Received: 25 June 2025 | Revised: 12 November 2025 | Accepted: 21 November 2025 | Published online: 31 December 2025

RE S EA Rc H ARTI C LE Journal of Computational and Cognitive Engineering

2025, Vol. 00(00) 1-5
DOI: 10.47852/bonviewJCCES52026581

Transforming Data Representation: A %
Comparative Analysis of Tabular and son e s
Image-Based Approaches with XAl

Malik AL-Essa'*©©, Mohammad Alsharo?®, Yazan Alnsour?, Wasim A. Ali* and Omar Almomani®

! Department of Computer Science, The University of Jordan, Jordan

2 Department of Information Systems, Al al-Bayt University, Jordan

3 Department of Management Information Systems, Prince Mohammad Bin Fahd University, Saudi Arabia
* Department of Electrical and Information Engineering, Politecnico di Bari, Italy

’ Department of Networks and Cybersecurity, Al-Ahliyya Amman University, Jordan

Abstract: Cyber-attacks are increasingly becoming a major concern for individuals and organizations alike. Meanwhile, attackers are employing
advanced techniques taking advantage of the growing power of Artificial Intelligence (Al) to develop highly sophisticated attacks at an accelerated
pace. Consequently, developing effective tools to detect cyber-attacks and protect digital assets has become of utmost importance to practice and
research. Numerous Al-based techniques, mainly Machine Learning (ML) and Deep Learning (DL), have been investigated in the literature to
protect digital assets from cyber threats. Particularly, DL has received significant attention in recent cybersecurity research due to its powerful
capabilities in managing huge amounts of data and detecting malicious cyber threats. The majority of the proposed threat-detecting techniques in
the literature focus on using Deep Neural Networks (DNNs). However, some research in the literature utilized the capabilities of Convolutional
Neural Networks (CNNs) in detecting cyber threats by converting the cybersecurity data from tabular data into images. This paper aims to
investigate the efficiency of both approaches in detecting cyber threats with the help of eXplainable Al (XAI). Our findings indicate that on NSL-
KDD, the DL model trained on tabular features achieved WeightedF1 = 0.74, MacroF1 = 0.56, and Overall Accuracy (OA) = 0.78, compared
with 0.73, 0.54, and 0.76 for the image-based model. On CICMaldoid20, the tabular model achieved 0.79 (WeightedF1), 0.80 (MacroF1), and
0.80 (OA), compared with 0.76, 0.75, and 0.77 for the image-based counterpart. These results suggest that while image transformations can be
beneficial in specific classes, tabular models consistently deliver stronger overall performance.

Keywords: Deeplnsight, Deep Learning, malware detection, intrusion detection, XAl

1. Introduction of the proposed approaches are based on Deep Neural Networks (DNNs).
Recently, some techniques have been proposed using Convolutional
Neural Networks (CNNs) to detect both intrusions and malware apps
in cybersecurity problems, such as converting the data from the tabular
form into images to use the powerful capabilities of CNNs [8, 9]. For
instance, Deeplnsight is a well-known technique for converting tabular
data into images and can convert both network traffic data and malware
apps into images [10]. Furthermore, eXplainable Al (XAI) techniques
can be used to investigate to what extent converting cybersecurity data
into images can help security practitioners understand cyber threats.
Prior CNN-based approaches span both intrusion detection and
Android malware analysis. For network intrusion detection, Ding and

systemTrliuses an(aliltert, < th Iy-based i ion detecti ! Zhai [11] trained a CNN directly on NSL-KDD features and reported
¢ second type 1s the anomaly-based intrusion detection system competitive performance on that benchmark. Subsequent studies

(AIDS). It uses ML or DL to learn what “normal” network traffic looks
. . , proposed CNN variants operating on image-like encodings of traffic,
like, then watches for behavior that doesn’t fit. After the models are . - . .
. o such as SeNet-I, which serializes flows into three-channel images
trained to tell benign from malicious patterns, any significant deviation
from the | d baseline is i d 1v76. 7. In the literatu before CNN classification, and channel-attention CNNs tailored to
rom the learned baseline is flagged as an anomaly [6, 7]. In the literature, 1yq . and evaluated on NSL-KDD/CSE-CIC datasets [12, 13]. For
researchers investigated various ML and DL approaches to detect cyber Android mal . di d APK/DEX artifacts i
threats. Most data related to cybersecurity problems are tabular, so most neroic matware, previous studies con\./erte artifacts 1.nto
’ ’ grayscale or RGB images and then applied CNNs or transfer learning,
including broad CNN comparisons (e.g., EfficientNet family), image-
*Corresponding author: Malik AL-Essa, Department of Computer Science, The based detection pipelines, and models trained on CICMalDroid20
University of Jordan, Jordan. Email: m.alessa@ju.edu.jo (sometimes using ensembles) [14, 15].

Recently, one of the major applications of Al, specifically
Deep Learning (DL) as a subdomain of Al, is to resolve cybersecurity
threats such as intrusion and malware detection by leveraging complex
neural network architectures that can automatically learn hierarchical
features from large datasets, where DL achieves advanced classification
capabilities [1-4]. Intrusion detection systems (IDS) comprise two
fundamental categories: The first type is signature-based intrusion
detection systems (SIDS) [5]. They spot malicious traffic by comparing
what’s happening on the network to a library of known attack
“signatures.” If current traffic matches one of those stored patterns, the

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/
by/4.0/

https://doi.org/10.47852/bonviewJCCE52026581
https://orcid.org/0000-0002-0892-975X
https://orcid.org/0000-0003-1978-3220
https://orcid.org/0000-0003-3160-6542
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:m.alessa@ju.edu.jo

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2025

Unlike prior studies, which typically evaluated a single
representation (either tabular features or image conversions) in isolation,
our work offers a controlled, side-by-side comparison of tabular vs.
image-based representations using the same datasets (NSL-KDD and
CICMalDroid20 datasets), matched preprocessing, and aligned metrics
(WeightedF1, MacroF1, and Overall Accuracy). Moreover, we integrate
XAI analyses for both modalities (e.g., feature attribution for tabular
models and saliency/activation inspection for image-based models)
to explain why models succeed or fail on specific classes. This joint,
modality-aware evaluation clarifies when image transformations help
and when tabular features remain superior overall, which is an evident
gap not addressed by prior CNN-only pipelines.

The main contribution of this paper is to measure how the
impact of transforming cybersecurity datasets into images affects both
the detection of cyber threats and the understanding of the decisions
generated by the DL models. We use XAI techniques to explain the
decisions generated by the DL models trained on both datasets, i.e.
tabular datasets and transformed datasets into images.

The paper is structured as follows: Section 2 reviews related
works. The proposed methodology is explained in Section 3, while the
evaluation results are discussed in Section 4. Finally, Section 5 draws
conclusions, refocuses on the purpose of the research, and illustrates
future developments.

2. Literature Review

IDS play a key role in protecting data and network infrastructure
from cyber threats. An intrusion is any unauthorized activity that
can harm an information system by undermining the confidentiality,
integrity, or availability of its data [6]. SIDS perform well at detecting
known attacks, since they match traffic against a database of stored
signatures. However, they struggle with unknown or zero-day attacks
because no matching signature exists yet.

To address this gap, researchers have explored a wide range of
ML and DL approaches. For example, Newaz et al. [16] evaluate several
ML models, k-Nearest Neighbors (KNN), Support Vector Machines
(SVM), Random Forest (RF), and Decision Trees (DT), to detect attacks
on personal medical devices. With the rapid progress of DL, many IDS
now rely on neural architectures: a CNN-based IDS that converts traffic
into images is proposed by Lin et al. [17]; ResNet variants are used
for network-traffic classification in references [18—20]; an unsupervised
approach based on autoencoders is presented in research by Ghorbani
and Fakhrahmad [21]; and an IDS using a Restricted Boltzmann
Machine (RBM) targets large-scale smart-grid cybersecurity in research
by Alam et al. [22]. Beyond classifiers, Abualhaj et al. [23] combine Al,
honeypots, and an Intrusion Prevention System (IPS) to detect attacks,
alert defenders, and limit attacker sessions. Traditional feature-selection
+ ML pipelines remain effective as well [24]. Finally, Deeplnsight [25]
transforms network traffic into images for DL-based detection. In our
study, we extend this line by performing multi-class detection, whereas
Tran et al. [25] focused on binary classification.

To clarify how our work complements and extends prior studies,
Table 1 summarizes representative image- and tabular-based approaches
in the literature, listing the dataset(s) used, the data representation,
and the model family. Unlike previous studies that typically evaluate
a single representation or a single dataset in isolation, our study
presents a controlled, side-by-side comparison of tabular versus
image-based representations on the same benchmarks (NSL-KDD and
CICMalDroid20 datasets).

3. Methodology

The proposed methodology consists of two main parts: The first
one is based on learning a DL model using a tabular dataset while the

Table 1
Representative prior works and proposed method
Study Dataset(s) Representation ~ Model type
[11] NSL-KDD Tabular CNN
[12] NSL-KDD / CIC Serialized RGB ~ CNN
image
[13] NSL-KDD, CIC- Tabular / image ~ CNN, GRU,
IDS2017 variants CBAM
[25] Various (network) Deeplnsight CNN
image encoding
[14] Android datasets Bytecode / RGB CNN, transfer
image learning
This NSL-KDD, Tabular vs. DL (tabular &
work CICMalDroid20/ image (same CNN), XAI
CIC-IDs data) analyses

second one is based on converting the tabular data into images. An XAl
approach is used to compare between the two methods. We evaluate
two ways of feeding the same cybersecurity data into deep models. In
the tabular pipeline, each sample is a fixed-length vector of engineered
features describing either a network connection (NSL-KDD) or an
Android application (CICMalDroid20). Categorical attributes are
encoded, and numeric attributes are scaled; the resulting vectors
are passed directly to a deep neural network. In the image pipeline,
we map the same features for each sample into a 2D layout using a
reproducible rule (Deeplnsight), scale values to an image intensity
range, and produce a single, or three-channel image that is resized and
normalized for a CNN. In both pipelines, the model outputs one of the
dataset’s target classes for each sample (e.g., Normal/attack families
for NSL-KDD; Benign/Banking/Adware/SMS malware/Riskware
for CICMalDroid20). Deeplnsight converts the cybersecurity dataset
samples into images.' The methodology of this work is defined in four-
stepped for cyber-threat detection:

[S1] Convert each sample’s features into a 2D image using Deeplnsight
(image inputs).

[S2] Train a deep model on the tabular inputs.
[S3] Train a CNN on the image inputs.

[S4] Apply XAI to the tabular model (e.g., SHapley Additive
exPlanations (SHAP)).

[S5] Apply XAl to the image model (e.g., saliency).

[S6] Compare the explanations and classification results across the two
pipelines.

After training two different DL models using the original dataset
and the transformed one as in steps S2—S23, XAl techniques are used to
explain the decisions generated by both DL models to understand and
to quantify the effect of how transforming tabular data can help detect
cyber threats. Post-hoc explanations are used in this work.

3.1. DeeplInsight

Deeplnsight is a technique that allows using CNNs on data that
is not originally in image format [10]. It achieves this by converting
the data into a well-organized image representation. Furthermore,
Deeplnsight allows CNNs to automatically learn important features
directly from non-image data, achieving good performance in
various tasks. Deeplnsight utilized t-distributed stochastic neighbor

! https://alok-ai-lab.github.io/Deeplnsight/.

Journal of Computational and Cognitive Engineering

Vol. 00 Iss. 00 2025

embedding (t-SNE) (along with other techniques) to transform tabular
data into images [26]. t-SNE is primarily used within Deeplnsight for
dimensionality reduction. Malware samples often contain hundreds
of interrelated features, as well as traffic network data. Deeplnsight
excels at converting these samples into images, effectively reducing the
data dimensionality while preserving the crucial relationships among
features. We choose t-SNE as the dimensionality-reduction step in our
Deeplnsight pipeline because our objective is to produce a 2-D feature
layout that emphasizes local feature relationships that a CNN can exploit.
t-SNE is specifically designed to preserve local neighborhoods in the
high-dimensional space, which tends to place strongly related features
close together on the image canvas in a more efficient way than PCA or
UMAP; this local clustering behavior is well suited for convolutional
feature learning where nearby pixels jointly form meaningful patterns.
In the cybersecurity context (malware and network feature sets), many
important signals are non-linear and locally correlated (e.g., groups
of related API calls, protocol fields, or behavioral indicators). Thus,
a method that highlights local affinities helps produce spatial patterns
that CNNSs can use to distinguish classes. We generated the 2D feature
layout using t-SNE with perplexity = 30, learning rate = 'auto’', number
of iterations (n_iter) = 1000, and random seed (random_state) = 42.

3.2. XAl
Various XAl methods are used in this work: Gradient explanations
[27] for an input sample s is Egqq(s) = 03’? . The gradients indicate

how much each input dimension would change the predictions of the
model Mx(s) within a nearby region around the input. Gradient ©
Input refers to the element-wise product of the gradients and the input
[28]. Gradient © Input can be explained as s©® = 32{? which can
address gradient saturation and reduce visual diffusion. Grad-CAM
(Gradient-Weighted Class Activation Mapping) builds on CAM [29]
but works with a wide range of CNN architectures, not just those ending
in global average pooling. It produces a coarse heatmap that shows
which parts of an image mostly influenced the model’s prediction for
a chosen class. Concretely, Grad-CAM uses the gradients of the target
class score with respect to the last convolutional layer to weight that
layer’s feature maps, then sums them to get a class-specific localization
map. A ReLU is applied at the end to zero out negative values so the
heatmap emphasizes only the regions that support the target class.
Without this ReLU step, the map can highlight areas that argue against
the class as well, making the visualization less focused and less useful.

The SHAP technique is used in this work to explain the decisions
generated by DL models trained using tabular data [30]. SHAP as a
local XAl technique is based on a game theory approach to explain the
decisions generated by a DL model. SHAP computes feature importance
in DL models by averaging how much each feature value influences the
output across all potential predictions. SHAP attributes each prediction
to input features by averaging their marginal contributions across
feature subsets. In practice, we applied SHAP to the trained tabular
model as follows: (i) fit the model on the training split; (ii) select a
small, stratified background sample from the training data to estimate
conditional expectations; (iii) compute per-sample SHAP values on the
test split; (iv) summarize global importance with the mean absolute
SHAP value per feature; and (v) produce class-conditioned summaries
by aggregating SHAP values over test samples of the same class.
We report feature importances in the same feature space used by the
classifier and use these summaries to interpret per-class performance
patterns reported in Section 4.

3.3. SHAP (KernelExplainer) implementation details

For tabular models we used the SHAP library (shap v0.41.0)
and specifically the KernelExplainer implementation to compute

approximate Shapley values. KernelExplainer is a model-agnostic
that approximates each feature’s Shapley contribution by fitting a
weighted linear model to many randomized perturbations of the input.
We selected this because (a) it supports any classifier or preprocessing
pipeline (including those with non-differentiable steps), (b) it provides
a principled Shapley-based attribution that is comparable across model
families, and (c) it produces reliable local explanations that can be
aggregated to yield global feature importance.

Since KernelExplainer is computationally intensive for high-
dimensional inputs, we applied the following reproducible practical
choices and mitigations:

1) Environment and versions: Python 3.9, shap==0.41.0, numpy/
pandas/scikit-learn.

2) Preprocessing: Inputs passed to the explainer were already
preprocessed exactly as during model training (categorical encoding,
scaling). We persist in and reuse the exact encoder/scaler objects to
guarantee identical transforms.

3) Background (reference) dataset: We built a fixed background
set of at most 100 samples selected by stratified sampling from the
training set to preserve class proportions. The same background set
is reused for all KernelExplainer calls to ensure reproducibility.

4) KernelExplainer parameters: We used ‘nsamples=1000° (number
of Monte Carlo perturbation samples per explanation call) and a
fixed random seed (‘random_state=42°). For multi-class outputs,
we computed SHAP values per class by wrapping the model to
return the predicted probability for a single target class and calling
KernelExplainer separately for each class.

5) Outputs and aggregation: For each sample, we saved per-feature
SHAP values for all classes. Global importance rankings were
produced by averaging absolute SHAP values across the selected
test subset (or full test set when computed).

4. Empirical Evaluation and Results

4.1. Datasets

We use two different representations of the raw datasets depending
on the modeling pipeline: (1) a tabular representation that preserves
the original features reported by each dataset, and (2) an image-based
representation in which the same information is converted into a 2D
image that can be processed by a convolutional neural network as
reported in Table 2. Each dataset contains:

1) NSL-KDD: Each record corresponds to a network connection and
is described by 41 features (3 categorical, 37 numeric, and 1 label).
Labels fall into five high-level classes: Normal, DoS, U2R, R2L, and
Probe. We follow the standard split: KDDTrain+20Percent for training
and KDDTest+ for testing. We standardize the 37 numeric fields and
one-hot encode the three categorical fields (protocol_type, service,
flag), yielding 118 numeric features (label handled separately).

2) CICMalDroid20: Each sample corresponds to one Android
application and is represented by 471 features that capture static and
dynamic characteristics (as reported in the dataset documentation).
Samples are labeled as one of five classes: Benign, Banking, Adware,
SMS malware, or Riskware. We use a stratified 70%/30% train/test
split.

Table 2
Description of the datasets
Training # Testing
Dataset samples samples Labels # Features
NSL-KDD 25192 22544 5 41
CICMalDroid20 8118 3480 5 471

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2025

Inputs (what the model receives):

1) Tabular pipeline. Each sample is one-row feature vector. Categorical
attributes are encoded (e.g., one-hot or integer encoding) and
numeric attributes are normalized (min—max scaling). After these
steps, each record becomes a fixed-length numeric vector (length
118 for NSL-KDD; length 471 for CICMalDroid20) that is fed
directly into the tabular DL model.

2) Image pipeline. To build image inputs, we convert the same per-
sample feature set into a 2D array and then into an image suitable
for CNNs. Concretely, features are (optionally) ordered by a
reproducible rule, scaled to the image intensity range, mapped into
a 2D grid, and saved as a single- or three-channel image. Images are
then resized to the CNN input size and normalized using the same
scheme applied during CNN training.

4.2. Implementation details

The search space of the hyper-parameter optimized the
hyperparameters of the DNN, as outlined in Table 3, powered by
Hyperopt’s tree-structured Parzen estimator (TPE) for hyperparameter
tuning. This process utilized 20% of the training set as a validation set.
Validation loss is utilized to determine the optimal configuration of the
chosen parameters. Table 4 presents the layers chosen for each neural
network architecture, while Table 5 reports the detailed architecture
for the used CNN. All hidden layers in both architectures use ReLU
to introduce nonlinearity, speed up training, and mitigate vanishing
gradients, while keeping computations simple and sparse. The final layer
applies softmax, which normalizes the model’s logits into a probability
distribution over classes, enabling straightforward interpretation, cross-
entropy training, and thresholding for decisions. This pairing—ReLU in
hidden layers and softmax at the output—provides stable optimization,
fast convergence, and clear, probabilistic outputs suitable for multi-
class classification. In addition, we employed the Adam optimization
algorithm for gradient-based updates and initialized the weights using
the Xavier method. The training was limited to a maximum of 150
epochs, with an early stopping (patience = 10 epochs) mechanism to
select the best-performing models by minimizing validation loss for
both DNN architectures. Table 6 summarizes the hyperparameters
optimized through Hyperopt, which were subsequently applied to train
the DL models.

Table 3
Hyper-parameter search space

Values
[0.0001, 0.001]
{32, 64, 128, 256, 512}
[0,1]
{32, 64, 128, 256, 512,1024 }

Hyper-parameter

Learning rate
Mini-batch size
Drop-out

Number of neurons per hidden
layer

Table 4
Neural network architectures used for tabular data

Architecture Layer

DNN - Fully connected layers (three layers)
- Drop-out layer (one layer)
- Batch normalization layer (one layer)
CNN - 2D CNN:s layers
- One drop-out layer
- Two MAXPooling2D layers
- One flatten-layer

Table 5
CNN architecture for image-based experiments

Layer type Parameters
Input 28 x 28 x 3 image (transformed from tabular data)
Conv2D-1 Filters = neurons1 (32, 64, 128, or 256 via

Hyperopt), kernel =2 x 2, stride = 1, activation =

ReLU, kernel initializer = Glorot uniform
Dropout-1 Rate = dropout (optimized via Hyperopt)

Pool size =2 x 2, stride = 2

Filters = neurons2 (32, 64, 128, or 256), kernel = 2 x
2, stride = 1, activation = ReLU, kernel initializer =
Glorot uniform

Pool size =2 x 2, stride = 2

MaxPooling-1
Conv2D-2

MaxPooling-2
Flatten -

Dense-1 Units = neurons3 (32, 64, 128, or 256), activation =

ReLU

Units = number of classes (5 for NSL-KDD, 5 for
CICMalDroid20), activation = Softmax, kernel
initializer = Glorot uniform

Dense-Output

Table 6
Optimized hyperparameters

Learning Batch Drop out Neurons Neurons

Dataset rate size layer layerl layer2
NSL-KDD 0.0006 128 0.1026 1024 128
NSL-KDD* 0.0005 256 0.1120 256 64
CICMalDroid20 ~ 0.0007 512 0.3041 1024 1024
CICMalDroid20* 0.0007 128 0.03 256 64

Note: The parameters selected via Hyperopt for each dataset. The dataset with
* is the image-based one.

4.3. Empirical evaluation and discussion

We evaluated the proposed method in this work using
cybersecurity datasets (i.e. CICMalDroid20 and NSL-KDD). The
experiments in this work aim to investigate the effectiveness of
converting malware apps and network traffic into images in order to use
CNNe s as a classifier to detect malicious apps and traffic.

4.3.1. Performance metrics

We evaluated the classifications on the testing sets using standard
multi-class classification metrics. Specifically, WeightedF1, MacroF1,
and Overall Accuracy (OA) in this work for evaluating the conducted
experiments. To focus on assessing the number of true positives, OA
is used in this work, while we used F1-based scores to evaluate false
negatives, false positives, and the true positives. Moreover, since F1
can be measured per class, we consider WeightedF1 and MacroF1 to
aggregate F1 values measured on all the classes in a single value by
computing the weighted mean and the simple mean, respectively. In
balanced domains, WeightedF1 and MacroF1 are expected to yield
similar values. However, in imbalanced domains WeightedF1 can
provide a misleading evaluation of the performance of rare classes
due to the dominance of majority classes in the metric. Since our
study involves both balanced datasets (CICMalDroid20 dataset) and
imbalanced datasets (NSL-KDD dataset), we assessed the accuracy of
the proposed evaluation across all these metrics during experimentation.

4.3.2. Results and discussions
The empirical evaluation assessed whether transforming malware
apps and network traffic traces can help cybersecurity practitioners

Journal of Computational and Cognitive Engineering

Vol. 00 Iss. 00 2025

analyze cyber threats. This analysis is based on two main objectives:
The first one is the classification accuracy of the model. The second
one is an XAl approach to explain the decisions generated by the model
and to test whether transforming tabular data into images can help
understand the decisions generated by the DL model. Results are from

Table 7
Global performance metrics for tabular and image-based models
NSL-KDD CICMalDroid20
Model WeightedF1 MacroF1 OA WeightedF1 MacroF1 OA
MA 0.74 0.56 0.78 0.79 0.80 0.80
M, 0.73 0.54 0.76 0.78 0.75 0.77
Table 8
Per-class F1 scores for NSL-KDD and CICMalDroid20.
F1 score
Tabular Transformed
Dataset Label Support data images
NSL-KDD Benign 9711 0.80 0.79
DoS 7458 0.89 0.88
Probe 2421 0.77 0.71
R2L 2754 0.18 0.17
U2R 200 0.17 0.14
CICMalDroid20 Benign 539 0.89 0.80
Adware 376 0.78 0.66
Banking 630 0.78 0.65
SMSMalware 1171 0.83 0.88
Riskware 764 0.72 0.76

a single training run per model: the final configuration was chosen
via Hyperopt on the validation split and then evaluated once on the test
set. Because we did not repeat training across random seeds, our
results do not capture training stochasticity; small differences should
be interpreted cautiously.

Table 7 reports the global performance metrics of both models.
For NSL-KDD, the tabular-based model (M,) achieved a WeightedF1
of 0.74, Macro-F1 of 0.56, and OA of 0.78, compared to 0.73, 0.54,
and 0.76 for the image-based model (M,). For CICMalDroid20, M,
obtained 0.79 (WeightedF1), 0.80 (MacroF1), and 0.80 (OA), versus
0.78, 0.75, and 0.77 for M,. These results confirm that tabular data
yields consistently higher global performance across both datasets.

However, a closer look at the per-class F1 scores in Table 8
reveals that image transformation can still provide benefits in specific
scenarios. For example, in CICMalDroid20, the image-based model
outperformed the tabular-based one for SMSMalware (0.88 vs. 0.83)
and Riskware (0.76 vs. 0.72). In contrast, for the majority of classes,
including Benign, Adware, and Banking, the tabular model was clearly
superior. Similarly, in NSL-KDD, the tabular model achieved better
F1 scores for all attack classes, including the challenging minority
classes U2R (0.17 vs. 0.14) and R2L (0.18 vs. 0.17). In summary, while
tabular representations consistently deliver higher overall performance
in terms of WeightedF1, MacroF1, and OA, the image-based approach
demonstrates potential advantages for certain balanced malware
classes such as SMSMalware and Riskware. This suggests that hybrid
approaches combining both representations could be a promising
direction for future work.

An XAl approach is used to explain the decisions of both models.
The SHAP technique is used to explain the decisions generated by
M (i.e. the model trained on tabular data), whereas Gradient © Input
and Grad-CAM are used to explain the decisions generated by M,.
Figure 1 demonstrates the global feature ranking computed with SHAP.
As illustrated in this figure, security practitioners can understand what
features affect the decisions generated by the DL model. Figure la

Figure 1
Global SHAP feature importance for the models trained on tabular data. (a) NSL-KDD: top features contributing to each attack class.
(b) CICMalDroid20: top features across malware categories

(a)
rerror_rate
srv_rerror_rate
service_ctf
service_remote_job
dst_host_same_srv_rate
service_finger
is_guest_login
service_daytime
service_rje
count
service_ftp_data
protocol_type_udp
flag_RE]J
serror_rate
land
flag_RSTO
protocol_type_tcp
service_discard
service_ftp
service_netstat

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

I DoS B R2L
I Normal WEEU2R
I Probe

(b)

cancelToast

relayout

capset

isSafeMode

getUsers
getWallpaper
isProviderEnabled
isScreenOn
registerSuggestionSpansForNotification
getVoiceMailAlphaTag
cancelVibrate

chdir
checkSignatures
getUserSerialNumber
getFlashlightEnabled
hasClipboardText

EXECUTE
getWidthHint
inotify_init
getEnabledIinputMethodList
0.00 0.05 010 015 0.20
N Benign M SMSMalware

I Adware W Riskware
N Banking

Note: Bar length shows the mean absolute SHAP value, where longer bars indicate stronger feature contribution to classification.

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2025

Figure 2
CNN explanation results for image-based models. (a, ¢) Grad-
CAM heatmaps over Deeplnsight feature images (warmer =
stronger positive influence on the predicted class). (b, d)
Gradient x input saliency maps (brighter = larger per-pixel
contribution)

(a) (b)
(c) (d)

Note: How to read: coherent, contiguous hotspots centered on feature clusters
known to be class-indicative (e.g., SMS/telephony for SMSMalware; protocol/
flag clusters for NSL-KDD attacks) indicate a meaningful explanation; scattered
or peripheral activations over low-variance regions suggest a weak/vague signal.
The top row shows NSL-KDD samples; the bottom row shows CICMalDroid20
samples.

shows the features ranking for the NSL-KDD dataset, which indicates
that ‘srv_rerror rate’ contributes more to the detection of ‘R2L’
attack while ‘service ctf’ contributes more to detecting the ‘Probe’
attack. Moreover, Figure 1b shows the global feature ranking for the
CICMalDroid20 dataset. Feature ‘cancelToast’ has the main effect on
the model prediction whereas the other features have a lower effect.
Meanwhile, Figure 2 demonstrates the explanations generated for
two random samples selected from the training dataset for both NSL-
KDD and CICMalDroid20 datasets. Figure 2a and b illustrates the
explanations generated by the Grad-CAM technique, while Figure 2¢ and
d illustrates the explanations generated by Gradient®Input technique.
The explanations generated for transformed images can illustrate
where the model focuses for prediction; however, the explanation is
still vague compared to the explanations generated for tabular data.
The explanations generated for the models trained on tabular data
can help security practitioners more in understanding the attacks and
how the model can classify them, whereas, in transformed images, the
explanations are not clear and give no additional information regarding
the decisions generated by the model. Furthermore, transforming tabular
data into images increases the complexity required to train a model.
We did not run a multi-rater interpretability study in this version; a
quantitative assessment with reviewer counts and inter-rater agreement
is deferred to future work. For a true R2L sample, Grad-CAM produces

multiple small hotspots spread across the image, including regions
corresponding to mixed protocol/service features, rather than a coherent
focus over the login/authentication cluster. In contrast, tabular SHAP
concentrates importance on features aligned with R2L behavior (e.g.,
login failure counts and access attempts). The image saliency is thus
less localized and less class-specific, which we describe as “vague” in
this context.

5. Conclusion

This study examined the effectiveness of transforming tabular
cybersecurity data into images to enhance cyber-threat detection, with
XAl applied to interpret DL model decisions. Overall, our results suggest
that tabular data representations generally yield better performance and
more interpretable results for practitioners. However, the evaluation
also revealed that image-based transformations can provide benefits
in specific scenarios, such as improving detection accuracy for certain
malware categories in the CICMalDroid20 dataset. Furthermore, while
tabular-based models allowed security practitioners to better understand
classification outcomes, XAl applied to image-transformed models
often produced vague explanations, limiting their practical value.
Moreover, the image pipeline was substantially heavier: training took
~2-4x longer and used ~2—-3x more peak GPU memory than the tabular
DNN with matched data splits and early stopping. The tabular model
also achieved lower inference latency and can run comfortably on CPU,
reinforcing its practicality for constrained environments. Future work
will expand this evaluation by incorporating additional cybersecurity
datasets and experimenting with diverse CNN architectures to further
explore the conditions under which image transformation may enhance
cyber-threat detection.

Acknowledgement

The authors thank the reviewers for their insightful remarks and
constructive comments.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

Data are available from the corresponding author upon reasonable
request.

Author Contribution Statement

Malik AL-Essa: Conceptualization, Methodology, Software,
Validation, Formal analysis, Resources, Data curation, Writing —
original draft, Writing — review & editing. Mohammad Alsharo:
Conceptualization, Methodology, Software, Validation, Formal
analysis, Investigation, Resources, Data curation, Writing — review &
editing. Yazan Alnsour: Conceptualization, Methodology, Software,
Validation, Resources, Data curation, Writing — review & editing.
Wasim A. Ali: Conceptualization, Methodology, Software, Validation,
Formal analysis, Resources, Data curation, Writing — review & editing.
Omar Almomani: Writing — review & editing, Project administration.

Journal of Computational and Cognitive Engineering

Vol. 00

Iss. 00 2025

References

(1]

[3]

[9]

(10]

[11]

Priimmer, J., van Steen, T., & van den Berg, B. (2024). A
systematic review of current cybersecurity training methods.
Computers & Security, 136, 103585. https://doi.org/10.1016/j.
c0se.2023.103585

Salem, A. H., Azzam, S. M., Emam, O. E., & Abohany, A. A.
(2024). Advancing cybersecurity: A comprehensive review of
Al-driven detection techniques. Journal of Big Data, 11(1), 105.
https://doi.org/10.1186/s40537-024-00957-y

AL-Essa, M., & Appice, A. (2021). Dealing with imbalanced
data in multi-class network intrusion detection systems using
XGBoost. In Communications in Computer and Information
Science, 5-21. https://doi.org/10.1007/978-3-030-93733-1_1
Jacob, S. L., & Sultana Habibullah, P. (2024). A systematic
analysis and review on intrusion detection systems using machine
learning and deep learning algorithms. Journal of Computational
and Cognitive Engineering, 4(2), 108-120. https://doi.
org/10.47852/bonviewJCCE42023249

Einy, S., Oz, C., & Navaei, Y. D. (2021). The anomaly- and
signature-based IDS for network security using hybrid inference
systems. Mathematical Problems in Engineering, 2021(1),
6639714. https://doi.org/10.1155/2021/6639714

Hnamte, V., & Hussain, J. (2021). An extensive survey on
intrusion detection systems: Datasets and challenges for modern
scenario. In 2021 3rd International Conference on Electrical,
Control and Instrumentation Engineering, 1-10. https://doi.
org/10.1109/ICECIES2348.2021.9664737

Almomani, O., Alsaaidah, A., Abu-Shareha, A. A., Alzagebah,
A., Amin Almaiah, M., & Shambour, Q. (2025). Enhance URL
defacement attack detection using particle swarm optimization
and machine learning. Journal of Computational and Cognitive
Engineering, 4(3), 296-308. https://doi.org/10.47852/
bonviewJCCES52024668

Mohammadpour, L., Ling, T. C., Liew, C. S., & Aryanfar, A.
(2022). A survey of CNN-based network intrusion detection.
Applied Sciences, 12(16), 8162. https://doi.org/10.3390/
appl12168162

Ali, R., Ali, A., Igbal, F., Hussain, M., & Ullah, F. (2022).
Deep learning methods for malware and intrusion detection:
A systematic literature review. Security and Communication
Networks, 2022(1), 1-31. https://doi.org/10.1155/2022/2959222
Sharma, A., Vans, E., Shigemizu, D., Boroevich, K. A., & Tsunoda,
T. (2019). Deeplnsight: A methodology to transform a non-image
data to an image for convolution neural network architecture.
Scientific Reports, 9(1), 11399. https://doi.org/10.1038/s41598-
019-47765-6

Ding, Y., & Zhai, Y. (2018). Intrusion detection system for
NSL-KDD dataset using convolutional neural networks. In
Proceedings of the 2018 2nd International Conference on
Computer Science and Artificial Intelligence, 81-85. https://doi.
org/10.1145/3297156.3297230

Farrukh, Y. A., Wali, S., Khan, 1., & Bastian, N. D. (2023).
SeNet-I: An approach for detecting network intrusions through
serialized network traffic images. Engineering Applications of
Artificial Intelligence, 126, 107169. https://doi.org/10.1016/j.
engappai.2023.107169

Cao, B., Li, C., Song, Y., Qin, Y., & Chen, C. (2022). Network
intrusion detection model based on CNN and GRU. Applied
Sciences, 12(9), 4184. https://doi.org/10.3390/app12094184
Huang, T. H.-D., & Kao, H.-Y. (2018). R2-D2: ColoR-inspired
convolutional neural network (CNN)-based AndroiD malware

[15]

[16]

[17]

(20]

(21]

[22]

(23]

[24]

[26]

(27]

(28]

detections. In 2018 IEEE International Conference on Big Data,
2633-2642. https://doi.org/10.1109/BigData.2018.8622324
Yadav, P., Menon, N., Ravi, V., Vishvanathan, S., & Pham, T.
D. (2022). EfficientNet convolutional neural networks-based
Android malware detection. Computers & Security, 115, 102622.
https://doi.org/10.1016/j.cose.2022.102622

Newaz, A. L., Sikder, A. K., Babun, L., & Uluagac, A. S. (2020).
HEKA: A novel intrusion detection system for attacks to personal
medical devices. In 2020 IEEE Conference on Communications
and Network Security, 1-9. https://doi.org/10.1109/
CNS48642.2020.9162311

Lin, S. Z., Shi, Y., & Xue, Z. (2018). Character-level intrusion
detection based on convolutional neural networks. In 2018
International Joint Conference on Neural Networks, 1-8.
https://doi.org/10.1109/IJCNN.2018.8488987

Shafiq, M., & Gu, Z. (2022). Deep residual learning for image
recognition: A survey. Applied Sciences, 12(18), 8972. https://doi.
org/10.3390/app12188972

Lim, H.-K., Kim, J.-B., Heo, J.-S., Kim, K., Hong, Y.-G., & Han,
Y.-H. (2019). Packet-based network traffic classification using
deep learning. In 2019 International Conference on Artificial
Intelligence in Information and Communication, 046-051.
https://doi.org/10.1109/ICAIIC.2019.8669045

Xue, J., Chen, Y., Li, O., & Li, F. (2020). Classification and
identification of unknown network protocols based on CNN and
T-SNE. Journal of Physics: Conference Series, 1617(1), 012071.
https://doi.org/10.1088/1742-6596/1617/1/012071

Ghorbani, A., & Fakhrahmad, S. M. (2022). A deep learning
approach to network intrusion detection using a proposed
supervised sparse auto-encoder and SVM. [ranian Journal of
Science and Technology, Transactions of Electrical Engineering,
46(3), 829-846. https://doi.org/10.1007/s40998-022-00498-1
Alam, K., Imran, M. Al, Mahmud, U., & Fathah, A. Al. (2024).
Cyber attacks detection and mitigation using machine learning
in smart grid systems. Journal of Science and Engineering
Research, 1(01), 38-55. https://doi.org/10.70008/jeser.
v1i01.43

Abualhaj, M. M., Al-Khatib, S. N., Al-Allawee, A., Munther,
A., & Anbar, M. (2024). Enhancing network intrusion detection
systems through dimensionality reduction. In /International
Conference on Soft Computing and Data Mining, 244-253.
https://doi.org/10.1007/978-3-031-66965-1 24

Abualhija, M., Al-Shaf’i, N., Turab, N. M., & Hussein, A. (2023).
Encountering social engineering activities with a novel honeypot
mechanism. International Journal of Electrical and Computer
Engineering, 13(6), 7056. https://doi.org/10.11591/ijece.v13i6.
pp7056-7064

Tran, T. P, Nguyen, V. C., Vu, L., & Nguyen, Q. U. (2021).
Deeplnsight-convolutional neural network for intrusion detection
systems. In 2021 8th NAFOSTED Conference on Information
and Computer Science, 120-125. https://doi.org/10.1109/
NICS54270.2021.9701572

van der Maaten, L., & Hinton, G. (2008). Visualizing data using
t-SNE. Journal of Machine Learning Research, 9(2008), 2579—
2605.

Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep inside
convolutional networks: Visualising image classification models
and saliency maps. In 2nd International Conference on Learning
Representations Workshop Track Proceedings, 1-8.

Shrikumar, A., Greenside, P., Shcherbina, A., & Kundaje, A.
(2016). Not just a black box: Learning important features through

https://doi.org/10.1016/j.cose.2023.103585
https://doi.org/10.1016/j.cose.2023.103585
https://doi.org/10.1186/s40537-024-00957-y
https://doi.org/10.1007/978-3-030-93733-1_1
https://doi.org/10.47852/bonviewJCCE42023249
https://doi.org/10.47852/bonviewJCCE42023249
https://doi.org/10.1155/2021/6639714
https://doi.org/10.1109/ICECIE52348.2021.9664737
https://doi.org/10.1109/ICECIE52348.2021.9664737
https://doi.org/10.47852/bonviewJCCE52024668
https://doi.org/10.47852/bonviewJCCE52024668
https://doi.org/10.3390/app12168162
https://doi.org/10.3390/app12168162
https://doi.org/10.1155/2022/2959222
https://doi.org/10.1038/s41598-019-47765-6
https://doi.org/10.1038/s41598-019-47765-6
https://doi.org/10.1145/3297156.3297230
https://doi.org/10.1145/3297156.3297230
https://doi.org/10.1016/j.engappai.2023.107169
https://doi.org/10.1016/j.engappai.2023.107169
https://doi.org/10.3390/app12094184
https://doi.org/10.1109/BigData.2018.8622324
https://doi.org/10.1016/j.cose.2022.102622
https://doi.org/10.1109/CNS48642.2020.9162311
https://doi.org/10.1109/CNS48642.2020.9162311
https://doi.org/10.1109/IJCNN.2018.8488987
https://doi.org/10.3390/app12188972
https://doi.org/10.3390/app12188972
https://doi.org/10.1109/ICAIIC.2019.8669045
https://doi.org/10.1088/1742-6596/1617/1/012071
https://doi.org/10.1007/s40998-022-00498-1
https://doi.org/10.70008/jeser.v1i01.43
https://doi.org/10.70008/jeser.v1i01.43
https://doi.org/10.1007/978-3-031-66965-1_24
https://doi.org/10.11591/ijece.v13i6.pp7056-7064
https://doi.org/10.11591/ijece.v13i6.pp7056-7064
https://doi.org/10.1109/NICS54270.2021.9701572
https://doi.org/10.1109/NICS54270.2021.9701572

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2025

propagating activation differences. In Proceedings of the 33rd
International Conference on Machine Learning, 1-6.

[29] Wang, S., & Zhang, Y. (2023). Grad-CAM: Understanding Al
models. Computers, Materials & Continua, 76(2), 1321-1324.
https://doi.org/10.32604/cmc.2023.041419

[30] Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to
interpreting model predictions. In Proceedings of the 31st
International Conference on Neural Information Processing
Systems, 4768-4777.

How to Cite: AL-Essa, M., Alsharo, M., Alnsour, Y., Ali, W. A., & Almomani, O. (2025).
Transforming Data Representation: A Comparative Analysis of Tabular and Image-Based
Approaches with XAl. Journal of Computational and Cognitive Engineering.
https://doi.org/10.47852/bonviewJCCE52026581

https://doi.org/10.32604/cmc.2023.041419
https://doi.org/10.47852/bonviewJCCE52026581

