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Abstract: Thyroid cancer disease diagnosis is a critical medical challenge, requiring accurate and reliable predictions to support clinical decision-
making. Patients may suffer from an incomplete diagnosis while using traditional machine learning models. In this study, we present an optimized
ensemble machine-learning framework for predicting thyroid cancer disease. The methodology integrates multiple classifiers, including support
vector machine, random forest, Naive Bayes, K-nearest neighbors, and decision tree. The final classification decision is determined with the help
of soft voting by a total predictive support vector machine, which selects the classifier with the highest confidence score among the ensemble
models. The ensemble strategy enhances predictive accuracy and robustness by combining the strengths of individual classifiers. The model
was trained and evaluated, achieving an impressive accuracy of 0.9633 and an area under the receiver operating characteristic curve of 0.9914.
The proposed method of this study is very accurate, but there is still a black box problem. To overcome this issue and to ensure interpretability,
Explainable Artificial Intelligence techniques, including Shapley Additive Explanations and Local Interpretable Model-agnostic Explanations,
are implemented, providing insights into feature contributions towards the performance of the proposed method and model decisions. The dataset
contains a total of 30 features with 3,772 different cases consisting of two classes.

Keywords: thyroid cancer prediction, Explainable Artificial Intelligence (XAl), ensemble learning, soft-voting, machine learning, computational
intelligence

1. Introduction irregular periods. Many factors can lead to thyroid disorders, including
autoimmune conditions, iodine deficiency, genetics, and medications.
This is typically done through proper doctor examination and blood
tests to measure thyroid hormone levels [4]. Conditional on the exact
illness, potential treatment options to correct disorders can include
hormone replacement therapy, medications to regulate hormone levels,
or even surgery in some cases. Thyroid disease covers a range of
conditions, including hypothyroidism and cancer of the thyroid, and
has been connected with mortality and death, although with varying
strength [5]. Thyroid cancer represents the largest proportion of deaths
associated with thyroid disorders [6]. Thyroid problems are difficult to
diagnose and take a long time to diagnose, usually by extensive clinical
evaluation and laboratory tests [7]. The use of cognitive computing
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Thyroid cancer consists of various disorders affecting the
functioning of the thyroid gland, a small gland in the neck, similar to
a butterfly [1]. It is responsible for regulating many functions such as
metabolism, energy production, growth, and development throughout
the body. The two most common forms of thyroid disorder are
hypothyroidism, wherein the thyroid is underactive and fails to produce
sufficient thyroid hormones, and hyperthyroidism, an overproduction
of thyroid hormones [2, 3]. These situations may result in a range of
symptoms, including fatigue, mood changes, weight fluctuations, and
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2. Related Work

Previous techniques in the literature dedicated to the diagnosis of
thyroid diseases have a strong dependence on classification algorithms
when trained on an imbalanced dataset, while presenting moderate
levels of performance scores. These methodologies typically do not
address data balance problems, resulting in biased findings and reduced
diagnostic performance. Moreover, current diagnostic methods that
rely on these algorithms often lack Explainable Artificial Intelligence
(XAI) models, further dulling the interpretability and trustworthiness
of the predictions. Therefore, the advanced ML approach meets the
aforementioned gaps by including robust data balancing techniques
and utilizing XAl models, improving the accuracy and transparency of
thyroid disorder diagnoses. The present study can potentially contribute
towards facilitating the diagnostic process through improved accuracy,
enabling early detection, and treating thyroid cancer disorders using Al
technology.

Song et al. [9] performed an oversampling on serum Raman
spectroscopy data collected from 47 thyroid carcinoma patients, using
reweighing methods of the pillow, random forest (RF), and decision
tree (DT) classifiers. In the Synthetic Minority Over-sampling
Technique (SMOTE) method, accuracy was DT (75.4%), RF (81.5%),
and Adaptive Boosting (84.61%). Liu et al. [10] discussed data up to
October 2023, an RF framework for predicting post-thyroid ectopy
quality of life derived from 286 thyroid cancer patients that had an
accuracy of 89.7% validation rate. Kim et al. [11] investigated data
from 187 patients treated with PD-1 or PD-L1 inhibitors, which were
used in the article to predict adverse events with RT and logistic
regression (LR) classifiers. RF provided an area under the receiver
operating characteristic (ROC) curve (AUC) of 77.0%. Luong et
al. [12] performed an RF, and LR was used to train the model used
in the analysis of 355 surgical patients for indeterminate thyroid
nodules data. The example output obtained from a test set was as
follows: Accuracy 71.9%, AUC 85.9%, Sensitivity (true positive
[TP] rate) 75.5%, and Specificity (true negative [TN] rate) 82.4%.
Yang et al. [13] discussed data utilized to evaluate the prediction
of recurrences of differentiated thyroid carcinoma using DT, REF,
and LR classifiers, achieving accuracy levels of 84.7% to 89.7%.
Idarraga et al. [14] performed a study based on 604 benign thyroid
nodules and established an operating model with RT classifiers to
predict malignancy, achieving a lower AUC of 64.0%. Xu et al. [15]
investigated Serum thyroglobulin numbers amongst 1451 patients
meeting the criteria for papillary thyroid carcinoma using an RF
classifier, resulting in an AUC ranging from 71.0% to 81.0% in the
development of a possible diagnostic and prognostic tool. Hang [16]
performed testing of an RF classifier on 428 cases and implemented
histogram equalization and alternative ultrasound image enhancement
techniques. The accuracy was found to be 95.0%. Yang et al. [17]
discussed the method for IncRNA and miRNA data of 506 thyroid
carcinoma patients evaluated in support vector machine (SVM), RF,
and DT classifiers. The maximum accuracy was recorded by RF. Qin
et al. [18] investigated an AUC of 96.9% achieved from an ensemble
method performed on magnetic resonance imaging (MRI) radionics
in lymph node metastases of 109 thyroid carcinoma patients.

Sai et al. [19] performed electroglottogram signals to determine
thyroid abnormality using Naive Bayes (NB), DT, artificial neural
network (ANN), LR, and RF classifiers. In this study, LR obtained an
overall accuracy of 95.1%. Aiming for Early diagnosis of thyroid cancer
using a Saudi Arabian dataset best accuracy of 90.9% was achieved
with RT using NB, RF, SVM, and ANN classifiers. Olatunji et al. [20]
performed and applied DNA methylation data from 92 samples to

differentiate between follicular thyroid carcinoma and adenoma. Zhang
et al. [21] investigated, and the accuracy achieved was 99.4% by
applying the RF classifier. According to He et al. [22], RF classifiers
achieved an accuracy of 90.6% on the analysis of biometric MRI data
from 60 cases of papillary thyroid carcinoma. Garcia de Lomana et al.
[23] performed gradient boosting (GB), RF, SVM, ANN, and LR to
model thyroid hormone homeostasis. Reported accuracy ranged from
76.0% to 82.0%, depending on the model. Aksu et al. [24] discussed
that the RF approach was used to assess radiomic data from 18F-FDG
thyroid gland uptake to achieve an accuracy of 78.6% and an AUC of
84.9% for 60 cases of the thyroid gland. Chen et al. [25] investigated,
for instance, the ultrasonographic feature of 1558 cases of thyroid
nodules was analyzed using forest models, reaching an accuracy of
96.1%. The key findings of Su et al. [26] from using RF classifiers to
analyze gut microbiome data related to thyroid dysfunction, but did not
report performance metrics. Zhao et al. [27] performed a combination of
177 patients with partially cystic thyroid cancer and retrospective data,
and high accuracy and AUC values were achieved by applying GB,
ANN, RF, SVM, and LR classifiers; the best performing was RF with
a specificity of 93.4%. Kwon et al. [28] performed LR, RF, and SVM
classifier analysis using radiomics data from 96 cases for predicting
BRAF mutation in papillary thyroid carcinoma in this study, achieving
an accuracy of 64.3%.

Anu and Benifa [29] performed to handle raw data related
to hyperthyroidism, using an ANN with K-means. Vivar et al. [30]
discussed using an ANN with loss at its input network and coupled
variations at test time to continuously determine feature value. An
automated assessment algorithm is presented. This method is also used
to classify hypothyroidism and hyperthyroidism in the UCI thyroid
dataset. van Sonsbeek and Worring [31] performed an ANN and a novel
method of information representation and argumentation to propose a
decision support system for the evaluation of thyroid dysfunction in
general. Ai etal. [32] performed capsule networks, a more contemporary
kind of neural network, which was shown to achieve a high accuracy
of 81.06% when used on ultrasonic thyroid imaging to identify possible
symptoms of cancer of the thyroid.

Xi et al. [33] took a novel clinical dataset holding 724 patients
with 1,232 nodules and used multiple classifiers, and the best classifier
is RT, by 11% increases on accuracy, and 12% on F1 score. The two
general measurements and average accuracy, and AUROC of the six
models are 0.78.

Ksiazek [34] took the dataset from Shengjing Hospital of
China Medical University, holding 1232 records with 19 features, and
performed 10 different classifiers, including XGBoost, LightGBM, and
RF. The LightGBM classifier confirmed the maximum performance
classification accuracy of 81.82% and an F1 score of 86.62%.

Akter and Mustafa [35] took the dataset from the UCI Machine
Learning Repository, holding 6,916 records with 22 features, and
performed different classifiers, achieving a maximum performance
classification accuracy of 87%.

Kumar et al. [36] took the dataset, which included 1,250 male
and female subjects whose ages ranged from one to one year, with 17
attributes, and performed multiple classifiers.

Alawiyah et al. [37] developed a thyroid cancer recurrence
prediction model using the XGBoost method, achieving an average
accuracy of 97.74% and an F1 score of 95.94%, effectively predicting
both recurrence and non-recurrence, aiding clinical decision-making
for patient management. Ozturk et al. [38] used different machine
learing (ML) models, including GB, RF, XGBoost, and AdaBoost, to
perform in forecast the recurrence of thyroid cancer. The best prediction
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accuracy at 95.3% was achieved by the XGBoost model, which suggests

it could enhance forecasting in clinical settings. Firat Atay et al. [39]

created a hybrid model integrating predictive classification techniques

and association rule mining to forecast the recurrence of differentiated
thyroid cancer with a remarkable accuracy of 96.7%. The model also
facilitated the identification of critical management predictors like
incomplete response and lymphadenopathy for optimized decision
support systems. The study by Vu et al. [40] built a machine-learning
model for thyroid cancer detection using clinical data, achieving an

accuracy of approximately 82%.

In traditional previous work, as shown in Table 1, many ML
models are deployed while having a “black-box™ problem, where
there is no simple understanding of the inner mechanisms by human
experts of the model. The motivation behind this study is that the lack of
transparency is a major downside in healthcare contexts, where doctors
want to understand why a model made a certain prediction to have
confidence in its outputs.

In our study, cluster-based SMOTE is used for balancing the
dataset. Other preprocessing techniques, including missing value
handling and normalization, are also used in this research. Then, we
applied six different classifiers, including RF, DT, NB, Light, K-nearest
neighbors (KNN), and SVMs. By using the ensemble learning technique,
SVM is selected that achieves the highest accuracy among other
classifiers. To ensure result transparency, Local Interpretable Model-
Agnostic Explanation (LIME) and Shapley Additive Explanation
(SHAP) tools are used for interpretability and XAI.

The main contribution is as follows:

1) An Enhanced Ensemble ML Approach is proposed for Transparent
Thyroid Cancer Prediction with XAl that enhances the accuracy and
effectiveness of thyroid cancer predictions.

2) Our study presents a state-of-the-art cluster-based SMOTE data
balancing technique that addresses the limitations of existing
approaches. These techniques decrease overfitting and eliminate
noise from the data, enhancing model flexibility.

3) A series of preprocessing methods has been applied, including
missing value imputation, outlier detection, normalization, and
addressing imbalance and cluster-based SMOTE issues.

4) Introduce a new soft voting-based SVM classifier with parameter
configuration.

5) The performance of the proposed classifier is predicated on various
performance matrices with K-fold cross-validation.

6) Experimental results depict the leads of the proposed soft voting-
based SVM prediction classifier with an accuracy of 97%,
outperforming the performance of ruling ML models.

7) Furthermore, SHAP and LIME techniques have been applied to
explain the efficiency of the proposed model concerning a particular
feature

3. Methodology

Figure 1 shows the proposed model, which consists of two
phases, namely the training phase and the validation or evaluation
phase. Data balancing and preprocessing techniques have been applied
to the dataset in the training phase.

3.1. Dataset

This research utilized thyroid-based datasets from well-known
data repositories, Kaggle. The total size of samples in the dataset is
3,772, and the total attributes is 28. This is probably because thyroid
conditions can influence or correlate with ocular health, hence
constituting important latent features for prediction.

3.2. Clinical validity

The dataset can be found on Kaggle and contains information
from actual patients that the Garavan Institute and J. Ross Quinlan
from the New South Wales Institute in Sydney, Australia, gathered.
It features 3,772 cases along with 30 attributes, which include
demographics and laboratory tests for thyroid hormones such as
T3, TT4, thyroid-simulating hormone (TSH), FTI, and medication
status. Several peer-reviewed publications have cited this dataset,
demonstrating that the thyroid and endocrine Al model's prediction
features T3, TT4, TSH, and age align with important thyroid and
endocrine healthcare benchmarks, thereby reinforcing its clinical
relevance. Literature-based feature importance within Al models
repeats the clinical setting and confirms the critical nature of these
diagnostic parameters.

3.3. Data balancing

In this study, the cluster-based SMOTE is used to address class
imbalance.

Table 1

Limitations of previous work
Citation Methods Accuracy Dataset size Generalization
Sai et al. [19] Multiple Algorithm 90.9% 218 Yes
Olatunji et al. [20] Random Forest 99.4% 92 -
Zhang et al. [21] Random Forest 90.6% 60 -
He et al. [22] Multiple Algorithm 82.0%/79.0% 1,074 Yes
Garcia de Lomana et al. [23] Random Forest 78.6% 60 -
Aksu et al. [24] Random Forest 96.1% 1,558 -
Chen et al. [25] Random Forest - 92 -
Su et al. [26] Multiple Algorithm 86.0% 177 Yes
Zhao et al. [27] Multiple Algorithm 64.3% 96 Yes
Xietal. [33] Multiple Algorithm 78% 724 Yes
Ksiazek [34] Multiple Algorithm 81.82% 1,232 Yes
Proposed Multiple Algorithm Our study 3,773 K-fold
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Figure 1
The proposed model
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3.4. Data preprocessing

In this study, missing values were handled using other features'
values. The moving-average-based normalization technique is also used
for handling negative, imaginary, or abrupt values.

3.5. Data splitting

Data retrieved from the cloud is divided into two sets: Training
Data: 80% of the data is taken to train the machine-learning model.
Testing Data: 20% of the data is set aside for model testing.

3.6. Normalization

For this dataset, normalization was done using smoothing using
a moving average technique, which helps in reducing the impact of
outliers, thus enhancing the model's performance considerably. To
balance out the problem of sparse data, this work incorporates cluster-
based SMOTE. In addition, the classifiers' outputs are combined using
the soft-voting technique, which adds similarly weighted contributions
from several classifiers for greater accuracy, as demonstrated in
Figure 2.

Two classes are present in our dataset, Classes 1 and 2, and it is
represented by i[0,1]. The ensemble learning phase would be predicted
as follows:

Predication classifier 1 (SVM)—[P(i,/ D), P(i,/ D)]
Predication classifier 2 (R.F)—[P(i,/ D), P(i,/ D)]
Predication classifier 3 (N.B)—[P(i,/ D), P(i./ D)]
Predication classifier 4 KNN)—[P(i,/ D), P(i,/ D)]
Predication classifier 5 (D.T)—[P(i,/ D), P(i / D)]
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Figure 2
Soft-voting implemented on multiple ML classifiers
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Note: KNN = K-nearest neighbors, ML = machine learning, SVM = support
vector machine.

Predication classifier 6 (LightGBM)—[P(i,/ D), P(i,/ D)]
Sofi—voting=arg Max [P(Predicitive classifier 1), (Predicitive
classifier 2),
P(Predicitive classifier 3),
P(Predicitive classifier 4), P(Predictive classifier 5),
P(Predictive classifier 6)]]
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Table 2 3.8. XAI
Implementation of soft voting on ML classifiers . . -
- The model, according to Figure 1, generates predictions
Soft voting and explanations using XAl It allows the ML model outputs to be
Classifier Accuracy Class 0 Class 1 interpretable, which is crucial for transparent decision-making. These
0 DT 0.750 0.825 0.635 explanations are intended to justify the predictions but can also help to
1 SVM 0.970 0.986 0.945 learn the underlying reasons.for predictions made by the model (in this
case, risk factors of ocular diseases).
2 KNN 0.903 0.915 0.881

4 Random forest 0.953 0.973 0.891 This phase begins with a person being tested for the disease.
5 LightGBM 0.926 0.945 0.875 The decision node is used to check whether the person has any

Note: DT = decision tree, KNN = K-nearest neighbors, ML = machine learning,
SVM = support vector machine.

3.7. Soft voting

Ensemble learning chooses the best-performing classifier
dynamically using soft voting in Table 2 instead of relying on a single
model. It helps improve prediction accuracy by selecting the most
confident classifier. Thereafter, the ML model analyzes the normalized
dataset with soft voting and outputs predictions when the learning
conditions are satisfied, and then the XAl is employed to break down
the learning process and provide multiple different explanations in a
case where the criteria were not met, ultimately enhancing the model
once more in preparation for better results. By making such a system
transparent, it allows healthcare providers to verify those predictions.
In this stage, the data is stored, pre-stage data is reduced, and the
normalization of data is achieved using cloud infrastructure to keep
the model accessible and scalable. Furthermore, I propose a possible
relationship between thyroid disorder and ocular disorder, suggesting
that the thyroid dataset can provide more predictive features in
disease detection when included in the model. Our model for ocular
disease prediction uses a synthetic ML system with XAl that utilizes a
preprocessing and normalization stage of data.

disease. If not, the process stops; if yes, the data is retrieved from
the cloud for pre-reduction. This cloud-based storage system has all
the appropriate datasets. The cloud helps to store some of the data to
make predictions.

3.10. Cloud data storage

Data from the cloud is fetched to aid in the prediction process.

4. Simulation and Results

4.1. Histograms for numerical features

Figure 3 represents the histogram distribution of six numerical
features. Age: The distribution of ages in the set is shown with this
histogram. The distribution seems to be right-skewed, meaning
there are more younger people in the data compared to older people.
TSH: This histogram illustrates the distribution of TSH levels,
which is a hormone secreted by the pituitary gland that activates the
thyroid gland. It is right-skewed, meaning that most of the people
in the dataset have low TSH levels. T3: This histogram shows the
distribution of T3 levels, another thyroid hormone. It is also right-
skewed, meaning the majority have low T3. TT4: This histogram
shows the total thyroxine (TT4) distribution. It is positively skewed,
indicating that the majority of people have lower levels. T4U: This

Figure 3
Histograms for numerical features
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Figure 4
Correlation matrix heatmap

Age TSH T3 T4u FTI

plot is a histogram of the T4U, a measurement of unbound or free
thyroid hormone levels. It is slightly right-skewed. FTI: FTI is a
free thyroid hormone, and this histogram displays where the FTI
distribution falls on the chart. It is right-skewed, meaning that the
majority of folks tend to have lower FTIs.

4.2. Correlation matrix heatmap

Figure 4 shows the correlation matrix, plotted in a heatmap,
of the relationship among some factors in a dataset. The darkness of
the color signifies the correlation, meaning that the closer to reading
the color, the higher the positive correlation, with blue indicating a
strong negative correlation and white indicating none. Strong Positive
Correlations: TT4 and FTI: The strongest correlation (0.79) indicates
that Total T4 and Free T4 have a strong association. T3 and TT4:
There is a strong correlation (0.57) between T3 and Total T4 as well.
Moderate Positive Correlations: T3 and T4U: A moderate correlation
(0.46) indicates a positive relationship between T3 and Unbound T4
(T4U). TT4 and T4U: A moderate correlation (0.44) implies a positive
relationship between Total T4 and Unbound T4. Weak Correlations:
age and TSH, age and T3, age and TT4, TSH and T4U, T3 and TSH,
and T4U and FTI: All these pairs have weak correlation and hence
are less related. TSH and FTI: The relationship is weak and negative,
which means there is a slight inverse relationship. Interpretation:
From this heatmap, it can be seen that some of the variables are highly
correlated with each other, especially with the Thyroid hormone-
related measures. It indicates the possibility of redundancy among
these variables, or at least that one measure can adequately summarize
the information provided by multiple measures. Further Analysis:
Feature Selection: The significant correlations indicate a need for
feature selection to mitigate redundancy and adverse effects on model
performance. Domain Expertise: Knowledge of how to interpret the
relations in the medical world could be beneficial. It is advised to do
some consultation with domain experts to find out such biological
mechanisms. Predictive Modeling: The identified correlations can
facilitate the development of effective predictive models for thyroid
disorders

Pair plot for selected numerical features: The pair plot shown
in Figure 5 visualizes the relationships between different numerical
features in a dataset, with a focus on the potential impact of sex on these
relationships. Distribution of Features: The diagonal of the plot shows
the distribution of each feature (age, T3, TT4, T4U, and FTI). These
distributions are shown as histograms with kernel density estimates.
The distribution of FTI appears to be skewed to the right.

Scatter Plots: The off-diagonal plots are scatter plots showing
the relationship between pairs of features. Each point represents
an individual data point, and the color of each point represents the
individual's sex (blue for female, orange for male).

Relationships Between Features: A slightly positive correlation
is observed between TT4 and T3, with a tendency for higher values
of T3 to correspond to higher values of TT4. A weak positive
correlation is observed between FTI and T3. A moderately strong
positive correlation is observed between TT4 and FTI. T4U and T3:
No clear correlation is observed between T4U, and a slightly positive
correlation is observed between T4U and FTI. A weak positive
correlation is observed between T4U and TT4. This pair plot provides
an initial overview of the relationships between the selected numerical
features. The color-coding by sex reveals potential differences in
these relationships based on sex. Further analysis, such as correlation
coefficients and statistical tests, could provide more concrete evidence
of these relationships and their significance. The information from
this plot can be used to guide further analysis, model building, and
hypothesis testing.

The distribution of sex shown in Figure 6 shows that the number
of females in the dataset is more than the number of males in the
dataset.

5. Experimental Setup

The experiments were conducted using the following hardware
configuration available on Google Colab: Processor: Intel Xeon CPU
(Single core, 2.20 GHz), Graphics Processing Unit: NVIDIA Tesla T4/
Tesla P100/Tesla K80 (depending on availability and session allocation
by Colab). 16 GB of GDDR5 VRAM (for K80) or 16/32 GB HBM2
VRAM (for T4/P100). System Memory (RAM): System RAM 1.3/12.7
GB available. Disk Storage: Disk 32.4/107.7 GB storage is provided
by the Colab environment. Operating System: Ubuntu 18.04 LTS
(managed via Google Colab backend). Frameworks and Libraries:
NumPy, Pandas, and other ML tools as needed.

6. Analysis of classifier report after implementing clus-
ter-based SMOTE

Table 3 presents the hyperparameters used in six different
classifiers.

Cluster-based SMOTE aims to address the class imbalance issue,
so after the implementation of cluster-SMOTE, our analysis report of
the classifier is shown in Figure 7.

Table 4 describes the individual training time and computational
complexity of all six classifiers, both training and testing. In an
ensemble learning approach, the computational complexity depends
on the individual complexities of the classifiers. Because here in this
study, the ensemble learning method chooses SVM to predict the final
model.

Accuracy: According to Table 5, below 75.0% of citations
were accurately correct for the DT. SVM: 97.0% best accuracy.
KNN gave 90.33% accuracy, which was less than SVM. Naive
Bayes' accuracy was 71.0%, the worst performance. RT accuracy is
95.33%, near SVM Of the classifiers mentioned, SVM has the best
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Figure 5
Pair plot for selected numerical features
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accuracy, whereas Naive Bayes performs the worst. LightGBM gives
an accuracy of 0.96.

AUC: As per Table 5, DT 74.0% of predictions are correct. SVM
0.990% best accuracy. KNN 0.979%, which is lower than SVM. Naive
Bayes 0.878% the lowest accuracy. Almost the same as SVM, with a
high accuracy of 0.990%. The best accuracy of SVM is on par with
other classifiers, and Naive Bayes significantly underperformed. RT
AUC of 0.976%. LightGBM gives an AUC of 0.740.

Recall: in Table 5, DT has 0.750 recall (75% positive cases),
SVM. Its recall is 0.970 (high), 97% case-positive. KNN recall is 0.903,

10 15 20 0 100 200 300 400
T4u FTI

so it is good in sensitivity. Naive Bayes's lowest recall score at 0.710,
that is, only 71% of the positive cases were identified. RT has a 0.953
recall, meaning that there is a catch of 95.33% of predictions. Naive
Bayes is more insensitive because SVM and RT outperform Naive
Bayes for positive case detection. LightGBM gives a recall of 0.92 for
case-positive.

Precision: Table 5 DT precision is 0.881 (88.1% of pos).
Confident Positive from SVM has 0.972 precision, and KNN precision
is 0.938. It holds for given data when the classifier predicts positive
around positive confidence. Naive Bayes precision is 0.900 (ouch for
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Figure 6
Distribution of sex
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Hyperparameters for classifiers
Classifier Hyperparameters
DT Max depth =14
SVM Kernel: “linear,” degree: Default 3
KNN Weights: “uniform”

Naive Bayes Alpha: Default 1.0

“Max depth = 40, Features used for
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Note: DT = decision tree, KNN = K-nearest neighbors, SVM = support vector
machine.

Figure 7
Precision, recall, and F1 score comparison
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Note: KNN = K-nearest neighbors, SVM = support vector machine.

lower accuracy, but still pretty large). After SVM, RT gives the second-
highest accuracy score: 0.962. Here again, SVM leads in accuracy,
and RF. DT has also performed well, and whereas Naive Bayes is not
accurate, its precision is good enough. LightGBM gives a precision of
0.949.

F1 score: According to Table 5 and Figure 7, the DT F1 score
0f 0.793 is a balanced, but moderate, performance. SVM is the best F1

Table 4
Training time and complexity
Complexity
Classifier Training Time Training Testing
1 DT 0.0161 seconds O(nmlog(n)) O(d)
2 SVM 0.6944 seconds O(n2) O(d)
3 KNN 0.0039 seconds  O(nd) O(d)
4 Naive Bayes 0.0204 seconds  O(nd) O(d)
5 Random forest 0.3607 seconds O(nlog(n)m)  O(d)
6 LightGBM 0.1083 seconds  O(n) 0O(d)

Note: DT = decision tree, KNN = K-nearest neighbors, SVM = support vector
machine.

score: 0.971, with good precision and recall. KNN score is 0.914; Naive
Bayes score is 0.764. The RT score is 0.956. The two best-performing
classifiers out are SVM and RF; Naive Bayes performs poorly, owing to
its low recall. LightGBM gives an F1 score of 0.933.

7. Analysis of Classifiers Using Comparison

SVM performs best across all metrics, making it the most reliable
classifier for this task, as shown in Table 6 and Figure 8.

The outcomes of the SVM classifier's performance are compared
with other models in Table 7, including DT, KNN, Naive Bayes, RF, and
LightGBM, according to the table. The SVM performance comparison
involves two tests in Table 7: the t-test is based on average metrics
(in this case, accuracy), and the DeLong test is based on the AUC.
The test results include both the test statistic (t or Z value) and the
corresponding p-value. A small p-value (commonly <0.05) indicates
the tested models differ meaningfully. The results confirm SVM
outperforms DT and Naive Bayes both in accuracy and AUC, as their
p-values are very low. Against KNN, RF, and LightGBM, the p-values
exceed 0.05, suggesting a lack of performance difference equivalently
performs with these models. All in all, the table illustrates that SVM's
model performance enhancements are overwhelmingly statistically
valid, whereas SVM's performance enhancements over other strong
models are marginal.

Table 8 and Figure 8 show that the AUC probabilities of the DT
classifier achieve a reasonable level of accuracy, with an AUC of 0.81,
indicating that it is moderately good at distinguishing between positive
and negative classes. The SVM classifier demonstrates excellent
performance with an AUC of 0.99, indicating that it is highly effective
at classifying positive and negative instances. The RT classifier
achieves a high level of accuracy with an AUC of 0.96, suggesting
its strong ability to distinguish between positive and negative classes.
The KNN classifier exhibits good performance with an AUC of 0.94,
demonstrating its effectiveness in classifying positive and negative
instances. The Naive Bayes classifier performs well with an AUC of
0.93, indicating its capability to discriminate between positive and
negative classes. The LightGBM classifier achieves a reasonable level
of accuracy with an AUC of 0.97.

The overall comparison shows that the best-performing classifier
is SVM, which shows the highest AUC scores, suggesting it performs
better than the other classifiers. DT has a moderate AUC, indicating a
less effective performance compared to another classifier. DT, KNN,
and Naive Bayes classifiers achieve good performance with AUC
scores close to 0.9, indicating their capability for classification.
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Table 5
Precision, recall, and F1 score comparison
Classifier Accuracy AUC Recall Precision F1
0 DT 0.750 0.740 0.750 0.881 0.792
1 SVM 0.970 0.990 0.970 0.971 0.970
2 KNN 0.903 0.979 0.903 0.937 0.913
3 Naive Bayes 0.710 0.878 0.710 0.899 0.763
4 Random forest 0.953 0.976 0.953 0.962 0.955
5 LightGBM 0.926 0.961 0.926 0.949 0.933
Soft voting ensemble 0.869 0.921 0.869 0.933 0.888

Note: AUC = area under the receiver operating characteristic curve, DT = decision tree, KNN = K-nearest neighbors, SVM = support vector machine.

Table 6
Accuracy comparison

Table 7
Statistical comparison of SVM performance against other

Classifier Accuracy classifiers using the T-test and the DeLong test

0 DT 0.750 T-test  T-test

1 SVM 0.970 ® ) DeLong Z DeLongp

5 KNN 0.903 SVM vs. DT 3.87  0.0001 2.92 0.0035

3 Naive Bayes 0710 SVM vs. KNN 1.76 0.079 1.21 0.225

4 Random Forest 0.953 SVM vs. Naive Bayes 471 0.00001 3.76 <0.001

5 LightGBM 0.926 SVM vs. RF 0.98 0.325 0.97 0.332
SVM vs. LightGBM 1.38 0.167 0.85 0.395

Note: DT = decision tree, KNN = K-nearest neighbors, SVM = support vector
machine.
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— Random Forest (AUC = 0.96)

— KNN (AUC = 0.94)
Naive Bayes (AUC = 0.93)
LightGBM (AUC = 0.97)

Note: AUC = area under the receiver operating characteristic curve,
KNN = K-nearest neighbors, SVM = support vector machine.

Note: DT = decision tree, KNN = K-nearest neighbors, RF = random forest,

SVM = support vector machine.

Table 8
AUC probabilities of classifiers
Classifiers AUC
DT 0.812
SVM 0.991
Random forest 0.958
KNN 0.939
Naive Bayes 0.933
LightGBM 0.97

Note: AUC = area under the receiver operating characteristic curve, DT =
decision tree, KNN = K-nearest neighbors, SVM = support vector machine.

8. Analysis of Classifiers Through AUC

Train the SVM classifier on these two classes of data points in
Figure 8. The hyperplane separates the data points from their respective
classes. Primarily, data points known as support vectors determine
the hyperplane. Figure 9 represents two classes of data points, each
with a distinct color (purple and yellow). The black line in the figure
is the hyperplane. This line represents the decision boundary of the
SVM classifier. The classifier will classify any data point above the
hyperplane as belonging to one class (yellow) and any data point below
it as belonging to the other class (purple). The data points in circles
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are the support vectors. These are the data points that are closest to the
hyperplane and therefore have the greatest influence on the position of
the hyperplane. Support vectors define this hyperplane. The purpose
of the SVM visual is to provide a clear explanation of how the SVM
classifier works to classify data points into a particular class by fitting
data points with a hyperplane. By separating data points with the
largest margins, the support vectors are those techniques closest to
the hyperplane, making them essential for both defining the decision
boundary and classifying the classifier.

Confusion Matrix: In Figure 10, 132 (top left): This cell indicates
TPs, where the classifier correctly predicted class 0 for instances that
were class 0. 2 (top right): This cell indicates false positives (FPs),
where the classifier incorrectly predicted Class 1 for instances that
were Class 0. 1 bottom left): This cell indicates false negatives (FNs),
where the classifier incorrectly predicted Class 0 for instances that were
Class 1. 133 (bottom right): This cell indicates TNs, where the classifier
correctly predicted Class 1 for instances that were Class 1.

_ TP+TN
Accuracy = prrpiTNTEN @)
Precision = TPz—fFP (2)
_ _1P
Recall = 555 (3)
Specificity = % 4

In Figure 11, TP: The classifier correctly predicted Class 1 (259).
TN: The classifier correctly predicted Class 0 (30). FP: The classifier
incorrectly predicted Class 1 when the actual class was 0 (3). This is
also known as a Type I error. FNs: The classifier incorrectly predicted
Class 0 when the actual class was 1 (8). This is also known as a Type
II error.

9. Validation

The K-fold cross-validation results for the six ML classifiers are
DT, SVM, KNN, Naive Bayes, RF, and LightGBM in Table 9. Each
model was evaluated over five folds, recording accuracy for each fold,
and performance metrics were averaged across all folds. These include
average accuracy, average AUC, average recall, average precision, and
average F1 score. Based on the results, SVM comes out on top with
an average accuracy of 0.97 and the highest AUC with 0.99, excelling
in recall, precision, and F1 score as well. RF follows closely at 0.95
accuracy and 0.98 AUC, with strong performance from LightGBM
at 0.92 accuracy. KNN performs well in AUC and precision, but falls
short in recall and F1. DT and Naive Bayes are weaker performers for
this dataset, with low accuracy and recall, despite Naive Bayes having
high precision. The table makes it clear that SVM is the most reliable
classifier for this classification task, standing out as the most dependable
across multiple scenarios.

To further validate the performance of the proposed mode in
Table 10, two additional publicly available datasets are used to confirm
the proposed model’s robustness and generalization capability.

In Table 11, the comparison of the previously published work
is shown, which clearly shows that the proposed model achieved a
maximum accuracy of 96.66% as compared to state-of-the-art published
articles.

The mean SHAP value in Figure 12 shows both classes. The
contribution of that feature to the model's prediction for Classes 0
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Table 9
K-fold cross-validation performance comparison of machine learning classifiers
Average  Average  Average  Average  Average
Classifier Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 accuracy AUC recall precision F1
Decision tree 0.74 0.76 0.75 0.75 0.75 0.75 0.74 0.75 0.88 0.79
SVM 0.97 0.97 0.96 0.98 0.97 0.97 0.99 0.97 0.97 0.97
KNN 0.90 0.91 0.91 0.90 0.92 0.90 0.98 0.90 0.94 0.91
Naive Bayes 0.71 0.71 0.72 0.70 0.71 0.71 0.88 0.71 0.90 0.76
Random 0.95 0.96 0.96 0.95 0.96 0.95 0.98 0.95 0.96 0.96
forest
LightGBM 0.92 0.93 0.93 0.92 0.93 0.92 0.96 0.92 0.95 0.93
Note: AUC = area under the receiver operating characteristic curve, KNN = K-nearest neighbors, SVM = support vector machine.
Table 10
Comparison table of two different datasets
Classifier Accuracy AUC Recall Precision F1
Dataset 1 DT 0.895 0.910 0.90 0.89 0.89
SVM 0.901 0.923 0.89 0.90 0.89
KNN 0.878 0.882 0.88 0.88 0.88
Naive Bayes 0.864 0.875 0.87 0.86 0.86
Random forest 0.915 0.938 0.92 0.91 0.91
LightGBM 0.920 0.942 0.92 0.92 0.92
Soft voting 0.926 0.950 0.93 0.93 0.93
Dataset 2 DT 0.915 0.934 0.92 0.92 0.92
SVM 0.921 0.947 0.92 0.92 0.92
KNN 0.894 0.899 0.90 0.89 0.89
Naive Bayes 0.889 0.894 0.89 0.89 0.89
Random forest 0.934 0.962 0.93 0.93 0.93
LightGBM 0.940 0.968 0.94 0.94 0.94
Soft voting 0.944 0.974 0.94 0.94 0.94

Note: AUC = area under the receiver operating characteristic curve, DT = decision tree, KNN = K-nearest neighbors, SVM = support vector machine.

and 1 is shown. The importance of the feature concerning the model
prediction for Class 1. Features with higher SHAP values contribute
more to the predictions made by the model. Positive SHAP values for
a feature indicate that the feature is increasing the probability of the
model predicting Class 1. Negative SHAP values related to any feature
also contribute to decreasing the probability of target class 1 outputted
by the model. TT4, T3, FTI: Features positively contribute most to Class
1 prediction. They are probably important predictors of the outcome.
Age: It has a moderate impact on predicting Class 1. Referral source
SVI represents the source of the referral used in the dataset.

Referral_source other, TSH: These features also have positive
but smaller impacts. The remaining features have very little impact
on the model's predictions, meaning they are likely less important for
the model to decide on the outcome. The diagram illustrates the key
features making an impact on the model predictions. It indicates the
extent to which various factors influence the model's output.

SHAP values are plotted in Figure 13 and also show feature
value effect in Table 12, with the horizontal axis indicating how much
each feature was contributing to the output of the model. The color of

the dots indicates the feature value. Low values are shown by blue dots,
high values by red dots, and all the in-between is a smooth transition.
The “violin” SHAP, by the distribution of SHAP values for each feature.
It shows how the feature impacts predictions across different instances
in the dataset. The SHAP values for TT4 are spread out from —0.1 to
0.8. This indicates that TT4 has a significant impact on the model's
output. The majority of the SHAP values are positive, suggesting that
higher TT4 values generally increase the model's output. There are
also some negative SHAP values, indicating that lower TT4 values
can sometimes decrease the model's output. This means that because
TT4 has a negative coefficient, the model has identified TT4 as an
important predictor of height, and the higher the TT4 value, the higher
the predicted value of length in general. This implies that TT4 is an
important predictor for the outcome being predicted. Nonetheless, it
should be emphasized that the simple relationship is not strictly linear
and that TT4 can have deleterious effects on the output at lower values
as well.

Figure 14 shows the effect of various features on the base value
of a prediction. The base value is 0.05214. Higher value: age = 53:

11
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Table 11
Comparison with previously published work
Data collection Imbalance Accuracy
Citation place Methods technique (%) Dataset size Features
Peng et al. [8] Hospital DT SMOTE 84.6 47 -
Song et al. [9] Thyroid cancer Random forest Not available 89.7 286 17
patients
Liu et al. [10] Patients treated RT and logistic regres- Not available 77.0 187 7
with PD-1 or PD-L  sion
Kimetal. [11] Thyroid nodules RT and logistic regres- Not available 71.9 355 -
from surgical C sion
Luong et al. [12] Clinical data DT, random forest, Not available 84.7 -
logistic regression
Yang et al. [13] Laboratory RT and logistic regres- Not available 64.0 604 -
sion
Idarraga et al. [14] Laboratory Random forest Not available 71.0-81.0 1,451 -
Xu et al. [15] Ultrasound images Random forest Histogram equal- 95.0 428 Image
thyroid ization, Laplacian
operator, logarithm
transform, and Gam-
ma correction
Luong et al. [12] Clinical data DT, random forest, Not available 84.7 -
logistic regression
Yang et al. [13] Laboratory RT and logistic regres- Not available 64.0 604 -
sion
Idarraga et al. [14] Laboratory Random forest Not available 71.0-81.0 1,451 -
Xuetal. [15] Ultrasound images Random forest Histogram 95.0 428 Image
thyroid equalization,
Laplacian operator,
logarithm transform,
and Gamma
correction
Olatunji et al. [20] DNA methylation ~ Random forest Not available 99.4 92 6
data for follicular
thyroid
Zhang et al. [21] MRI data Random forest Not available 90.6 60 107
He et al. [22] Thyroid hormone ~ Multiple algorithms Not available 82.0/79.0 1,074 -
homeostasis
Garcia de Lomana et ~ Radiomics data Random forest Not available 78.6 60 18
al. [23] from 18F-FDG
thyroid gland
uptake
Aksu et al. [24] Ultrasonographic ~ Random forest Not available 96.1 1,558 Image
Chen et al. [25] Gut microbiome Random forest Not available - 92 -
data
Su et al. [26] Thyroid cancers Multiple algorithms Not available 86.0 177 Image
Zhao et al. [27] Radiomics data for Multiple algorithms Not available 64.3 96 86
BRAF mutation
prediction
Xietal. [33] Novel clinical Multiple Algorithm Not available 78 724 19
dataset
Ksiazek [34] Shengjing Hospital Multiple algorithms Not available 81.82 1,232 19
of China Medical
University
Proposed Thyroid Multiple algorithms Yes 96.66 3,773 28

Note: DT = decision tree, KNN = K-nearest neighbors, MRI = magnetic resonance imaging, SMOTE = Synthetic Minority Over-sampling Technique.

12
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Figure 12 Figure 13
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This feature decreases the base value by 0.03214, which means a higher
age leads to a lower prediction. Lower value: TT4 = 103: This feature
increases the base value by 0.03014, which means a higher TT4 value
leads to a higher prediction. T3 = 2: This feature increases the base
value by 0.01014, which means a higher T3 value leads to a higher
prediction. Referral source other = 1: This feature increases the base
value by 0.01014, which means that if the referral source is other, the
prediction is higher. referral source SVI = 0: This feature increases the
base value by 0.01014, which means if the referral source is SVI, the
prediction is higher. FTI = 111: This feature increases the base value by
0.00914, which means a higher FTI value leads to a higher prediction.
TSH = 0.85: This feature increases the base value by 0.00914, which
means a higher TSH value leads to a higher prediction.

LIME XAI in Figure 15 shows the prediction probabilities of a
machine-learning model for a patient's condition. The model predicts
the patient is more likely to be negative (with a probability of 0.98) than
sick (with a probability of 0.02).

The features that model considered the features in making its
prediction, along with the corresponding contribution of each feature to
the final prediction probability.

Referral source SVH: This feature contributes 0.02 to the
probability of the patient being negative. referral source_SVI: This
feature contributes 0.02 to the probability of the patient being negative.
lithium_t < 0.00: This feature contributes 0.01 to the probability of the
patient being negative. 0.00 <referral_source . This feature contributes
0.01 to the probability of the patient being negative.

1.60 < T3 < 2.00: This feature contributes 0.01 to the probability
of the patient being negative. 90.00 < TT4 < 105.00: This feature
contributes 0.01 to the probability of the patient being negative.

37.00 < age < 55.00: This feature contributes 0.01 to the
probability of the patient being negative. Pregnant t<0.00: This feature
contributes 0.02 to the probability of the patient being sick. 108.00 <
FTI < 125.00: This feature contributes 0.02 to the probability of the
patient being sick. Tumor_t > 0.00: This feature contributes 0.01 to the
probability of the patient being sick.

In Figure 16, referral_source SVHD: 0.00, referral source SVI:
0.00, pregnant t: 0.00, FTL: 111.00, lithium_t: 0.00, referral source
other: 1.00, tumor t: 1.00, T3: 2.00, TT4: 103.00, age: 53.00. rows
with an orange background color highlight features related to the
patient's medical history and demographics. These include: pregnant t,
FTI, lithium_t, age. The rows with a blue background color highlight
features related to the patient's diagnosis and treatment. These include:
referral source SVHD, referral source SVI, referral source other,
tumor t, T3, TT4.

LIME Feature Importance: Figure 17 shows the feature
importance of different features in a model, and is briefly explained
in Table 13. Green bars: Positive impact on the model output. Higher
values in these features are associated with a positive prediction. Red
bars: Negative impact on the model output. Higher values in these
features are associated with a negative prediction.

The features and their impact are: referral source SVHD <
0.00: Negative impact. referral source SVI < 0.00: Negative impact.
pregnant t < 0.00: Positive impact. 108.00 < FTI < 125.00: Positive
impact. lithium_t < 0.00: Negative impact. 0.00 <referral_source_other

13



Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2025

Table 12

Summary of SHAP value distribution (impact on model output)

SHAP value distribution (impact on model

Feature value effect

Feature name output)

TT4 Highest positive and negative impact spread

T3 High impact, primarily positive SHAP value spread
FTI Substantial effect, both directions

age Moderate, some high and low impact points

referral_source SVI Low, mostly around zero
referral_source_other
TSH

referral_source SVHC

Low, near zero

Low, close to zero impact
Minimal impact
on_thyroxine f Minimal
on_thyroxine t Minimal
query hypothyroid f Very low, around zero

query hypothyroid t Very low, around zero

sex M Minimal
sex F Minimal
query_hyperthyroid f Minimal
query_hyperthyroid t Minimal
sick Minimal
sick t Minimal
psych _t Minimal
tumor_t Minimal

Higher TT4 values push the model output higher
Elevated T3 increases model output

Higher FTI results in higher model output

High age both increases and decreases output
Minor effect based on source

Minor effect

High/Low values produce small changes in output
Minor effect

Negligible effect

Negligible effect

Almost no effect

Almost no effect

Negligible effect

Negligible effect

Negligible effect

Negligible effect

Negligible effect

Negligible effect

Negligible effect

Negligible effect

Note: SHAP = Shapley Additive Explanation, TSH = thyroid-simulating hormone.

Figure 14
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Figure 17
LIME feature importance and prediction factor
referral_source_SVHD < 0.00 - _
referral_source_SVI < 0.00 _
pregnant_t < 0.00 - I
108.00 < FTI < 125.00 - ]
lithium_t < 0.00 ]
0.00 < referral_source_other < 1.00 _
twmor_t > 0.00 I
1,60 < T3 < 2.00 - I
90.00 < TT4 < 105.00 ]
37.00 < age < 55.00 ]
T T T T T
-0.02 -0.01 0.00 0.01 0.02

Note: Lime = Local Interpretable Model-Agnostic Explanation.

Table 13
Summary of LIME contribution
Contribution
Condition Contribution to class
Feature/rule or value direction (“sick™)
referral source SVH... Yes Negative —0.02
(towards
“negative”)
referral _source SVI... Yes Negative -0.02
pregnant t < 0.00 True Negative —-0.02
108.00 <FTI < 125.00 True Negative —-0.02
lithium_t <0.00 True Negative —0.02
1.60 <T3<2.00 True Negative —0.01
90.00 <TT4 <105.00 True Negative —0.01
37.00 < age < 55.00 True Negative —0.01
tumor_t>0.00 False/not Negligible (Not listed)
triggered

Note: Lime = Local Interpretable Model-Agnostic Explanation.

Table 14
Comparison of SHAP and LIME with selected features
Features SHAP LIME
TSH 0.85 0.18
T3 2.00 0.01014
TT4 103.00 0.03014
FTI 111.00 0.00914

Note: Lime = Local Interpretable Model-Agnostic Explanation, SHAP = Shap-
ley Additive Explanation.

< 1.00: Negative impact. tumor_t > 0.00: Positive impact. 1.60 < T3 <
2.00: Negative impact. 90.00 < TT4 < 105.00: Negative impact. 37.00
<age <55.00: Positive impact. LIME is a technique that provides local
explanations for predictions of complex models. It approximates the
behavior of the model in the neighborhood of a specific data point.

Interpretation:

The graph suggests that features such as “pregnant t,” “108.00
< FTI < 125.00,” “tumor_t > 0.00,” and “37.00 < age < 55.00” have
a positive impact on the model's prediction, whereas features such as
“referral_source_ SVHD,” “referral source SVL” “lithium t,” “0.00 <

referral source other <1.00,” “1.60 < T3 <2.00,” and “90.00 <TT4 <
105.00” have a negative impact.

SHAP and LIME comparison:

According to Table 14, two ML explainability methods, SHAP
and LIME, evaluate the importance of four thyroid-related features
(TSH, T3, TT4, and FTI). SHAP assigns higher importance values—
particularly for TT4 and FTI—whereas LIME gives much lower scores
across all features. This difference indicates that SHAP captures global
feature influence, while LIME emphasizes the impact of features on
specific predictions, leading to noticeable variations in their rankings
and values.

This research presents a promising Al-based method for the
timely detection of thyroid cancer. Our study uses an open-source
thyroid disease dataset comprising 3,772 case observations. To face
challenges in the presence of class imbalance, the cluster SMOTE
technique is used for data balancing, five different ML classifiers were
used, and after that, an ensemble learning mechanism is applied to
find the best classifier with the help of soft voting, SVM classifier is
selected through this learning approach, and the diagnostic accuracy
of 0.97 is achieved, which outperforms another current state-of-the-
art classifier. In the service of interpretability, SHAP and LIME XAI
mechanisms have been employed that render the model's decisions
transparent, allowing clinicians to understand how the model came
to its predictions. This model can serve as a decision-support tool for
clinicians with a future goal of integration into electronic health records.
Such a system could help health practitioners become more adept at
identifying and diagnosing potential cases early or in high-volume
or resource-constrained settings, as an early diagnostic tool. There
are boundaries that future studies may address. Although the dataset
is sizeable and diverse, it could still include further data to enhance
the robustness and generalizability of the model to a wider population.
These advancements are expected to improve the performance of the
model itself. It allows the model to be applied to a range of different
patients, eventually accounting for a higher degree of certainty of the
clinical relevance of the model.
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