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Abstract: Cyber-attacks are increasingly becoming a major concern for individuals and organizations alike. Meanwhile, attackers are employing 
advanced techniques taking advantage of the growing power of Artificial Intelligence (AI) to develop highly sophisticated attacks at an accelerated 
pace. Consequently, developing effective tools to detect cyber-attacks and protect digital assets has become of utmost importance to practice and 
research. Numerous AI-based techniques, mainly Machine Learning (ML) and Deep Learning (DL), have been investigated in the literature to 
protect digital assets from cyber threats. Particularly, DL has received significant attention in recent cybersecurity research due to its powerful 
capabilities in managing huge amounts of data and detecting malicious cyber threats. The majority of the proposed threat-detecting techniques in 
the literature focus on using Deep Neural Networks (DNNs). However, some research in the literature utilized the capabilities of Convolutional 
Neural Networks (CNNs) in detecting cyber threats by converting the cybersecurity data from tabular data into images. This paper aims to 
investigate the efficiency of both approaches in detecting cyber threats with the help of eXplainable AI (XAI). Our findings indicate that on NSL-
KDD, the DL model trained on tabular features achieved WeightedF1 = 0.74, MacroF1 = 0.56, and Overall Accuracy (OA) = 0.78, compared 
with 0.73, 0.54, and 0.76 for the image-based model. On CICMaldoid20, the tabular model achieved 0.79 (WeightedF1), 0.80 (MacroF1), and 
0.80 (OA), compared with 0.76, 0.75, and 0.77 for the image-based counterpart. These results suggest that while image transformations can be 
beneficial in specific classes, tabular models consistently deliver stronger overall performance.
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1. Introduction
Recently, one of the major applications of AI, specifically 

Deep Learning (DL) as a subdomain of AI, is to resolve cybersecurity 
threats such as intrusion and malware detection by leveraging complex 
neural network architectures that can automatically learn hierarchical 
features from large datasets, where DL achieves advanced classification 
capabilities [1–4]. Intrusion detection systems (IDS) comprise two 
fundamental categories: The first type is signature-based intrusion 
detection systems (SIDS) [5]. They spot malicious traffic by comparing 
what’s happening on the network to a library of known attack 
“signatures.” If current traffic matches one of those stored patterns, the 
system raises an alert.

The second type is the anomaly-based intrusion detection system 
(AIDS). It uses ML or DL to learn what “normal” network traffic looks 
like, then watches for behavior that doesn’t fit. After the models are 
trained to tell benign from malicious patterns, any significant deviation 
from the learned baseline is flagged as an anomaly [6, 7]. In the literature, 
researchers investigated various ML and DL approaches to detect cyber 
threats. Most data related to cybersecurity problems are tabular, so most 

of the proposed approaches are based on Deep Neural Networks (DNNs). 
Recently, some techniques have been proposed using Convolutional 
Neural Networks (CNNs) to detect both intrusions and malware apps 
in cybersecurity problems, such as converting the data from the tabular 
form into images to use the powerful capabilities of CNNs [8, 9]. For 
instance, DeepInsight is a well-known technique for converting tabular 
data into images and can convert both network traffic data and malware 
apps into images [10]. Furthermore, eXplainable AI (XAI) techniques 
can be used to investigate to what extent converting cybersecurity data 
into images can help security practitioners understand cyber threats.

Prior CNN-based approaches span both intrusion detection and 
Android malware analysis. For network intrusion detection, Ding and 
Zhai [11] trained a CNN directly on NSL-KDD features and reported 
competitive performance on that benchmark. Subsequent studies 
proposed CNN variants operating on image-like encodings of traffic, 
such as SeNet-I, which serializes flows into three-channel images 
before CNN classification, and channel-attention CNNs tailored to 
IDS tasks and evaluated on NSL-KDD/CSE-CIC datasets [12, 13]. For 
Android malware, previous studies converted APK/DEX artifacts into 
grayscale or RGB images and then applied CNNs or transfer learning, 
including broad CNN comparisons (e.g., EfficientNet family), image-
based detection pipelines, and models trained on CICMalDroid20 
(sometimes using ensembles) [14, 15].
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Unlike prior studies, which typically evaluated a single 
representation (either tabular features or image conversions) in isolation, 
our work offers a controlled, side-by-side comparison of tabular vs. 
image-based representations using the same datasets (NSL-KDD and 
CICMalDroid20 datasets), matched preprocessing, and aligned metrics 
(WeightedF1, MacroF1, and Overall Accuracy). Moreover, we integrate 
XAI analyses for both modalities (e.g., feature attribution for tabular 
models and saliency/activation inspection for image-based models) 
to explain why models succeed or fail on specific classes. This joint, 
modality-aware evaluation clarifies when image transformations help 
and when tabular features remain superior overall, which is an evident 
gap not addressed by prior CNN-only pipelines.

The main contribution of this paper is to measure how the 
impact of transforming cybersecurity datasets into images affects both 
the detection of cyber threats and the understanding of the decisions 
generated by the DL models. We use XAI techniques to explain the 
decisions generated by the DL models trained on both datasets, i.e. 
tabular datasets and transformed datasets into images.

The paper is structured as follows: Section 2 reviews related 
works. The proposed methodology is explained in Section 3, while the 
evaluation results are discussed in Section 4. Finally, Section 5 draws 
conclusions, refocuses on the purpose of the research, and illustrates 
future developments.

2. Literature Review
IDS play a key role in protecting data and network infrastructure 

from cyber threats. An intrusion is any unauthorized activity that 
can harm an information system by undermining the confidentiality, 
integrity, or availability of its data [6]. SIDS perform well at detecting 
known attacks, since they match traffic against a database of stored 
signatures. However, they struggle with unknown or zero-day attacks 
because no matching signature exists yet.

To address this gap, researchers have explored a wide range of 
ML and DL approaches. For example, Newaz et al. [16] evaluate several 
ML models, k-Nearest Neighbors (KNN), Support Vector Machines 
(SVM), Random Forest (RF), and Decision Trees (DT), to detect attacks 
on personal medical devices. With the rapid progress of DL, many IDS 
now rely on neural architectures: a CNN-based IDS that converts traffic 
into images is proposed by Lin et al. [17]; ResNet variants are used 
for network-traffic classification in references [18–20]; an unsupervised 
approach based on autoencoders is presented in research by Ghorbani 
and Fakhrahmad [21]; and an IDS using a Restricted Boltzmann 
Machine (RBM) targets large-scale smart-grid cybersecurity in research 
by Alam et al. [22]. Beyond classifiers, Abualhaj et al. [23] combine AI, 
honeypots, and an Intrusion Prevention System (IPS) to detect attacks, 
alert defenders, and limit attacker sessions. Traditional feature-selection 
+ ML pipelines remain effective as well [24]. Finally, DeepInsight [25] 
transforms network traffic into images for DL-based detection. In our 
study, we extend this line by performing multi-class detection, whereas 
Tran et al. [25] focused on binary classification.

To clarify how our work complements and extends prior studies, 
Table 1 summarizes representative image- and tabular-based approaches 
in the literature, listing the dataset(s) used, the data representation, 
and the model family. Unlike previous studies that typically evaluate 
a single representation or a single dataset in isolation, our study 
presents a controlled, side-by-side comparison of tabular versus 
image-based representations on the same benchmarks (NSL-KDD and 
CICMalDroid20 datasets).

3. Methodology
The proposed methodology consists of two main parts: The first 

one is based on learning a DL model using a tabular dataset while the 

second one is based on converting the tabular data into images. An XAI 
approach is used to compare between the two methods. We evaluate 
two ways of feeding the same cybersecurity data into deep models. In 
the tabular pipeline, each sample is a fixed-length vector of engineered 
features describing either a network connection (NSL-KDD) or an 
Android application (CICMalDroid20). Categorical attributes are 
encoded, and numeric attributes are scaled; the resulting vectors 
are passed directly to a deep neural network. In the image pipeline, 
we map the same features for each sample into a 2D layout using a 
reproducible rule (DeepInsight), scale values to an image intensity 
range, and produce a single, or three-channel image that is resized and 
normalized for a CNN. In both pipelines, the model outputs one of the 
dataset’s target classes for each sample (e.g., Normal/attack families 
for NSL-KDD; Benign/Banking/Adware/SMS malware/Riskware 
for CICMalDroid20). DeepInsight converts the cybersecurity dataset 
samples into images.1 The methodology of this work is defined in four-
stepped for cyber-threat detection:

[S1]  Convert each sample’s features into a 2D image using DeepInsight 
(image inputs).

[S2]  Train a deep model on the tabular inputs.

[S3]  Train a CNN on the image inputs.

[S4]  Apply XAI to the tabular model (e.g., SHapley Additive 
exPlanations (SHAP)).

[S5]  Apply XAI to the image model (e.g., saliency).

[S6]  Compare the explanations and classification results across the two 
pipelines.

After training two different DL models using the original dataset 
and the transformed one as in steps S2–S23, XAI techniques are used to 
explain the decisions generated by both DL models to understand and 
to quantify the effect of how transforming tabular data can help detect 
cyber threats. Post-hoc explanations are used in this work.

3.1. DeepInsight
DeepInsight is a technique that allows using CNNs on data that 

is not originally in image format [10]. It achieves this by converting 
the data into a well-organized image representation. Furthermore, 
DeepInsight allows CNNs to automatically learn important features 
directly from non-image data, achieving good performance in 
various tasks. DeepInsight utilized t-distributed stochastic neighbor 

1  https://alok-ai-lab.github.io/DeepInsight/.

2

Study Dataset(s) Representation Model type
[11] NSL-KDD Tabular CNN
[12] NSL-KDD / CIC Serialized RGB 

image
CNN 

[13] NSL-KDD, CIC-
IDS2017

Tabular / image 
variants

CNN, GRU, 
CBAM

[25] Various (network) DeepInsight 
image encoding

CNN

[14] Android datasets Bytecode / RGB 
image

CNN, transfer 
learning

This 
work

NSL–KDD, 
CICMalDroid20/
CIC-IDs

Tabular vs. 
image (same 
data)

DL (tabular & 
CNN), XAI 
analyses

Table 1
Representative prior works and proposed method
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embedding (t-SNE) (along with other techniques) to transform tabular 
data into images [26]. t-SNE is primarily used within DeepInsight for 
dimensionality reduction. Malware samples often contain hundreds 
of interrelated features, as well as traffic network data. DeepInsight 
excels at converting these samples into images, effectively reducing the 
data dimensionality while preserving the crucial relationships among 
features. We choose t-SNE as the dimensionality-reduction step in our 
DeepInsight pipeline because our objective is to produce a 2-D feature 
layout that emphasizes local feature relationships that a CNN can exploit. 
t-SNE is specifically designed to preserve local neighborhoods in the 
high-dimensional space, which tends to place strongly related features 
close together on the image canvas in a more efficient way than PCA or 
UMAP; this local clustering behavior is well suited for convolutional 
feature learning where nearby pixels jointly form meaningful patterns. 
In the cybersecurity context (malware and network feature sets), many 
important signals are non-linear and locally correlated (e.g., groups 
of related API calls, protocol fields, or behavioral indicators). Thus, 
a method that highlights local affinities helps produce spatial patterns 
that CNNs can use to distinguish classes. We generated the 2D feature 
layout using t-SNE with perplexity = 30, learning rate = 'auto', number 
of iterations (n_iter) = 1000, and random seed (random_state) = 42.

3.2. XAI
Various XAI methods are used in this work: Gradient explanations 

[27] for an input sample  is . The gradients indicate 
how much each input dimension would change the predictions of the 
model  within a nearby region around the input. Gradient ⊙ 
Input refers to the element-wise product of the gradients and the input 
[28]. Gradient ⊙ Input can be explained as  which can 
address gradient saturation and reduce visual diffusion. Grad-CAM 
(Gradient-Weighted Class Activation Mapping) builds on CAM [29] 
but works with a wide range of CNN architectures, not just those ending 
in global average pooling. It produces a coarse heatmap that shows 
which parts of an image mostly influenced the model’s prediction for 
a chosen class. Concretely, Grad-CAM uses the gradients of the target 
class score with respect to the last convolutional layer to weight that 
layer’s feature maps, then sums them to get a class-specific localization 
map. A ReLU is applied at the end to zero out negative values so the 
heatmap emphasizes only the regions that support the target class. 
Without this ReLU step, the map can highlight areas that argue against 
the class as well, making the visualization less focused and less useful.

The SHAP technique is used in this work to explain the decisions 
generated by DL models trained using tabular data [30]. SHAP as a 
local XAI technique is based on a game theory approach to explain the 
decisions generated by a DL model. SHAP computes feature importance 
in DL models by averaging how much each feature value influences the 
output across all potential predictions. SHAP attributes each prediction 
to input features by averaging their marginal contributions across 
feature subsets. In practice, we applied SHAP to the trained tabular 
model as follows: (i) fit the model on the training split; (ii) select a 
small, stratified background sample from the training data to estimate 
conditional expectations; (iii) compute per-sample SHAP values on the 
test split; (iv) summarize global importance with the mean absolute 
SHAP value per feature; and (v) produce class-conditioned summaries 
by aggregating SHAP values over test samples of the same class. 
We report feature importances in the same feature space used by the 
classifier and use these summaries to interpret per-class performance 
patterns reported in Section 4.

3.3. SHAP (KernelExplainer) implementation details
For tabular models we used the SHAP library (shap v0.41.0) 

and specifically the KernelExplainer implementation to compute 

approximate Shapley values. KernelExplainer is a model-agnostic 
that approximates each feature’s Shapley contribution by fitting a 
weighted linear model to many randomized perturbations of the input. 
We selected this because (a) it supports any classifier or preprocessing 
pipeline (including those with non-differentiable steps), (b) it provides 
a principled Shapley-based attribution that is comparable across model 
families, and (c) it produces reliable local explanations that can be 
aggregated to yield global feature importance.

Since KernelExplainer is computationally intensive for high-
dimensional inputs, we applied the following reproducible practical 
choices and mitigations:

1)  Environment and versions: Python 3.9, shap==0.41.0, numpy/
pandas/scikit-learn.

2)  Preprocessing: Inputs passed to the explainer were already 
preprocessed exactly as during model training (categorical encoding, 
scaling). We persist in and reuse the exact encoder/scaler objects to 
guarantee identical transforms.

3)  Background (reference) dataset: We built a fixed background 
set of at most 100 samples selected by stratified sampling from the 
training set to preserve class proportions. The same background set 
is reused for all KernelExplainer calls to ensure reproducibility.

4)  KernelExplainer parameters: We used ‘nsamples=1000‘ (number 
of Monte Carlo perturbation samples per explanation call) and a 
fixed random seed (‘random_state=42‘). For multi-class outputs, 
we computed SHAP values per class by wrapping the model to 
return the predicted probability for a single target class and calling 
KernelExplainer separately for each class.

5)  Outputs and aggregation: For each sample, we saved per-feature 
SHAP values for all classes. Global importance rankings were 
produced by averaging absolute SHAP values across the selected 
test subset (or full test set when computed).

4. Empirical Evaluation and Results

4.1. Datasets
We use two different representations of the raw datasets depending 

on the modeling pipeline: (1) a tabular representation that preserves 
the original features reported by each dataset, and (2) an image-based 
representation in which the same information is converted into a 2D 
image that can be processed by a convolutional neural network as 
reported in Table 2. Each dataset contains:

1)  NSL–KDD: Each record corresponds to a network connection and 
is described by 41 features (3 categorical, 37 numeric, and 1 label). 
Labels fall into five high-level classes: Normal, DoS, U2R, R2L, and 
Probe. We follow the standard split: KDDTrain+20Percent for training 
and KDDTest+ for testing. We standardize the 37 numeric fields and 
one-hot encode the three categorical fields (protocol_type, service, 
flag), yielding 118 numeric features (label handled separately).

2)  CICMalDroid20: Each sample corresponds to one Android 
application and is represented by 471 features that capture static and 
dynamic characteristics (as reported in the dataset documentation). 
Samples are labeled as one of five classes: Benign, Banking, Adware, 
SMS malware, or Riskware. We use a stratified 70%/30% train/test 
split.

3

Dataset
# Training 

samples
# Testing 
samples

# 
Labels # Features

NSL-KDD 25192 22544 5 41
CICMalDroid20 8118 3480 5 471

Table 2
Description of the datasets
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Inputs (what the model receives):

1)  Tabular pipeline. Each sample is one-row feature vector. Categorical 
attributes are encoded (e.g., one-hot or integer encoding) and 
numeric attributes are normalized (min–max scaling). After these 
steps, each record becomes a fixed-length numeric vector (length 
118 for NSL–KDD; length 471 for CICMalDroid20) that is fed 
directly into the tabular DL model.

2)  Image pipeline. To build image inputs, we convert the same per-
sample feature set into a 2D array and then into an image suitable 
for CNNs. Concretely, features are (optionally) ordered by a 
reproducible rule, scaled to the image intensity range, mapped into 
a 2D grid, and saved as a single- or three-channel image. Images are 
then resized to the CNN input size and normalized using the same 
scheme applied during CNN training.

4.2. Implementation details
The search space of the hyper-parameter optimized the 

hyperparameters of the DNN, as outlined in Table 3, powered by 
Hyperopt’s tree-structured Parzen estimator (TPE) for hyperparameter 
tuning. This process utilized 20% of the training set as a validation set. 
Validation loss is utilized to determine the optimal configuration of the 
chosen parameters. Table 4 presents the layers chosen for each neural 
network architecture, while Table 5 reports the detailed architecture 
for the used CNN. All hidden layers in both architectures use ReLU 
to introduce nonlinearity, speed up training, and mitigate vanishing 
gradients, while keeping computations simple and sparse. The final layer 
applies softmax, which normalizes the model’s logits into a probability 
distribution over classes, enabling straightforward interpretation, cross-
entropy training, and thresholding for decisions. This pairing—ReLU in 
hidden layers and softmax at the output—provides stable optimization, 
fast convergence, and clear, probabilistic outputs suitable for multi-
class classification. In addition, we employed the Adam optimization 
algorithm for gradient-based updates and initialized the weights using 
the Xavier method. The training was limited to a maximum of 150 
epochs, with an early stopping (patience = 10 epochs) mechanism to 
select the best-performing models by minimizing validation loss for 
both DNN architectures. Table 6 summarizes the hyperparameters 
optimized through Hyperopt, which were subsequently applied to train 
the DL models.

4.3. Empirical evaluation and discussion
We evaluated the proposed method in this work using 

cybersecurity datasets (i.e. CICMalDroid20 and NSL-KDD). The 
experiments in this work aim to investigate the effectiveness of 
converting malware apps and network traffic into images in order to use 
CNNs as a classifier to detect malicious apps and traffic. 

4.3.1. Performance metrics
We evaluated the classifications on the testing sets using standard 

multi-class classification metrics. Specifically, WeightedF1, MacroF1, 
and Overall Accuracy (OA) in this work for evaluating the conducted 
experiments. To focus on assessing the number of true positives, OA 
is used in this work, while we used F1-based scores to evaluate false 
negatives, false positives, and the true positives. Moreover, since F1 
can be measured per class, we consider WeightedF1 and MacroF1 to 
aggregate F1 values measured on all the classes in a single value by 
computing the weighted mean and the simple mean, respectively. In 
balanced domains, WeightedF1 and MacroF1 are expected to yield 
similar values. However, in imbalanced domains WeightedF1 can 
provide a misleading evaluation of the performance of rare classes 
due to the dominance of majority classes in the metric. Since our 
study involves both balanced datasets (CICMalDroid20 dataset) and 
imbalanced datasets (NSL-KDD dataset), we assessed the accuracy of 
the proposed evaluation across all these metrics during experimentation.

4.3.2. Results and discussions
The empirical evaluation assessed whether transforming malware 

apps and network traffic traces can help cybersecurity practitioners 

4

Hyper-parameter Values
Learning rate [0.0001, 0.001]
Mini-batch size {32, 64, 128, 256, 512}
Drop-out [0,1]
Number of neurons per hidden 
layer

{32, 64, 128, 256, 512,1024 }

Table 3
Hyper-parameter search space

Architecture Layer
DNN -  Fully connected layers (three layers)

-  Drop-out layer (one layer)
-  Batch normalization layer (one layer)

CNN -  2D CNNs layers
-  One drop-out layer
-  Two MAXPooling2D layers
-  One flatten-layer

Table 4
Neural network architectures used for tabular data

Layer type Parameters
Input 28 × 28 × 3 image (transformed from tabular data)
Conv2D-1 Filters = neurons1 (32, 64, 128, or 256 via 

Hyperopt), kernel = 2 × 2, stride = 1, activation = 
ReLU, kernel initializer = Glorot uniform

Dropout-1 Rate = dropout (optimized via Hyperopt)
MaxPooling-1 Pool size = 2 × 2, stride = 2
Conv2D-2 Filters = neurons2 (32, 64, 128, or 256), kernel = 2 × 

2, stride = 1, activation = ReLU, kernel initializer = 
Glorot uniform

MaxPooling-2 Pool size = 2 × 2, stride = 2
Flatten –
Dense-1 Units = neurons3 (32, 64, 128, or 256), activation = 

ReLU
Dense-Output Units = number of classes (5 for NSL-KDD, 5 for 

CICMalDroid20), activation = Softmax, kernel 
initializer = Glorot uniform

Table 5
CNN architecture for image-based experiments

Dataset
Learning 

rate
Batch 
size

Drop out 
layer

Neurons 
layer1

Neurons 
layer2

NSL-KDD 0.0006 128 0.1026 1024 128
NSL-KDD* 0.0005 256 0.1120 256 64
CICMalDroid20 0.0007 512 0.3041 1024 1024
CICMalDroid20* 0.0007 128 0.03 256 64
Note: The parameters selected via Hyperopt for each dataset. The dataset with 
* is the image-based one.

Table 6
Optimized hyperparameters 
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analyze cyber threats. This analysis is based on two main objectives: 
The first one is the classification accuracy of the model. The second 
one is an XAI approach to explain the decisions generated by the model 
and to test whether transforming tabular data into images can help 
understand the decisions generated by the DL model. Results are from 

a single training run per model: the final configuration was chosen 
via Hyperopt on the validation split and then evaluated once on the test 
set. Because we did not repeat training across random seeds, our 
results do not capture training stochasticity; small differences should 
be interpreted cautiously.

Table 7 reports the global performance metrics of both models. 
For NSL-KDD, the tabular-based model (MΔ ) achieved a WeightedF1 
of 0.74, Macro-F1 of 0.56, and OA of 0.78, compared to 0.73, 0.54, 
and 0.76 for the image-based model (MΔ'). For CICMalDroid20, MΔ 
obtained 0.79 (WeightedF1), 0.80 (MacroF1), and 0.80 (OA), versus 
0.78, 0.75, and 0.77 for MΔ'. These results confirm that tabular data 
yields consistently higher global performance across both datasets.

However, a closer look at the per-class F1 scores in Table 8 
reveals that image transformation can still provide benefits in specific 
scenarios. For example, in CICMalDroid20, the image-based model 
outperformed the tabular-based one for SMSMalware (0.88 vs. 0.83) 
and Riskware (0.76 vs. 0.72). In contrast, for the majority of classes, 
including Benign, Adware, and Banking, the tabular model was clearly 
superior. Similarly, in NSL-KDD, the tabular model achieved better 
F1 scores for all attack classes, including the challenging minority 
classes U2R (0.17 vs. 0.14) and R2L (0.18 vs. 0.17). In summary, while 
tabular representations consistently deliver higher overall performance 
in terms of WeightedF1, MacroF1, and OA, the image-based approach 
demonstrates potential advantages for certain balanced malware 
classes such as SMSMalware and Riskware. This suggests that hybrid 
approaches combining both representations could be a promising 
direction for future work.

An XAI approach is used to explain the decisions of both models. 
The SHAP technique is used to explain the decisions generated by 
MΔ(i.e. the model trained on tabular data), whereas Gradient ⊙ Input 
and Grad-CAM are used to explain the decisions generated by MΔ'. 
Figure 1 demonstrates the global feature ranking computed with SHAP. 
As illustrated in this figure, security practitioners can understand what 
features affect the decisions generated by the DL model. Figure 1a 
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Model
NSL-KDD CICMalDroid20

WeightedF1 MacroF1 OA WeightedF1 MacroF1 OA
M∆ 0.74 0.56 0.78 0.79 0.80 0.80
MΔ' 0.73 0.54 0.76 0.78 0.75 0.77

Table 7
Global performance metrics for tabular and image-based models

Dataset Label Support

F1 score
Tabular 

data
Transformed 

images
NSL-KDD Benign 9711 0.80 0.79

DoS 7458 0.89 0.88
Probe 2421 0.77 0.71
R2L 2754 0.18 0.17
U2R 200 0.17 0.14

CICMalDroid20 Benign 539 0.89 0.80
Adware 376 0.78 0.66
Banking 630 0.78 0.65
SMSMalware 1171 0.83 0.88
Riskware 764 0.72 0.76

Table 8
Per-class F1 scores for NSL-KDD and CICMalDroid20.

 Figure 1
Global SHAP feature importance for the models trained on tabular data. (a) NSL-KDD: top features contributing to each attack class. 

(b) CICMalDroid20: top features across malware categories

Note: Bar length shows the mean absolute SHAP value, where longer bars indicate stronger feature contribution to classification.
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shows the features ranking for the NSL-KDD dataset, which indicates 
that ‘srv_rerror_rate’ contributes more to the detection of ‘R2L’ 
attack while ‘service_ctf’ contributes more to detecting the ‘Probe’ 
attack. Moreover, Figure 1b shows the global feature ranking for the 
CICMalDroid20 dataset. Feature ‘cancelToast’ has the main effect on 
the model prediction whereas the other features have a lower effect. 
Meanwhile, Figure 2 demonstrates the explanations generated for 
two random samples selected from the training dataset for both NSL-
KDD and CICMalDroid20 datasets. Figure 2a and b illustrates the 
explanations generated by the Grad-CAM technique, while Figure 2c and 
d illustrates the explanations generated by Gradient⊙Input technique. 
The explanations generated for transformed images can illustrate 
where the model focuses for prediction; however, the explanation is 
still vague compared to the explanations generated for tabular data. 
The explanations generated for the models trained on tabular data 
can help security practitioners more in understanding the attacks and 
how the model can classify them, whereas, in transformed images, the 
explanations are not clear and give no additional information regarding 
the decisions generated by the model. Furthermore, transforming tabular 
data into images increases the complexity required to train a model.

We did not run a multi-rater interpretability study in this version; a 
quantitative assessment with reviewer counts and inter-rater agreement 
is deferred to future work. For a true R2L sample, Grad-CAM produces 

multiple small hotspots spread across the image, including regions 
corresponding to mixed protocol/service features, rather than a coherent 
focus over the login/authentication cluster. In contrast, tabular SHAP 
concentrates importance on features aligned with R2L behavior (e.g., 
login failure counts and access attempts). The image saliency is thus 
less localized and less class-specific, which we describe as “vague” in 
this context.

5. Conclusion
This study examined the effectiveness of transforming tabular 

cybersecurity data into images to enhance cyber-threat detection, with 
XAI applied to interpret DL model decisions. Overall, our results suggest 
that tabular data representations generally yield better performance and 
more interpretable results for practitioners. However, the evaluation 
also revealed that image-based transformations can provide benefits 
in specific scenarios, such as improving detection accuracy for certain 
malware categories in the CICMalDroid20 dataset. Furthermore, while 
tabular-based models allowed security practitioners to better understand 
classification outcomes, XAI applied to image-transformed models 
often produced vague explanations, limiting their practical value. 
Moreover, the image pipeline was substantially heavier: training took 
≈2–4× longer and used ≈2–3× more peak GPU memory than the tabular 
DNN with matched data splits and early stopping. The tabular model 
also achieved lower inference latency and can run comfortably on CPU, 
reinforcing its practicality for constrained environments. Future work 
will expand this evaluation by incorporating additional cybersecurity 
datasets and experimenting with diverse CNN architectures to further 
explore the conditions under which image transformation may enhance 
cyber-threat detection.
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Figure 2
CNN explanation results for image-based models. (a, c) Grad-
CAM heatmaps over DeepInsight feature images (warmer =  

stronger positive influence on the predicted class). (b, d) 
Gradient × input saliency maps (brighter = larger per-pixel 

contribution)

Note: How to read: coherent, contiguous hotspots centered on feature clusters 
known to be class-indicative (e.g., SMS/telephony for SMSMalware; protocol/
flag clusters for NSL-KDD attacks) indicate a meaningful explanation; scattered 
or peripheral activations over low-variance regions suggest a weak/vague signal. 
The top row shows NSL-KDD samples; the bottom row shows CICMalDroid20 
samples.
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