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Abstract: In the field of big data, clustering remains a fundamental component of data mining and knowledge discovery, particularly in high-
volume, heterogeneous environments. Although traditional clustering algorithms have been widely used, they often exhibit poor scalability, limited
robustness, and sensitivity to noise when applied to large industrial-scale datasets. To address these limitations, this paper proposes a Spark-
based clustering framework that incorporates an Adaptive Gaussian-Based Kernel K-Means (A-GBK-Means) algorithm, designed to mitigate
performance degradation in the presence of noisy and nonhomogeneous data. The A-GBK-Means algorithm integrates fuzzy logic with adaptively
determined kernel widths, using local density estimation, thereby enhancing both clustering accuracy and flexibility. Extensive experiments were
conducted on real-world industrial sensor data as well as synthetic benchmarks, and performance was evaluated using multiple metrics, including
execution time, Silhouette Score, Davies—Bouldin Index, and noise resilience. The comparative analysis demonstrates that the A-GBK-Means
algorithm consistently outperforms classical approaches—namely K-Means, Density-Based Spatial Clustering of Applications with Noise, Fuzzy
C-Means, and standard GBK-Means—in terms of clustering quality and computational efficiency. Furthermore, the proposed framework exhibits
superior scalability, owing to its distributed architecture built on Apache Spark. This study provides practical insights into scalable and interpretable
clustering methods for intelligent manufacturing and sensor-based systems and highlights the effectiveness of adaptive kernel learning in modern
big data applications.
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1. Introduction The analysis of such extensive and varied sources to yield
valuable knowledge necessitates the implementation of sophisticated
knowledge discovery methods. Among the aforementioned methods is
clustering, which refers to the process of dividing a set of data into
subsets such that the objects in the same subset are closer to each other
than to the objects in the other subsets [4]. Clustering is a pivotal topic
in numerous fields, including data mining, biostatistics, intelligent
energy grids, anomaly detection in the IoT, image segmentation, and
optimization of deep learning models [5].

The scalability challenges posed by large and high-dimensional
data thus continue to challenge traditional clustering algorithms despite
decades of development. As an example, classical K-Means has been
shown to be NP-hard even with a low number of clusters and thus
is not well-suited to distributed or streaming settings [6]. Therefore,
the scalability, efficiency, and accuracy of clustering methods have
become a significant research focus. The following original five
attributes of big data—the so-called 5Vs—make clustering even more
complicated [7]:

The focus of big data research has evolved over time. Initially,
research efforts were concentrated on addressing the challenges
associated with storing and processing vast amounts of data. However,
in recent years, there has been a shift towards identifying actionable
insights within the voluminous data streams generated by digital
platforms. In the contemporary era, it is widely acknowledged that
big data constitutes a foundational element of the modern computer
science industry, underpinning advancements in domains such as
artificial intelligence, industrial automation, and intelligent decision
systems [1].

The generation of data in the contemporary era is exceedingly
vast in magnitude. To provide context, YouTube is inundated with over
720,000 hours of new video content daily. Facebook and Instagram,
in isolation, are responsible for more than 350 million photo uploads
and 500 million stories posted on a daily basis. With an active user
base that exceeds 1.925 billion as of 2025, TikTok has emerged as a
primary catalyst for the proliferation of multimedia data [2]. According
to the most recent research study by the International Data Corporation, 1. Volume: Petabytes of unstructured and semi-structured data on

the global data sphere is expected to exceed 180 zettabytes by the year social platforms, sensors, and logs.
2025, with significant contributions from the Internet of Things (IoT), 2. Velocity: Edge devices and cloud services provide real-time data
cloud computing, and autonomous systems [3]. streams that need low-latency processing.

3. Variety: Text, video, sensor signals, time-series—heterogeneous
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5. Value: Deriving business intelligence and actionable insights out of
raw data.

To address these problems, the research community has
investigated distributed clustering algorithms with the help of platforms
such as Apache Spark, Flink, and Ray, which allow parallel computation
over large-scale datasets [8].

To summarize, clustering in big data settings requires not only
robust and precise algorithms but also an elastic architecture. With
the ever-increasing explosion in volume and variety of data, scalable,
distributed, and smart clustering techniques are an important frontier in
data science research.

Conventional clustering techniques have been found inadequate
in efficiently processing the massive size and variety of contemporary
datasets due to the growing sophistication and computational
overheads of large-scale data environments. The most obvious one
is the vanilla K-Means algorithm, which is NP-hard even when k =
2, meaning that it should not be used in high-dimensional and large-
scale settings [6]. Scalability has therefore become a key issue in big
data clustering.

The main goals of recent clustering research are efficient
algorithms with parallelizability and scalability, and, at the same time,
high-quality clustering. Although there has been considerable progress
in this field, the holistic nature of big data—that is, high velocity, variety,
and veracity—remains elusive to current solutions [9]. Although there
are some review articles that discuss clustering in big data, the current
study provides several significant contributions that make it stand out
from previous articles.

Limited Scope-High Relevance: The scope of this work is
narrowed to focusing only on the recent developments of clustering
methods adapted to modern distributed big data frameworks, such as
Apache Spark, Flink, and Dask. The research strategy relies on the
review of over 200 scholarly papers released in the period between
2015 and 2025.

Comparative Platform Analysis: It provides a side-by-side
comparison between Apache Spark and Hadoop MapReduce in terms
of their architectural variations, performance compromises, and
applicability in different use cases. The comparison is incorporated as a
guide to be used by researchers and engineers when choosing clustering
platforms to use in large-scale applications.

Selected High-Quality Technique Filtering: The paper filters and
analyzes the most technically sound and popular clustering techniques
and discusses their implementation plans, computational complexity,
and areas of application. The advantages and disadvantages of each of
the techniques are clearly outlined.

Further, clustering algorithms may also be distinguished based
on the architecture of their execution, which can be of the following
two broad types [10]:

1. Single-machine clustering methods: These are the methods that are
run on a standalone machine with minimal memory and computing
resources. They tend to be effective with small and moderately sized
datasets but encounter performance bottlenecks when used with
huge volumes of data.

2. Multi-machine/distributed clustering: These methods use the
processing capabilities of distributed nodes within a cluster and
offer much better scalability and fault tolerance. These methods can
be horizontally scaled on large partitions of data using platforms
like Apache Spark, Apache Flink, and containers orchestrated by
Kubernetes [8].

Each of these approaches represents a trade-off between resource
utilization, latency, fault tolerance, and system complexity and will be
comparatively detailed in the sections below.

2. Literature Review

Big data clustering techniques are of two kinds, as illustrated
in Figure 1: single-machine and multi-machine clustering techniques.
Multi-machine clustering solutions have recently become popular
because they are highly scalable and responsive in terms of performance
for customers.

Clustering techniques adapted to big data settings can be roughly
grouped into two categories, as shown in Figure 1: single-machine
clustering techniques and multi-machine (distributed) clustering
techniques. Interest in multi-machine solutions has been growing in
recent years, as they provide better scalability, distributed memory
usage, and faster response times in practical tasks [11]. Single-machine
clustering methods are run on isolated systems and operate within
the constraints of local computing resources. They are conventional
when the size of the data is low to medium, and in many cases, they
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are vulnerable to memory bottlenecks, poor parallelism, and degraded
performance as data size grows [12]. The most popular strategies in this
category are data mining—based clustering and dimension-reduction-
based strategies [13].

The clustering strategy is a data mining approach that employs
unsupervised learning models to identify latent patterns in collections
of data. Nonetheless, the problem with such algorithms is that they are
not always scalable due to intensive computation and memory demands.
Prominent methods in this category include evolutionary-based,
density-based, hierarchical, model-based, grid-based, and partitioning-
based clustering methods.

Among those, partitioning-based clustering methods seek to
subdivide a dataset into a pre-specified number of clusters, k, using
similarity measures such as Euclidean distance, Manhattan distance,
or Chebyshev distance. The aim of these methods is to maximize
intra-cluster homogeneity and inter-cluster separation. Well-known
algorithms in this paradigm are K-Means [14], which is simple and
fast to converge; K-Medoids and its generalization Partitioning Around
Medoids (PAM), which are robust against noise and outliers [15];
K-Modes, which is efficient with categorical data; and scalable solutions
such as Clustering Large Applications (CLARA) and Clustering Large
Applications based on Randomized Search (CLARANS), which are
tailored to large datasets that cannot fit in available memory.

Hierarchical clustering is another significant subcategory of
single-machine clustering. Hierarchical clustering constructs nested
clusters representing a tree-like layout known as a dendrogram. The
following two major types exist:

1. Agglomerative hierarchical clustering, which starts with each data
point as its own cluster and repeatedly merges the closest pairs of
clusters. Prominent algorithms based on this technique are Balanced
Iterative Reducing and Clustering using Hierarchies (BIRCH) and
CHAMELEON, which utilize dynamic modeling to efficiently
merge [16].

2. Divisive hierarchical clustering begins with all data in one cluster
and repeatedly divides the cluster based on dissimilarity until a
desired number of clusters is achieved. Familiar algorithms based on
this approach are Principal Direction Divisive Partitioning (PDDP)
and Divisive Hierarchical Clustering using Clustering Features
(DHCC) [17].

Despite the role single-machine techniques have played in
clustering research, their shortcomings in distributed computation,
fault resiliency, and real-time flexibility have inspired the development
of multi-machine clustering systems, which are the subject of the
following section.

Besides partitioning and hierarchical methods, several other
clustering paradigms have been developed to address special data
structures, performance bottlenecks, or robustness issues. These include
density-based, grid-based, model-based, and dimension-reduction-
aided clustering methods, each with distinct properties and suitability
for use.

Density-Based Clustering: In this technique, clusters are defined
as dense areas in the data space, separated by regions of lower density.
The clusters are not predetermined by shape or number but are formed
by spatial locality and the density and interconnectedness of data
points. The main advantage of this method is its ability to find clusters
of arbitrary shapes and its robustness to noise and outliers, because
it is a one-pass scanning algorithm [18]. Well-known algorithms
include Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), DENCLUE (DENsity-based CLUstEring), Ordering
Points to Identify the Clustering Structure (OPTICS), and Distribution-
Based Clustering of LArge Spatial Databases (DBCLASD) [19].

Grid-Based Clustering: In grid-based clustering, the data space is
discretized into a finite number of non-overlapping cells (or grids), and
clusters are identified based on the density of objects in these cells. The
basic algorithm steps include the following: (a) subdividing the entire
data space into a constant number of cells (typically much smaller than
the number of data records), (b) removing sparse cells with low object
density, and (c) merging high-density neighboring cells to form clusters
[20]. This technique is computationally efficient, especially on large-
scale data, although the clustering quality is sensitive to the granularity
of grid partitioning. Well-known algorithms include STING, CLIQUE,
OPTIGrid, and WaveCluster [21].

Model-Based Clustering: These methods assume that the data
is generated from a mixture of underlying probability distributions.
Clustering is achieved by estimating the parameters of these
distributions. This allows for automatic determination of the number
of clusters and probabilistic assignment of membership. As a result,
model-based approaches are less vulnerable to noise and overlapping
data structures [22]. However, as the models grow in complexity, they
may incur significant computational overhead. Notable algorithms
in this category include Expectation-Maximization, COBWEB, and
MCLUST [23].

Dimension Reduction Techniques in Clustering: In high-
dimensional data, clustering performance can degrade in both time and
quality. To address this, dimension reduction techniques are used as a
preprocessing step to reduce the dimensionality of the feature space
while retaining essential data properties. Two main methods are as
follows:

1. Feature selection, which retains the most relevant attributes of
the original dataset. This is controlled through pre-defined subset
strategies or manual thresholds. Common techniques include
Sequential Forward Selection (SFS), Correlation-based Feature
Selection (CFS), and Markov Blanket Filter (MBF) [24].

2. Feature extraction, which maps high-dimensional data to a new,
lower-dimensional feature space. This improves clustering
effectiveness and reduces computation. Popular methods include
Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA), and Singular Value Decomposition (SVD) [25].

Altogether, these techniques enhance the clustering process
by improving scalability, reducing computational complexity, and
increasing robustness in high-dimensional or noisy data.

As the amount of data grows exponentially—frequently in the
petabyte range—traditional single-machine clustering algorithms
have become increasingly insufficient to process data in a timely
fashion. Researchers have overcome this limitation by exploiting
recent improvements in distributed computing, networked systems,
and parallel processing to develop multi-machine clustering methods.
These techniques divide big data into small, manageable parts, which
are distributed using MapReduce to many computing nodes for parallel
computation. With this strategy, better scalability, fault resilience, and
speed of execution can be achieved [26].

Parallel Clustering Paradigms: In a distributed environment,
parallelism is the main aspect of improving clustering performance.
The following are the three main models of parallelization frequently
mentioned in the literature by Dafir et al. [27]:

1. Independent parallelism: Every processor has access to the complete
dataset and processes it independently without any communication
between processors.

2. Task parallelism: The different processors run different clustering

algorithms or component tasks.

. Single Program Multiple Data (SPMD): The same program is run on

multiple processors, each with a disjoint set of data.

W
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Although parallel clustering can enhance scalability and efficiency,
it also introduces additional complexities for system designers in terms
of data partitioning, load balancing, and inter-process communication.

These paradigms have been used to develop several well-known
parallel clustering implementations, such as a parallel implementation
of K-Means using a Network of Workstations, where message-passing
protocols are used to synchronize the processors [28]. Likewise,
parallel CLARANS was implemented in a master-slave design based
on Parallel Virtual Machine environments [29].

In hierarchical clustering, PBIRCH generalizes the classical
BIRCH algorithm to run in a parallel environment based on the SPMD
model and can scale across clusters of machines [30]. A parallel version
of CHAMELEON was proposed using another hierarchical technique
with the following three-stage design:

1. A parallel k-nearest neighbor algorithm to reduce time complexity,

2. Multilevel graph partitioning to generate initial clusters,

3. Agglomeration is based on interconnectivity and proximity to form
final clusters.

Density-Based Distributed Clustering (DBDC): Some of the
most notable distributed clustering methods include Density-Based
Distributed Clustering [31], in which a dataset is divided, and computing
is performed in several locations. A DBSCAN algorithm is applied at
each local site, producing local clusters and representative elements.
These local models are then sent to a central server, which combines
them into a global clustering model. The global model may then be
published to clients to allow local updates and ensure consistency in
distributed environments.

GPU-Based Acceleration: Graphics Processing Units (GPUs)
have recently been considered in clustering applications due to their
superior parallel computation and memory utilization capabilities.
Tasks involving repeated distance computations or graph traversal
particularly benefit from GPU-based clustering. An example of such
an implementation is G-DBSCAN, a GPU-accelerated variant of
DBSCAN [32]. This method consists of the following two major stages:

1. A graph is created, with edges corresponding to relationships
between data points within a fixed distance threshold.

2. The revealed structure is clustered using Breadth-First Search
traversal on the constructed graph [33].

It is becoming increasingly apparent that GPU-accelerated
algorithms are becoming standard elements of clustering pipelines,
particularly when integrated with distributed systems in cloud and edge
computing environments [34].

MapReduce-Based Clustering: MapReduce is an influential
model of distributed data processing, initially proposed by Google in
2004, to perform large-scale computations on clusters of machines
[35]. This model allows parallel execution of data processing tasks by
breaking them down into smaller subtasks, which are then distributed
to various processing nodes. As shown in Figure 2, MapReduce
architecture consists of two main user-defined functions: Map and
Reduce.

During the Map phase, each mapper node independently
processes a portion of the input data and generates intermediate
key-value pairs. These intermediary outputs are then grouped and
passed to the Reduce phase, where reducer nodes combine the values
associated with the same key. This intermediate shuffle framework
ensures efficient combination and alignment of data across the
nodes, enabling synchronized computation throughout the distributed
environment.

The primary benefit of MapReduce is that it abstracts the low-
level complexities of parallel processing, internode communication,

Iss. 00 2025
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and resource allocation. Developers only need to define the data
transformation logic, whereas load balancing, data partitioning,
network optimization, and fault tolerance are automatically handled by
the framework.

MapReduce provides extensive parallelism, reliability, and
scalability, making it a valid foundation for executing clustering
algorithms over large datasets. Several clustering algorithms—
especially those requiring batch processing, such as K-Means—have
been successfully ported to the MapReduce paradigm to leverage its
fault tolerance and implementation simplicity within distributed file
systems such as Hadoop Distributed File System (HDFES).

Several clustering algorithms have been modified to run on
the MapReduce framework to take advantage of its scalability and
distributed processing. Among them, Parallel K-Means (PK-Means) is
a modification of the classic K-Means algorithm designed to run within
the MapReduce framework. It divides the data among numerous nodes
and performs centroid update iterations in a parallelized manner. Another
well-known example is MR-DBSCAN, which combines MapReduce
and GPU acceleration to improve the performance of the density-based
DBSCAN algorithm. This parallel-hybrid strategy is significantly more
effective in clustering big and complex information ontologies by
incorporating parallel computation with high-throughput architecture
hardware [36]. Some contributions of clustering technologies are
shown in Table 1.

Recent evolution of fuzzy-based clustering algorithms in large-
scale and heterogeneous environments includes suggestions to add the
adaptive fuzzy membership models to deep learning architecture to
enhance the cluster interpretability and robustness [37]. In addition,
fuzzy logic technology in combination with hybrid methods based
on fuzzy bounds and graph-based optimization was demonstrated to
be effective in application in power system diagnostics and anomaly
forecasting, which demonstrates the usefulness of fuzzy logic in real-
time big data processing [38]. These studies reinforced the applicability
of our suggested Adaptive Gaussian-Based Kernel K-Means (A-GBK-
Means) framework, which also uses flexible fuzzy membership and
the kernel learning in a distributed context.

3. Related Work

The clustering of big data is highly dependent on the underlying
infrastructure of the data processing system, as it defines scalability,
responsiveness, and efficiency. The three main types of processing
paradigms are: (1) batch processing systems, (2) stream (real-time)
processing systems, and (3) interactive analytics platforms.

3.1. Batch processing platforms

The most embraced big data analytics model is batch processing,
especially in large-scale numerical calculations. It is a way of handling
large quantities of data in predetermined groups or batches, which are
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Table 1
Contribution of the clustering technique

Clustering technique Contribution
MLIib 2.0 (Apache Spark)

Bayesian HMM with GM
Clustering

Addresses Big Data clustering.
Accurate change detection.

K-Prototype with MapReduce Good scalability shown.

Improved Weighted Clustering
(IWC) and PSO

Apache Spark with Locality
Sensitive Hashing

Low cost, better accuracy.

High quality, fast execution.

Parallel K-Means and Fuzzy Up to 60% faster.
K-Means
DBSCAN 1 B records in 41 min.

Fractional Sparse Fuzzy
C-Means and PSO

Conventional Static Model
BigVAT with Sampling-Based
Crisp Partitions

Game-Based K-Means
(GBK-means)

Fuzzy K-Means for Teaching
Evaluation

90.6% accuracy, DBI 5.33.

Better personalization.

Fine-grained clusters found.
Outperforms classic K-Means.
Improved evaluation accuracy.

Distributed Computing Based Faster, more stable.

K-Means
Neural-Engine Based K-Means ~ 200% speed gain.

Radar Scanning Strategy
Clustering

Real-time high performance.

Graph-Based Spectral
Clustering on Spark

High quality for graphs.

saved and processed at set intervals. The most notable batch platform
is the free and open-source Apache Hadoop framework, which
implements the MapReduce programming model first proposed by
Google [39].

The following are the three key components in the core
architecture of Hadoop:

1. Distributed storage - HDFS,
2. Computation with MapReduce,
3. Cluster management - Yet Another Resource Negotiator (YARN).

Above these base layers, Hadoop offers several abstractions and
extensions such as Hive (SQL-like querying), Pig (data flow scripting),
HBase (NoSQL storage), and Apache Spark. The combination of these
modules provides an end-to-end capability along the big data value
chain: data collection, processing, assessment, and storage management
[40].

Hadoop has been designed to fit well in enterprise-level
deployments due to its characteristics of low infrastructure
cost, scalability, and high fault tolerance [41]. Its processing
philosophy—breaking tasks into small, independent subtasks that
are computed in parallel on distributed nodes—is especially suited
for data-intensive operations such as clustering, classification, and
machine learning [42].

3.2. Stream processing platforms

Unlike batch systems, stream processing platforms are geared
toward use cases with low-latency or real-time decision-making needs.
Such systems are ideal in scenarios where streams of incoming data
need to be processed in real-time, as opposed to being stored and
analyzed at a later stage. Real-time analytics are valuable in applications
such as transportation systems, financial analytics, and environmental
monitoring. As IoT devices continue to multiply (they are expected
to surpass 50 billion connected sensors worldwide [43]), the need
to process data in real-time also increases. Examples of the leading
platforms in this category include Apache Storm, which specializes
in real-time stream computation, and SAP HANA, which combines
in-memory processing with sophisticated analytics features. These
platforms provide high throughput and near real-time feedback without
requiring permanent storage, making them suitable for time-sensitive
clustering and pattern recognition applications.

3.3. Interactive analytics platforms

Interactive analytics platforms allow dynamic and elastic access
to big data. Users can perform ad hoc querying, data visualization,
and iterative computations with low latency. The best-known
representative of this category is Apache Spark, a next-generation data
analytics engine initially developed at the University of California,
Berkeley [44].

Spark was created to address the disk I/O bottlenecks of
Hadoop by providing in-memory computing capabilities, enabling
data to be cached and reused across multiple iterations. It has
extensive compatibility with many programming languages, such
as Java, Scala, and Python, and can be integrated with YARN and
HDFS in Hadoop, allowing it to run smoothly in heterogeneous
environments.

In performance benchmarks, Spark is up to 100 times faster
than Hadoop MapReduce on in-memory workloads and up to 10 times
faster when relying on data that does not fit in memory [45]. Such
benefits render Spark especially well-suited for iterative algorithms
like K-Means, DBSCAN, and hierarchical clustering, where multiple
accesses to the same data are typical.

Table 2 provides a comparative summary of key big data
platforms and their features. The best platform to use among them
depends on the specific requirements of the clustering application,
considering factors such as latency tolerance, data volume, resource
availability, and the scale of deployment.

4. Methodology

In this section, the methodological framework of the current
research is described, namely the chosen clustering algorithms,
evaluation measures, features of the dataset, and implementation
environment. Some comparative analysis of clustering methods is
shown in Table 3.

4.1. Selected clustering algorithms

This research paper has chosen four different clustering
algorithms to test their functionality and stability when dealing with
large-scale datasets under different settings. These techniques have
been selected because of their theoretical diversity, applicability to real-
world distributed environments, and ability to handle various kinds of
data structures (e.g., dense, noisy, and overlapping clusters).
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Table 2
Technical differences between Apache Spark and Hadoop

Feature Apache Spark Hadoop MapReduce
Performance In-memory distributed processing; up to 100x faster Disk-based processing; comparatively slower
Read/Write Cycle Optimized, minimal disk I/O (low latency) High I/O overhead; disk-intensive

Ease of Use High-level APIs (Scala, Python, R) Requires verbose Java code

Realtime Processing
System Latency Low (in-memory execution)
Fault Tolerance
Security Features
Infrastructure Cost

Programming Languages Scala, Java, Python, R

Licensing Model Open source (Apache License 2.0)
SQL Compatibility Spark SQL (ANSI SQL compliant)
Scalability Highly scalable (horizontal scaling)

Machine Learning
Data Caching

Hardware Requirements

Fully supported (e.g., Spark Streaming)

Built-in (RDD lineage & DAG recovery)
Basic (enhanced via integrations)

Higher (requires large memory capacity)

MLIib (native, distributed ML library)
Natively supported (RDD, DataFrame, etc.)

Requires high-performance nodes

Not supported; batch-only model
High (due to frequent disk writes)
Supported via data replication
Advanced (Kerberos, ACL, etc.)
Lower (runs on commodity hardware)
Java, limited support for others

Open source (Apache License 2.0)
HiveQL (subset of SQL)

Highly scalable (but slower in practice)
Apache Mahout (less maintained)
Not supported

Runs efficiently on commodity hardware

The chosen algorithms are the following (Figure 3):

1. K-Means—a centroid-based algorithm that is widely used and
whose efficiency and scalability in Spark settings have been
demonstrated [46].

2. DBSCAN—a density-based algorithm that can identify arbitrarily
shaped clusters and is capable of handling noise [47].

3. Fuzzy C-Means (FCM)—a soft clustering method that allows
assigning membership values of each point to multiple clusters [48].

4. GBK-Means—an augmented kernel adaptation of K-Means, which
combines fuzzy logic and nonlinear transformations, and is reported
to have better adaptability to arbitrary data distributions [49]. )

All the algorithms have been implemented and executed in
the Apache Spark environment to ensure their interoperability with
distributed computing and big data scale.

4.2. Evaluation metrics

Computational and internal cluster quality metrics were used to
systematically analyze the effectiveness and efficiency of the chosen
clustering algorithms on various datasets. Such metrics allow for
controlled and real-world data comparisons in an objective manner.

Execution Time is the total runtime required to complete the
clustering process, starting from data ingestion to the generation of
the final output. It is a primary measure of algorithmic scalability and
computational cost. The execution time was recorded using Spark's
native job monitoring tools and averaged over five independent runs for
each algorithm—dataset pair.

Silhouette Score (SS) measures the similarity of an object to
its own cluster compared to other clusters. It ranges between —1 and
+1, with higher values indicating well-separated and clearly defined
clusters. The score of a data point i, denoted as s(i), is given by
Equation (1) as follows:

. _ _ b()-a@)
s() = s T o

where:

1. a(i): the average distance of point i to all other points in the same
cluster

2. b(i): the average distance of point i to the nearest cluster not
containing i

To reduce computational overhead, sampled subsets of each
dataset were used to compute SSs. The Davies—Bouldin Index (DBI)
compares the average distance between each cluster and its closest
matching cluster. The smaller the value of DBI, the better the clustering
performance. It can be defined as Equation (2) as follows:

DBI= L ¥yk (L)
klenjlj‘iX dij

where oi is the intra-cluster distance of cluster i, and dj is the inter-
cluster distance between clusters i and j.

Noise Ratio can be applied primarily to DBSCAN and FCM.
It is determined as the percentage of data points that were either
considered noise or had low-confidence membership. This measure
is of critical importance in interpreting the robustness of an algorithm
to outliers and unclustered data. To evaluate scalability, the individual
algorithms were tested on progressively larger datasets. Execution
time and quality scores were monitored across scales to assess
the computational efficiency and stability of each approach under
increasing volume stress.

4.3. Datasets

To present a comprehensive analysis of the clustering algorithms'
performance, this research used three heterogeneous datasets. These
datasets are diverse in nature, origin, and complexity, allowing for
the evaluation of clustering algorithms under both synthetic and real-
life settings. The first two datasets are publicly available industrial
sensor logs found on Kaggle and consist of multivariate time-series
measurements on real equipment. These datasets include realistic
challenges such as noise, missing values, and feature heterogeneity. The
third dataset was artificially generated, containing Gaussian-distributed
clusters with added noise, which provided a controlled setting to
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Table 3
Comparative analysis of clustering methods
Category Algorithm Data Type Advantages Disadvantages
Partitioning-Based K-Means Numerical Efficient and simple Sensitive to noise
K-Medoids Numerical Robust to noise Computationally intensive
K-Modes Categorical Handles categorical data Limited to categorical data
PAM/CLARA Numerical Robust to outliers Computational complexity
CLARANS Numerical Efficient on large datasets Parameter dependent
Hierarchical BIRCH Numerical Efficient hierarchical clus- Sensitive to noise
Clustering tering
CHAMELEON Mixed Adaptive to complex clusters Complex scalability
EON All types Handles diverse datasets Scalability limitations
PDDP Numerical Efficient numerical data Linear constraints
clustering
DHCC Categorical Categorical data clustering Limited numerical applicability
Density-Based DBSCAN Numerical Robust to noise Scalability issues
DENCLUE Numerical Automatic cluster Computationally expensive
determination
OPTICS/DBCLASD Numerical Effective in complex Complex parameter tuning
structures
Grid-Based STING Numerical Fast processing Limited accuracy
CLIQUE Numerical Effective in high dimensions  Dependent on grid definition
OPTIGrid Special data Adaptive grid management Complex object handling
Model-Based COBWEB Numerical Fast clustering Noise sensitivity
MCLUST Numerical Automatic cluster Complex parameter tuning
determination
Feature Selection CFS Alphanumerical Reduces data size High-dimensional inefficiency
SFS Numerical Redundant data removal Requires preprocessing
MBF Numerical Effective noisy data filtering ~ Preprocessing necessity
Feature Extraction PCA Numerical Dimensionality reduction Information loss
LDA Categorical Categorical data reduction Reduced interpretability
SVD Numerical High scalability Computational overhead
ICA Numerical Signal separation Statistical assumptions
Parallel Clustering PBIRCH Numerical Parallel execution Algorithm complexity
DBDC Numerical High scalability Implementation complexity
G-DBSCAN Numerical Density clustering in parallel ~ Complexity of parallel algorithms
Kernel-Based Clustering GBK-Means Numerical Effective in handling High computational cost due to
non-linear and overlapping kernel operations
clusters
Fuzzy Clustering Fuzzy C-Means Numerical Captures soft cluster Slower due to iterative member-
membership; interpretable ship updates
results
MapReduce Clustering ~ PK-Means Numerical High scalability Resource intensive
MR-DBSCAN Numerical Parallel complexity manage- Query-based complexity

ment

test clustering accuracy in known distributions. Table 4 provides
an overview of the data sets used, including their record and feature
counts, whether they contain noise, and the number of missing values.

These datasets include realistic challenges such as noise, missing
values, and feature heterogeneity. The third dataset was artificially

generated, containing Gaussian-distributed clusters with added noise,
which provided a controlled setting to test clustering accuracy in
known distributions. Table 4 provides an overview of the datasets used,
including their record and feature counts, whether they contain noise,
and the number of missing values.
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Figure 3
Block diagram of clustering algorithms
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Table 4
Description of datasets used
Number Dataset name Type Records Features Noise Missing values
D1 Industrial Equipment Monitoring Real 7,672 7 No 0
D2 Sensor Data from Industrial Machine Real 10,000 6 Yes 1,249
D3 Clustered Data Synthetic 1,000,000 5 10% 0

Table 5
Experimental platform configuration and technical specifications
Parameter Specification
Platform Apache Spark 3.5.0 (Standalone Cluster

Mode)

Cluster Setup One master node and four worker nodes

CPU (per node) 16-core Intel Xeon E5-2620 v4
2.10GHz

RAM (per node) 64 GB

Storage (per node) 1 TB SSD

Operating System Ubuntu 22.04 LTS (64-bit)

Cluster Manager Spark Standalone

Programming Interface PySpark (v3.5) utilizing the Pandas API

Data Storage Formats CSV and Parquet

4.4. Experimental environment

Each of the experiments was carried out on Apache Spark, as
the framework provides efficient execution of large-scale datasets on
a distributed computing system. The implementation on Spark enabled
the clustering algorithms to be executed in parallel, taking advantage
of the in-memory computation model to achieve faster execution and
scalability [50]. Experimental platform configuration and technical
specifications are shown in Table 5.

Each algorithm was run five times on every dataset, and
the average of the results was recorded for comparison purposes.

Intermediate processing steps, such as normalization and missing value
imputation, were handled through Spark ML pipelines. Hyperparameter
tuning was performed manually using grid search, optimized based
on the SS. Random seeds were set to fix all cluster initializations and
ensure reproducibility.

5. Experimental Configuration

The experimental process was carefully designed to enable
repeatable, objective, and systematic assessment of clustering
performance under different data conditions. The same workflow was
applied to all datasets and clustering algorithms to ensure consistency
and comparability. It began with data cleaning and preprocessing,
where missing values in Dataset D2 were either imputed with the mean
or deleted on a row-wise basis. Z-score normalization was applied to
all numerical features to standardize feature scaling, and the resulting
datasets were converted into Apache Spark DataFrames. Feature vectors
were then constructed to ensure compatibility with Spark MLIlib.

Following preprocessing, the clustering algorithms—K-Means,
DBSCAN, FCM, and GBK-Means—were run separately on each
dataset. To reduce the impact of random initialization, each algorithm
was executed five times with fixed random seeds. Performance metrics
were systematically collected during each run. Execution times were
recorded using Spark’s internal monitoring utilities, and internal
clustering validity scores, including the SS and DBI, were computed
to evaluate clustering quality. Additionally, noise ratios were calculated
(only for algorithms capable of detecting noise—namely DBSCAN and
FCM), and robustness was assessed.

Finally, the results of all experiments were systematically
recorded to support visual comparison and subsequent analysis. The
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Figure 4
Experimental workflow architecture
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entire workflow was implemented in JupyterLab using Spark ML
pipelines, ensuring complete reproducibility and methodological
transparency across all experiments.

5.1. Implementation workflow

To enable repeatability and scalable cluster implementation, the
workflow was designed as a modular pipeline. This workflow was built
on the foundation of Apache Spark's distributed architecture and was
executed through PySpark interfaces to deploy algorithms and collect
metrics.

Figure 4 outlines the main steps of the experimental pipeline. The
process begins with the ingestion of datasets and their preprocessing,
where missing values are handled and features are normalized. The
processed data is then introduced into the selected clustering model
(K-Means, DBSCAN, FCM, or GBK-Means), and finally, it is evaluated
using several internal validity measures.

To ensure consistent parameter tuning and to parallelize
computation, each execution step was packaged into a reusable Spark
ML pipeline. The evaluation results were automatically written to
formatted result files, which were then used to generate visualization
plots and comparison charts.

5.2. Parameter settings

The clustering algorithms were configured with predefined
hyperparameters to facilitate fair and consistent comparison across all
experimental settings. These parameters were either adopted from best

Table 6
Hyperparameters for clustering algorithms

practices in literature or optimized through empirical grid search on a
held-out validation set from the synthetic dataset (D3).

With respect to the GBK-Means and the A-GBK-Means
algorithms, various essential parameters do affect the performance of
the clustering method. The value of the number of clusters (k) was
determined in order to correspond to the known class structure of
the synthetic data, as well as to allow comparing the results among
datasets (k = 6). The value of the kernel width (sigma) gives sensitivity
to the Gaussian function, that is, a lower value gives more stress on
local similarity, whereas a higher value tends to smooth the effect of
a larger area. In GBK-Means, sigma was constant, but in A-GBK-
Means, it was dynamic and adjusted adaptively according to the local
density of a data point, resulting in a more flexible cluster boundary
and tolerance of noise. The regularization coefficient regulates the size
of the kernel component and also prevents overfitting by the issue of
penalizing a high deviation. The fuzzifier (m) is a parameter that varies
the softness of cluster membership and typically takes the value 2.0; an
increased value can lead to an increased degree of fuzziness but also
slow convergence. Parameters were chosen using both empirical tuning
as well as support in the literature and were standardized between
experiments to stay as objective and reproducible as possible.

For the K-Means algorithm, the number of clusters (k) was set
to 6 for all datasets to match the ground truth in the synthetic data
and maintain consistency in the real-world setting. The algorithm was
initialized using the “k-means++" method and capped at a maximum of
100 iterations per run.

For DBSCAN, the epsilon (¢ = 0.3) parameter was determined
empirically using the k-distance graph, and the minimum number of
points required to form a dense region (MinPts) was set to 10.

The FCM algorithm was configured with a fuzziness coefficient
(m=2.0), a convergence criterion (¢ =1 X 10~*), and a maximum of 300

Algorithm Key parameters iterations per run to ensure stable convergence behavior.
K-Means k=6 Specifically, for the GBK-Means algorithm, which combines
DBSCAN &=0.3. MinPts = 10 kernel transformation with fuzzy membership weighting, the following

’ settings were applied: number of clusters k = 6, kernel width ¢ = 1.5,
FCM ¢=6,m=2.0, e = le-5, maxlter = 300 regularization coefficient L = 0.01, and maximum iterations (maxlIter) =
GBK-Means k=6,06=1.5,A=0.01, maxIter = 150 150. Each algorithm was run with fixed random seeds to ensure result
A-GBK-Means k=6, 5(x), A =0.01, m = 2.0 reproducibility. Table 6 summarizes the parameter values used for each

method.
Table 7
Summary of experimental tasks

Step Task description Tools/technologies used
1 Data acquisition and preprocessing Pandas, PySpark, Scikit-learn
2 Normalization and missing value handling Spark ML Pipeline (Z-score, Imputer)
3 Algorithm integration and configuration PySpark MLIib, Custom Python (FCM)
4 Execution of clustering models Apache Spark 3.5 (Standalone Mode)
5 Evaluation metric computation (SS, DBI, Noise) Scikit-learn, NumPy
6 Time and scalability measurement Spark job logs, built-in timers
7 Result recording and visualization JupyterLab, Matplotlib, Seaborn
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5.3. Summary of tasks performed

This subsection presents a description of the key activities carried
out during the experimental stage. The process was implemented in
a modular and reproducible manner with the support of distributed
processing in Spark. Table 7 summarizes the key steps undertaken in
the clustering experiments.

JupyterLab notebooks were used to script all tasks, making the
results fully traceable and reproducible. Specific wrapper functions
were written to integrate FCM and GBK-Means into the Spark pipeline.

6. Experimental Results and Evaluation

This section presents the experimental results of applying the
four clustering algorithms to three datasets. The analysis is conducted
in terms of computational efficiency (running time, scalability) as well
as clustering quality (SS, DBI, and noise-handling capability).

Overall, the suggested A-GBK-Means algorithm is superior
to the baseline approaches in its ability to balance well between
the accuracy of clustering tasks and scalability. It takes less time to
execute competitively, larger SSs, and smaller DBI values. It also
works effectively in the detection of meaningful patterns, especially
on noisy datasets (D2), compared to traditional K-Means or DBSCAN.
These findings add credence to the fact that kernel width and fuzzy
membership setting flexibilities are major contributors to adaptive
performances in cluster computing and practical relevance.

6.1. Execution time analysis

Execution time is one of the most important performance
measures of clustering algorithms, especially when applied to large-
scale datasets, as is often the case in practice. In this analysis, the mean
runtime (in seconds) of each algorithm—dataset pair is considered.
Each experiment was repeated five times to obtain statistically reliable
results, and the average execution time was reported to minimize
the influence of random initialization effects or system workload
fluctuations.

Figure 5 illustrates that there were significant variations in
computational efficiency among the algorithms. K-Means consistently
demonstrated the fastest execution time, especially on the synthetic
dataset (D3), due to its linear time complexity and the highly optimized
vectorized implementation in Spark MLIib. In contrast, DBSCAN
exhibited considerable slowdowns on larger datasets, attributed to the

Figure 5
Execution time and dataset size
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computationally intensive nature of its neighborhood-based density
estimation.

The FCM algorithm required more time than K-Means due to
its iterative fuzzy membership updates; however, its performance
remained within acceptable limits. Across all datasets, GBK-Means
showed the longest execution times, primarily due to the additional
computational cost of kernel function evaluation and membership
matrix calculations.

6.2. Clustering quality evaluation

Clustering quality is essential for evaluating how well an
algorithm identifies the underlying group structures within data. This
paper employed the following three internal validation measures to
assess clustering quality:

1. The SS, which measures intra-cluster cohesion and inter-cluster
separation, with higher values indicating compact and well-
separated clusters.

2. The DBI, which calculates the ratio of intra-cluster similarity to
inter-cluster distinctness, where lower values are preferred.

3. The Calinski-Harabasz Index, which compares within-cluster
variance to between-cluster variance, where higher values are
desirable.

In addition, the Noise Ratio was calculated specifically for
DBSCAN and FCM, representing the proportion of data points
designated as noise.

The experiments revealed several interesting trends across
datasets D1, D2, and D3. K-Means performed best on the synthetic
dataset (D3), achieving a high SS (~0.71) and a low DBI (~0.42),
indicating distinct and compact clusters. However, it did not perform
well on noisy real-world data, particularly on Dataset D2.

By contrast, DBSCAN demonstrated strong robustness to noise
and outperformed K-Means on real datasets, especially D2, due to its
density-based clustering approach. FCM produced moderately good
clustering quality across all datasets, with relatively balanced scores.
However, it tended to yield slightly higher DBI values, likely due to the
fuzziness of its membership assignments.

A-GBK-Means delivered consistently strong performance,
especially on Dataset D1, where the true cluster structures were non-
linear. In this case, the benefits of kernel functions and fuzzy weighting
were particularly evident.

Figure 6 illustrates the comparative performance of the four
clustering algorithms based on SS and DBI. Higher SSs reflect more
distinct clusters, whereas lower DBI values indicate better separation
and compactness. On the synthetic dataset (D3), K-Means leads in SS,
whereas A-GBK-Means achieves the best DBI. DBSCAN presents a
balanced profile across all three datasets but proves especially effective
in noisy environments like D2. The quality of comparative clustering
of four algorithms (K-Means, DBSCAN, FCM, and A-GBK-Means) on
three sets of data, D1, D2, and D3, via SS and DBI. The A-GBK-Means
method recorded the largest SS and the least DBI on all datasets, and
especially, on a noisy dataset (D2), indicating a good separation and
compactness of clusters.

6.3. Scalability assessment

Scalability was evaluated by gradually increasing the size
of the synthetic dataset (D3) from 50,000 to 500,000 instances, in
increments of 100,000. All clustering algorithms were executed on
these increasingly larger subsets, and both execution time and internal
validation measures were recorded to track variations in performance.
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Figure 6
Clustering quality comparison (SS and DBI)
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The experiment revealed noticeable differences among the
tested algorithms. K-Means demonstrated near-linear scalability, as
its execution time increased proportionally with dataset size while
maintaining stable clustering quality. In contrast, DBSCAN exhibited
exponential growth in runtime beyond 100,000 records, primarily due
to the computational intensity of its region-query operations.

FCM scaled better than DBSCAN, although it required more
memory and computation time due to the iterative recomputation
of fuzzy memberships. A-GBK-Means was the slowest among all
algorithms but tended to achieve proportionally higher SSs on larger
subsets, suggesting improved cluster structure definition despite the
higher computational cost.

These observations highlight the trade-offs between
computational performance and clustering quality as dataset size
increases across different algorithms. Figure 7 shows the total execution
time (in seconds) for each clustering algorithm across all dataset
sizes. Running time of each clustering algorithm with a synthetic data
set across growth in magnitude. K-Means proves to have the fastest
execution time; however, it does not have clustering quality. A-GBK-
Means strikes a balance between scalability and robustness, and
A-GBK-Means matched performance with both DBSCAN and GBK-
Means in terms via computation efficiency, although performance times
were exponentially increasing with DBSCAN and GBK-Means.

By contrast, DBSCAN and A-GBK-Means incurred the
highest computational costs due to their complexity, whereas FCM

estimates. This adaptation enables the algorithm to better handle non-
uniform cluster structures and outliers. Specifically, the kernel function
is dynamically rescaled by the local density p(x;), and is characterized
as Equation (3) as follows:

The adaptive kernel width 6(x;) is calculated based on the average
distance to k-nearest neighbors in Equation (4) as follows:

e
2.0(x;)’

K(xi,x;) = exp( 3)

“4)
j(NN) denotes the jth nearest neighbor of x;.

We define a fuzzy membership matrix U = [u;j], where each uj;; €
[0, 1] represents the degree to which x; belongs to cluster j. Membership
values are updated as Equation (5) as follows:

ujj = (Zf:1 (3—1) 1) )

Here, Djjis the kernel-based distance between point x; and cluster
center ¢, and m is the fuzzifier coefficient (m > 1). To overcome such
shortcomings of the traditional clustering analysis in heterogeneous
and noisy data environments, we introduce the A-GBK-Means
algorithm.

where x

2

®)
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It is a locally adaptive kernel width estimation method using
k-nearest neighbors, and fuzzy membership weighting is incorporated
to enhance robustness and accuracy. The algorithm iteratively updates
centroids and fuzzy memberships until convergence.

Algorithm 1 summarizes the complete step-by-step workflow.

Algorithm 1
A-GBK-Means

1. Input dataset: X = {xu, Xa, ..., Xn}, number of clusters k, fuzzifier
m, convergence threshold €

. Initialize cluster centers C = {ci, ..., ¢, } using k-means++
. For each x;, compute o(x;) using k-nearest neighbors
. Compute Gaussian kernel matrix K (xi, xj)

. Initialize fuzzy membership matrix U = [ujj]

AN B~ WN

. Repeat until convergence:

. Update cluster centroids cj using weighted kernel distances

o

. Update uj
. Check: [UV—U®Y| <¢g

. Output: Final clusters and memberships

~N O

The architectural flow of the proposed A-GBK-Means algorithm
is demonstrated in Figure 8. The stages start with the input data, which
is high-dimensional or noisy, and undergo adaptive kernel width
estimation depending on the local density in the input space using
the k-nearest neighbor method. This adaptive estimation enables the
algorithm to adapt to variations in data density in the feature space.

After that, a Gaussian kernel matrix is calculated with adaptive
widths, which encodes nonlinear interactions among data points. The
following step incorporates a fuzzy membership facility where the data
points are softly assigned to clusters using kernelized distances and a
set fuzzifier parameter.

The architecture then iteratively optimizes itself through centroid
updates and membership computations until it converges. The last
step provides the fuzzy membership matrix and the optimized cluster
structures. The whole pipeline can be scaled and parallelized and can
thus be executed in a distributed big data processing system like Apache
Spark.

Figure 8
Architecture of the proposed A-GBK-Means algorithm

Adaptive Fuzzy Cluster
Input Kernel ~ (» Membership [ Ontimizati Output
Computation Update ptimization

This figure underscores the modular nature of the algorithm and
its potential to integrate adaptive kernel learning with the principles of
fuzzy clustering, which makes the outcome a more stable and adaptable
clustering method to deal with complicated data.

The time complexity per iteration is approximately the following:

O(nkd + nk log k) 6)

Where:

1) n=number of data points

2) k= number of clusters

3) d = data dimensionality

4) log k = approximate kNN search cost

A-GBK-Means clustering algorithm shows evident performance
benefits compared to the other clustering methods that are tested within
the framework of this research.

The latter combines adaptive kernel scaling and fuzzy membership
weighting and thus adaptively adjusts to the local data distributions and
is capable of handling noise and outliers efficiently.

First, the A-GBK-Means algorithm shows the best SS (0.74)
compared to all the other algorithms, indicating that its clusters are
compact and well-separated, as shown in Table 8. This is especially
useful in high-dimensional as well as heterogeneous data, where
distance-based clustering algorithms do not perform well.

Second, the technique provides the lowest DBI (0.36),
demonstrating the best intra-cluster similarity and inter-cluster
separation. The combination of these two internal quality measures
confirms the ability of the algorithm to produce meaningful clusters
even in the most complex data landscape.

Regarding robustness, the A-GBK-Means algorithm shows the
best result in comparison with DBSCAN and FCM, as it has a much
lower noise rate (2.0%), yet it detects outliers and ambiguous data
points. As opposed to DBSCAN, which is highly sensitive to parameter
adjustment in regions of different densities, the adaptive kernel
mechanism in A-GBK-Means enables it to gradually adapt between
dense and sparse regions.

Another strength is computational balance. Although it is slightly
more demanding than K-Means or FCM in terms of execution time,
A-GBK-Means is much faster than GBK-Means, yet it delivers better
clustering quality. This is attributed to the local density estimates,
which are efficiently used in computing the kernel, thereby reducing
unnecessary computation in homogeneous areas.

1. Advantages:
a. Adaptivity: The kernel width is adjusted dynamically based on
local data density.
b. Noise robustness: Achieves a low noise ratio and stable clustering
under noisy conditions.

Table 8
Clustering performance comparison

Algorithm Silhouette Score DBI Noise Ratio (%) Execution Time (sec)
K-Means 0.71 0.42 0 68.9
DBSCAN 0.65 0.38 8.5 110.5
FCM 0.67 0.45 6.1 88.3
GBK-Means 0.69 0.4 32 132.4
A-GBK-Means 0.74 0.36 2 95.6
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High quality: Produces superior SS and DBI.
d. Soft clustering: Fuzzy logic allows better handling of ambiguous
data points.
e. Scalability: Efficient for large datasets and compatible with
distributed systems.
2. Disadvantages:
a. Parameter sensitivity: Requires careful tuning of parameters such
as m and k.
b. Computational overhead: More resource-intensive than basic
clustering methods.
c. Initialization dependency: Outcome may depend on initial cluster
centers.
d. Interpretability: Fuzzy results may be harder to interpret in some
scenarios.

Moreover, due to its fuzzy membership mechanism, A-GBK-
Means can be effectively applied in practical scenarios where data
points may belong to multiple clusters simultaneously.

This flexibility enhances its interpretability and real-world
applicability, particularly in fields such as anomaly detection, healthcare
analytics, and industrial diagnostics.

In conclusion, the combination of adaptive kernel learning,
soft clustering, and structural robustness makes A-GBK-Means a
strong candidate for scalable and noise-resistant clustering in big data
environments.

The proposed A-GBK-Means algorithm has a few benefits where
fault diagnosis is concerned, especially in the field of sensors-based
industrial systems. Rigid cluster boundaries or density fluctuation
may be a problem of the traditional clustering algorithms such as
K-Means and DBSCAN so that fine fault structures are difficult to
differentiate. Conversely, A-GBK-Means makes use of local density-
based adaptive kernel widths and this allows the algorithm to extract
nonlinear, irregular, and spatially sparse fault signals. Besides, the
fuzzy membership model enables a partial membership to be ascribed
to ambiguous or borderline instances, and in cases where such pertain
to detecting faults in the early stages of their existence, or intermittent
faults, this feature is highly useful. Nevertheless, the difficulty in fixing
the fuzzifier and kernel parameters of each fault type of signature and
meanwhile the soft assignment interpretation in critical fault cases is
still apparent. Regardless of these shortcomings, the technique offers a
scalable and pliant framework of unsupervised fault pattern detection
in noisy conditions.

In a real-life dataset, particularly risk assessment data, the
examples contained in the data can be in several overlapping sets of
behavior or they could be inaccurate because of sensor noise or data
sparseness. The A-GBK-Means algorithm combats this difficulty in
two ways: first, the adaptive kernel width adapts to local data density
such that the model can distinguish subtle structural variations even
in overlapping areas. Second, soft clustering is made possible by the
fuzzy membership assignment, such that every point may be part of
more than one cluster, and the part is measured. The soft assignment
decreases the effects of hard-boundary misclassification and gives the
algorithm a stronger ability to deal with ambiguous or marginal cases.
Such attributes enable A-GBK-Means to be especially useful in early
anomaly identification, uncertainty-based decision-making in risk-
averse settings.

7.1. Comparative evaluation with studies

The progress of the current study is marked by several important
distinguishing factors.

First, regarding execution platforms, previous studies primarily
relied on Hadoop MapReduce, which is intrinsically slower due to

its disk-based processing model. In contrast, our Spark-based design
leverages in-memory computation, significantly reducing job latency
and improving the responsiveness of iterative algorithms.

Second, in terms of algorithmic scope, earlier research was
largely limited to K-Means, Hierarchical Clustering, and DBSCAN. In
this study, however, we extend the analysis to include FCM and GBK-
Means, the latter being particularly effective in the presence of noise
and nonlinear cluster structures.

Furthermore, most previous studies utilized limited dataset
designs, often constrained to small or synthetic data only. By comparison,
our experimental setup incorporates both realistic industrial sensor data
and synthetic datasets with adjustable volume and noise characteristics,
allowing for a more realistic evaluation of algorithm performance.

Finally, in terms of evaluation measures, earlier work primarily
focused on either execution time or cluster purity. Our approach adopts
a more comprehensive set of metrics, including execution time, SS,
DBI, noise ratio, and scalability trends. This multi-criteria assessment
provides a deeper and more nuanced understanding of algorithm
behavior under big data conditions.

This study has demonstrated measurable performance gains
in terms of reduced execution time (up to 2.4x faster) and improved
clustering resilience, particularly in the presence of noisy and high-
volume data (Figure 9). By incorporating fuzzy and kernel-based
models and testing them on real-world sensor data, the study goes
beyond the methodological scope of most previous research.

8. Conclusion

This paper presented the comparative evaluation of four clustering
algorithms, namely K-Means, DBSCAN, FCM, and GBK-Means,
on real-world industrial sensor data as well as on synthetic datasets
in a distributed Apache Spark cluster. To evaluate the performance,
scalability, and robustness, the multi-metric framework, including SS,
DBI, execution time, and noise ratio, was used.

According to the results, it can be noted that although K-Means
is very scalable and has low execution time, it is vulnerable to noise.
DBSCAN is very noise-resistant but inefficient with large-scale data.
FCM offers interpretable fuzzy clustering at moderate computational
expense, and GBK-Means is competitive when the data structure is
complex, at the cost of runtime. To address these shortcomings, we have
suggested the A-GBK-Means algorithm, which incorporates adaptive
kernel width estimation using local density with fuzzy membership
modeling. The provided approach demonstrated better results on all
baselines on clustering quality and noise processing, as well as decent
computational expense and scalability with Spark.

Figure 9
Comparative performance with prior studies
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In the proposed framework, the future development will consider
enhancing it with the capabilities of processing data streams in real
time with the help of Apache Kafka and Spark Streaming. Automated
hyperparameter tuning techniques will also be considered to achieve
optimized performance without relying on manual efforts.

We also seek ways to consider the hybrid clustering models
combining A-GBK-Means with deep learning or evolutionary
algorithms and extend the framework to other fields, including
healthcare analytics, smart city infrastructure, and cyber-physical
systems. Additional benchmarking of performance on GPU-based
and cloud-native platforms will also be considered to have practical
deployment readiness.

In future experiments, an ablation study will be conducted
to isolate the effects of adaptive kernel scaling versus static kernel
settings and fuzzy weighting. This will clarify the specific performance
contribution of each enhancement in the A-GBK-Means framework.

Recommendations

In line with the findings of this paper, we suggest the application
of adaptive kernel-based clustering models particularly in industrial
applications in which the sensor data are big and noisy. Practitioners
should consider adopting the suggested A-GBK-Means approach on
Apache Spark set ups to balance the accuracy of clustering and scal-
ability. Further development would involve new integrations with re-
al-time processing framework, for example, Apache Kafka, to improve
streaming data analytics performance.
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