but more work is
required for widespread adoption. Researchers interested in applying
data science techniques to healthcare can use the survey as a basic
guide. However, it is mentioned that there is still work to be done in
this area.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Table 2
Comparison of some of the existing AutoML research works

Objectives/methods FE MS HPO NAS Datasets
Performance

metrics Ref

Recommendation/EnPSO ✖ ✓ ✖ ✖ Movielens RMSE, MSE, MAE (Gupta & Katarya 2021)
Classification/MLPlan ✓ ✓ ✖ ✖ CIFAR 10, convex, MNIST Accuracy (Mohr et al., 2018)
Classification/TPOT-NN ✓ ✖ ✖ ✖ Spambase, ionosphere,

breast-cancer-Wisconsin
Accuracy (Romano et al., 2021)

Classification/
Deap-n-cheap/CNN

✖ ✖ ✓ ✓ CIFAR-10,100, Fashion MNIST Accuracy (Dey et al., 2021)

Text Classification/autoBOT ✓ ✖ ✓ ✖ kaggle/google Accuracy,
f1 score

(Škrlj et al., 2021)

Classification,
Regression/GA/FC NN

✖ ✓ ✖ ✖ MNIST, CMAPSS Accuracy (Laredo et al., 2020)

Classification/PIL/
Laplacian
Regularization

✖ ✖ ✓ ✓ MNIST, CIFAR-10,
openML

Accuracy,
Training Time

(Wang & Guo, 2021)

Classification/
Genetic GNN

✖ ✖ ✓ ✓ Cora, Citeseer,
Pubmed

Accuracy,
micro-f1 score

(Shi et al., 2022)

Classification/GNN/
skip connection

✖ ✖ ✓ ✓ Cora, Citeseer,
Pubmed, PPI

Accuracy,
micro-f1 score

(Li & King, 2020)

Classification/
SANE/DAS/GNN

✖ ✖ ✖ ✓ Cora, Citeseer,
Pubmed, PPI

Accuracy, (Zhao et al., 2021)

Classification/Search
space optimization &
Regularization/P-DART

✖ ✖ ✖ ✓ CIFAR 10, Imagenet Accuracy (Chen et al., 2021)

Image Classification/
Text Modeling/
AutoDropout

✖ ✖ ✖ ✓ CIFAR, Imagenet,
Penn Treebank
WikiText-2

Accuracy,
Perplexity,
BLEU score

(Pham & Le 2021)

Multi-objective/EA +
Transfer Learning

✖ ✖ ✖ ✓ ImageNet, C10, C100,
CINIC-10, STL-10,
Flowers102, Pets, DTD,
Cars, Aircraft,
Food-101

Model Accuracy,
Size, CPU latency,
GPU latency

(Lu et al., 2021)

CASH/TPOT-SH ✓ ✓ ✓ ✖ Wine-quality-red,
kdd cup, car-evaluation,
cover type

Accuracy (Parmentier et al., 2019)

RP-KNN ✖ ✖ ✓ ✖ IMDB, POKER,
Tweets

Accuracy,
Runtime,
Memory

(Bahri et al., 2020)

PyGlove: Symbolic
Programming

✖ ✓ ✓ ✓ Symbolic Dataset Accuracy (Peng et al., 2020b)

AutoML-Zero ✖ ✓ ✖ ✖ CIFAR Accuracy (Real et al., 2020)
Normalization/activation,
image classification,
instance segmentation,
and GAN training

✖ ✖ ✓ ✖ CIFAR, COCO Accuracy (Liu et al., 2020)

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2023

05

References

Ahmed, S., Sheikh, K. H., Mirjalili, S., & Sarkar, R. (2022). Binary
simulated normal distribution optimizer for feature selection:
Theory and application in COVID-19 datasets. Expert
Systems with Applications, 200, 116834.

Ali, Y. A., Awwad, E. M., Al-Razgan, M., & Maarouf, A. (2023).
Hyperparameter search for machine learning algorithms for
optimizing the computational complexity.Processes, 11(2), 349.

Bacanin, N., Stoean, C., Zivkovic,M., Rakic,M., Strulak-Wójcikiewicz,
R., & Stoean, R. (2023). On the benefits of using metaheuristics in
the hyperparameter tuning of deep learningmodels for energy load
forecasting. Energies, 16(3), 1434.

Bahri, M., Veloso, B., Bifet, A., & Gama, J. (2020). AutoML for
stream k-nearest neighbors classification. In 2020 IEEE
International Conference on Big Data, 597–602.

Bardenet, R., Brendel, M., Kégl, B., & Sebag, M. (2013). Collaborative
hyperparameter tuning. In International Conference on Machine
Learning, 199–207.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13(2),
281–305.

Blum, M., & Riedmiller, M. A. (2013). Optimization of Gaussian
process hyperparameters using Rprop. In 2013 European
Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, 339–344.

Chen, X., Xie, L., Wu, J., & Tian, Q. (2021). Progressive darts:
Bridging the optimization gap for nas in the wild.
International Journal of Computer Vision, 129, 638–655.

Chiroma, H., Nickolas, P., Faruk, N., Alozie, E., Olayinka, I. F. Y.,
Adewole, K. S., : : : & Adediran, Y. A. (2023). Large scale
survey for radio propagation in developing machine learning
model for path losses in communication systems. Scientific
African, 19, e01550.

Daviran, M., Shamekhi, M., Ghezelbash, R., & Maghsoudi, A. (2023).
Landslide susceptibility prediction using artificial neural networks,
SVMs and random forest: hyperparameters tuning by genetic
optimization algorithm. International Journal of Environmental
Science and Technology, 20(1), 259–276.

Dey, S., Babakniya, S., Kanala, S. C., Paolieri, M., Golubchik, L.,
Beerel, P. A., & Chugg, K. M. (2021). Deep-n-Cheap: An
automated efficient and extensible search framework for
cost-effective deep learning. SN Computer Science, 2(4), 265.

Dhiman, G., Oliva, D., Kaur, A., Singh, K.K., Vimal, S., Sharma, A., &
Cengiz, K. (2021). BEPO: A novel binary emperor penguin
optimizer for automatic feature selection. Knowledge-Based
Systems, 211, 106560.

Dokeroglu, T., Deniz, A., & Kiziloz, H. E. (2022). A comprehensive
survey on recent metaheuristics for feature selection.
Neurocomputing. 494, 269–296.

Elshawi,R.,Maher,M.,&Sakr, S. (2019).Automatedmachine learning:
State-of-the-art and open challenges, arXiv preprint:1906.02287.

Fang, J., Chen, Y., Zhang, X., Zhang, Q., Huang, C., Meng, G., ... &
Wang, X. (2021). EAT-NAS: Elastic architecture transfer for
accelerating large-scale neural architecture search. Science
China Information Sciences, 64, 1–13.

Fang, J., Sun, Y., Zhang, Q., Peng, K., Li, Y., Liu, W., & Wang, X.
(2020). FNA++: Fast network adaptation via parameter
remapping and architecture search. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 43(9), 2990–3004.

Feurer, M., & Hutter, F. (2019). Hyperparameter optimization. In F.
Hutter, L. Kotthoff & J. Vanschoren (Eds.), Automated machine
learning: Methods, systems, challenges (pp, 3–33). Springer.

Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C.,
Maggi, F. M., Rizzi, W., & Simonetto, L. (2018). Genetic
algorithms for hyperparameter optimization in predictive
business process monitoring. Information Systems, 74, 67–83.

Gambella, C., Ghaddar, B., & Naoum-Sawaya, J. (2021).
Optimization problems for machine learning: A survey.
European Journal of Operational Research, 290(3), 807–828.

Gupta, G., & Katarya, R. (2021). EnPSO: An AutoML technique for
generating ensemble recommender system. Arabian Journal
for Science and Engineering, 46(9), 8677–8695.

Hamdia, K. M., Zhuang, X., & Rabczuk, T. (2021). An efficient
optimization approach for designing machine learning
models based on genetic algorithm. Neural Computing and
Applications, 33, 1923–1933.

Kaushik, P., Gain, A., Kortylewski, A., & Yuille, A. (2021).
Understanding catastrophic forgetting and remembering in
continual learning with optimal relevance mapping, arXiv
preprint: 2102.11343.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins,
G., Rusu, A. A., : : : & Hadsell, R. (2017). Overcoming
catastrophic forgetting in neural networks. Proceedings of
the National Academy of Sciences, 114(13), 3521–3526.

Lakhmiri, D., Digabel, S. L., & Tribes, C. (2021). HyperNOMAD:
Hyperparameter optimization of deep neural networks using
mesh adaptive direct search. ACM Transactions on
Mathematical Software, 47(3), 1–27.

Laredo, D., Ma, S. F., Leylaz, G., Schütze, O., & Sun, J. Q. (2020).
Automatic model selection for fully connected neural networks.
International Journal of Dynamics and Control, 8, 1063–1079.

Li, Y., & King, I. (2020). Autograph: Automated graph neural
network. In Neural Information Processing: 27th
International Conference, 27, 189–201.

Liu, H., Brock, A., Simonyan, K., & Le, Q. (2020). Evolving
normalization-activation layers. Advances in Neural
Information Processing Systems, 33, 13539–13550.

Long, W., Xu, M., Jiao, J., Wu, T., Tang, M., & Cai, S. (2022). A
velocity-based butterfly optimization algorithm for high-
dimensional optimization and feature selection. Expert
Systems with Applications, 201, 117217.

Lu, Z., Sreekumar, G., Goodman, E., Banzhaf,W., Deb, K., &Boddeti,
V. N. (2021). Neural architecture transfer. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 43(9), 2971–2989.

Masum,M., Shahriar, H., Haddad, H., Faruk,M. J. H., Valero, M., Khan,
M.A., : : : &Wu,F. (2021).Bayesian hyperparameter optimization
for deep neural network-based network intrusion detection. In
2021 IEEE International Conference on Big Data, 5413–5419.

Mohr, F., Wever, M., & Hüllermeier, E. (2018). ML-Plan:
Automated machine learning via hierarchical planning.
Machine Learning, 107, 1495–1515.

Park, K. M., Shin, D., & Chi, S. D. (2021). Modified neural
architecture search (NAS) using the chromosome non-
disjunction. Applied Sciences, 11(18), 8628.

Park, K. M., Shin, D., & Yoo, Y. (2020). Evolutionary neural
architecture search (NAS) using chromosome non-disjunction
for Korean grammaticality tasks. Applied Sciences, 10(10), 3457.

Parmentier, L., Nicol, O., Jourdan, L., & Kessaci, M. E. (2019). TPOT-
SH: A faster optimization algorithm to solve the AutoML problem
on large datasets. In 2019 IEEE 31st International Conference on
Tools with Artificial Intelligence, 471–478.

Peng, C., Li, Y., Jiao, L., & Shang, R. (2020a). Efficient
convolutional neural architecture search for remote sensing
image scene classification. IEEE Transactions on
Geoscience and Remote Sensing, 59(7), 6092–6105.

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2023

06

Peng, D., Dong, X., Real, E., Tan, M., Lu, Y., Bender, G., : : : Le, Q.
(2020b). PyGlove: Symbolic programming for automated
machine learning. Advances in Neural Information
Processing Systems, 33, 96–108.

Pham, H., & Le, Q. (2021). Autodropout: Learning dropout patterns
to regularize deep networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, 35(1), 9351–9359.

Real, E., Liang, C., So, D., & Le, Q. (2020). AutoML-zero: Evolving
machine learning algorithms from scratch. In International
Conference on Machine Learning, 8007–8019.

Romano, J. D., Le, T. T., Fu, W., &Moore, J. H. (2021). TPOT-NN:
Augmenting tree-based automated machine learning with
neural network estimators. Genetic Programming and
Evolvable Machines, 22, 207–227.

Shekar, B. H., &Dagnew, G. (2019). Grid search-based hyperparameter
tuning and classification ofmicroarray cancer data. In2019 Second
International Conference on Advanced Computational and
Communication Paradigms, 1–8.

Shi,M., Tang, Y., Zhu, X., Huang, Y.,Wilson, D., Zhuang, Y., & Liu, J.
(2022). Genetic-GNN: Evolutionary architecture search for graph
neural networks. Knowledge-Based Systems, 247, 108752.

Skrlj, B., Martinc, M., Lavrac, N., & Pollak, S. (2021). AutoBOT:
Evolving neuro-symbolic representations for explainable low
resource text classification. Machine Learning, 110, 989–1028.

Stamoulis, D., Ding, R., Wang, D., Lymberopoulos, D., Priyantha,
B., Liu, J., & Marculescu, D. (2020). Single-path mobile
AutoML: Efficient convnet design and nas hyperparameter
optimization. IEEE Journal of Selected Topics in Signal
Processing, 14(4), 609–622.

Varghese, D. M., Arya, A., & Ahmad, S. (2023). Feature-engineering
from protein sequences to predict interaction sites using
machine learning. In L. Kurgan (Eds.), Machine learning in
bioinformatics of protein sequences: Algorithms, databases and
resources for modern protein bioinformatics (pp, 129–151).
World Scientific.

Wang, K., & Guo, P. (2021). A robust automated machine learning
system with pseudoinverse learning. Cognitive Computation,
13, 724–735.

Waring, J., Lindvall, C., & Umeton, R. (2020). Automated machine
learning: Review of the state-of-the-art and opportunities for
healthcare. Artificial Intelligence in Medicine, 104, 101822.

Wong, C., Houlsby, N., Lu, Y., & Gesmundo, A. (2018). Transfer
learning with neural AutoML. Advances in Neural
Information Processing Systems, 31.

Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., & Deng, S. H.
(2019). Hyperparameter optimization for machine learning
models based on Bayesian optimization. Journal of
Electronic Science and Technology, 17(1), 26–40.

Wu, Y., Xi, X., & He, J. (2022). AFGSL: Automatic feature
generation based on graph structure learning. Knowledge-
Based Systems, 238, 107835.

Xue, C., Hu, M., Huang, X., & Li, C. G. (2022). Automated search
space and search strategy selection for AutoML. Pattern
Recognition, 124, 108474.

Yang, C., Akimoto, Y., Kim, D. W., & Udell, M. (2019). OBOE:
Collaborative filtering for AutoML model selection. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
1173–1183.

Yang, L., & Shami, A. (2020). On hyperparameter optimization of
machine learning algorithms: Theory and practice.
Neurocomputing, 415, 295–316.

Yu, H., Zhang, Q., Liu, T., Lu, J., Wen, Y., & Zhang, G. (2022).
Meta-ADD: A meta-learning based pre-trained model for
concept drift active detection. Information Sciences, 608,
996–1009.

Zheng, X., Ji, R., Chen, Y., Wang, Q., Zhang, B., Chen, J., ... &
Tian, Y. (2021). Migo-nas: Towards fast and generalizable
neural architecture search. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(9), 2936–2952.

Zhang, M., Li, H., Pan, S., Chang, X., Zhou, C., Ge, Z., & Su, S.
(2020a). One-shot neural architecture search: Maximising
diversity to overcome catastrophic forgetting. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
43(9), 2921–2935.

Zhang, M., Li, H., Pan, S., Chang, X., Ge, Z., & Su, S. (2020b).
Differentiable neural architecture search in equivalent space
with exploration enhancement. Advances in Neural
Information Processing Systems, 33, 13341–13351.

Zhao, H., Yao, Q., & Tu, W. (2021). Search to aggregate
neighborhood for graph neural network. In 2021 IEEE
37th International Conference on Data Engineering,
552–563.

How to Cite: S, R. & Battineni, G. (2023). A Survey on Recent Advancements in
Auto-Machine Learning with a Focus on Feature Engineering. Journal of
Computational and Cognitive Engineering https://doi.org/10.47852/
bonviewJCCE3202720

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2023

07

https://doi.org/10.47852/bonviewJCCE3202720
https://doi.org/10.47852/bonviewJCCE3202720

	A Survey on Recent Advancements in Auto-Machine Learning with a Focus on Feature Engineering
	1. Introduction
	2. Neural architecture search (NAS)
	3. Hyperparameter optimization
	4. Model selection
	4.1. Limitations

	5. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

