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Abstract: The spine serves as a fundamental structure that supports bodily functions, movements, protection of vital neural pathways, and overall 
well-being. Any abnormalities or injuries to the spine can significantly impact a person’s quality of life. Early detection of these conditions is crucial 
for effective treatment and management. Hence, this study focuses on the detection and classification of spine abnormalities using advanced deep 
learning algorithms. In recent years, deep learning methods, particularly convolutional neural networks (CNNs), have demonstrated promising 
performance in medical image processing applications. This study investigates the effectiveness of advanced CNN architectures, specifically 
AlexNet and ResNet, in detecting spine abnormalities and distinguishing scoliosis, spondylosis, and normal spine. Leveraging a dataset comprising 
3341 diverse spine X-rays images, this study aims to not only compare the effectiveness of AlexNet and ResNet but also determine the most 
accurate model for deployment in clinical settings. The results demonstrate the comparable performance of AlexNet and ResNet in detecting spine 
abnormalities. Insights gained from this comparative analysis can inform healthcare practitioners and researchers on the optimal choice of deep 
learning architecture for spine abnormality detection, ultimately contributing to improved diagnostic accuracy and patient outcomes.
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1. Introduction
Spine abnormalities are conditions widely ranging from 

congenital malformations to degenerative alterations that can impact 
the structure, alignment, and function of the spinal area. Examples 
include spinal stenosis, disc herniation, kyphosis, scoliosis, and 
vertebral fractures. These frequently present as pain, limited movement, 
and neurological deficits, which substantially influence an individual’s 
quality of life [1–3]. Conventional diagnostic techniques that depend 
on subjective interpretation and manual evaluation are time-consuming 
and prone to errors.

This study presents a novel approach that improves and automates 
the detection of spine abnormalities using deep learning techniques 
particularly focusing on spondylosis (involves small fractures between 
vertebrae), scoliosis (defined by sideways bending), and normal spine 
shape. Advanced convolutional neural network (CNN) architectures 
like AlexNet and ResNet are used to accurately identify and categorize 
abnormalities in medical X-rays that have been annotated by skilled 
radiologists [4–6].

The goal of this research is to equip medical practitioners with 
improved diagnostic capabilities in the field of spine health by creating 
a dependable and user-friendly tool [7, 8], thereby enabling early 
intervention and improved patient outcomes through prompt treatments 
and individualized treatment plans [9, 10]. The major motivation of 
this work is to resolve the evolving challenges in the detection of spine 
abnormality, in which the existing diagnostic methods heavily rely 
on manual interpretation that is highly time-consuming and prone to 
variability among radiologists. The major motivation of the proposed 

work is provided as below: 

1)  Multiclass clinical-based detection: Different from the conventional 
models that effectively concentrate on single abnormality, the 
proposed method was designed to effectively and accurately classify 
normal spine, spondylosis, and scoliosis, to achieve support to reach 
a more comprehensive decision. 

2)  Comparative evaluation of CNN architectures: By comparing 
the AlexNet and ResNet on similar datasets, the more effective 
model (i.e., AlexNet with 97% accuracy) would be determined, and 
researchers and clinicians would gain actionable insights regarding 
selection of architectures for spine abnormality detection. 

3)  Optimized deployment from lightweight architecture: Although 
ResNet struggled with overfitting and instability in validation, 
the AlexNet achieved higher accuracy with lesser computational 
requirements due to its shallower yet efficient regularization.

The remainder of this research work is organized as follows: In 
Section 2, we discuss various spine abnormality identification methods 
carried out using machine learning (ML) and deep learning techniques 
in image processing applications. In Section 3, we describe the overall 
system design of the spine abnormality in image processing and deep 
learning techniques. In Section 4, we present the performance evaluation 
and analysis of the results obtained using ALexNet had been compared 
with other state-of-the-art CNN model. In Section 5, our conclusion 
summarizes the contributions of the study along with suggestions for 
future research.

2. Literature Review
Wang et al. [11] presented SpineHRNet+, a novel hybrid model 

that combines rule-based and artificial intelligence methods. The model 
uses deep learning models HRNet and UNet to automate the detection 
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of endplate landmarks and the segmentation of the spine region by 
employing biplanar radiographs, an EOS machine, and manually 
annotated landmarks as references. The model’s dependability is 
verified by assessment using Bland–Altman plots, confusion matrices, 
and linear regression. SpineHRNet+ enables continuous auto-analysis 
of spine alignment, which may improve clinical practice and make 
large-scale studies easier. Because of its interpretability, users can make 
adjustments to improve clinical insights. Biplanar radiographs of 1,542 
patients with scoliosis are included in the study of Wang et al. [11]. This 
technique for spine alignment analysis [11] has clinical applicability 
and scalability, which bodes well for improvements in patient care and 
future research.

Germann et al. [12] described a deep learning-based automated 
method for segmenting the lumbar vertebrae. It uses a three-dimensional 
X-Unet for segmentation and a UNet-based lumbar spine localization 
network for placement. Comparison with conventional approaches 
shows improved performance on lumbar spine CT images from the 
VerSe 2020 public dataset and an internal hospital dataset (containing 
500 and 156 samples, respectively). The two-stage approach shows 
potential for use in the diagnosis of spinal anomalies and support of 
surgical treatment by efficiently positioning and segmenting lumbar 
vertebrae. Notably, it achieves accurate lumbar vertebrae segmentation 
better than traditional UNet, IFCN, and nn-Unet approaches.

In a paper by Natalia et al. [13], a major problem among tumor-
related bone metastases is the vital need for precise detection of spinal 
metastases, which is addressed in the present study where we present 
a novel method for predicting and diagnosing spinal metastases using 
MRI data and deep learning, more especially a multilayer CNN. The 
model obtains an amazing accuracy rate of 96.45% by analyzing a large 
dataset consisting of 941 patients who had spinal metastases. It uses 
manifold learning techniques and SoftMax classifiers to identify spinal 
metastases with high precision and to reveal fracture risk indicators on 
X-rays. The present study underscores the capacity of sophisticated 
computational techniques to revolutionize the identification and 
handling of spinal metastases, presenting auspicious prospects for 
augmenting patient results and therapeutic approaches.

Merali et al. [14] employed a deep convolutional neural 
network (DCNN) to conduct vertebral body measurements and 
detect insufficiency fractures on lumbar spine MRI scans. The 
dataset included lumbar spine MRI data from multiple institutions as 
well as a retrospective examination of 1000 vertebral bodies in 200 
patients. Of these patients, 61 suffered fractures resulting in vertebral 
body insufficiency. The results showed that the DCNN performed 
exceptionally well in terms of both vertebral body measurements and 
the diagnosis of insufficiency fractures in a variety of lumbar spine MRI 
scans. Especially, it shows resilience to changes in radiological facility, 
a kind of MRI scanner, and intensity of magnetic field. For vertebral 
body measurements, the DCNN achieved a sensitivity of 0.941, 
specificity of 0.969, and accuracy of 0.962 in diagnosing insufficiency. 
It also demonstrated good inter-reader agreement with radiologists.

Biercher et al. [15] focused on automating the selection of 
transverse lumbar spine MRI scans for detecting anomalies in the 
intervertebral disc (IVD), notably in the diagnosis of lumbar spinal 
stenosis (LSS). They investigated a variety of ML techniques, including 
DCNN, dimensionality reduction, feature selection, and various ML 
algorithms, utilizing a dataset of MRI scans, and concluded that using 
the support vector machine technique with a small Gaussian kernel 
on full-length features taken from the DenseNet201 model produces 
the best results. It achieved per-class classification performance of 
approximately 0.88, with precision (0.95–0.99) and recall (0.93–1.0). 
This study by Biercher et al. [15] significantly contributes to the literature 
with their thorough investigation of ML techniques for automatic 
image selection, providing valuable insights into LSS diagnosis and 
suggestions regarding selection of suitable methodologies.

Merali et al. [16] trained a CNN to detect various spinal 
cord diseases in thoracolumbar MRI scans of dogs and evaluated 
its performance. The CNN was trained to recognize intervertebral 
disc extrusion (IVDE), intervertebral disc protrusion (IVDP), fibro-
cartilaginous embolism (FCE), acute non-compressive nucleus 
pulposus extrusion (ANNPE), syringomyelia, and neoplasia using 
MRI scans from 500 dogs (2,693 for training and 7,695 for testing). 
The results demonstrated the CNN’s ability to recognize and identify 
various diseases, with particular success in detecting IVDPs and 
IVDEs. Notably, on sagittal T1-weighted images, the CNN detected 
IVDPs with a sensitivity of 100% and a specificity of 95.1%. It also 
performed well in detecting IVDEs, FCEs, and ANNPEs, with different 
sensitivity and specificity [17, 18]. This study by Merali et al. [16] 
demonstrated CNNs’ potential for accurately and specifically detecting 
complex spinal cord disorders in canine MR imaging.

Current work has explored highly advanced architectures beyond 
conventional CNN. For instance, the UIU-Net, a variant of U-Net 
that enables uncertainty-based mechanism and enhanced encoder-
decoder pathways, has achieved improved performance compared 
with traditional CNN architectures in medical anomaly detection tasks 
especially in segmentation enabled spine analysis [19, 20]. Such models 
are computationally intensive and require larger annotation datasets. In 
contrast, the proposed model enables lighter CNN architecture which 
trade-off computational efficiency and accuracy for real time diagnostic 
support.

3. System Design
The system to detect and classify spine abnormalities using 

advanced CNN techniques uses a comprehensive approach encompassing 
data preprocessing, model architecture design, training, and evaluation. 
Initially, a diverse dataset of X-ray images of the spine comprise both normal 
and abnormal spine conditions, and these are collected and preprocessed. 
Preprocessing techniques such as rescaling, shear transformations, zoom 
transformations, flipping images horizontally are performed to enhance 
model generalization. The dataset is then divided into subsets for testing, 
validation, and training. The model architecture is developed using 
advanced CNN techniques such convolutional layers with different filter 
sizes, batch normalization, dropout layers, advanced activation functions, 
and pooling layers for spatial down sampling (Figure 1). To improve 
performance, deeper learning models are also being investigated. The 
model is optimized during training by using suitable optimizers [21, 22]. 
To evaluate the effectiveness and accuracy of the categorization, a variety 
of performance metrics are computed and applied.

The model’s effectiveness and flexibility to changing patient 
demographics and diagnostic standards are guaranteed by regular 
retraining and ongoing monitoring. An efficient system for spine 
abnormality detection and classification employing advanced CNN 
techniques is obtained through this methodical approach, which may 
have a big impact in the medical field.
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 Figure 1
Proposed system architecture of spine abnormality
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3.1. Data setting
In this study, we leveraged the dataset sourced from Fraiwan et al. 

[23], which comprised 3341 vertebrae X-ray images depicting a diverse 
representation of spine conditions including spondylosis, scoliosis, and 
normal spine, facilitating a comprehensive model training. As shown 
in Figure 2, the system can learn to classify X-ray images accurately, 
distinguishing between different spine conditions and detecting them 
with high precision. This combination of hardware and software ensures 
robust, efficient, and consistent development environments suitable for 
the complex task of medical image analysis and spine abnormality 
detection.

3.2. Preprocessing images
The model starts by importing images from the specified 

dataset directory using the OpenCV library. The images are read 
from their storage location and formatted to function with the training 
and inference deep learning framework. X-ray images usually have 
different resolutions and sizes. Therefore, the images are downsized 
to a specified resolution of 224 × 224 pixels, which is a typical input 
size for many deep learning models including AlexNet and ResNet, 
to ensure consistency and compliance with the model’s input size. 
X-ray images are usually saved in the project as digital pictures with 
pixel values between 0 and 255. For images with 8-bit depth, each 
pixel is represented by an integer value between 0 (black) and 255 
(white), indicating the intensity or brightness of the pixel. In this 
model, rescaling is applied using the formula: rescaled pixel value = 
original pixel value/255, where 1.0/255 is used to perform element-
wise division, effectively scaling the pixel values to the range [0, 1]. 
Rescaling is part of the pipeline along with other data preparation steps 
like resizing and data augmentation. Every pixel in the input image 
is rescaled before being sent to the deep learning model for training 
or inference. The X-ray images are subjected to data augmentation 
in order to produce more training samples and enhance the model’s 
capacity to generalize to previously unknown data.

The following data augmentation techniques are employed in this 
project: 

a.  Shearing: Shear transformations introduce geometric distortions 
to the image by displacing a portion of the image in either the 
horizontal or vertical direction. The shear range parameter 
establishes the maximum intensity of the shear transformation 
that is applied to the images. Here, the shearing range was set to 
0.2, allowing for a maximum shear angle of 20°. 

b.  Zooming: Randomly zooming into or out of the image allows 
simulation of variations in scale. The zoom range was set to 0.2, 
allowing for a maximum zoom factor of 20%. 

c.  Horizontal flipping: This step randomly flips images horizontally. 
It efficiently doubles the training data set without requiring 
additional picture collections by introducing left-right symmetry 
variances. Horizontal flipping was applied with a probability 
of 50%, resulting in a mirror image of the original with equal 
likelihood.

3.3. Model building and training
Before proceeding with the detailed exploration of model 

architectures, it is imperative to acknowledge the initial phase of the 
project where both AlexNet and ResNet architectures were meticulously 
trained and evaluated for spine abnormality detection. Subsequently, 
the model exhibiting the highest accuracy was judiciously selected for 
deployment in the spine abnormality detection system. This methodical 
approach ensured a thorough comparison between AlexNet and ResNet 
architectures, ultimately guaranteeing the deployment of the most 
accurate and reliable model for real-world implementation.

3.3.1. AlexNet model
AlexNet’s input layer creates a placeholder for input data and 

defines its intended format. The input shape is (224, 224, 3), suggesting 
images having height and width dimensions of 224 pixels and three 
RGB color channels. Convolutional layers are critical components of 
CNNs as they extract significant information from input images. These 

3

Figure 2
Vertebrae X-ray images
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layers conduct convolution operations on the input image using a set of 
learnable filters or kernels to identify characteristics like edges, textures, 
and patterns. Here, the AlexNet model consisted of 5 convolutional 
layers and other layers: 

a.  First convolutional layer: The input images were subjected to 96 
filters, each measuring 11 × 11 pixels, using the first convolutional 
layer of AlexNet. These filters captured large-scale patterns and 
structures, like edges and color gradients, by swiping across the 
input with a stride of 4. The output feature maps maintained the 
spatial dimensions of the input. Rectified linear unit (ReLU) 
activation was used to add nonlinearity after the convolution 
procedure, enabling the network to describe intricate relationships 
in the data. The activations were subsequently normalized by 
batch normalization, which lowered the internal covariate shift 
and improved training stability and efficiency.

b.  Second convolutional layer: enhancing the first feature extraction, 
256 filters of 5 × 5 pixels were used in the second convolutional 
layer. The previous layer’s feature maps can be used to extract 
more precise and localized features, thanks to these smaller 
filters. Nonlinearity was again introduced using ReLU activation, 
which made it easier to identify complex patterns in the data. 

c.  Third, fourth, and fifth convolutional layers: These next 
convolutional layers were made up of 384 filters, each measuring 
3 × 3 pixels. The network may capture increasingly abstract and 
high-level representations of the input data by stacking many 
layers with lower filter sizes. In order to encode more intricate 
and discriminative information pertinent to the classification 
task, these layers concentrated on honing the features that were 
extracted by the layers that came before them. While batch 
normalization was applied after these layers, ReLU activation 
was applied to create nonlinearity. 

d.  Normalization layers (batch normalization): By normalizing the 
output of the convolutional layers, batch normalization improves 
stability and speeds up training. Normalizing each batch’s 
activations aids in lowering the internal covariate shift. Each 
convolutional layer was followed by batch normalization. 

e.  Max pooling layers: To downsample the feature maps and improve 
their resilience to spatial translations, AlexNet’s Max Pooling 
layers were arranged after the first, second, and fifth convolutional 
layers. The most prominent characteristics were retained, while 
the spatial dimensions of the feature maps were effectively cut in 
half with each pooling operation, which has a size of 3 × 3 and 
a stride of 2. Max Pooling assisted in capturing the most salient 
aspects while eliminating extraneous information by keeping only 
the maximal activation within each pooling region. 

f.  Flattening layer: The flattening layer acts as a link between 
the convolutional and fully connected layers. It collapses 
spatial information while maintaining feature representation 
by converting the multidimensional convolutional layer 
output into a one-dimensional tensor. Spatial information with 
dense connections may be seamlessly integrated, thanks to the 
flattening layer, which converts the convolutional feature maps 
into a linear array. As a result, it makes it easier for learnt features 
to spread to next layers, guaranteeing efficient feature extraction 
and classification in challenging tasks like image recognition.

g.  Fully connected (dense) layers: The central hub of the completely 
connected layers of AlexNet was made up of two dense layers, 
each with 4096 neurons. These layers added nonlinearity to 
the network by applying ReLU activation to every neuron. 
Furthermore, by permitting only positive values to flow 
through, the ReLU activation function mitigated the vanishing 
gradient issue and speeded up the network’s calculation. The 
AlexNet architecture culminates in a soft-max output layer, 
which generates probability distributions over the three classes, 

enabling the model to make predictions about the presence of 
spine abnormalities in the input X-ray images. The architecture 
is compiled using the Adam optimizer, categorical cross-entropy 
loss function, and metrics such as accuracy and precision to 
evaluate model performance during training and testing phases. 
Figure 3 shows the architecture of ALexNet.

3.3.2. ResNet model
In this spine abnormality detection project, the ResNet 

architecture utilized began with an input layer tailored to receive RGB 
images of dimensions 224 × 224 pixels. 

a.  Convolutional layers: The initial convolutional layer utilized a 
7 × 7 kernel size with 64 filters and a stride of 2 to process input 
images. Each filter extracted different features, such as textures 
and edges, contributing to the model’s ability to capture intricate 
patterns in the input data.

b.  Max pooling layers: After convolutional processing, max pooling 
layers significantly reduced the spatial dimensions of feature maps, 
facilitating more effective processing and better generalization. 
In this downsampling process, the maximum value was set within 
each 3 × 3 region of the feature maps, in order to capture essential 
information while reducing computational complexity.

c.  Residual blocks: The ResNet architecture incorporated residual 
blocks to address the vanishing gradient problem commonly 
encountered in deep networks. Each residual block consisted 
of convolutional layers followed by batch normalization and 
ReLU activation functions, enhancing stability and convergence 
during training. Skip connections within residual blocks ensured 
the preservation of original data from earlier layers, mitigating 
degradation issues in deep networks. 
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 Figure 3
AlexNet architecture
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d.  Global average pooling layer: Following residual blocks, global 
average pooling condensed feature maps into fixed-size vectors, 
efficiently summarizing distinct features while preserving spatial 
information. This process enhanced generalization and reduced 
the risk of overfitting by ensuring the model’s output remains 
consistent across varying input sizes. 

e.  Fully connected layer: The flattened layer converted 3D feature 
maps into a 1D vector, preparing them for further processing. 
Subsequently, a fully connected layer processed the flattened 
vector, mapping retrieved features to class probabilities. 

f.  Activation function: The final output of the fully connected 
layer was transformed using an activation function, typically 
soft-max, which converted the output values into probabilities 
and normalized them across all classes, facilitating interpretation 
by providing a likelihood distribution over potential class. 

g.  Optimizer and loss function: The ResNet model was trained using 
the Adam optimizer, a popular optimization algorithm known for 
its efficiency and effectiveness in minimizing the model’s loss 
function. During training, the difference between expected and 
actual class probabilities was measured using the categorical 
cross-entropy loss function.

3.3.3. Training
Both AlexNet and ResNet architectures were trained using a 

batch size of 32 images per batch, over multiple epochs. The training 
process iterated over the dataset for a predefined number of epochs to 
update model parameters. The models were compiled with the Adam 
optimizer, categorical cross-entropy loss function, and evaluation 
metrics such as accuracy and precision. Early stopping criteria, based 
on validation loss or performance plateauing, were implemented to halt 
training and prevent model over fitting. Hyper-parameter tuning was 
performed to optimize model performance, including adjustments to 
learning rate, dropout rate, and other model parameters.

3.4. Model evaluation
Following training, the efficiency of the trained models (ResNet 

and AlexNet) in identifying spine anomalies was assessed. During 
preprocessing, the dataset was divided into training and validation sets. 
While the validation set was kept reserved for evaluation, the training 
set was utilized to train the models. This guarantees that the models 
are evaluated on untested data, resulting in a more precise assessment 
of their generalization capacity. To measure the models’ effectiveness, 
accuracy, precision, recall (sensitivity), and F1-score were calculated.

3.4.1. Accuracy
Accuracy refers to the proportion of correctly classified images 

out of the total number of images in the validation set. The formula used 
to evaluate accuracy is represented in Equation (1):

3.4.2. Precision
Precision refers to the ratio of true positive predictions to the 

total number of positive predictions. It measures the model’s ability 
to correctly identify positive cases (e.g., spine abnormalities) without 
misclassifying negative cases (e.g., normal spine) using Equation (2), 
where TP represents true positives and FP represents false positives.

3.4.3. Recall (sensitivity)
Recall is calculated using Equation (3), where TP represents 

true positives and FN represents false negatives. It is the ratio of true 
positive predictions to the total number of actual positive cases in the 
validation set. Recall measures the model’s ability to correctly detect 
all positive cases.

3.4.4. F1-Score
This metric measures the harmonic mean of precision and recall 

using Equation (4), providing a balanced measure of the model’s 
performance.

3.4.5. Model selection and deployment
The selection of the optimal model for deployment is a critical 

decision influenced by various factors, including accuracy, performance 
metrics, and computational efficiency. After thorough evaluation, it was 
determined that AlexNet demonstrated superior accuracy and precision 
in classifying spine abnormalities, compared to ResNet, making it the 
optimal choice for deployment within the web application framework. 
Detailed analysis and comparison of the performance metrics between 
AlexNet and ResNet is presented in Table 1. 

(1)

(2)

(3)

(4)

5

AlexNet Algorithm
Input : x = dataset
Output : Classification accuracy, sensitivity, specificity, precision and F1 score
1. X is divided into a training set and a testing set.
2. Preprocessing: resize the training set
3. Augment: Rand Rotation [-5,-5] , Rand X Reflection 1, Rand Y Reflection 1, Rand X Shear [-0.05, 0.05], Rand Y Shear [-0.05,0.05], Rand 
X Shear [0.5, 1], Rand Y Shear [0.5,1], Rand X Translation [-5,-5], Rand Y Translation [-5,-5]
4. Initialize: net = AlexNet, S = sparsity, N= the number of Iterations, T= threshold, A=array of scores
5. For i= 1 to N
6. Calculate: A (Dlupdate)
7. Sort (A)
8. Calculate: The threshold by Threshold=Iteration Scheme (x) ×A
9. Prune (net,t)
10. Set: number of pruned parameters.
11. End
12. Return Classification accuracy, sensitivity, specificity, precision and F1-score
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The trained AlexNet model was saved in the .h5 format and 
integrated into a web application using the Django framework for 
deployment. The building of a web application allowed users to upload a 
spinal X-ray image for categorization. When an image was uploaded using 
the web interface, it was preprocessed (e.g., resized and normalized) to 
meet the AlexNet model’s input specifications. The preprocessed image 
was then run through the deployed AlexNet model to make an inference. 
The web application showed the user the matching outcome based on the 
model’s prediction, which assigned a probability distribution over classes 
Normal, Scoliosis, or Spondylosis [24–26]. This method made it easier 
to understand medical photos and gives patients and healthcare providers 
quick information about spinal disorders right from the website, all 
without the need for specialist knowledge or software.  Users can interact 
with the web application through a user-friendly interface, facilitating the 
diagnosis of spine abnormalities using deep learning technology.

4. Implementation and Results

4.1. Environmental setup
This step created the environment needed to make it easier to 

develop and train neural network models where Jupyter notebook was 
used for training and Django framework was used to deploy the model. 
Keras, TensorFlow, and other necessary packages and libraries were 
loaded.

4.2. Data preparation
To create batches of photos and their labels for feeding into the 

neural network model during training and assessment, the code first set 
up “ImageDataGenerator” objects for both training and testing datasets. 
It then preprocessed and augmented the images for training.

4.3. Setting up model checkpoint
To save the best-performing model during training, both snippets 

set up a model checkpointing mechanism. When a new best model 
was saved, the “ModelCheckpoint” callback published a message, 
monitored training accuracy, and only saved the model when the 
accuracy was better than the previous best. The file path (model_path) 
was where the saved model was kept.

4.4. Fitting the model
The AlexNet and ResNet models were trained on their respective 

training datasets (train_data) using the fit technique in both snippets. The 
training procedure processed batches of data defined by steps_per_epoch 
at each epoch, iterating over the number of epochs indicated by epochs. 
The model’s performance was tracked throughout training using the 
validation dataset (test_data), as indicated by validation_data. Additionally, 
the validation procedure ran in batches specified by validation_steps. 
Performance analysis and post-training visualization were made possible 
by the training history (history), which recorded the training and validation 
metrics (e.g., loss and accuracy) at the end of each epoch.

4.5. Model accuracy analysis
AlexNet vs. ResNet training trends examining these charts 

provided insights on how effectively the model was learning from the 
training data and whether changes to the training procedure or model 
architecture were necessary.

Figure 4 shows the accuracy of AlexNet, with a steady increase 
and a maximum accuracy of 96.88%. Figure 5 shows the accuracy 
of ResNet with slight fluctuations and gradual increase obtaining a 
maximum of 94.79%.

4.6. Visualizing training loss over epochs
Figure 6 illustrates how the loss varied throughout the training 

process by examining these loss charts. AlexNet showed a stable 
declining loss, indicating that the model was learning. Figure 7 
represents the ResNet model with a plateau or rising loss, which could 
be an indication of overfitting or other problems that call for changes to 
the model or training procedure. A declining loss shows that the model 
was learning.

6

 Figure 6
Loss of AlexNet model

 Figure 5
Accuracy of ResNet model

 Figure 4
Accuracy of AlexNet model

Evaluation parameters AlexNet ResNet
Overall accuracy 0.9687 0.94792
Validation loss 0.2704 3.3679
Precision 0.9344 0.9158
Recall (sensitivity) 0.8566 0.7867
Validation accuracy 0.9531 0.3906

Table 1
AlexNet and ResNet performance metrics
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4.7. Testing and classification of spine abnormality
Deploying AlexNet with Django facilitated model testing using 

dataset pictures, enabling real-world application and evaluation of its 
clinical usefulness (Figure 8). This integration provided vital insights 
into performance using unseen data. Django’s flexibility ensured a 
smooth interaction with the user interface, enhancing accessibility and 
usability of the spinal anomaly detection system. This holistic approach 
underscored the significance of selecting appropriate neural network 
architectures and integrating deep learning models into practical 
applications to yield meaningful results in healthcare and beyond.

Step 1: Upload an X-ray image from test dataset in the user 
interface shown in Figure 9.

Step 2: Click submit to classify the spine abnormality of uploaded 
image. Spine abnormality is classified into three categories: normal 
spine, scoliosis spine, and spondylosis spine. The sample images are 
shown in Figure 10 [23]. A normal healthy spine is straight when viewed 
from the front, with gentle curves when viewed from the side (Figure 
10(a)). Scoliosis is defined by an unnatural curving of the spine to the 

side. The spine may not line vertically but instead curve sideways to 
form an S or C shape. Figure 10(b) shows an image of a scoliosis spine. 
Although this curvature can arise at any age and range from moderate 
to severe, it is typically diagnosed in adolescence. Spondylosis refers 
to degenerative changes in the spine, including the formation of bone 
spurs, disc degeneration, and thickening of ligaments (Figure 10(c)). It 
can cause pain, stiffness, and decreased mobility in affected areas.

4.8. Performance metrics analysis of AlexNet and 
ResNet

The performance metrics for AlexNet and ResNet are presented 
in Table 1, encompassing the various evaluation measures. For instance, 
the image preprocessing (normalization and rescaling) enabled uniform 
distribution of input whereas data augmentation (horizontal flipping, 
zooming, and shearing) predominantly enhanced the generalization and 
diminished overfitting. Similarly, the inclusion of dropout regularization 
in the AlexNet showed its superior stability than ResNet with a higher 
validation loss ad overfitting.

4.9. Training and validation metrics of ResNet and 
AlexNet

The model’s capacity to generalize to new, previously unseen 
data was measured by validation loss, which compared its predictions 
to the actual values in the validation set. Similar to training loss, 
validation loss was frequently calculated using metrics such as mean 
squared error or cross-entropy loss. Figure 11 demonstrates that both 
training and validation accuracy have reached roughly 97%. Figure 12 
depicts the loss and accuracy metrics throughout epochs, revealing that 
by the 20th epoch, the model’s loss for both training and validation 
is almost zero. Furthermore, training and validation accuracy rapidly 
improved, reaching approximately 97% by the 75th epoch.
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 Figure 8
Implementation of Django framework

 Figure 9
Image uploading interface

 Figure 10
(a) Normal spine, (b) scoliosis, and (c) spondylosis

 Figure 7
Loss of ResNet model

 Figure 11
Performance metrics of AlexNet
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Figure 13 is a graphical depiction of the precision–recall (PR) 
curve of the trade-off between precision and recall for various threshold 
levels. When there is an imbalance in the classrooms, it is helpful. 
Precision provides an answer to the following query: What percentage 
of the model’s positive predictions were accurate? While recall answers, 
how many of the actual positive events were accurately predicted by the 
model? Here, the precision and recall curve values of the model are 
constantly around 95–100%.

The ResNet model showed a significant difference in performance 
between the training and validation phases, indicating possible 
overfitting. In Figure 14, despite reaching a high training accuracy of 
roughly 94%, the validation accuracy was significantly lower at around 
40%. This mismatch was visibly represented in the graph, with the 
validation loss reaching 3.3679. Such results indicated that, while the 
model learned efficiently from training data, it struggled to generalize 
well to unseen data, emphasizing the  importance of regularization 
approaches or model changes to alleviate overfitting and enhance 
validation accuracy.

The AlexNet and ResNet models were evaluated using a range 
of performance parameters, including accuracy, validation loss, 
precision, recall, and validation accuracy, which are all represented 
in a comparative graph in Figure 15. AlexNet outperformed ResNet 
with an accuracy of 96.87%, which is close to 97%, and a validation 
accuracy of 95.31%. It yielded a less significant validation loss of 
0.27%, demonstrating robust generalization capabilities. AlexNet also 
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 Figure 13
Precision–recall curve

 Figure 15
Comparison of evaluation parameters of AlexNet and ResNet

 Figure 14
Performance metrics of ResNet

Metric AlexNet ResNet-50
Approx parameters ~60 million ~25.6 million
Model size ~240 MB ~98 MB
FLOPs ~724 MFLOPs ~3.8 GFLOPs
Training time ~3.5 min ~ 7.8 min
Inference time ~ 3.2 ms ~6.5 ms

Table 2
Computational complexity and runtime comparison

 Figure 12
AlexNet loss and accuracy graph
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had remarkable precision and recall scores of 93.44% and 85.66%, 
respectively, suggesting its efficacy in correctly detecting important 
instances.

In contrast, ResNet had a slightly lower accuracy of 94.79%, 
with a significant difference between training and validation accuracy 
of 94% and 39.06%, respectively. ResNet also had a significantly 
larger validation loss (3.37%), indicating probable overfitting and low 
generalization capacity. The precision and recall scores for ResNet 
were 91.58% and 78.67%, respectively, showing its potential to reliably 
categorize instances but with lesser recall compared to AlexNet.

4.10. Computational complexity and running time 
analysis

In order to further examine the proposed work practicality, this 
research analyze the computational complexity and running time of 
both the ResNet and AlexNet models. Table 2 shows the comparison 
in terms of average inference time, FLOPs, model size, and parameter 
count. 

5. Conclusion
To identify spine abnormalities, two common CNN architectures, 

ResNet and AlexNet, were used. The dataset included 3341 X-ray images 
divided into three categories: normal spine, scoliosis, and spondylitis. 
ResNet, which is recognized for its deeper architecture and skip 
connections, obtained 94% accuracy, whereas AlexNet, a pioneering 
CNN with a shallower design, achieved 96%. Despite ResNet’s resistance 
to over-fitting and greater performance on a variety of tasks, including 
picture classification, AlexNet achieved slightly higher accuracy in this 
particular situation. The decision to choose AlexNet over ResNet in 
the comparative model indicates that, despite its simpler architecture, 
AlexNet was better suited to the spine abnormality classification 
assignment for this dataset. AlexNet’s improved performance in this 
case can be ascribed to a variety of variables. Its shorter architecture 
may have been better suited to the dataset’s size and task complexity, 
needing fewer parameters and computational resources than ResNet. 
Furthermore, AlexNet’s dropout regularization may have effectively 
reduced overfitting, adding to its improved accuracy. Furthermore, the 
unique qualities of the spine abnormality photos, such as the existence 
of distinguishing features that AlexNet could effectively capture, may 
have favored its performance over ResNet’s. Furthermore, conducting 
clinical trials or working with medical specialists to test the model’s 
predictions and examine their influence on patient care will increase 
its credibility and utility in clinical settings. Furthermore, investigating 
strategies for model interpretability and explain ability would increase 
clinicians’ faith in the system and allow its integration into medical 
workflows. Finally, continued development and validation of the model 
are required to ensure its usefulness and safety in identifying spine 
problems and improving patient outcomes.

Future Directions
Various avenues remains open future work. Those includes ex-

panding datasets with multicenter and multimodal images, which are 
compared against SOTA models includes vision transformers, UIU-Net 
along with complete ablation and interpretability studies that combines 
system validation and multimodal clinical data in real world hospital 
workflows. 

Ethical Statement
The X-ray images were obtained from a publicly available and 

fully de-identified dataset (Fraiwan et al. [23]; Mendeley Data, DOI: 

10.17632/xkt857dsxk.1). Therefore, ethical approval and informed 
consent were not required.

Conflicts of Interest
The authors declare that they have no conflicts of interest to this 

work.

Data Availability Statement
The data that support the findings of this study are openly avail-

able in Mendeley Data at http://doi.org/10.17632/xkt857dsxk.1, refer-
ence number [23].

Author Contribution Statement
Gobalakrishnan Natesan: Conceptualization, Methodology, 

Software, Validation, Formal analysis, Investigation, Resources, Data 
curation, Writing – original draft, Project administration. Anbarasan 
Murugesan: Software, Formal analysis, Investigation, Resources, 
Data curation, Writing – review & editing, Visualization, Supervision. 
Ramshankar Nagarajan: Software, Formal analysis, Investigation, 
Resources, Data curation, Writing – review & editing, Visualization.

References
  [1]	 Meng, N., Cheung, J. P. Y., Wong, K.-Y. K., Dokos, S., Li, S., 

Choy, R. W., ..., & Zhang, T. (2022). An artificial intelligence 
powered platform for auto-analyses of spine alignment irrespec-
tive of image quality with prospective validation. eClinical Med-
icine, 43, 101252. https://doi.org/10.1016/j.eclinm.2021.101252 

  [2]	 Velmurugan, N., Rajeswari, R., Naganjaneyulu, S., &  Anupama, 
A. (2025). Rat swarm political optimizer based deep learning 
approach for lung lobe segmentation and lung cancer detection 
using CT images. Biomedical Signal Processing and Control, 
105, 107612. https://doi.org/10.1016/j.bspc.2025.107612 

  [3]	 Kaplan, K. M., Spivak, J. M., & Bendo, J. A. (2005). Embryology 
of the spine and associated congenital abnormalities. The 
Spine Journal, 5(5), 564–576. https://doi.org/10.1016/j.
spinee.2004.10.044 

  [4]	 Lu, H., Li, M., Yu, K., Zhang, Y., & Yu, L. (2023). Lumbar spine 
segmentation method based on deep learning. Journal of Applied 
Clinical Medical Physics, 24(6), e13996. https://doi.org/10.1002/
acm2.13996 

  [5]	 Singh, A., Nagabhooshanam, N., Kumar, R., Verma, R., 
Mohanasundaram, S., Manjith, R., ..., & Rajaram, A. (2025). 
Deep learning based coronary artery disease detection and 
segmentation using ultrasound imaging with adaptive gated 
SCNN models. Biomedical Signal Processing and Control, 105, 
107637. https://doi.org/10.1016/j.bspc.2025.107637 

  [6]	 Viancy, V., & Gobalakrishnan, N. (2025). Intelligent food quality 
monitoring: A hybrid dilated convolutional network and BiLSTM-
MSVM model for robust beef quality assessment. Food Control, 
176, 111396. https://doi.org/10.1016/j.foodcont.2025.111396 

  [7]	 Peng, Y., Wang, Y., Hu, F., He, M., Mao, Z., Huang, X., & Ding, 
J. (2024). Predictive modeling of flexible EHD pumps using 
Kolmogorov–Arnold Networks. Biomimetic Intelligence and 
Robotics, 4(4), 100184. https://doi.org/10.1016/j.birob.2024.100184 

  [8]	 Li, C., Zhang, B., Hong, D., Jia, X., Plaza, A., & Chanussot, J. 
(2024). Learning disentangled priors for hyperspectral anomaly 
detection: A coupling model-driven and data-driven paradigm. 
IEEE Transactions on Neural Networks and Learning Systems, 
36(4), 6883-6896. https://doi.org/10.1109/TNNLS.2024.3401589  

9

https://doi.org/10.17632/xkt857dsxk.1
http://doi.org/10.17632/xkt857dsxk.1
https://doi.org/10.1016/j.eclinm.2021.101252
https://doi.org/10.1016/j.bspc.2025.107612
https://doi.org/10.1016/j.spinee.2004.10.044
https://doi.org/10.1016/j.spinee.2004.10.044
https://doi.org/10.1002/acm2.13996
https://doi.org/10.1002/acm2.13996
https://doi.org/10.1016/j.bspc.2025.107637
https://doi.org/10.1016/j.foodcont.2025.111396
https://doi.org/10.1016/j.birob.2024.100184
https://doi.org/10.1109/TNNLS.2024.3401589


Journal of Computational and Cognitive Engineering Vol. 00  Iss. 00  2025

  [9]	 McKay, S. D., Al-Omari, A., Tomlinson, L. A., &  Dormans, 
J. P. (2012). Review of cervical spine anomalies in genetic 
syndromes. Spine, 37(5), E269–E277. https://doi.org/10.1097/
BRS.0b013e31823b3ded 

[10]	 Bradford, D. S., Heithoff, K. B., & Cohen, M. (1991). Intraspinal 
abnormalities and congenital spine deformities: A radiographic 
and MRI study. Journal of Pediatric Orthopaedics, 11(1), 36–41. 
https://doi.org/10.1097/01241398-199101000-00009 

[11]	 Wang, D., Sun, Y., Tang, X., Liu, C., & Liu, R. (2023). Deep 
learning-based magnetic resonance imaging of the spine in the 
diagnosis and physiological evaluation of spinal metastases. 
Journal of Bone Oncology, 40, 100483. https://doi.org/10.1016/j.
jbo.2023.100483 

[12]	 Germann, C., Meyer, A. N., Staib, M., Sutter, R., & Fritz, B. 
(2023). Performance of a deep convolutional neural network 
for MRI-based vertebral body measurements and insufficiency 
fracture detection. European Radiology, 33(5), 3188–3199. 
https://doi.org/10.1007/s00330-022-09354-6 

[13]	 Natalia, F., Young, J. C., Afriliana, N., Meidia, H., Yunus, R. 
E., & Sudirman, S. (2022). Automated selection of mid-height 
intervertebral disc slice in traverse lumbar spine MRI using 
a combination of deep learning feature and machine learning 
classifier. PLoS One, 17(1), e0261659. https://doi.org/10.1371/
journal.pone.0261659 

[14]	 Merali, Z., Wang, J. Z., Badhiwala, J. H., Witiw, C. D., Wilson, J. 
R., & Fehlings, M. G. (2021). A deep learning model for detection 
of cervical spinal cord compression in MRI scans. Scientific 
Reports, 11(1), 10473. https://doi.org/10.1038/s41598-021-
89848-3 

[15]	 Biercher, A., Meller, S., Wendt, J., Caspari, N., Schmidt-Mosig, 
J., de Decker, S., & Volk, H. A. (2021). Using Deep Learning to 
detect spinal cord diseases on thoracolumbar magnetic resonance 
images of dogs. Frontiers in Veterinary Science, 8, 721167. 
https://doi.org/10.3389/fvets.2021.721167 

[16]	 Merali, Z. A., Colak, E., & Wilson, J. R. (2021). Applications 
of machine learning to imaging of spinal disorders: Current 
status and future directions. Global Spine Journal, 11(1_suppl), 
23S–29S. https://doi.org/10.1177/2192568220961353 

[17]	 Almansour, H., Herrmann, J., Gassenmaier, S., Afat, S., Jacoby, 
J., Koerzdoerfer, G., Nickel, D., ..., & Othman, A. E. (2022). Deep 
learning reconstruction for accelerated spine MRI: Prospective 
analysis of interchangeability. Radiology, 306(3), e212922. 
https://doi.org/10.1148/radiol.212922 

[18]	 Tavana, P., Akraminia, M., Koochari, A., & Bagherifard, 
A. (2023). Classification of spinal curvature types using 

radiography images: Deep learning versus classical methods. 
Artificial Intelligence Review, 56(11), 13259–13291. https://doi.
org/10.1007/s10462-023-10480-w 

[19]	 Kim, H. J., Yang, J. H., Chang, D.-G., Lenke, L. G., Suh, S. 
W., Nam, Y., ..., & Suk, S.-I. (2022). Adult spinal deformity: A 
comprehensive review of current advances and future directions. 
Asian Spine Journal, 16(5), 776–788. https://doi.org/10.31616/
asj.2022.0376 

[20]	 Tavana, P., Akraminia, M., Koochari, A., & Bagherifard, A. 
(2023). An efficient ensemble method for detecting spinal 
curvature type using deep transfer learning and soft voting 
classifier. Expert Systems with Applications, 213, 119290. https://
doi.org/10.1016/j.eswa.2022.119290 

[21]	 Mbarki, W., Bouchouicha, M., Frizzi, S., Tshibasu, F., Farhat, 
L. B., & Sayadi, M. (2020). Lumbar spine discs classification 
based on deep convolutional neural networks using axial view 
MRI. Interdisciplinary Neurosurgery, 22, 100837. https://doi.
org/10.1016/j.inat.2020.100837 

[22]	 Cousins, J. P., & Haughton, V. M. (2009). Magnetic 
resonance imaging of the spine. Journal of the American 
Academy of Orthopaedic Surgeons, 17(1), 22–30. https://doi.
org/10.5435/00124635-200901000-00004 

[23]	 Fraiwan, M., Audat, Z., & Manasreh, T. (2022). A dataset of 
scoliosis, spondylolisthesis, and normal vertebrae X-ray images. 
Mendeley Data, 1, 2022. http://doi.org/10.17632/xkt857dsxk.1

[24]	 Kim, M., Yun, J., Cho, Y., Shin, K., Jang, R., Bae, H., & Kim, 
N. (2019). Deep learning in medical imaging. Neurospine, 16(4), 
657–668. https://doi.org/10.14245/ns.1938396.198 

[25]	 Nanda, R. H., Hua, C.-H., Flampouri, S., Eaton, B., Kaste, 
S., Patni, T., ..., & Esiashvili, N. (2024). Risks of spinal 
abnormalities and growth impairment after radiation to the spine 
in childhood cancer survivors: A PENTEC comprehensive review. 
International Journal of Radiation Oncology*Biology*Physics, 
119(2), 507–521. https://doi.org/10.1016/j.ijrobp.2023.10.039 

[26]	 Takai, K., Endo, T., & Komori, T. (2025). Calcified Hofmann’s 
ligaments as the cause of spinal cerebrospinal fluid leaks associated 
with spinal ventral dural tears. Journal of Neurosurgery: Spine, 
42(1), 43–48. https://doi.org/10.3171/2024.7.SPINE24480

10

How to Cite: Natesan, G., Murugesan, A., & Nagarajan, R. (2025). Lightweight 
CNN-Enabled Framework for Automated Detection of Scoliosis and Spondylosis 
Using Spine X-rays. Journal of Computational and Cognitive Engineering. 
https://doi.org/10.47852/bonviewJCCE52026933

https://doi.org/10.1097/BRS.0b013e31823b3ded
https://doi.org/10.1097/BRS.0b013e31823b3ded
https://doi.org/10.1097/01241398-199101000-00009
https://doi.org/10.1016/j.jbo.2023.100483
https://doi.org/10.1016/j.jbo.2023.100483
https://doi.org/10.1007/s00330-022-09354-6
https://doi.org/10.1371/journal.pone.0261659
https://doi.org/10.1371/journal.pone.0261659
https://doi.org/10.1038/s41598-021-89848-3
https://doi.org/10.1038/s41598-021-89848-3
https://doi.org/10.3389/fvets.2021.721167
https://doi.org/10.1177/2192568220961353
https://doi.org/10.1148/radiol.212922
https://doi.org/10.1007/s10462-023-10480-w
https://doi.org/10.1007/s10462-023-10480-w
https://doi.org/10.31616/asj.2022.0376
https://doi.org/10.31616/asj.2022.0376
https://doi.org/10.1016/j.eswa.2022.119290
https://doi.org/10.1016/j.eswa.2022.119290
https://doi.org/10.1016/j.inat.2020.100837
https://doi.org/10.1016/j.inat.2020.100837
https://doi.org/10.5435/00124635-200901000-00004
https://doi.org/10.5435/00124635-200901000-00004
http://doi.org/10.17632/xkt857dsxk.1
https://doi.org/10.14245/ns.1938396.198
https://doi.org/10.1016/j.ijrobp.2023.10.039
https://doi.org/10.3171/2024.7.SPINE24480
https://doi.org/10.47852/bonviewJCCE52026933

