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Abstract: The spine serves as a fundamental structure that supports bodily functions, movements, protection of vital neural pathways, and overall
well-being. Any abnormalities or injuries to the spine can significantly impact a person’s quality of life. Early detection of these conditions is crucial
for effective treatment and management. Hence, this study focuses on the detection and classification of spine abnormalities using advanced deep
learning algorithms. In recent years, deep learning methods, particularly convolutional neural networks (CNNs), have demonstrated promising
performance in medical image processing applications. This study investigates the effectiveness of advanced CNN architectures, specifically
AlexNet and ResNet, in detecting spine abnormalities and distinguishing scoliosis, spondylosis, and normal spine. Leveraging a dataset comprising
3341 diverse spine X-rays images, this study aims to not only compare the effectiveness of AlexNet and ResNet but also determine the most
accurate model for deployment in clinical settings. The results demonstrate the comparable performance of AlexNet and ResNet in detecting spine
abnormalities. Insights gained from this comparative analysis can inform healthcare practitioners and researchers on the optimal choice of deep

learning architecture for spine abnormality detection, ultimately contributing to improved diagnostic accuracy and patient outcomes.
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1. Introduction

Spine abnormalities are conditions widely ranging from
congenital malformations to degenerative alterations that can impact
the structure, alignment, and function of the spinal area. Examples
include spinal stenosis, disc herniation, kyphosis, scoliosis, and
vertebral fractures. These frequently present as pain, limited movement,
and neurological deficits, which substantially influence an individual’s
quality of life [1-3]. Conventional diagnostic techniques that depend
on subjective interpretation and manual evaluation are time-consuming
and prone to errors.

This study presents a novel approach that improves and automates
the detection of spine abnormalities using deep learning techniques
particularly focusing on spondylosis (involves small fractures between
vertebrae), scoliosis (defined by sideways bending), and normal spine
shape. Advanced convolutional neural network (CNN) architectures
like AlexNet and ResNet are used to accurately identify and categorize
abnormalities in medical X-rays that have been annotated by skilled
radiologists [4—6].

The goal of this research is to equip medical practitioners with
improved diagnostic capabilities in the field of spine health by creating
a dependable and user-friendly tool [7, 8], thereby enabling early
intervention and improved patient outcomes through prompt treatments
and individualized treatment plans [9, 10]. The major motivation of
this work is to resolve the evolving challenges in the detection of spine
abnormality, in which the existing diagnostic methods heavily rely
on manual interpretation that is highly time-consuming and prone to
variability among radiologists. The major motivation of the proposed
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work is provided as below:

1) Multiclass clinical-based detection: Different from the conventional
models that effectively concentrate on single abnormality, the
proposed method was designed to effectively and accurately classify
normal spine, spondylosis, and scoliosis, to achieve support to reach
a more comprehensive decision.

2) Comparative evaluation of CNN architectures: By comparing
the AlexNet and ResNet on similar datasets, the more effective
model (i.e., AlexNet with 97% accuracy) would be determined, and
researchers and clinicians would gain actionable insights regarding
selection of architectures for spine abnormality detection.

3) Optimized deployment from lightweight architecture: Although
ResNet struggled with overfitting and instability in validation,
the AlexNet achieved higher accuracy with lesser computational
requirements due to its shallower yet efficient regularization.

The remainder of this research work is organized as follows: In
Section 2, we discuss various spine abnormality identification methods
carried out using machine learning (ML) and deep learning techniques
in image processing applications. In Section 3, we describe the overall
system design of the spine abnormality in image processing and deep
learning techniques. In Section 4, we present the performance evaluation
and analysis of the results obtained using ALexNet had been compared
with other state-of-the-art CNN model. In Section 5, our conclusion
summarizes the contributions of the study along with suggestions for
future research.

2. Literature Review

Wang et al. [11] presented SpineHRNet+, a novel hybrid model
that combines rule-based and artificial intelligence methods. The model
uses deep learning models HRNet and UNet to automate the detection
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of endplate landmarks and the segmentation of the spine region by
employing biplanar radiographs, an EOS machine, and manually
annotated landmarks as references. The model’s dependability is
verified by assessment using Bland—Altman plots, confusion matrices,
and linear regression. SpineHRNet+ enables continuous auto-analysis
of spine alignment, which may improve clinical practice and make
large-scale studies easier. Because of its interpretability, users can make
adjustments to improve clinical insights. Biplanar radiographs of 1,542
patients with scoliosis are included in the study of Wang et al. [11]. This
technique for spine alignment analysis [11] has clinical applicability
and scalability, which bodes well for improvements in patient care and
future research.

Germann et al. [12] described a deep learning-based automated
method for segmenting the lumbar vertebrae. It uses a three-dimensional
X-Unet for segmentation and a UNet-based lumbar spine localization
network for placement. Comparison with conventional approaches
shows improved performance on lumbar spine CT images from the
VerSe 2020 public dataset and an internal hospital dataset (containing
500 and 156 samples, respectively). The two-stage approach shows
potential for use in the diagnosis of spinal anomalies and support of
surgical treatment by efficiently positioning and segmenting lumbar
vertebrae. Notably, it achieves accurate lumbar vertebrae segmentation
better than traditional UNet, IFCN, and nn-Unet approaches.

In a paper by Natalia et al. [13], a major problem among tumor-
related bone metastases is the vital need for precise detection of spinal
metastases, which is addressed in the present study where we present
a novel method for predicting and diagnosing spinal metastases using
MRI data and deep learning, more especially a multilayer CNN. The
model obtains an amazing accuracy rate of 96.45% by analyzing a large
dataset consisting of 941 patients who had spinal metastases. It uses
manifold learning techniques and SoftMax classifiers to identify spinal
metastases with high precision and to reveal fracture risk indicators on
X-rays. The present study underscores the capacity of sophisticated
computational techniques to revolutionize the identification and
handling of spinal metastases, presenting auspicious prospects for
augmenting patient results and therapeutic approaches.

Merali et al. [14] employed a deep convolutional neural
network (DCNN) to conduct vertebral body measurements and
detect insufficiency fractures on lumbar spine MRI scans. The
dataset included lumbar spine MRI data from multiple institutions as
well as a retrospective examination of 1000 vertebral bodies in 200
patients. Of these patients, 61 suffered fractures resulting in vertebral
body insufficiency. The results showed that the DCNN performed
exceptionally well in terms of both vertebral body measurements and
the diagnosis of insufficiency fractures in a variety of lumbar spine MRI
scans. Especially, it shows resilience to changes in radiological facility,
a kind of MRI scanner, and intensity of magnetic field. For vertebral
body measurements, the DCNN achieved a sensitivity of 0.941,
specificity of 0.969, and accuracy of 0.962 in diagnosing insufficiency.
It also demonstrated good inter-reader agreement with radiologists.

Biercher et al. [15] focused on automating the selection of
transverse lumbar spine MRI scans for detecting anomalies in the
intervertebral disc (IVD), notably in the diagnosis of lumbar spinal
stenosis (LSS). They investigated a variety of ML techniques, including
DCNN, dimensionality reduction, feature selection, and various ML
algorithms, utilizing a dataset of MRI scans, and concluded that using
the support vector machine technique with a small Gaussian kernel
on full-length features taken from the DenseNet201 model produces
the best results. It achieved per-class classification performance of
approximately 0.88, with precision (0.95-0.99) and recall (0.93-1.0).
This study by Biercher etal. [ 15] significantly contributes to the literature
with their thorough investigation of ML techniques for automatic
image selection, providing valuable insights into LSS diagnosis and
suggestions regarding selection of suitable methodologies.

Merali et al. [16] trained a CNN to detect various spinal
cord diseases in thoracolumbar MRI scans of dogs and evaluated
its performance. The CNN was trained to recognize intervertebral
disc extrusion (IVDE), intervertebral disc protrusion (IVDP), fibro-
cartilaginous embolism (FCE), acute non-compressive nucleus
pulposus extrusion (ANNPE), syringomyelia, and neoplasia using
MRI scans from 500 dogs (2,693 for training and 7,695 for testing).
The results demonstrated the CNN’s ability to recognize and identify
various diseases, with particular success in detecting IVDPs and
IVDEs. Notably, on sagittal T1-weighted images, the CNN detected
IVDPs with a sensitivity of 100% and a specificity of 95.1%. It also
performed well in detecting IVDEs, FCEs, and ANNPESs, with different
sensitivity and specificity [17, 18]. This study by Merali et al. [16]
demonstrated CNNs’ potential for accurately and specifically detecting
complex spinal cord disorders in canine MR imaging.

Current work has explored highly advanced architectures beyond
conventional CNN. For instance, the UIU-Net, a variant of U-Net
that enables uncertainty-based mechanism and enhanced encoder-
decoder pathways, has achieved improved performance compared
with traditional CNN architectures in medical anomaly detection tasks
especially in segmentation enabled spine analysis [19, 20]. Such models
are computationally intensive and require larger annotation datasets. In
contrast, the proposed model enables lighter CNN architecture which
trade-off computational efficiency and accuracy for real time diagnostic
support.

3. System Design

The system to detect and classify spine abnormalities using
advanced CNN techniques uses a comprehensive approach encompassing
data preprocessing, model architecture design, training, and evaluation.
Initially, adiverse dataset of X-ray images of the spine comprise both normal
and abnormal spine conditions, and these are collected and preprocessed.
Preprocessing techniques such as rescaling, shear transformations, zoom
transformations, flipping images horizontally are performed to enhance
model generalization. The dataset is then divided into subsets for testing,
validation, and training. The model architecture is developed using
advanced CNN techniques such convolutional layers with different filter
sizes, batch normalization, dropout layers, advanced activation functions,
and pooling layers for spatial down sampling (Figure 1). To improve
performance, deeper learning models are also being investigated. The
model is optimized during training by using suitable optimizers [21, 22].
To evaluate the effectiveness and accuracy of the categorization, a variety
of performance metrics are computed and applied.

The model’s effectiveness and flexibility to changing patient
demographics and diagnostic standards are guaranteed by regular
retraining and ongoing monitoring. An efficient system for spine
abnormality detection and classification employing advanced CNN
techniques is obtained through this methodical approach, which may
have a big impact in the medical field.

Figure 1
Proposed system architecture of spine abnormality
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3.1. Data setting

In this study, we leveraged the dataset sourced from Fraiwan et al.
[23], which comprised 3341 vertebrae X-ray images depicting a diverse
representation of spine conditions including spondylosis, scoliosis, and
normal spine, facilitating a comprehensive model training. As shown
in Figure 2, the system can learn to classify X-ray images accurately,
distinguishing between different spine conditions and detecting them
with high precision. This combination of hardware and software ensures
robust, efficient, and consistent development environments suitable for
the complex task of medical image analysis and spine abnormality
detection.

3.2. Preprocessing images

The model starts by importing images from the specified
dataset directory using the OpenCV library. The images are read
from their storage location and formatted to function with the training
and inference deep learning framework. X-ray images usually have
different resolutions and sizes. Therefore, the images are downsized
to a specified resolution of 224 x 224 pixels, which is a typical input
size for many deep learning models including AlexNet and ResNet,
to ensure consistency and compliance with the model’s input size.
X-ray images are usually saved in the project as digital pictures with
pixel values between 0 and 255. For images with 8-bit depth, each
pixel is represented by an integer value between 0 (black) and 255
(white), indicating the intensity or brightness of the pixel. In this
model, rescaling is applied using the formula: rescaled pixel value =
original pixel value/255, where 1.0/255 is used to perform element-
wise division, effectively scaling the pixel values to the range [0, 1].
Rescaling is part of the pipeline along with other data preparation steps
like resizing and data augmentation. Every pixel in the input image
is rescaled before being sent to the deep learning model for training
or inference. The X-ray images are subjected to data augmentation
in order to produce more training samples and enhance the model’s
capacity to generalize to previously unknown data.

The following data augmentation techniques are employed in this
project:

a. Shearing: Shear transformations introduce geometric distortions
to the image by displacing a portion of the image in either the
horizontal or vertical direction. The shear range parameter
establishes the maximum intensity of the shear transformation
that is applied to the images. Here, the shearing range was set to
0.2, allowing for a maximum shear angle of 20°.

b. Zooming: Randomly zooming into or out of the image allows
simulation of variations in scale. The zoom range was set to 0.2,
allowing for a maximum zoom factor of 20%.

c. Horizontal flipping: This step randomly flips images horizontally.
It efficiently doubles the training data set without requiring
additional picture collections by introducing left-right symmetry
variances. Horizontal flipping was applied with a probability
of 50%, resulting in a mirror image of the original with equal
likelihood.

3.3. Model building and training

Before proceeding with the detailed exploration of model
architectures, it is imperative to acknowledge the initial phase of the
project where both AlexNet and ResNet architectures were meticulously
trained and evaluated for spine abnormality detection. Subsequently,
the model exhibiting the highest accuracy was judiciously selected for
deployment in the spine abnormality detection system. This methodical
approach ensured a thorough comparison between AlexNet and ResNet
architectures, ultimately guaranteeing the deployment of the most
accurate and reliable model for real-world implementation.

3.3.1. AlexNet model

AlexNet’s input layer creates a placeholder for input data and
defines its intended format. The input shape is (224, 224, 3), suggesting
images having height and width dimensions of 224 pixels and three
RGB color channels. Convolutional layers are critical components of
CNNs as they extract significant information from input images. These

Figure 2
Vertebrae X-ray images
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layers conduct convolution operations on the input image using a set of
learnable filters or kernels to identify characteristics like edges, textures,
and patterns. Here, the AlexNet model consisted of 5 convolutional
layers and other layers:

a. First convolutional layer: The input images were subjected to 96
filters, each measuring 11 x 11 pixels, using the first convolutional
layer of AlexNet. These filters captured large-scale patterns and
structures, like edges and color gradients, by swiping across the
input with a stride of 4. The output feature maps maintained the
spatial dimensions of the input. Rectified linear unit (ReLU)
activation was used to add nonlinearity after the convolution
procedure, enabling the network to describe intricate relationships
in the data. The activations were subsequently normalized by
batch normalization, which lowered the internal covariate shift
and improved training stability and efficiency.

b. Second convolutional layer: enhancing the first feature extraction,
256 filters of 5 x 5 pixels were used in the second convolutional
layer. The previous layer’s feature maps can be used to extract
more precise and localized features, thanks to these smaller
filters. Nonlinearity was again introduced using ReL U activation,
which made it easier to identify complex patterns in the data.

c. Third, fourth, and fifth convolutional layers: These next
convolutional layers were made up of 384 filters, each measuring
3 x 3 pixels. The network may capture increasingly abstract and
high-level representations of the input data by stacking many
layers with lower filter sizes. In order to encode more intricate
and discriminative information pertinent to the classification
task, these layers concentrated on honing the features that were
extracted by the layers that came before them. While batch
normalization was applied after these layers, ReLU activation
was applied to create nonlinearity.

d. Normalization layers (batch normalization): By normalizing the
output of the convolutional layers, batch normalization improves
stability and speeds up training. Normalizing each batch’s
activations aids in lowering the internal covariate shift. Each
convolutional layer was followed by batch normalization.

e. Max pooling layers: To downsample the feature maps and improve
their resilience to spatial translations, AlexNet’s Max Pooling
layers were arranged after the first, second, and fifth convolutional
layers. The most prominent characteristics were retained, while
the spatial dimensions of the feature maps were effectively cut in
half with each pooling operation, which has a size of 3 x 3 and
a stride of 2. Max Pooling assisted in capturing the most salient
aspects while eliminating extraneous information by keeping only
the maximal activation within each pooling region.

f. Flattening layer: The flattening layer acts as a link between
the convolutional and fully connected layers. It collapses
spatial information while maintaining feature representation
by converting the multidimensional convolutional layer
output into a one-dimensional tensor. Spatial information with
dense connections may be seamlessly integrated, thanks to the
flattening layer, which converts the convolutional feature maps
into a linear array. As a result, it makes it easier for learnt features
to spread to next layers, guaranteeing efficient feature extraction
and classification in challenging tasks like image recognition.

g. Fully connected (dense) layers: The central hub of the completely
connected layers of AlexNet was made up of two dense layers,
each with 4096 neurons. These layers added nonlinearity to
the network by applying ReLU activation to every neuron.
Furthermore, by permitting only positive values to flow
through, the ReLU activation function mitigated the vanishing
gradient issue and speeded up the network’s calculation. The
AlexNet architecture culminates in a soft-max output layer,
which generates probability distributions over the three classes,

enabling the model to make predictions about the presence of
spine abnormalities in the input X-ray images. The architecture
is compiled using the Adam optimizer, categorical cross-entropy
loss function, and metrics such as accuracy and precision to
evaluate model performance during training and testing phases.
Figure 3 shows the architecture of ALexNet.

Figure 3
AlexNet architecture
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3.3.2. ResNet model

In this spine abnormality detection project, the ResNet

architecture utilized began with an input layer tailored to receive RGB
images of dimensions 224 x 224 pixels.
a. Convolutional layers: The initial convolutional layer utilized a

7 x 7 kernel size with 64 filters and a stride of 2 to process input
images. Each filter extracted different features, such as textures
and edges, contributing to the model’s ability to capture intricate
patterns in the input data.

b. Max pooling layers: After convolutional processing, max pooling

layers significantly reduced the spatial dimensions of feature maps,
facilitating more effective processing and better generalization.
In this downsampling process, the maximum value was set within
each 3 x 3 region of the feature maps, in order to capture essential
information while reducing computational complexity.

c. Residual blocks: The ResNet architecture incorporated residual

blocks to address the vanishing gradient problem commonly
encountered in deep networks. Each residual block consisted
of convolutional layers followed by batch normalization and
ReLU activation functions, enhancing stability and convergence
during training. Skip connections within residual blocks ensured
the preservation of original data from earlier layers, mitigating
degradation issues in deep networks.
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d. Global average pooling layer: Following residual blocks, global
average pooling condensed feature maps into fixed-size vectors,
efficiently summarizing distinct features while preserving spatial
information. This process enhanced generalization and reduced
the risk of overfitting by ensuring the model’s output remains
consistent across varying input sizes.

e. Fully connected layer: The flattened layer converted 3D feature
maps into a 1D vector, preparing them for further processing.
Subsequently, a fully connected layer processed the flattened
vector, mapping retrieved features to class probabilities.

f. Activation function: The final output of the fully connected
layer was transformed using an activation function, typically
soft-max, which converted the output values into probabilities
and normalized them across all classes, facilitating interpretation
by providing a likelihood distribution over potential class.

g. Optimizer and loss function: The ResNet model was trained using
the Adam optimizer, a popular optimization algorithm known for
its efficiency and effectiveness in minimizing the model’s loss
function. During training, the difference between expected and
actual class probabilities was measured using the categorical
cross-entropy loss function.

3.3.3. Training

Both AlexNet and ResNet architectures were trained using a
batch size of 32 images per batch, over multiple epochs. The training
process iterated over the dataset for a predefined number of epochs to
update model parameters. The models were compiled with the Adam
optimizer, categorical cross-entropy loss function, and evaluation
metrics such as accuracy and precision. Early stopping criteria, based
on validation loss or performance plateauing, were implemented to halt
training and prevent model over fitting. Hyper-parameter tuning was
performed to optimize model performance, including adjustments to
learning rate, dropout rate, and other model parameters.

3.4. Model evaluation

Following training, the efficiency of the trained models (ResNet
and AlexNet) in identifying spine anomalies was assessed. During
preprocessing, the dataset was divided into training and validation sets.
While the validation set was kept reserved for evaluation, the training
set was utilized to train the models. This guarantees that the models
are evaluated on untested data, resulting in a more precise assessment
of their generalization capacity. To measure the models’ effectiveness,
accuracy, precision, recall (sensitivity), and F1-score were calculated.

3.4.1. Accuracy

Accuracy refers to the proportion of correctly classified images
out of the total number of images in the validation set. The formula used
to evaluate accuracy is represented in Equation (1):

Number of Correct Prediction
Total Number of Prediction

Accuracy = 0
3.4.2. Precision

Precision refers to the ratio of true positive predictions to the
total number of positive predictions. It measures the model’s ability
to correctly identify positive cases (e.g., spine abnormalities) without
misclassifying negative cases (e.g., normal spine) using Equation (2),
where TP represents true positives and FP represents false positives.

Precision = % 2)
3.4.3. Recall (sensitivity)

Recall is calculated using Equation (3), where TP represents
true positives and FN represents false negatives. It is the ratio of true
positive predictions to the total number of actual positive cases in the
validation set. Recall measures the model’s ability to correctly detect
all positive cases.

— TP
Recall = W

3)
3.4.4. F1-Score

This metric measures the harmonic mean of precision and recall
using Equation (4), providing a balanced measure of the model’s
performance.
“

F1 Score = 2 x [Precision(picadl_—)]

Precision+Recall

3.4.5. Model selection and deployment

The selection of the optimal model for deployment is a critical
decision influenced by various factors, including accuracy, performance
metrics, and computational efficiency. After thorough evaluation, it was
determined that AlexNet demonstrated superior accuracy and precision
in classifying spine abnormalities, compared to ResNet, making it the
optimal choice for deployment within the web application framework.
Detailed analysis and comparison of the performance metrics between
AlexNet and ResNet is presented in Table 1.

AlexNet Algorithm

Input : x = dataset

Output : Classification accuracy, sensitivity, specificity, precision and F1 score

1. X is divided into a training set and a testing set.
2. Preprocessing: resize the training set

3. Augment: Rand Rotation [-5,-5] , Rand X Reflection 1, Rand Y Reflection 1, Rand X Shear [-0.05, 0.05], Rand Y Shear [-0.05,0.05], Rand
X Shear [0.5, 1], Rand Y Shear [0.5,1], Rand X Translation [-5,-5], Rand Y Translation [-5,-5]

4. Initialize: net = AlexNet, S = sparsity, N= the number of Iterations, T= threshold, A=array of scores

5.Fori=1toN

6. Calculate: A (Dlupdate)

7. Sort (A)

8. Calculate: The threshold by Threshold=Iteration Scheme (x) XA
9. Prune (net,t)

10. Set: number of pruned parameters.

11. End

12. Return Classification accuracy, sensitivity, specificity, precision and F1-score
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Table 1
AlexNet and ResNet performance metrics
Evaluation parameters AlexNet ResNet
Overall accuracy 0.9687 0.94792
Validation loss 0.2704 3.3679
Precision 0.9344 0.9158
Recall (sensitivity) 0.8566 0.7867
Validation accuracy 0.9531 0.3906

The trained AlexNet model was saved in the .hS format and
integrated into a web application using the Django framework for
deployment. The building of a web application allowed users to upload a
spinal X-ray image for categorization. When an image was uploaded using
the web interface, it was preprocessed (e.g., resized and normalized) to
meet the AlexNet model’s input specifications. The preprocessed image
was then run through the deployed AlexNet model to make an inference.
The web application showed the user the matching outcome based on the
model’s prediction, which assigned a probability distribution over classes
Normal, Scoliosis, or Spondylosis [24—26]. This method made it easier
to understand medical photos and gives patients and healthcare providers
quick information about spinal disorders right from the website, all
without the need for specialist knowledge or software. Users can interact
with the web application through a user-friendly interface, facilitating the
diagnosis of spine abnormalities using deep learning technology.

4. Implementation and Results

4.1. Environmental setup

This step created the environment needed to make it easier to
develop and train neural network models where Jupyter notebook was
used for training and Django framework was used to deploy the model.
Keras, TensorFlow, and other necessary packages and libraries were
loaded.

4.2. Data preparation

To create batches of photos and their labels for feeding into the
neural network model during training and assessment, the code first set
up “ImageDataGenerator” objects for both training and testing datasets.
It then preprocessed and augmented the images for training.

4.3. Setting up model checkpoint

To save the best-performing model during training, both snippets
set up a model checkpointing mechanism. When a new best model
was saved, the “ModelCheckpoint” callback published a message,
monitored training accuracy, and only saved the model when the
accuracy was better than the previous best. The file path (model path)
was where the saved model was kept.

4.4. Fitting the model

The AlexNet and ResNet models were trained on their respective
training datasets (train_data) using the fit technique in both snippets. The
training procedure processed batches of data defined by steps_per_epoch
at each epoch, iterating over the number of epochs indicated by epochs.
The model’s performance was tracked throughout training using the
validation dataset (test_data), as indicated by validation_data. Additionally,
the validation procedure ran in batches specified by validation_steps.
Performance analysis and post-training visualization were made possible
by the training history (history), which recorded the training and validation
metrics (e.g., loss and accuracy) at the end of each epoch.

4.5. Model accuracy analysis

AlexNet vs. ResNet training trends examining these charts
provided insights on how effectively the model was learning from the
training data and whether changes to the training procedure or model
architecture were necessary.

Figure 4 shows the accuracy of AlexNet, with a steady increase
and a maximum accuracy of 96.88%. Figure 5 shows the accuracy
of ResNet with slight fluctuations and gradual increase obtaining a
maximum of 94.79%.

Figure 4
Accuracy of AlexNet model
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4.6. Visualizing training loss over epochs

Figure 6 illustrates how the loss varied throughout the training
process by examining these loss charts. AlexNet showed a stable
declining loss, indicating that the model was learning. Figure 7
represents the ResNet model with a plateau or rising loss, which could
be an indication of overfitting or other problems that call for changes to
the model or training procedure. A declining loss shows that the model
was learning.

Figure 6
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Figure 7 Figure 10
Loss of ResNet model (a) Normal spine, (b) scoliosis, and (c) spondylosis
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4.7. Testing and classification of spine abnormality

Deploying AlexNet with Django facilitated model testing using
dataset pictures, enabling real-world application and evaluation of its
clinical usefulness (Figure 8). This integration provided vital insights
into performance using unseen data. Django’s flexibility ensured a
smooth interaction with the user interface, enhancing accessibility and
usability of the spinal anomaly detection system. This holistic approach
underscored the significance of selecting appropriate neural network
architectures and integrating deep learning models into practical
applications to yield meaningful results in healthcare and beyond.

Step 1: Upload an X-ray image from test dataset in the user
interface shown in Figure 9.

Step 2: Click submit to classify the spine abnormality of uploaded
image. Spine abnormality is classified into three categories: normal
spine, scoliosis spine, and spondylosis spine. The sample images are
shown in Figure 10 [23]. A normal healthy spine is straight when viewed
from the front, with gentle curves when viewed from the side (Figure
10(a)). Scoliosis is defined by an unnatural curving of the spine to the

Figure 8
Implementation of Django framework
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Although this curvature can arise at any age and range from moderate
to severe, it is typically diagnosed in adolescence. Spondylosis refers
to degenerative changes in the spine, including the formation of bone
spurs, disc degeneration, and thickening of ligaments (Figure 10(c)). It
can cause pain, stiffness, and decreased mobility in affected areas.

4.8. Performance metrics analysis of AlexNet and
ResNet

The performance metrics for AlexNet and ResNet are presented
in Table 1, encompassing the various evaluation measures. For instance,
the image preprocessing (normalization and rescaling) enabled uniform
distribution of input whereas data augmentation (horizontal flipping,
zooming, and shearing) predominantly enhanced the generalization and
diminished overfitting. Similarly, the inclusion of dropout regularization
in the AlexNet showed its superior stability than ResNet with a higher
validation loss ad overfitting.

4.9. Training and validation metrics of ResNet and
AlexNet

The model’s capacity to generalize to new, previously unseen
data was measured by validation loss, which compared its predictions
to the actual values in the validation set. Similar to training loss,
validation loss was frequently calculated using metrics such as mean
squared error or cross-entropy loss. Figure 11 demonstrates that both
training and validation accuracy have reached roughly 97%. Figure 12
depicts the loss and accuracy metrics throughout epochs, revealing that
by the 20th epoch, the model’s loss for both training and validation
is almost zero. Furthermore, training and validation accuracy rapidly
improved, reaching approximately 97% by the 75th epoch.

Figure 11
Performance metrics of AlexNet
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Figure 12
AlexNet loss and accuracy graph
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Figure 13 is a graphical depiction of the precision—recall (PR)
curve of the trade-off between precision and recall for various threshold
levels. When there is an imbalance in the classrooms, it is helpful.
Precision provides an answer to the following query: What percentage
of the model’s positive predictions were accurate? While recall answers,
how many of the actual positive events were accurately predicted by the
model? Here, the precision and recall curve values of the model are
constantly around 95-100%.

Figure 13
Precision—recall curve
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Performance metrics of ResNet
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The ResNet model showed a significant difference in performance
between the training and validation phases, indicating possible
overfitting. In Figure 14, despite reaching a high training accuracy of
roughly 94%, the validation accuracy was significantly lower at around
40%. This mismatch was visibly represented in the graph, with the
validation loss reaching 3.3679. Such results indicated that, while the
model learned efficiently from training data, it struggled to generalize
well to unseen data, emphasizing the importance of regularization
approaches or model changes to alleviate overfitting and enhance
validation accuracy.

The AlexNet and ResNet models were evaluated using a range
of performance parameters, including accuracy, validation loss,
precision, recall, and validation accuracy, which are all represented
in a comparative graph in Figure 15. AlexNet outperformed ResNet
with an accuracy of 96.87%, which is close to 97%, and a validation
accuracy of 95.31%. It yielded a less significant validation loss of
0.27%, demonstrating robust generalization capabilities. AlexNet also

Figure 15
Comparison of evaluation parameters of AlexNet and ResNet
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Table 2
Computational complexity and runtime comparison
Metric AlexNet ResNet-50
Approx parameters ~60 million ~25.6 million
Model size ~240 MB ~98 MB
FLOPs ~724 MFLOPs ~3.8 GFLOPs
Training time ~3.5 min ~ 7.8 min
Inference time ~3.2ms ~6.5 ms
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had remarkable precision and recall scores of 93.44% and 85.66%,
respectively, suggesting its efficacy in correctly detecting important
instances.

In contrast, ResNet had a slightly lower accuracy of 94.79%,
with a significant difference between training and validation accuracy
of 94% and 39.06%, respectively. ResNet also had a significantly
larger validation loss (3.37%), indicating probable overfitting and low
generalization capacity. The precision and recall scores for ResNet
were 91.58% and 78.67%, respectively, showing its potential to reliably
categorize instances but with lesser recall compared to AlexNet.

4.10. Computational complexity and running time
analysis

In order to further examine the proposed work practicality, this
research analyze the computational complexity and running time of
both the ResNet and AlexNet models. Table 2 shows the comparison
in terms of average inference time, FLOPs, model size, and parameter
count.

5. Conclusion

To identify spine abnormalities, two common CNN architectures,
ResNetand AlexNet, were used. The dataset included 3341 X-ray images
divided into three categories: normal spine, scoliosis, and spondylitis.
ResNet, which is recognized for its deeper architecture and skip
connections, obtained 94% accuracy, whereas AlexNet, a pioneering
CNN with ashallower design, achieved 96%. Despite ResNet’s resistance
to over-fitting and greater performance on a variety of tasks, including
picture classification, AlexNet achieved slightly higher accuracy in this
particular situation. The decision to choose AlexNet over ResNet in
the comparative model indicates that, despite its simpler architecture,
AlexNet was better suited to the spine abnormality classification
assignment for this dataset. AlexNet’s improved performance in this
case can be ascribed to a variety of variables. Its shorter architecture
may have been better suited to the dataset’s size and task complexity,
needing fewer parameters and computational resources than ResNet.
Furthermore, AlexNet’s dropout regularization may have effectively
reduced overfitting, adding to its improved accuracy. Furthermore, the
unique qualities of the spine abnormality photos, such as the existence
of distinguishing features that AlexNet could effectively capture, may
have favored its performance over ResNet’s. Furthermore, conducting
clinical trials or working with medical specialists to test the model’s
predictions and examine their influence on patient care will increase
its credibility and utility in clinical settings. Furthermore, investigating
strategies for model interpretability and explain ability would increase
clinicians’ faith in the system and allow its integration into medical
workflows. Finally, continued development and validation of the model
are required to ensure its usefulness and safety in identifying spine
problems and improving patient outcomes.

Future Directions

Various avenues remains open future work. Those includes ex-
panding datasets with multicenter and multimodal images, which are
compared against SOTA models includes vision transformers, UIU-Net
along with complete ablation and interpretability studies that combines
system validation and multimodal clinical data in real world hospital
workflows.
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