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Abstract: In the field of big data, clustering remains a fundamental component of data mining and knowledge discovery, particularly in high-
volume, heterogeneous environments. Although traditional clustering algorithms have been widely used, they often exhibit poor scalability, limited 
robustness, and sensitivity to noise when applied to large industrial-scale datasets. To address these limitations, this paper proposes a Spark-
based clustering framework that incorporates an Adaptive Gaussian-Based Kernel K-Means (A-GBK-Means) algorithm, designed to mitigate 
performance degradation in the presence of noisy and nonhomogeneous data. The A-GBK-Means algorithm integrates fuzzy logic with adaptively 
determined kernel widths, using local density estimation, thereby enhancing both clustering accuracy and flexibility. Extensive experiments were 
conducted on real-world industrial sensor data as well as synthetic benchmarks, and performance was evaluated using multiple metrics, including 
execution time, Silhouette Score, Davies–Bouldin Index, and noise resilience. The comparative analysis demonstrates that the A-GBK-Means 
algorithm consistently outperforms classical approaches—namely K-Means, Density-Based Spatial Clustering of Applications with Noise, Fuzzy 
C-Means, and standard GBK-Means—in terms of clustering quality and computational efficiency. Furthermore, the proposed framework exhibits 
superior scalability, owing to its distributed architecture built on Apache Spark. This study provides practical insights into scalable and interpretable 
clustering methods for intelligent manufacturing and sensor-based systems and highlights the effectiveness of adaptive kernel learning in modern 
big data applications.
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1. Introduction
The focus of big data research has evolved over time. Initially, 

research efforts were concentrated on addressing the challenges 
associated with storing and processing vast amounts of data. However, 
in recent years, there has been a shift towards identifying actionable 
insights within the voluminous data streams generated by digital 
platforms. In the contemporary era, it is widely acknowledged that 
big data constitutes a foundational element of the modern computer 
science industry, underpinning advancements in domains such as 
artificial intelligence, industrial automation, and intelligent decision 
systems [1].

The generation of data in the contemporary era is exceedingly 
vast in magnitude. To provide context, YouTube is inundated with over 
720,000 hours of new video content daily. Facebook and Instagram, 
in isolation, are responsible for more than 350 million photo uploads 
and 500 million stories posted on a daily basis. With an active user 
base that exceeds 1.925 billion as of 2025, TikTok has emerged as a 
primary catalyst for the proliferation of multimedia data [2]. According 
to the most recent research study by the International Data Corporation, 
the global data sphere is expected to exceed 180 zettabytes by the year 
2025, with significant contributions from the Internet of Things (IoT), 
cloud computing, and autonomous systems [3].

The analysis of such extensive and varied sources to yield 
valuable knowledge necessitates the implementation of sophisticated 
knowledge discovery methods. Among the aforementioned methods is 
clustering, which refers to the process of dividing a set of data into 
subsets such that the objects in the same subset are closer to each other 
than to the objects in the other subsets [4]. Clustering is a pivotal topic 
in numerous fields, including data mining, biostatistics, intelligent 
energy grids, anomaly detection in the IoT, image segmentation, and 
optimization of deep learning models [5].

The scalability challenges posed by large and high-dimensional 
data thus continue to challenge traditional clustering algorithms despite 
decades of development. As an example, classical K-Means has been 
shown to be NP-hard even with a low number of clusters and thus 
is not well-suited to distributed or streaming settings [6]. Therefore, 
the scalability, efficiency, and accuracy of clustering methods have 
become a significant research focus. The following original five 
attributes of big data—the so-called 5Vs—make clustering even more 
complicated [7]:

1.  Volume: Petabytes of unstructured and semi-structured data on 
social platforms, sensors, and logs.

2.  Velocity: Edge devices and cloud services provide real-time data 
streams that need low-latency processing.

3.  Variety: Text, video, sensor signals, time-series—heterogeneous 
formats.

4.  Veracity: It can include noisy and incomplete data that can be biased 
or misleading.
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5.  Value: Deriving business intelligence and actionable insights out of 
raw data.

To address these problems, the research community has 
investigated distributed clustering algorithms with the help of platforms 
such as Apache Spark, Flink, and Ray, which allow parallel computation 
over large-scale datasets [8].

To summarize, clustering in big data settings requires not only 
robust and precise algorithms but also an elastic architecture. With 
the ever-increasing explosion in volume and variety of data, scalable, 
distributed, and smart clustering techniques are an important frontier in 
data science research.

Conventional clustering techniques have been found inadequate 
in efficiently processing the massive size and variety of contemporary 
datasets due to the growing sophistication and computational 
overheads of large-scale data environments. The most obvious one 
is the vanilla K-Means algorithm, which is NP-hard even when k = 
2, meaning that it should not be used in high-dimensional and large-
scale settings [6]. Scalability has therefore become a key issue in big 
data clustering.

The main goals of recent clustering research are efficient 
algorithms with parallelizability and scalability, and, at the same time, 
high-quality clustering. Although there has been considerable progress 
in this field, the holistic nature of big data—that is, high velocity, variety, 
and veracity—remains elusive to current solutions [9]. Although there 
are some review articles that discuss clustering in big data, the current 
study provides several significant contributions that make it stand out 
from previous articles.

Limited Scope–High Relevance: The scope of this work is 
narrowed to focusing only on the recent developments of clustering 
methods adapted to modern distributed big data frameworks, such as 
Apache Spark, Flink, and Dask. The research strategy relies on the 
review of over 200 scholarly papers released in the period between 
2015 and 2025.

Comparative Platform Analysis: It provides a side-by-side 
comparison between Apache Spark and Hadoop MapReduce in terms 
of their architectural variations, performance compromises, and 
applicability in different use cases. The comparison is incorporated as a 
guide to be used by researchers and engineers when choosing clustering 
platforms to use in large-scale applications.

Selected High-Quality Technique Filtering: The paper filters and 
analyzes the most technically sound and popular clustering techniques 
and discusses their implementation plans, computational complexity, 
and areas of application. The advantages and disadvantages of each of 
the techniques are clearly outlined.

Further, clustering algorithms may also be distinguished based 
on the architecture of their execution, which can be of the following 
two broad types [10]:

1.  Single-machine clustering methods: These are the methods that are 
run on a standalone machine with minimal memory and computing 
resources. They tend to be effective with small and moderately sized 
datasets but encounter performance bottlenecks when used with 
huge volumes of data.

2.  Multi-machine/distributed clustering: These methods use the 
processing capabilities of distributed nodes within a cluster and 
offer much better scalability and fault tolerance. These methods can 
be horizontally scaled on large partitions of data using platforms 
like Apache Spark, Apache Flink, and containers orchestrated by 
Kubernetes [8].

Each of these approaches represents a trade-off between resource 
utilization, latency, fault tolerance, and system complexity and will be 
comparatively detailed in the sections below.

2. Literature Review
Big data clustering techniques are of two kinds, as illustrated 

in Figure 1: single-machine and multi-machine clustering techniques. 
Multi-machine clustering solutions have recently become popular 
because they are highly scalable and responsive in terms of performance 
for customers.

Clustering techniques adapted to big data settings can be roughly 
grouped into two categories, as shown in Figure 1: single-machine 
clustering techniques and multi-machine (distributed) clustering 
techniques. Interest in multi-machine solutions has been growing in 
recent years, as they provide better scalability, distributed memory 
usage, and faster response times in practical tasks [11]. Single-machine 
clustering methods are run on isolated systems and operate within 
the constraints of local computing resources. They are conventional 
when the size of the data is low to medium, and in many cases, they 
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Big data clustering techniques
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are vulnerable to memory bottlenecks, poor parallelism, and degraded 
performance as data size grows [12]. The most popular strategies in this 
category are data mining–based clustering and dimension-reduction-
based strategies [13].

The clustering strategy is a data mining approach that employs 
unsupervised learning models to identify latent patterns in collections 
of data. Nonetheless, the problem with such algorithms is that they are 
not always scalable due to intensive computation and memory demands. 
Prominent methods in this category include evolutionary-based, 
density-based, hierarchical, model-based, grid-based, and partitioning-
based clustering methods.

Among those, partitioning-based clustering methods seek to 
subdivide a dataset into a pre-specified number of clusters, k, using 
similarity measures such as Euclidean distance, Manhattan distance, 
or Chebyshev distance. The aim of these methods is to maximize 
intra-cluster homogeneity and inter-cluster separation. Well-known 
algorithms in this paradigm are K-Means [14], which is simple and 
fast to converge; K-Medoids and its generalization Partitioning Around 
Medoids (PAM), which are robust against noise and outliers [15]; 
K-Modes, which is efficient with categorical data; and scalable solutions 
such as Clustering Large Applications (CLARA) and Clustering Large 
Applications based on Randomized Search (CLARANS), which are 
tailored to large datasets that cannot fit in available memory.

Hierarchical clustering is another significant subcategory of 
single-machine clustering. Hierarchical clustering constructs nested 
clusters representing a tree-like layout known as a dendrogram. The 
following two major types exist:

1.  Agglomerative hierarchical clustering, which starts with each data 
point as its own cluster and repeatedly merges the closest pairs of 
clusters. Prominent algorithms based on this technique are Balanced 
Iterative Reducing and Clustering using Hierarchies (BIRCH) and 
CHAMELEON, which utilize dynamic modeling to efficiently 
merge [16].

2.  Divisive hierarchical clustering begins with all data in one cluster 
and repeatedly divides the cluster based on dissimilarity until a 
desired number of clusters is achieved. Familiar algorithms based on 
this approach are Principal Direction Divisive Partitioning (PDDP) 
and Divisive Hierarchical Clustering using Clustering Features 
(DHCC) [17].

Despite the role single-machine techniques have played in 
clustering research, their shortcomings in distributed computation, 
fault resiliency, and real-time flexibility have inspired the development 
of multi-machine clustering systems, which are the subject of the 
following section.

Besides partitioning and hierarchical methods, several other 
clustering paradigms have been developed to address special data 
structures, performance bottlenecks, or robustness issues. These include 
density-based, grid-based, model-based, and dimension-reduction-
aided clustering methods, each with distinct properties and suitability 
for use.

Density-Based Clustering: In this technique, clusters are defined 
as dense areas in the data space, separated by regions of lower density. 
The clusters are not predetermined by shape or number but are formed 
by spatial locality and the density and interconnectedness of data 
points. The main advantage of this method is its ability to find clusters 
of arbitrary shapes and its robustness to noise and outliers, because 
it is a one-pass scanning algorithm [18]. Well-known algorithms 
include Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN), DENCLUE (DENsity-based CLUstEring), Ordering 
Points to Identify the Clustering Structure (OPTICS), and Distribution-
Based Clustering of LArge Spatial Databases (DBCLASD) [19].

Grid-Based Clustering: In grid-based clustering, the data space is 
discretized into a finite number of non-overlapping cells (or grids), and 
clusters are identified based on the density of objects in these cells. The 
basic algorithm steps include the following: (a) subdividing the entire 
data space into a constant number of cells (typically much smaller than 
the number of data records), (b) removing sparse cells with low object 
density, and (c) merging high-density neighboring cells to form clusters 
[20]. This technique is computationally efficient, especially on large-
scale data, although the clustering quality is sensitive to the granularity 
of grid partitioning. Well-known algorithms include STING, CLIQUE, 
OPTIGrid, and WaveCluster [21].

Model-Based Clustering: These methods assume that the data 
is generated from a mixture of underlying probability distributions. 
Clustering is achieved by estimating the parameters of these 
distributions. This allows for automatic determination of the number 
of clusters and probabilistic assignment of membership. As a result, 
model-based approaches are less vulnerable to noise and overlapping 
data structures [22]. However, as the models grow in complexity, they 
may incur significant computational overhead. Notable algorithms 
in this category include Expectation-Maximization, COBWEB, and 
MCLUST [23].

Dimension Reduction Techniques in Clustering: In high-
dimensional data, clustering performance can degrade in both time and 
quality. To address this, dimension reduction techniques are used as a 
preprocessing step to reduce the dimensionality of the feature space 
while retaining essential data properties. Two main methods are as 
follows:

1.  Feature selection, which retains the most relevant attributes of 
the original dataset. This is controlled through pre-defined subset 
strategies or manual thresholds. Common techniques include 
Sequential Forward Selection (SFS), Correlation-based Feature 
Selection (CFS), and Markov Blanket Filter (MBF) [24].

2.  Feature extraction, which maps high-dimensional data to a new, 
lower-dimensional feature space. This improves clustering 
effectiveness and reduces computation. Popular methods include 
Principal Component Analysis (PCA), Linear Discriminant Analysis 
(LDA), and Singular Value Decomposition (SVD) [25].

Altogether, these techniques enhance the clustering process 
by improving scalability, reducing computational complexity, and 
increasing robustness in high-dimensional or noisy data.

As the amount of data grows exponentially—frequently in the 
petabyte range—traditional single-machine clustering algorithms 
have become increasingly insufficient to process data in a timely 
fashion. Researchers have overcome this limitation by exploiting 
recent improvements in distributed computing, networked systems, 
and parallel processing to develop multi-machine clustering methods. 
These techniques divide big data into small, manageable parts, which 
are distributed using MapReduce to many computing nodes for parallel 
computation. With this strategy, better scalability, fault resilience, and 
speed of execution can be achieved [26].

Parallel Clustering Paradigms: In a distributed environment, 
parallelism is the main aspect of improving clustering performance. 
The following are the three main models of parallelization frequently 
mentioned in the literature by Dafir et al. [27]:

1.  Independent parallelism: Every processor has access to the complete 
dataset and processes it independently without any communication 
between processors.

2.  Task parallelism: The different processors run different clustering 
algorithms or component tasks.

3.  Single Program Multiple Data (SPMD): The same program is run on 
multiple processors, each with a disjoint set of data.
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Although parallel clustering can enhance scalability and efficiency, 
it also introduces additional complexities for system designers in terms 
of data partitioning, load balancing, and inter-process communication.

These paradigms have been used to develop several well-known 
parallel clustering implementations, such as a parallel implementation 
of K-Means using a Network of Workstations, where message-passing 
protocols are used to synchronize the processors [28]. Likewise, 
parallel CLARANS was implemented in a master-slave design based 
on Parallel Virtual Machine environments [29].

In hierarchical clustering, PBIRCH generalizes the classical 
BIRCH algorithm to run in a parallel environment based on the SPMD 
model and can scale across clusters of machines [30]. A parallel version 
of CHAMELEON was proposed using another hierarchical technique 
with the following three-stage design:

1.  A parallel k-nearest neighbor algorithm to reduce time complexity,
2.  Multilevel graph partitioning to generate initial clusters,
3.  Agglomeration is based on interconnectivity and proximity to form 

final clusters.

Density-Based Distributed Clustering (DBDC): Some of the 
most notable distributed clustering methods include Density-Based 
Distributed Clustering [31], in which a dataset is divided, and computing 
is performed in several locations. A DBSCAN algorithm is applied at 
each local site, producing local clusters and representative elements. 
These local models are then sent to a central server, which combines 
them into a global clustering model. The global model may then be 
published to clients to allow local updates and ensure consistency in 
distributed environments.

GPU-Based Acceleration: Graphics Processing Units (GPUs) 
have recently been considered in clustering applications due to their 
superior parallel computation and memory utilization capabilities. 
Tasks involving repeated distance computations or graph traversal 
particularly benefit from GPU-based clustering. An example of such 
an implementation is G-DBSCAN, a GPU-accelerated variant of 
DBSCAN [32]. This method consists of the following two major stages:

1.  A graph is created, with edges corresponding to relationships 
between data points within a fixed distance threshold.

2.  The revealed structure is clustered using Breadth-First Search 
traversal on the constructed graph [33].

It is becoming increasingly apparent that GPU-accelerated 
algorithms are becoming standard elements of clustering pipelines, 
particularly when integrated with distributed systems in cloud and edge 
computing environments [34].

MapReduce-Based Clustering: MapReduce is an influential 
model of distributed data processing, initially proposed by Google in 
2004, to perform large-scale computations on clusters of machines 
[35]. This model allows parallel execution of data processing tasks by 
breaking them down into smaller subtasks, which are then distributed 
to various processing nodes. As shown in Figure 2, MapReduce 
architecture consists of two main user-defined functions: Map and 
Reduce.

During the Map phase, each mapper node independently 
processes a portion of the input data and generates intermediate 
key-value pairs. These intermediary outputs are then grouped and 
passed to the Reduce phase, where reducer nodes combine the values 
associated with the same key. This intermediate shuffle framework 
ensures efficient combination and alignment of data across the 
nodes, enabling synchronized computation throughout the distributed 
environment.

The primary benefit of MapReduce is that it abstracts the low-
level complexities of parallel processing, internode communication, 

and resource allocation. Developers only need to define the data 
transformation logic, whereas load balancing, data partitioning, 
network optimization, and fault tolerance are automatically handled by 
the framework.

MapReduce provides extensive parallelism, reliability, and 
scalability, making it a valid foundation for executing clustering 
algorithms over large datasets. Several clustering algorithms—
especially those requiring batch processing, such as K-Means—have 
been successfully ported to the MapReduce paradigm to leverage its 
fault tolerance and implementation simplicity within distributed file 
systems such as Hadoop Distributed File System (HDFS).

Several clustering algorithms have been modified to run on 
the MapReduce framework to take advantage of its scalability and 
distributed processing. Among them, Parallel K-Means (PK-Means) is 
a modification of the classic K-Means algorithm designed to run within 
the MapReduce framework. It divides the data among numerous nodes 
and performs centroid update iterations in a parallelized manner. Another 
well-known example is MR-DBSCAN, which combines MapReduce 
and GPU acceleration to improve the performance of the density-based 
DBSCAN algorithm. This parallel-hybrid strategy is significantly more 
effective in clustering big and complex information ontologies by 
incorporating parallel computation with high-throughput architecture 
hardware [36]. Some contributions of clustering technologies are 
shown in Table 1.

Recent evolution of fuzzy-based clustering algorithms in large-
scale and heterogeneous environments includes suggestions to add the 
adaptive fuzzy membership models to deep learning architecture to 
enhance the cluster interpretability and robustness [37]. In addition, 
fuzzy logic technology in combination with hybrid methods based 
on fuzzy bounds and graph-based optimization was demonstrated to 
be effective in application in power system diagnostics and anomaly 
forecasting, which demonstrates the usefulness of fuzzy logic in real-
time big data processing [38]. These studies reinforced the applicability 
of our suggested Adaptive Gaussian-Based Kernel K-Means (A-GBK-
Means) framework, which also uses flexible fuzzy membership and 
the kernel learning in a distributed context.

3. Related Work
The clustering of big data is highly dependent on the underlying 

infrastructure of the data processing system, as it defines scalability, 
responsiveness, and efficiency. The three main types of processing 
paradigms are: (1) batch processing systems, (2) stream (real-time) 
processing systems, and (3) interactive analytics platforms.

3.1. Batch processing platforms
The most embraced big data analytics model is batch processing, 

especially in large-scale numerical calculations. It is a way of handling 
large quantities of data in predetermined groups or batches, which are 
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saved and processed at set intervals. The most notable batch platform 
is the free and open-source Apache Hadoop framework, which 
implements the MapReduce programming model first proposed by 
Google [39].

The following are the three key components in the core 
architecture of Hadoop:

1.  Distributed storage - HDFS,
2.  Computation with MapReduce,
3.  Cluster management - Yet Another Resource Negotiator (YARN).

Above these base layers, Hadoop offers several abstractions and 
extensions such as Hive (SQL-like querying), Pig (data flow scripting), 
HBase (NoSQL storage), and Apache Spark. The combination of these 
modules provides an end-to-end capability along the big data value 
chain: data collection, processing, assessment, and storage management 
[40].

Hadoop has been designed to fit well in enterprise-level 
deployments due to its characteristics of low infrastructure 
cost, scalability, and high fault tolerance [41]. Its processing 
philosophy—breaking tasks into small, independent subtasks that 
are computed in parallel on distributed nodes—is especially suited 
for data-intensive operations such as clustering, classification, and 
machine learning [42].

3.2. Stream processing platforms
Unlike batch systems, stream processing platforms are geared 

toward use cases with low-latency or real-time decision-making needs. 
Such systems are ideal in scenarios where streams of incoming data 
need to be processed in real-time, as opposed to being stored and 
analyzed at a later stage. Real-time analytics are valuable in applications 
such as transportation systems, financial analytics, and environmental 
monitoring. As IoT devices continue to multiply (they are expected 
to surpass 50 billion connected sensors worldwide [43]), the need 
to process data in real-time also increases. Examples of the leading 
platforms in this category include Apache Storm, which specializes 
in real-time stream computation, and SAP HANA, which combines 
in-memory processing with sophisticated analytics features. These 
platforms provide high throughput and near real-time feedback without 
requiring permanent storage, making them suitable for time-sensitive 
clustering and pattern recognition applications.

3.3. Interactive analytics platforms
Interactive analytics platforms allow dynamic and elastic access 

to big data. Users can perform ad hoc querying, data visualization, 
and iterative computations with low latency. The best-known 
representative of this category is Apache Spark, a next-generation data 
analytics engine initially developed at the University of California, 
Berkeley [44].

Spark was created to address the disk I/O bottlenecks of 
Hadoop by providing in-memory computing capabilities, enabling 
data to be cached and reused across multiple iterations. It has 
extensive compatibility with many programming languages, such 
as Java, Scala, and Python, and can be integrated with YARN and 
HDFS in Hadoop, allowing it to run smoothly in heterogeneous 
environments.

In performance benchmarks, Spark is up to 100 times faster 
than Hadoop MapReduce on in-memory workloads and up to 10 times 
faster when relying on data that does not fit in memory [45]. Such 
benefits render Spark especially well-suited for iterative algorithms 
like K-Means, DBSCAN, and hierarchical clustering, where multiple 
accesses to the same data are typical.

Table 2 provides a comparative summary of key big data 
platforms and their features. The best platform to use among them 
depends on the specific requirements of the clustering application, 
considering factors such as latency tolerance, data volume, resource 
availability, and the scale of deployment.

4. Methodology
In this section, the methodological framework of the current 

research is described, namely the chosen clustering algorithms, 
evaluation measures, features of the dataset, and implementation 
environment. Some comparative analysis of clustering methods is 
shown in Table 3.

4.1. Selected clustering algorithms
This research paper has chosen four different clustering 

algorithms to test their functionality and stability when dealing with 
large-scale datasets under different settings. These techniques have 
been selected because of their theoretical diversity, applicability to real-
world distributed environments, and ability to handle various kinds of 
data structures (e.g., dense, noisy, and overlapping clusters).

5

Clustering technique Contribution
MLlib 2.0 (Apache Spark) Addresses Big Data clustering.
Bayesian HMM with GM 
Clustering

Accurate change detection.

K-Prototype with MapReduce Good scalability shown.
Improved Weighted Clustering 
(IWC) and PSO

Low cost, better accuracy.

Apache Spark with Locality 
Sensitive Hashing

High quality, fast execution.

Parallel K-Means and Fuzzy 
K-Means

Up to 60% faster.

DBSCAN 1 B records in 41 min.
Fractional Sparse Fuzzy 
C-Means and PSO

90.6% accuracy, DBI 5.33.

Conventional Static Model Better personalization.
BigVAT with Sampling-Based 
Crisp Partitions

Fine-grained clusters found.

Game-Based K-Means 
(GBK-means)

Outperforms classic K-Means.

Fuzzy K-Means for Teaching 
Evaluation

Improved evaluation accuracy.

Distributed Computing Based 
K-Means

Faster, more stable.

Neural-Engine Based K-Means 200% speed gain.
Radar Scanning Strategy 
Clustering

Real-time high performance.

Graph-Based Spectral 
Clustering on Spark

High quality for graphs.

Table 1
Contribution of the clustering technique
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The chosen algorithms are the following (Figure 3):

1.  K-Means—a centroid-based algorithm that is widely used and 
whose efficiency and scalability in Spark settings have been 
demonstrated [46].

2.  DBSCAN—a density-based algorithm that can identify arbitrarily 
shaped clusters and is capable of handling noise [47].

3.  Fuzzy C-Means (FCM)—a soft clustering method that allows 
assigning membership values of each point to multiple clusters [48].

4.  GBK-Means—an augmented kernel adaptation of K-Means, which 
combines fuzzy logic and nonlinear transformations, and is reported 
to have better adaptability to arbitrary data distributions [49].

All the algorithms have been implemented and executed in 
the Apache Spark environment to ensure their interoperability with 
distributed computing and big data scale.

4.2. Evaluation metrics
Computational and internal cluster quality metrics were used to 

systematically analyze the effectiveness and efficiency of the chosen 
clustering algorithms on various datasets. Such metrics allow for 
controlled and real-world data comparisons in an objective manner.

Execution Time is the total runtime required to complete the 
clustering process, starting from data ingestion to the generation of 
the final output. It is a primary measure of algorithmic scalability and 
computational cost. The execution time was recorded using Spark's 
native job monitoring tools and averaged over five independent runs for 
each algorithm–dataset pair.

Silhouette Score (SS) measures the similarity of an object to 
its own cluster compared to other clusters. It ranges between −1 and 
+1, with higher values indicating well-separated and clearly defined 
clusters. The score of a data point i, denoted as s(i), is given by 
Equation (1) as follows:

where:

1.  a(i): the average distance of point i to all other points in the same 
cluster

2.  b(i): the average distance of point i to the nearest cluster not 
containing i

To reduce computational overhead, sampled subsets of each 
dataset were used to compute SSs. The Davies–Bouldin Index (DBI) 
compares the average distance between each cluster and its closest 
matching cluster. The smaller the value of DBI, the better the clustering 
performance. It can be defined as Equation (2) as follows:

σ σ

where σi is the intra-cluster distance of cluster i, and dj is the inter-
cluster distance between clusters i and j.

Noise Ratio can be applied primarily to DBSCAN and FCM. 
It is determined as the percentage of data points that were either 
considered noise or had low-confidence membership. This measure 
is of critical importance in interpreting the robustness of an algorithm 
to outliers and unclustered data. To evaluate scalability, the individual 
algorithms were tested on progressively larger datasets. Execution 
time and quality scores were monitored across scales to assess 
the computational efficiency and stability of each approach under 
increasing volume stress.

4.3. Datasets
To present a comprehensive analysis of the clustering algorithms' 

performance, this research used three heterogeneous datasets. These 
datasets are diverse in nature, origin, and complexity, allowing for 
the evaluation of clustering algorithms under both synthetic and real-
life settings. The first two datasets are publicly available industrial 
sensor logs found on Kaggle and consist of multivariate time-series 
measurements on real equipment. These datasets include realistic 
challenges such as noise, missing values, and feature heterogeneity. The 
third dataset was artificially generated, containing Gaussian-distributed 
clusters with added noise, which provided a controlled setting to 

(1)

(2)
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Feature Apache Spark Hadoop MapReduce
Performance In-memory distributed processing; up to 100× faster Disk-based processing; comparatively slower
Read/Write Cycle Optimized, minimal disk I/O (low latency) High I/O overhead; disk-intensive
Ease of Use High-level APIs (Scala, Python, R) Requires verbose Java code
Realtime Processing Fully supported (e.g., Spark Streaming) Not supported; batch-only model
System Latency Low (in-memory execution) High (due to frequent disk writes)
Fault Tolerance Built-in (RDD lineage & DAG recovery) Supported via data replication
Security Features Basic (enhanced via integrations) Advanced (Kerberos, ACL, etc.)
Infrastructure Cost Higher (requires large memory capacity) Lower (runs on commodity hardware)
Programming Languages Scala, Java, Python, R Java, limited support for others
Licensing Model Open source (Apache License 2.0) Open source (Apache License 2.0)
SQL Compatibility Spark SQL (ANSI SQL compliant) HiveQL (subset of SQL)
Scalability Highly scalable (horizontal scaling) Highly scalable (but slower in practice)
Machine Learning MLlib (native, distributed ML library) Apache Mahout (less maintained)
Data Caching Natively supported (RDD, DataFrame, etc.) Not supported
Hardware Requirements Requires high-performance nodes Runs efficiently on commodity hardware

Table 2
Technical differences between Apache Spark and Hadoop
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test clustering accuracy in known distributions. Table 4 provides 
an overview of the data sets used, including their record and feature 
counts, whether they contain noise, and the number of missing values.

These datasets include realistic challenges such as noise, missing 
values, and feature heterogeneity. The third dataset was artificially 

generated, containing Gaussian-distributed clusters with added noise, 
which provided a controlled setting to test clustering accuracy in 
known distributions. Table 4 provides an overview of the datasets used, 
including their record and feature counts, whether they contain noise, 
and the number of missing values.

7

Category Algorithm Data Type Advantages Disadvantages
Partitioning-Based K-Means Numerical Efficient and simple Sensitive to noise

K-Medoids Numerical Robust to noise Computationally intensive
K-Modes Categorical Handles categorical data Limited to categorical data
PAM/CLARA Numerical Robust to outliers Computational complexity
CLARANS Numerical Efficient on large datasets Parameter dependent

Hierarchical 
Clustering

BIRCH Numerical Efficient hierarchical clus-
tering

Sensitive to noise

CHAMELEON Mixed Adaptive to complex clusters Complex scalability
EON All types Handles diverse datasets Scalability limitations
PDDP Numerical Efficient numerical data 

clustering
Linear constraints

DHCC Categorical Categorical data clustering Limited numerical applicability
Density-Based DBSCAN Numerical Robust to noise Scalability issues

DENCLUE Numerical Automatic cluster 
determination

Computationally expensive

OPTICS/DBCLASD Numerical Effective in complex 
structures

Complex parameter tuning

Grid-Based STING Numerical Fast processing Limited accuracy
CLIQUE Numerical Effective in high dimensions Dependent on grid definition
OPTIGrid Special data Adaptive grid management Complex object handling

Model-Based COBWEB Numerical Fast clustering Noise sensitivity
MCLUST Numerical Automatic cluster 

determination
Complex parameter tuning

Feature Selection CFS Alphanumerical Reduces data size High-dimensional inefficiency
SFS Numerical Redundant data removal Requires preprocessing
MBF Numerical Effective noisy data filtering Preprocessing necessity

Feature Extraction PCA Numerical Dimensionality reduction Information loss
LDA Categorical Categorical data reduction Reduced interpretability
SVD Numerical High scalability Computational overhead
ICA Numerical Signal separation Statistical assumptions

Parallel Clustering PBIRCH Numerical Parallel execution Algorithm complexity
DBDC Numerical High scalability Implementation complexity
G-DBSCAN Numerical Density clustering in parallel Complexity of parallel algorithms

Kernel-Based Clustering GBK-Means Numerical Effective in handling 
non-linear and overlapping 
clusters

High computational cost due to 
kernel operations

Fuzzy Clustering Fuzzy C-Means Numerical Captures soft cluster 
membership; interpretable 
results

Slower due to iterative member-
ship updates

MapReduce Clustering PK-Means Numerical High scalability Resource intensive
MR-DBSCAN Numerical Parallel complexity manage-

ment
Query-based complexity

Table 3
Comparative analysis of clustering methods
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4.4. Experimental environment
Each of the experiments was carried out on Apache Spark, as 

the framework provides efficient execution of large-scale datasets on 
a distributed computing system. The implementation on Spark enabled 
the clustering algorithms to be executed in parallel, taking advantage 
of the in-memory computation model to achieve faster execution and 
scalability [50]. Experimental platform configuration and technical 
specifications are shown in Table 5.

Each algorithm was run five times on every dataset, and 
the average of the results was recorded for comparison purposes. 

Intermediate processing steps, such as normalization and missing value 
imputation, were handled through Spark ML pipelines. Hyperparameter 
tuning was performed manually using grid search, optimized based 
on the SS. Random seeds were set to fix all cluster initializations and 
ensure reproducibility.

5. Experimental Configuration
The experimental process was carefully designed to enable 

repeatable, objective, and systematic assessment of clustering 
performance under different data conditions. The same workflow was 
applied to all datasets and clustering algorithms to ensure consistency 
and comparability. It began with data cleaning and preprocessing, 
where missing values in Dataset D2 were either imputed with the mean 
or deleted on a row-wise basis. Z-score normalization was applied to 
all numerical features to standardize feature scaling, and the resulting 
datasets were converted into Apache Spark DataFrames. Feature vectors 
were then constructed to ensure compatibility with Spark MLlib.

Following preprocessing, the clustering algorithms—K-Means, 
DBSCAN, FCM, and GBK-Means—were run separately on each 
dataset. To reduce the impact of random initialization, each algorithm 
was executed five times with fixed random seeds. Performance metrics 
were systematically collected during each run. Execution times were 
recorded using Spark’s internal monitoring utilities, and internal 
clustering validity scores, including the SS and DBI, were computed 
to evaluate clustering quality. Additionally, noise ratios were calculated 
(only for algorithms capable of detecting noise—namely DBSCAN and 
FCM), and robustness was assessed.

Finally, the results of all experiments were systematically 
recorded to support visual comparison and subsequent analysis. The 
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Parameter Specification
Platform Apache Spark 3.5.0 (Standalone Cluster 

Mode)
Cluster Setup One master node and four worker nodes
CPU (per node) 16-core Intel Xeon E5-2620 v4 

2.10GHz
RAM (per node) 64 GB
Storage (per node) 1 TB SSD
Operating System Ubuntu 22.04 LTS (64-bit)
Cluster Manager Spark Standalone
Programming Interface PySpark (v3.5) utilizing the Pandas API
Data Storage Formats CSV and Parquet

Table 5
Experimental platform configuration and technical specifications

 Figure 3
Block diagram of clustering algorithms

Number Dataset name Type Records Features Noise Missing values
D1 Industrial Equipment Monitoring Real 7,672 7 No 0
D2 Sensor Data from Industrial Machine Real 10,000 6 Yes 1,249
D3 Clustered Data Synthetic 1,000,000 5 10% 0

Table 4
Description of datasets used
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entire workflow was implemented in JupyterLab using Spark ML 
pipelines, ensuring complete reproducibility and methodological 
transparency across all experiments.

5.1. Implementation workflow
To enable repeatability and scalable cluster implementation, the 

workflow was designed as a modular pipeline. This workflow was built 
on the foundation of Apache Spark's distributed architecture and was 
executed through PySpark interfaces to deploy algorithms and collect 
metrics.

Figure 4 outlines the main steps of the experimental pipeline. The 
process begins with the ingestion of datasets and their preprocessing, 
where missing values are handled and features are normalized. The 
processed data is then introduced into the selected clustering model 
(K-Means, DBSCAN, FCM, or GBK-Means), and finally, it is evaluated 
using several internal validity measures.

To ensure consistent parameter tuning and to parallelize 
computation, each execution step was packaged into a reusable Spark 
ML pipeline. The evaluation results were automatically written to 
formatted result files, which were then used to generate visualization 
plots and comparison charts.

5.2. Parameter settings
The clustering algorithms were configured with predefined 

hyperparameters to facilitate fair and consistent comparison across all 
experimental settings. These parameters were either adopted from best 

practices in literature or optimized through empirical grid search on a 
held-out validation set from the synthetic dataset (D3).

With respect to the GBK-Means and the A-GBK-Means 
algorithms, various essential parameters do affect the performance of 
the clustering method. The value of the number of clusters (k) was 
determined in order to correspond to the known class structure of 
the synthetic data, as well as to allow comparing the results among 
datasets (k = 6). The value of the kernel width (sigma) gives sensitivity 
to the Gaussian function, that is, a lower value gives more stress on 
local similarity, whereas a higher value tends to smooth the effect of 
a larger area. In GBK-Means, sigma was constant, but in A-GBK-
Means, it was dynamic and adjusted adaptively according to the local 
density of a data point, resulting in a more flexible cluster boundary 
and tolerance of noise. The regularization coefficient regulates the size 
of the kernel component and also prevents overfitting by the issue of 
penalizing a high deviation. The fuzzifier (m) is a parameter that varies 
the softness of cluster membership and typically takes the value 2.0; an 
increased value can lead to an increased degree of fuzziness but also 
slow convergence. Parameters were chosen using both empirical tuning 
as well as support in the literature and were standardized between 
experiments to stay as objective and reproducible as possible.

For the K-Means algorithm, the number of clusters (k) was set 
to 6 for all datasets to match the ground truth in the synthetic data 
and maintain consistency in the real-world setting. The algorithm was 
initialized using the “k-means++” method and capped at a maximum of 
100 iterations per run.

For DBSCAN, the epsilon (ε = 0.3) parameter was determined 
empirically using the k-distance graph, and the minimum number of 
points required to form a dense region (MinPts) was set to 10.

The FCM algorithm was configured with a fuzziness coefficient 
(m = 2.0), a convergence criterion (ε = 1 × 10⁻⁵), and a maximum of 300 
iterations per run to ensure stable convergence behavior.

Specifically, for the GBK-Means algorithm, which combines 
kernel transformation with fuzzy membership weighting, the following 
settings were applied: number of clusters k = 6, kernel width σ = 1.5, 
regularization coefficient λ = 0.01, and maximum iterations (maxIter) = 
150. Each algorithm was run with fixed random seeds to ensure result 
reproducibility. Table 6 summarizes the parameter values used for each 
method.
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Algorithm Key parameters
K-Means k = 6
DBSCAN ε = 0.3, MinPts = 10
FCM c = 6, m = 2.0, ε = 1e-5, maxIter = 300
GBK-Means k = 6, σ = 1.5, λ = 0.01, maxIter = 150
A-GBK-Means k = 6, σ(x), λ = 0.01, m = 2.0

Table 6
Hyperparameters for clustering algorithms

 Figure 4
Experimental workflow architecture

Step Task description Tools/technologies used
1 Data acquisition and preprocessing Pandas, PySpark, Scikit-learn
2 Normalization and missing value handling Spark ML Pipeline (Z-score, Imputer)
3 Algorithm integration and configuration PySpark MLlib, Custom Python (FCM)
4 Execution of clustering models Apache Spark 3.5 (Standalone Mode)
5 Evaluation metric computation (SS, DBI, Noise) Scikit-learn, NumPy
6 Time and scalability measurement Spark job logs, built-in timers
7 Result recording and visualization JupyterLab, Matplotlib, Seaborn

Table 7
Summary of experimental tasks
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5.3. Summary of tasks performed
This subsection presents a description of the key activities carried 

out during the experimental stage. The process was implemented in 
a modular and reproducible manner with the support of distributed 
processing in Spark. Table 7 summarizes the key steps undertaken in 
the clustering experiments.

JupyterLab notebooks were used to script all tasks, making the 
results fully traceable and reproducible. Specific wrapper functions 
were written to integrate FCM and GBK-Means into the Spark pipeline.

6. Experimental Results and Evaluation
This section presents the experimental results of applying the 

four clustering algorithms to three datasets. The analysis is conducted 
in terms of computational efficiency (running time, scalability) as well 
as clustering quality (SS, DBI, and noise-handling capability).

Overall, the suggested A-GBK-Means algorithm is superior 
to the baseline approaches in its ability to balance well between 
the accuracy of clustering tasks and scalability. It takes less time to 
execute competitively, larger SSs, and smaller DBI values. It also 
works effectively in the detection of meaningful patterns, especially 
on noisy datasets (D2), compared to traditional K-Means or DBSCAN. 
These findings add credence to the fact that kernel width and fuzzy 
membership setting flexibilities are major contributors to adaptive 
performances in cluster computing and practical relevance.

6.1. Execution time analysis
Execution time is one of the most important performance 

measures of clustering algorithms, especially when applied to large-
scale datasets, as is often the case in practice. In this analysis, the mean 
runtime (in seconds) of each algorithm–dataset pair is considered. 
Each experiment was repeated five times to obtain statistically reliable 
results, and the average execution time was reported to minimize 
the influence of random initialization effects or system workload 
fluctuations.

Figure 5 illustrates that there were significant variations in 
computational efficiency among the algorithms. K-Means consistently 
demonstrated the fastest execution time, especially on the synthetic 
dataset (D3), due to its linear time complexity and the highly optimized 
vectorized implementation in Spark MLlib. In contrast, DBSCAN 
exhibited considerable slowdowns on larger datasets, attributed to the 

computationally intensive nature of its neighborhood-based density 
estimation.

The FCM algorithm required more time than K-Means due to 
its iterative fuzzy membership updates; however, its performance 
remained within acceptable limits. Across all datasets, GBK-Means 
showed the longest execution times, primarily due to the additional 
computational cost of kernel function evaluation and membership 
matrix calculations.

6.2. Clustering quality evaluation
Clustering quality is essential for evaluating how well an 

algorithm identifies the underlying group structures within data. This 
paper employed the following three internal validation measures to 
assess clustering quality:

1.  The SS, which measures intra-cluster cohesion and inter-cluster 
separation, with higher values indicating compact and well-
separated clusters.

2.  The DBI, which calculates the ratio of intra-cluster similarity to 
inter-cluster distinctness, where lower values are preferred.

3.  The Calinski–Harabasz Index, which compares within-cluster 
variance to between-cluster variance, where higher values are 
desirable.

In addition, the Noise Ratio was calculated specifically for 
DBSCAN and FCM, representing the proportion of data points 
designated as noise.

The experiments revealed several interesting trends across 
datasets D1, D2, and D3. K-Means performed best on the synthetic 
dataset (D3), achieving a high SS (~0.71) and a low DBI (~0.42), 
indicating distinct and compact clusters. However, it did not perform 
well on noisy real-world data, particularly on Dataset D2.

By contrast, DBSCAN demonstrated strong robustness to noise 
and outperformed K-Means on real datasets, especially D2, due to its 
density-based clustering approach. FCM produced moderately good 
clustering quality across all datasets, with relatively balanced scores. 
However, it tended to yield slightly higher DBI values, likely due to the 
fuzziness of its membership assignments.

A-GBK-Means delivered consistently strong performance, 
especially on Dataset D1, where the true cluster structures were non-
linear. In this case, the benefits of kernel functions and fuzzy weighting 
were particularly evident.

Figure 6 illustrates the comparative performance of the four 
clustering algorithms based on SS and DBI. Higher SSs reflect more 
distinct clusters, whereas lower DBI values indicate better separation 
and compactness. On the synthetic dataset (D3), K-Means leads in SS, 
whereas A-GBK-Means achieves the best DBI. DBSCAN presents a 
balanced profile across all three datasets but proves especially effective 
in noisy environments like D2. The quality of comparative clustering 
of four algorithms (K-Means, DBSCAN, FCM, and A-GBK-Means) on 
three sets of data, D1, D2, and D3, via SS and DBI. The A-GBK-Means 
method recorded the largest SS and the least DBI on all datasets, and 
especially, on a noisy dataset (D2), indicating a good separation and 
compactness of clusters.

6.3. Scalability assessment
Scalability was evaluated by gradually increasing the size 

of the synthetic dataset (D3) from 50,000 to 500,000 instances, in 
increments of 100,000. All clustering algorithms were executed on 
these increasingly larger subsets, and both execution time and internal 
validation measures were recorded to track variations in performance.
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 Figure 5
Execution time and dataset size
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The experiment revealed noticeable differences among the 
tested algorithms. K-Means demonstrated near-linear scalability, as 
its execution time increased proportionally with dataset size while 
maintaining stable clustering quality. In contrast, DBSCAN exhibited 
exponential growth in runtime beyond 100,000 records, primarily due 
to the computational intensity of its region-query operations.

FCM scaled better than DBSCAN, although it required more 
memory and computation time due to the iterative recomputation 
of fuzzy memberships. A-GBK-Means was the slowest among all 
algorithms but tended to achieve proportionally higher SSs on larger 
subsets, suggesting improved cluster structure definition despite the 
higher computational cost.

These observations highlight the trade-offs between 
computational performance and clustering quality as dataset size 
increases across different algorithms. Figure 7 shows the total execution 
time (in seconds) for each clustering algorithm across all dataset 
sizes. Running time of each clustering algorithm with a synthetic data 
set across growth in magnitude. K-Means proves to have the fastest 
execution time; however, it does not have clustering quality. A-GBK-
Means strikes a balance between scalability and robustness, and 
A-GBK-Means matched performance with both DBSCAN and GBK-
Means in terms via computation efficiency, although performance times 
were exponentially increasing with DBSCAN and GBK-Means.

By contrast, DBSCAN and A-GBK-Means incurred the 
highest computational costs due to their complexity, whereas FCM 

offers a reasonable balance between execution speed and clustering 
versatility.

7. Comparative Strengths of A-GBK-Means
To overcome the drawbacks of fixed kernel width and noise 

sensitivity in high-dimensional, heterogeneous big data, we propose an 
improved version of the A-GBK-Means.

In traditional GBK-Means, a fixed Gaussian kernel width is 
assumed for all data points; however, in settings where data density 
varies across the feature space, this assumption becomes inadequate. 
The novel model proposed in this paper addresses this limitation by 
making the kernel adaptive on a per-point basis, using local density 
estimates. This adaptation enables the algorithm to better handle non-
uniform cluster structures and outliers. Specifically, the kernel function 
is dynamically rescaled by the local density ρ(xᵢ), and is characterized 
as Equation (3) as follows:

σ

The adaptive kernel width σ(xᵢ) is calculated based on the average 
distance to k-nearest neighbors in Equation (4) as follows:

σ

where  denotes the jth nearest neighbor of xᵢ.
We define a fuzzy membership matrix U = [uᵢⱼ], where each uᵢⱼ ∈ 

[0, 1] represents the degree to which xᵢ belongs to cluster j. Membership 
values are updated as Equation (5) as follows:

Here, Dᵢⱼ is the kernel-based distance between point xᵢ and cluster 
center cⱼ, and m is the fuzzifier coefficient (m > 1). To overcome such 
shortcomings of the traditional clustering analysis in heterogeneous 
and noisy data environments, we introduce the A-GBK-Means 
algorithm.

(3)

(4)

(5)
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 Figure 6
Clustering quality comparison (SS and DBI)

 Figure 7
Total execution time (sec) comparison of clustering algorithms
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It is a locally adaptive kernel width estimation method using 
k-nearest neighbors, and fuzzy membership weighting is incorporated 
to enhance robustness and accuracy. The algorithm iteratively updates 
centroids and fuzzy memberships until convergence.

Algorithm 1 summarizes the complete step-by-step workflow.

The architectural flow of the proposed A-GBK-Means algorithm 
is demonstrated in Figure 8. The stages start with the input data, which 
is high-dimensional or noisy, and undergo adaptive kernel width 
estimation depending on the local density in the input space using 
the k-nearest neighbor method. This adaptive estimation enables the 
algorithm to adapt to variations in data density in the feature space.

After that, a Gaussian kernel matrix is calculated with adaptive 
widths, which encodes nonlinear interactions among data points. The 
following step incorporates a fuzzy membership facility where the data 
points are softly assigned to clusters using kernelized distances and a 
set fuzzifier parameter.

The architecture then iteratively optimizes itself through centroid 
updates and membership computations until it converges. The last 
step provides the fuzzy membership matrix and the optimized cluster 
structures. The whole pipeline can be scaled and parallelized and can 
thus be executed in a distributed big data processing system like Apache 
Spark.

This figure underscores the modular nature of the algorithm and 
its potential to integrate adaptive kernel learning with the principles of 
fuzzy clustering, which makes the outcome a more stable and adaptable 
clustering method to deal with complicated data.

The time complexity per iteration is approximately the following:

Where:

1)  n = number of data points
2)  k = number of clusters
3)  d = data dimensionality
4)  log k = approximate kNN search cost

A-GBK-Means clustering algorithm shows evident performance 
benefits compared to the other clustering methods that are tested within 
the framework of this research.

The latter combines adaptive kernel scaling and fuzzy membership 
weighting and thus adaptively adjusts to the local data distributions and 
is capable of handling noise and outliers efficiently.

First, the A-GBK-Means algorithm shows the best SS (0.74) 
compared to all the other algorithms, indicating that its clusters are 
compact and well-separated, as shown in Table 8. This is especially 
useful in high-dimensional as well as heterogeneous data, where 
distance-based clustering algorithms do not perform well.

Second, the technique provides the lowest DBI (0.36), 
demonstrating the best intra-cluster similarity and inter-cluster 
separation. The combination of these two internal quality measures 
confirms the ability of the algorithm to produce meaningful clusters 
even in the most complex data landscape.

Regarding robustness, the A-GBK-Means algorithm shows the 
best result in comparison with DBSCAN and FCM, as it has a much 
lower noise rate (2.0%), yet it detects outliers and ambiguous data 
points. As opposed to DBSCAN, which is highly sensitive to parameter 
adjustment in regions of different densities, the adaptive kernel 
mechanism in A-GBK-Means enables it to gradually adapt between 
dense and sparse regions.

Another strength is computational balance. Although it is slightly 
more demanding than K-Means or FCM in terms of execution time, 
A-GBK-Means is much faster than GBK-Means, yet it delivers better 
clustering quality. This is attributed to the local density estimates, 
which are efficiently used in computing the kernel, thereby reducing 
unnecessary computation in homogeneous areas.

1.  Advantages:
a.  Adaptivity: The kernel width is adjusted dynamically based on 

local data density.
b.  Noise robustness: Achieves a low noise ratio and stable clustering 

under noisy conditions.

(6)
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Algorithm Silhouette Score DBI Noise Ratio (%) Execution Time (sec)
K-Means 0.71 0.42 0 68.9
DBSCAN 0.65 0.38 8.5 110.5
FCM 0.67 0.45 6.1 88.3
GBK-Means 0.69 0.4 3.2 132.4
A-GBK-Means 0.74 0.36 2 95.6

Table 8
Clustering performance comparison

 Figure 8
Architecture of the proposed A-GBK-Means algorithm

1. Input dataset: X = {x₁, x₂, ..., xₙ}, number of clusters k, fuzzifier  
  m, convergence threshold ε
2. Initialize cluster centers C = {c₁, ..., ck} using k-means++
3. For each xᵢ, compute σ(xᵢ) using k-nearest neighbors
4. Compute Gaussian kernel matrix K (xᵢ, xⱼ)
5. Initialize fuzzy membership matrix U = [uᵢⱼ]
6. Repeat until convergence:
a. Update cluster centroids cⱼ using weighted kernel distances
b. Update uᵢⱼ
c. Check: |U(t) − U(t−1)| < ε
7. Output: Final clusters and memberships

Algorithm 1
A-GBK-Means
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c.  High quality: Produces superior SS and DBI.
d.  Soft clustering: Fuzzy logic allows better handling of ambiguous 

data points.
e.  Scalability: Efficient for large datasets and compatible with 

distributed systems.
2.  Disadvantages:

a.  Parameter sensitivity: Requires careful tuning of parameters such 
as m and k.

b.  Computational overhead: More resource-intensive than basic 
clustering methods.

c.  Initialization dependency: Outcome may depend on initial cluster 
centers.

d.  Interpretability: Fuzzy results may be harder to interpret in some 
scenarios.

Moreover, due to its fuzzy membership mechanism, A-GBK-
Means can be effectively applied in practical scenarios where data 
points may belong to multiple clusters simultaneously.

This flexibility enhances its interpretability and real-world 
applicability, particularly in fields such as anomaly detection, healthcare 
analytics, and industrial diagnostics.

In conclusion, the combination of adaptive kernel learning, 
soft clustering, and structural robustness makes A-GBK-Means a 
strong candidate for scalable and noise-resistant clustering in big data 
environments.

The proposed A-GBK-Means algorithm has a few benefits where 
fault diagnosis is concerned, especially in the field of sensors-based 
industrial systems. Rigid cluster boundaries or density fluctuation 
may be a problem of the traditional clustering algorithms such as 
K-Means and DBSCAN so that fine fault structures are difficult to 
differentiate. Conversely, A-GBK-Means makes use of local density-
based adaptive kernel widths and this allows the algorithm to extract 
nonlinear, irregular, and spatially sparse fault signals. Besides, the 
fuzzy membership model enables a partial membership to be ascribed 
to ambiguous or borderline instances, and in cases where such pertain 
to detecting faults in the early stages of their existence, or intermittent 
faults, this feature is highly useful. Nevertheless, the difficulty in fixing 
the fuzzifier and kernel parameters of each fault type of signature and 
meanwhile the soft assignment interpretation in critical fault cases is 
still apparent. Regardless of these shortcomings, the technique offers a 
scalable and pliant framework of unsupervised fault pattern detection 
in noisy conditions.

In a real-life dataset, particularly risk assessment data, the 
examples contained in the data can be in several overlapping sets of 
behavior or they could be inaccurate because of sensor noise or data 
sparseness. The A-GBK-Means algorithm combats this difficulty in 
two ways: first, the adaptive kernel width adapts to local data density 
such that the model can distinguish subtle structural variations even 
in overlapping areas. Second, soft clustering is made possible by the 
fuzzy membership assignment, such that every point may be part of 
more than one cluster, and the part is measured. The soft assignment 
decreases the effects of hard-boundary misclassification and gives the 
algorithm a stronger ability to deal with ambiguous or marginal cases. 
Such attributes enable A-GBK-Means to be especially useful in early 
anomaly identification, uncertainty-based decision-making in risk-
averse settings.

7.1. Comparative evaluation with studies
The progress of the current study is marked by several important 

distinguishing factors.
First, regarding execution platforms, previous studies primarily 

relied on Hadoop MapReduce, which is intrinsically slower due to 

its disk-based processing model. In contrast, our Spark-based design 
leverages in-memory computation, significantly reducing job latency 
and improving the responsiveness of iterative algorithms.

Second, in terms of algorithmic scope, earlier research was 
largely limited to K-Means, Hierarchical Clustering, and DBSCAN. In 
this study, however, we extend the analysis to include FCM and GBK-
Means, the latter being particularly effective in the presence of noise 
and nonlinear cluster structures.

Furthermore, most previous studies utilized limited dataset 
designs, often constrained to small or synthetic data only. By comparison, 
our experimental setup incorporates both realistic industrial sensor data 
and synthetic datasets with adjustable volume and noise characteristics, 
allowing for a more realistic evaluation of algorithm performance.

Finally, in terms of evaluation measures, earlier work primarily 
focused on either execution time or cluster purity. Our approach adopts 
a more comprehensive set of metrics, including execution time, SS, 
DBI, noise ratio, and scalability trends. This multi-criteria assessment 
provides a deeper and more nuanced understanding of algorithm 
behavior under big data conditions.

This study has demonstrated measurable performance gains 
in terms of reduced execution time (up to 2.4× faster) and improved 
clustering resilience, particularly in the presence of noisy and high-
volume data (Figure 9). By incorporating fuzzy and kernel-based 
models and testing them on real-world sensor data, the study goes 
beyond the methodological scope of most previous research.

8. Conclusion
This paper presented the comparative evaluation of four clustering 

algorithms, namely K-Means, DBSCAN, FCM, and GBK-Means, 
on real-world industrial sensor data as well as on synthetic datasets 
in a distributed Apache Spark cluster. To evaluate the performance, 
scalability, and robustness, the multi-metric framework, including SS, 
DBI, execution time, and noise ratio, was used.

According to the results, it can be noted that although K-Means 
is very scalable and has low execution time, it is vulnerable to noise. 
DBSCAN is very noise-resistant but inefficient with large-scale data. 
FCM offers interpretable fuzzy clustering at moderate computational 
expense, and GBK-Means is competitive when the data structure is 
complex, at the cost of runtime. To address these shortcomings, we have 
suggested the A-GBK-Means algorithm, which incorporates adaptive 
kernel width estimation using local density with fuzzy membership 
modeling. The provided approach demonstrated better results on all 
baselines on clustering quality and noise processing, as well as decent 
computational expense and scalability with Spark.

13

 Figure 9
Comparative performance with prior studies
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In the proposed framework, the future development will consider 
enhancing it with the capabilities of processing data streams in real 
time with the help of Apache Kafka and Spark Streaming. Automated 
hyperparameter tuning techniques will also be considered to achieve 
optimized performance without relying on manual efforts.

We also seek ways to consider the hybrid clustering models 
combining A-GBK-Means with deep learning or evolutionary 
algorithms and extend the framework to other fields, including 
healthcare analytics, smart city infrastructure, and cyber-physical 
systems. Additional benchmarking of performance on GPU-based 
and cloud-native platforms will also be considered to have practical 
deployment readiness.

In future experiments, an ablation study will be conducted 
to isolate the effects of adaptive kernel scaling versus static kernel 
settings and fuzzy weighting. This will clarify the specific performance 
contribution of each enhancement in the A-GBK-Means framework.

Recommendations
In line with the findings of this paper, we suggest the application 

of adaptive kernel-based clustering models particularly in industrial 
applications in which the sensor data are big and noisy. Practitioners 
should consider adopting the suggested A-GBK-Means approach on 
Apache Spark set ups to balance the accuracy of clustering and scal-
ability. Further development would involve new integrations with re-
al-time processing framework, for example, Apache Kafka, to improve 
streaming data analytics performance.
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