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Abstract:A study on the recent trends and progress in the area of automated machine learning (AutoML) is done in detail in this paper. AutoML
deals with the end-to-end automation of various steps in a machine learning pipeline. Some of the steps include feature selection, feature
engineering, neural architecture search, hyperparameter optimization, and model selection. The time and the specialized skill set required to
perform these tasks may be reduced to some extent with the help of automating all or some of these steps. Thus, a lot of research is going
on in the area of AutoML, and the recent research articles add justice to the same. A review of existing literature on AutoML with a focus
on feature engineering is presented in this paper to assist scientists in building better machine learning models “off the shelf” without
extensive data science experience. The use of AutoML in different sectors will also be discussed, as will existing applications of AutoML.
A review of published papers accompanied by describing work in AutoML from a computer science perspective was conducted.
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1. Introduction

Feature engineering deals with the construction of new features
by applying some transformations to the existing feature. Feature
selection plays a crucial role in determining the most appropriate
feature subset of a problem and is considered to be an
optimization problem where meta-heuristic algorithms may be
used to solve it. As feature selection is a nondeterministic
polynomial-time (NP-hard) problem, a lot of meta-heuristics play
an important role here. Neural architecture search (NAS) is an
area to discover an optimal neural network architecture, thereby
eliminating the need for manual design. Hyperparameter
optimization (HPO) deals with finding the optimal set of discrete
and continuous hyperparameters. Model selection is the art of
finding out a suitable model from a list for solving a particular
problem. In this paper, we aim to review theseML concepts in detail.

Dhiman et al. [1] developed a binary variant of the Emperor
Penguin Optimizer (EPO) meta-heuristic approach to solve the
discrete search problem. In this approach, the transition of
locations of the emperor penguin is modeled using S-shaped and
V-shaped transfer functions, which are then mapped into binary
search space using the binarization method. Collision avoidance
as well as drift mechanisms are used in Binary Emperor Penguin
Optimizer (BPO). Then this meta-heuristic method was applied to

solve the problem of feature selection as well. In a meta-heuristics
approach, simulated annealing (SA) is combined along with a
Generalized Normal Distribution Optimizer (GNDO) to overcome
the issue of arriving at local optimal solutions [2].

The approach named Binary Simulated Normal Distribution
Optimizer (BSNDO) uses SA to perform a local search to avoid
early convergence and achieve better results in terms of accuracy
for classification problems. The transfer function is used in meta-
heuristics to transform the continuous nature of optimization
problems into discrete, thereby helping in the feature selection
process. S- and V-shaped transfer functions are two commonly used
functions for this purpose, and both will output a probability of
selecting a particular feature [3]. An improved butterfly
optimization algorithm (BOA) is proposed to deal with high-
dimensional feature selection problems [4]. The previous versions
of the BOA could solve only those optimization problems with a
smaller or limited number of features, whereas this velocity-based
BOA (VBOA) could overcome the same problem by incorporating
the velocity item and memory items into consideration. The next
candidate solution was made based on the position update
considering the above-mentioned items.

Automatic feature generation using deep neural networks
resulted in a lot of irrelevant features and identical features despite
several advantages over search-based methods. This problem was
solved by mapping the feature interactions to a graph network
where features were mapped to nodes and interactions were
mapped to edges [5]. Local interactions between the features were
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captured by constructing an adjacency matrix called structure
parameter matrix, and the interactions between the feature
parameters were considered as message passing between the
nodes of this matrix. Global feature interactions were captured
using the reinforcement learning technique called Q-learning to
automatically create an interaction layer based on the local
attention-based interaction layer.

A formal definition of automatedmachine learning (AutoML) and
a review of its use are provided in this paper using a variety of feature
engineering techniques [6]. We will discuss key technologies in
AutoML during this article, as well as how they can be used
specifically in different industries. In this review, we organized the
papers based on what authors are attempting to automate: automated
feature engineering, HPO, pipeline optimization, and neural
architecture research. These four categories will be discussed
individually and how they can be applied.

The most recent developments in the AutoML field are
organized into the following four sections. Section 2 gives an
overview of the various NAS strategies, and Sections 3 and 4 talk
about the HPO and MS techniques, respectively. Finally, the
article ends with a conclusion Section 5.

2. Neural Architecture Search (NAS)

NAS refers to the combination of architecture optimization
(AO) along with the determination of NAS space and model
evaluation methods. The architecture of NAS is presented in
Figure 1. An automatic search space and search strategy selection
for a dataset based on the previous results by assuming that search
space and search strategy are often combined [7].

The NAS architecture can be either scaled up or scaled out. An
architecture that provides the capability to scale the performance and
capacity of a single NAS system according to the needs of the user is
referred to as a scale-up NAS architecture [8]. NAS controllers and
storage need to be upgraded or added when scaling up a NAS system.
There are two components to any NAS system that are commonly used:

1) Controllers: These are computer systems that contain components
such as networks, memory, and CPUs. File serving ismanaged by a
specialized operating system installed on the controller. There is no
restriction on how many storage devices can be connected to each
controller. The controllers can perform all I/O processing, with

some controllers performing all I/O processing, while others act
as spares, or they can be active/active with all controllers
accessing storage. Controllers configure RAID sets, create
LUNs, install file systems, and export file shares [9].

2) Storage: Persistent storage of data is required. To support
different requirements, NAS systems may have different types
of storage devices. SATA, SAS, and SSD can all be supported
by the same NAS system [10].

Meta-features based on a probing model are used for search space
estimation, and a decision tree model is used for finding out the
search strategy. The inference latency issue of the cell-based structure
in CNN is also addressed here. The search space is suitable for multi-
objective AutoML across various platforms. Layers Architecture
Search Tree (LArST) is used to ensure search space learning, thereby
transferring a basic cell structure from a benchmark dataset to any
ImageNet dataset. Greedy and Progressive Architecture Search
(GPAS) uses a greedy approach to find optimal architectures [11].

This phase is followed by an evaluation phase. CNNs and
pretrained CNNs are not ideal for all image scene classification
like remote sensing as they suffer from overfitting due to the
limited availability of images. GPAS helps in finding the optimal
architecture, but it takes a huge computational cost for searching
the different architectures and arriving at an optimal one. Early
stopping and partial training methods are deployed to alleviate the
overfitting problem. Search happens in a progressive greedy
manner and finds the optimal architectures using a gradient-based
approach. Differential NAS (DNAS) finds layers and connections
between the layers, which together form a block [12]. These
blocks are then searched to find out the optimal one. Thus, the
search space is already fixed. This causes less architectural
flexibility and a poor ability to generalize. It also incurs huge
computation costs and memory requirements.

Block Proposal Neural Architecture Search (BPNAS)
introduced a new two-phase search mechanism namely Block
Proposal Search (BPS) and Block Connection Search (BCS). An
evolutionary algorithm named Latency Evolutionary NAS
(LEvoNAS) is used to generate blocks with latency constraints.
These blocks are then used by the DNAS to find out the optimal
architecture with better search efficiency. Fast Network
Adaptation via Parameter Remapping and Architecture Search
(FNA++) is a method to modify the architecture and network

Figure 1
NAS architecture
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parameters of a pretrained network to a new network [13]. This
adaptation strategy was applied to some of the pretrained
networks and NAS. It achieved faster search results for image
segmentation and object detection tasks. The network adaptation
strategy was implemented in manually designed mobile net v2
and Resnet networks. MIGO-NAS considers the search space as a
multivariate geometric distribution [14]. It reduces the error
estimation in natural gradients computed in multivariate geometric
distribution by assigning a larger magnitude to the natural
gradient with a higher architecture rank. The network generation
is done using a dynamic programming approach, which is useful
in devices with limitations in computing and memory. This
approach helps to tackle the heavy computation cost and the poor
generalization capability of NAS.

One category of multi-objective NAS is to find the optimal
architecture search using some constraints [15]. This NAS method
asks for user preferences in the architecture selection process.
Users can give preference for accuracy and latency values. In the
learning or training phase, it collects preferences from users and a
coevolutionary algorithm is used to find optimal search space. In
the prediction phase, a response is provided by the algorithm based
on the user’s adapting preferences. Authors developed a single-path
NAS method where the search cost for CNN design is reduced
significantly [16]. The one-shot supernet NAS method was
improvised, hereby finding the optimal subset of Kernel weights to
be used in each CNN layer. The accuracy–runtime trade-off was
improved by performing a search on the Squeeze-and-Excitation
path in the single-path encoding of one-shot supernet NAS. This
method achieved an accuracy of 75.62% on the ImageNet dataset
with a latency constraint of 80 ms. The NAS search cost was also
minimized to eight iterations/epochs which approximately takes 24
TPU hours, which is faster compared to the already existing works.

One-shot NAS minimizes the amount of time that is required for
training as weights are inherited from a supernet [17]. It uses a single-
path training approach in the supernet training where only one path in
the supernet is trained in each iteration. But at the same time, it suffers
from catastrophic forgetting which leads to a decrease in accuracy due
to the weight sharing. Catastrophic forgetting is the scenario where if
the model is trained on a new task “X,” then it forgets the learning that
was done for task “Y.” An approach in which this catastrophic
forgetting is prevented by increasing the model’s accuracy was
presented by Kaushik et al. [18] and Kirkpatrick et al. [19]. A
continual learning approach is used where catastrophic forgetting is
prevented by adding a regularization term which will be the
response from the previous task. Differentiable NAS evolved from
the fact that it was able to transform the discrete architecture search
space of NAS into a continuous space where the gradient descent
method could be used to optimize the architecture concerning
validation accuracy [17]. This discrete-to-continuous space mapping
has not been proved theoretically.

Moreover, the architecture parameters were updated based on the
performance reward, which leads to a rich-get-richer problem as
architecture selection is biased as those with better performance
in the earlier stages would be used for training quite often. This
would also lead to a local optimum as those architectures at
the earlier stages have a high chance of being sampled. An
Exploration Enhancing Neural Architecture Search with Architecture
Complementation (EENAS) method was proposed in which a
variational autoencoder is used to map the architectures from
discrete space to continuous. Further, a probabilistic exploration
enhancement approach is used to address the rich-get-richer problem
by intelligent search space exploration. The high computational cost
of Neural AutoML is addressed by using the transfer Neural

AutoML approach where knowledge transfer from the previous
similar tasks is used to improve the computational speed [20].
RL-based architecture search methods are used to do parallel
programming on different jobs. The search strategy is then
transferred to do new jobs. One of the advantages of using this
approach is the reduction of the time to converge for different
datasets. Transfer learning approaches involve using the same
hyperparameter combinations learned on one domain like NLP on
other domains. Further enhancement to this approach involves
addressing the meta-overfitting on small datasets and noise immunity.

3. Hyperparameter Optimization

Optimizing models is one of the most challenging aspects of
implementing machine learning solutions. Machine learning and
deep learning algorithms can improve models [21, 22]. Various
branches of machine learning and deep learning have been
dedicated to this. When optimizing hyperparameters for ML
algorithms, the goal is to find those parameters that deliver the
highest performance [23]. This will be done when compared to
those that perform the least well on a validation set. An ML
engineer sets hyperparameters before training, unlike model
parameters. In a neural network, the weights are learned from
training, whereas the number of trees is a hyperparameter. It is
advisable to view hyperparameters as settings for an ML model that
should be tuned so that it can solve a given problem optimally.

Optimizing hyperparameters (or tuning hyperparameters) is the
process of identifying the correct combination of hyperparameters to
optimize model performance [24]. A training process runs multiple
trials at the same time. The training application is executed each
time with the hyperparameters you selected, within the limits you
specified. After this process has been completed, it will be possible
to understand which hyperparameter values will give the most
accurate results for given model [25–27]. The detailed explanation
of hyperparameter tuning can be visualized in Figure 2.

Table 1 represents a comparison of some of the existing HPO
methods against the computational cost, curse of dimensionality,
adaptive nature, and configuration space. The HPO problem can be
formulated as a constrained optimization problem if a limit on a
second performance measure is known as maximal memory
consumption [28]. It is required to reduce human effort, improve the
performance of machine learning algorithms, and improve the
reproducibility and fairness of scientific studies. The commonly used
black-box function optimization methods such as Bayesian
optimization suffer from high computational costs. The large models
suffer from the curse of dimensionality, and function evaluation
becomes expensive. The hyperparameter configuration space also
consists of diverse types such as continuous and categorical. In the
case of a neural network, the number of layers, the number of units
per layer, the learning rate, and the momentum are some of the
hyperparameters. The gradient-based loss functions cannot be applied
in the case of hyperparameters.

Modern multi-fidelity methods are used, which deploy cheaper
variants of the black-box function to approximate address the
above-mentioned problems. The Grid Search method suffers from
the curse of dimensionality, since the required number of function
evaluations grows exponentially with the dimensionality of the
configuration space [28]. The increase in the resolution of
discretization results in an increase in the required number of
function evaluations. It is nonadaptive as well. The Random Search
(RS) method is also nonadaptive, since the search is not adapted by
considering the available results. Bayesian optimization can be
considered as the combination of a probabilistic surrogate model
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and an acquisition function (which point to evaluate next) [34]. Some
of the surrogate models are the Gaussian Process (GP) and Random
Forest Sequential Model-Based Algorithm Configuration (RF-
SMAC). GP is good for low-dimensional and numerical
configuration spaces. The RF model is good for high-dimensional
and discrete configuration spaces, and it takes less computational
time compared to GP. Gradient Boosting Decision Tree can be an
alternative to RF.

Some of the collaborative hyperparameter tuningmethods are local
search-based –ParamILS, estimation of distributionmethods –REVAC,
and surrogate-based [35]. The challenge involved is to determine optimal
hyperparameters with high certainty. A model is built from experience
using surrogate-based models. A new Bayesian optimization technique
based on surrogate ranking and optimization techniques is developed,
which can be applied to similar groups of objective functions.
HyperNOMAD is a black-box optimization algorithm used to
optimize the hyperparameters of a neural network. Hyperparameters
can be floating point, integer, or categorical [36]. The different types

of hyperparameters need to be optimized before the learning process.
The objective functions can be expensive or noisy to evaluate in
certain cases,where derivative-free optimization (DFO) can be deployed.

In cases where a derivative does not exist, then variants of DFO
algorithms like model-based and direct search may be used.
HyperNOMAD is a DFO algorithm that performs direct search and
yields a better result by exploring large search spaces consisting of
categorical variables. Yu et al. [37] proposed a model in which the
efficiency of the HPO is improved by reducing the search space
complexity. The approach also uses a genetic-based search utilizing
the best hyperparameter configuration of the algorithms used for
solving similar types of problems.

4. Model Selection

Table 2 shows a comparison of recent AutoML research works.
The objective or method is mentioned in the first column, and the
subsequent columns indicate the steps in an AutoML pipeline.

Table 1
Comparison of some of the existing HPO methods

Methods Computational cost
Curse of

dimensionality Adaptive
Discrete

configuration space

Grid Search [29] High Yes No No
Random Search [30] Less No No No
Bayesian [31] Less Yes Yes No
Gaussian Process [32] High No Yes No
Random Forest [30] Less Yes Yes Yes
Genetic Algorithm [33] Less No Yes No

Figure 2
Hyperparameter optimization
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The benchmark datasets used along with the performance metrics are
given in the last column.

MS deals with choosing the right algorithm for a particular
task among the different existing ones. It is hard to distinguish
or separate between the MS and HPO as both are combined in
most of the works. A meta-learning-based approach model
selection in case of classification problems was proposed by
Yu et al. [37]. Meta-learning approaches suffer from human bias
in MS, which is eliminated by incorporating reinforcement
learning techniques. In this approach, a meta-learner accepts the
meta-features as a feature vector and the optimal algorithm as a
target. The meta-features are extracted using the reinforcement
learning approach named Deep Q-network, and the random

forest algorithm has been used as the classification model. The
authors claim this is the first approach in model selection to
utilize the reinforcement learning strategy. Despite the advantage
that manual labor is not here, it suffers from a few issues like the
limited number of meta-features, fixed set of algorithms, and the
approach being applicable on tabular datasets.

Researchers proposed an AutoML technique for generating
ensemble recommender systems [38]. This is the first research
work in the field of recommender systems where AutoML is
deployed. Ensemble models were used in the area of
recommender systems and found to be useful compared to the
existing methods. One problem in using the ensemble methods is
the complex search space where an ensemble of a lot of models

Table 2
Comparison of some of the existing AutoML research works

Objectives/methods FE MS HPO NAS Datasets
Performance

metrics Ref

Recommendation/EnPSO ✖ ✓ ✖ ✖ Movielens RMSE, MSE, MAE [38]
Classification/MLPlan ✓ ✓ ✖ ✖ CIFAR 10, convex, MNIST Accuracy [39]
Classification/TPOT-NN ✓ ✖ ✖ ✖ Spambase, ionosphere,

breast-cancer-Wisconsin
Accuracy [40]

Classification/
Deap-n-cheap/CNN

✖ ✖ ✓ ✓ CIFAR-10,100, Fashion MNIST Accuracy [41]

Text Classification/autoBOT ✓ ✖ ✓ ✖ kaggle/google Accuracy,
f1 score

[42]

Classification,
Regression/GA/FC NN

✖ ✓ ✖ ✖ MNIST, CMAPSS Accuracy [43]

Classification/PIL/
Laplacian
Regularization

✖ ✖ ✓ ✓ MNIST, CIFAR-10,
openML

Accuracy,
Training Time

[15]

Classification/
Genetic GNN

✖ ✖ ✓ ✓ Cora, Citeseer,
Pubmed

Accuracy,
micro-f1 score

[44]

Classification/GNN/
skip connection

✖ ✖ ✓ ✓ Cora, Citeseer,
Pubmed, PPI

Accuracy,
micro-f1 score

[45]

Classification/
SANE/DAS/GNN

✖ ✖ ✖ ✓ Cora, Citeseer,
Pubmed, PPI

Accuracy, [46]

Classification/Search
space optimization &
Regularization/P-DART

✖ ✖ ✖ ✓ CIFAR 10, Imagenet Accuracy [47]

Image Classification/
Text Modeling/
AutoDropout

✖ ✖ ✖ ✓ CIFAR, Imagenet,
Penn Treebank
WikiText-2

Accuracy,
Perplexity,
BLEU score

[48]

Multi-objective/EA +
Transfer Learning

✖ ✖ ✖ ✓ ImageNet, C10, C100,
CINIC-10, STL-10,
Flowers102, Pets, DTD,
Cars, Aircraft,
Food-101

Model Accuracy,
Size, CPU latency,
GPU latency

[49]

CASH/TPOT-SH ✓ ✓ ✓ ✖ Wine-quality-red,
kdd cup, car-evaluation,
cover type

Accuracy [50]

RP-KNN ✖ ✖ ✓ ✖ IMDB, POKER,
Tweets

Accuracy,
Runtime,
Memory

[51]

PyGlove: Symbolic
Programming

✖ ✓ ✓ ✓ Symbolic Dataset Accuracy [52]

AutoML-Zero ✖ ✓ ✖ ✖ CIFAR Accuracy [53]
Normalization/activation,
image classification,
instance segmentation,
and GAN training

✖ ✖ ✓ ✖ CIFAR, COCO Accuracy [54]
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needs to be evaluated and an optimal model needs to be found from
those. Particle swarm optimization (PSO) is one of the meta-
heuristics approaches which is used here to find out the optimal
models from the search space. A comparison of other existing
methods was performed based on the evaluation metrics such as
RMSE, MSE, and MAE. The proposed method achieved better
results in terms of these metrics.

In Collaborative Filtering for AutoMLmodel selection, amatrix
is constructed consisting of error values with models and
hyperparameters on rows and columns [55]. A model is then fitted
with inputs as models and hyperparameters and output as cross-
validation (CV) errors. The model learns the latent meta-features
and then predicts the CV error. Meta-features can be the number
of samples or model performance [56, 57]. The problems
addressed here are the time-constrained initialization and active
learning.

4.1. Limitations

It is imperative to address a few significant limitations of the
current work. To begin with, the database search did not capture
all related papers; therefore, it was not able to retrieve all eligible
articles. Identifying the relevant literature on AutoML combined
with feature engineering techniques might not be possible with the
limited works selected for this analysis. Meanwhile, in this
review, we used the Google Scholar database, which limits the
coverage of other journals related to the topic.

5. Conclusion

A brief literature review of the recent developments in the area of
AutoML has been done in this paper. More emphasis has been on the
steps of the ML pipeline like FS, FE NAS, HPO, and MS. AutoML
makes the design decision on various phases of theML pipeline easier
compared to the traditional way. All parts of the ML pipeline could be
automated so that users may build efficient applications. Machine
learning algorithms need to be simplified further so that they can be
applied by people with little or no background in machine learning.
In this respect, AutoML represents a significant and promising step
forward. AutoML is an excellent tool for developing models with
acceptable discriminatory power. In biomedical environments, there
are a number of limitations when using AutoML methods,
including their inability to handle large and diverse datasets. In
healthcare, AutoML has already been used in some cases, but more
work is required for widespread adoption. Researchers interested in
applying data science techniques to healthcare can use the survey
as a basic guide. However, it is mentioned that there is still work to
be done in this area.
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