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Abstract: Thyroid cancer disease diagnosis is a critical medical challenge, requiring accurate and reliable predictions to support clinical decision-
making. Patients may suffer from an incomplete diagnosis while using traditional machine learning models. In this study, we present an optimized 
ensemble machine-learning framework for predicting thyroid cancer disease. The methodology integrates multiple classifiers, including support 
vector machine, random forest, Naïve Bayes, K-nearest neighbors, and decision tree. The final classification decision is determined with the help 
of soft voting by a total predictive support vector machine, which selects the classifier with the highest confidence score among the ensemble 
models. The ensemble strategy enhances predictive accuracy and robustness by combining the strengths of individual classifiers. The model 
was trained and evaluated, achieving an impressive accuracy of 0.9633 and an area under the receiver operating characteristic curve of 0.9914. 
The proposed method of this study is very accurate, but there is still a black box problem. To overcome this issue and to ensure interpretability, 
Explainable Artificial Intelligence techniques, including Shapley Additive Explanations and Local Interpretable Model-agnostic Explanations, 
are implemented, providing insights into feature contributions towards the performance of the proposed method and model decisions. The dataset 
contains a total of 30 features with 3,772 different cases consisting of two classes.
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1. Introduction
Thyroid cancer consists of various disorders affecting the 

functioning of the thyroid gland, a small gland in the neck, similar to 
a butterfly [1]. It is responsible for regulating many functions such as 
metabolism, energy production, growth, and development throughout 
the body. The two most common forms of thyroid disorder are 
hypothyroidism, wherein the thyroid is underactive and fails to produce 
sufficient thyroid hormones, and hyperthyroidism, an overproduction 
of thyroid hormones [2, 3]. These situations may result in a range of 
symptoms, including fatigue, mood changes, weight fluctuations, and 

irregular periods. Many factors can lead to thyroid disorders, including 
autoimmune conditions, iodine deficiency, genetics, and medications. 
This is typically done through proper doctor examination and blood 
tests to measure thyroid hormone levels [4]. Conditional on the exact 
illness, potential treatment options to correct disorders can include 
hormone replacement therapy, medications to regulate hormone levels, 
or even surgery in some cases. Thyroid disease covers a range of 
conditions, including hypothyroidism and cancer of the thyroid, and 
has been connected with mortality and death, although with varying 
strength [5]. Thyroid cancer represents the largest proportion of deaths 
associated with thyroid disorders [6]. Thyroid problems are difficult to 
diagnose and take a long time to diagnose, usually by extensive clinical 
evaluation and laboratory tests [7]. The use of cognitive computing 
for predicting flow status of a flexible rectifier is a new approach 
that leverages sophisticated machine learning (ML) techniques like 
Multilayer Perceptron and CatBoost to estimate the flow and reverse 
flow rates of fluids in flexible rectifiers [8]. 
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2. Related Work
Previous techniques in the literature dedicated to the diagnosis of 

thyroid diseases have a strong dependence on classification algorithms 
when trained on an imbalanced dataset, while presenting moderate 
levels of performance scores. These methodologies typically do not 
address data balance problems, resulting in biased findings and reduced 
diagnostic performance. Moreover, current diagnostic methods that 
rely on these algorithms often lack Explainable Artificial Intelligence 
(XAI) models, further dulling the interpretability and trustworthiness 
of the predictions. Therefore, the advanced ML approach meets the 
aforementioned gaps by including robust data balancing techniques 
and utilizing XAI models, improving the accuracy and transparency of 
thyroid disorder diagnoses. The present study can potentially contribute 
towards facilitating the diagnostic process through improved accuracy, 
enabling early detection, and treating thyroid cancer disorders using AI 
technology.

Song et al. [9] performed an oversampling on serum Raman 
spectroscopy data collected from 47 thyroid carcinoma patients, using 
reweighing methods of the pillow, random forest (RF), and decision 
tree (DT) classifiers. In the Synthetic Minority Over-sampling 
Technique (SMOTE) method, accuracy was DT (75.4%), RF (81.5%), 
and Adaptive Boosting (84.61%). Liu et al. [10] discussed data up to 
October 2023, an RF framework for predicting post-thyroid ectopy 
quality of life derived from 286 thyroid cancer patients that had an 
accuracy of 89.7% validation rate. Kim et al. [11] investigated data 
from 187 patients treated with PD-1 or PD-L1 inhibitors, which were 
used in the article to predict adverse events with RT and logistic 
regression (LR) classifiers. RF provided an area under the receiver 
operating characteristic (ROC) curve (AUC) of 77.0%. Luong et 
al. [12] performed an RF, and LR was used to train the model used 
in the analysis of 355 surgical patients for indeterminate thyroid 
nodules data. The example output obtained from a test set was as 
follows: Accuracy 71.9%, AUC 85.9%, Sensitivity (true positive 
[TP] rate) 75.5%, and Specificity (true negative [TN] rate) 82.4%. 
Yang et al. [13] discussed data utilized to evaluate the prediction 
of recurrences of differentiated thyroid carcinoma using DT, RF, 
and LR classifiers, achieving accuracy levels of 84.7% to 89.7%. 
Idarraga et al. [14] performed a study based on 604 benign thyroid 
nodules and established an operating model with RT classifiers to 
predict malignancy, achieving a lower AUC of 64.0%. Xu et al. [15] 
investigated Serum thyroglobulin numbers amongst 1451 patients 
meeting the criteria for papillary thyroid carcinoma using an RF 
classifier, resulting in an AUC ranging from 71.0% to 81.0% in the 
development of a possible diagnostic and prognostic tool. Hang [16] 
performed testing of an RF classifier on 428 cases and implemented 
histogram equalization and alternative ultrasound image enhancement 
techniques. The accuracy was found to be 95.0%. Yang et al. [17] 
discussed the method for lncRNA and miRNA data of 506 thyroid 
carcinoma patients evaluated in support vector machine (SVM), RF, 
and DT classifiers. The maximum accuracy was recorded by RF. Qin 
et al. [18] investigated an AUC of 96.9% achieved from an ensemble 
method performed on magnetic resonance imaging (MRI) radionics 
in lymph node metastases of 109 thyroid carcinoma patients.

Sai et al. [19] performed electroglottogram signals to determine 
thyroid abnormality using Naïve Bayes (NB), DT, artificial neural 
network (ANN), LR, and RF classifiers. In this study, LR obtained an 
overall accuracy of 95.1%. Aiming for Early diagnosis of thyroid cancer 
using a Saudi Arabian dataset best accuracy of 90.9% was achieved 
with RT using NB, RF, SVM, and ANN classifiers. Olatunji et al. [20] 
performed and applied DNA methylation data from 92 samples to 

differentiate between follicular thyroid carcinoma and adenoma. Zhang 
et al. [21] investigated, and the accuracy achieved was 99.4% by 
applying the RF classifier. According to He et al. [22], RF classifiers 
achieved an accuracy of 90.6% on the analysis of biometric MRI data 
from 60 cases of papillary thyroid carcinoma. Garcia de Lomana et al. 
[23] performed gradient boosting (GB), RF, SVM, ANN, and LR to 
model thyroid hormone homeostasis. Reported accuracy ranged from 
76.0% to 82.0%, depending on the model. Aksu et al. [24] discussed 
that the RF approach was used to assess radiomic data from 18F-FDG 
thyroid gland uptake to achieve an accuracy of 78.6% and an AUC of 
84.9% for 60 cases of the thyroid gland. Chen et al. [25] investigated, 
for instance, the ultrasonographic feature of 1558 cases of thyroid 
nodules was analyzed using forest models, reaching an accuracy of 
96.1%. The key findings of Su et al. [26] from using RF classifiers to 
analyze gut microbiome data related to thyroid dysfunction, but did not 
report performance metrics. Zhao et al. [27] performed a combination of 
177 patients with partially cystic thyroid cancer and retrospective data, 
and high accuracy and AUC values were achieved by applying GB, 
ANN, RF, SVM, and LR classifiers; the best performing was RF with 
a specificity of 93.4%. Kwon et al. [28] performed LR, RF, and SVM 
classifier analysis using radiomics data from 96 cases for predicting 
BRAF mutation in papillary thyroid carcinoma in this study, achieving 
an accuracy of 64.3%.

Anu and Benifa [29] performed to handle raw data related 
to hyperthyroidism, using an ANN with K-means. Vivar et al. [30] 
discussed using an ANN with loss at its input network and coupled 
variations at test time to continuously determine feature value. An 
automated assessment algorithm is presented. This method is also used 
to classify hypothyroidism and hyperthyroidism in the UCI thyroid 
dataset. van Sonsbeek and Worring [31] performed an ANN and a novel 
method of information representation and argumentation to propose a 
decision support system for the evaluation of thyroid dysfunction in 
general. Ai et al. [32] performed capsule networks, a more contemporary 
kind of neural network, which was shown to achieve a high accuracy 
of 81.06% when used on ultrasonic thyroid imaging to identify possible 
symptoms of cancer of the thyroid.

Xi et al. [33] took a novel clinical dataset holding 724 patients 
with 1,232 nodules and used multiple classifiers, and the best classifier 
is RT, by 11% increases on accuracy, and 12% on F1 score. The two 
general measurements and average accuracy, and AUROC of the six 
models are 0.78.

Książek [34] took the dataset from Shengjing Hospital of 
China Medical University, holding 1232 records with 19 features, and 
performed 10 different classifiers, including XGBoost, LightGBM, and 
RF. The LightGBM classifier confirmed the maximum performance 
classification accuracy of 81.82% and an F1 score of 86.62%.

Akter and Mustafa [35] took the dataset from the UCI Machine 
Learning Repository, holding 6,916 records with 22 features, and 
performed different classifiers, achieving a maximum performance 
classification accuracy of 87%.

Kumar et al. [36] took the dataset, which included 1,250 male 
and female subjects whose ages ranged from one to one year, with 17 
attributes, and performed multiple classifiers.

Alawiyah et al. [37] developed a thyroid cancer recurrence 
prediction model using the XGBoost method, achieving an average 
accuracy of 97.74% and an F1 score of 95.94%, effectively predicting 
both recurrence and non-recurrence, aiding clinical decision-making 
for patient management. Ozturk et al. [38] used different machine 
learing (ML) models, including GB, RF, XGBoost, and AdaBoost, to 
perform in forecast the recurrence of thyroid cancer. The best prediction 
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accuracy at 95.3% was achieved by the XGBoost model, which suggests 
it could enhance forecasting in clinical settings. Firat Atay et al. [39] 
created a hybrid model integrating predictive classification techniques 
and association rule mining to forecast the recurrence of differentiated 
thyroid cancer with a remarkable accuracy of 96.7%. The model also 
facilitated the identification of critical management predictors like 
incomplete response and lymphadenopathy for optimized decision 
support systems. The study by Vu et al. [40] built a machine-learning 
model for thyroid cancer detection using clinical data, achieving an 
accuracy of approximately 82%.

In traditional previous work, as shown in Table 1, many ML 
models are deployed while having a “black-box” problem, where 
there is no simple understanding of the inner mechanisms by human 
experts of the model. The motivation behind this study is that the lack of 
transparency is a major downside in healthcare contexts, where doctors 
want to understand why a model made a certain prediction to have 
confidence in its outputs.

In our study, cluster-based SMOTE is used for balancing the 
dataset. Other preprocessing techniques, including missing value 
handling and normalization, are also used in this research. Then, we 
applied six different classifiers, including RF, DT, NB, Light, K-nearest 
neighbors (KNN), and SVMs. By using the ensemble learning technique, 
SVM is selected that achieves the highest accuracy among other 
classifiers. To ensure result transparency, Local Interpretable Model-
Agnostic Explanation (LIME) and Shapley Additive Explanation 
(SHAP) tools are used for interpretability and XAI.

The main contribution is as follows:
1)  An Enhanced Ensemble ML Approach is proposed for Transparent 

Thyroid Cancer Prediction with XAI that enhances the accuracy and 
effectiveness of thyroid cancer predictions.

2)  Our study presents a state-of-the-art cluster-based SMOTE data 
balancing technique that addresses the limitations of existing 
approaches. These techniques decrease overfitting and eliminate 
noise from the data, enhancing model flexibility.

3)  A series of preprocessing methods has been applied, including 
missing value imputation, outlier detection, normalization, and 
addressing imbalance and cluster-based SMOTE issues.

4)  Introduce a new soft voting-based SVM classifier with parameter 
configuration.

5)  The performance of the proposed classifier is predicated on various 
performance matrices with K-fold cross-validation.

6)  Experimental results depict the leads of the proposed soft voting-
based SVM prediction classifier with an accuracy of 97%, 
outperforming the performance of ruling ML models.

7)  Furthermore, SHAP and LIME techniques have been applied to 
explain the efficiency of the proposed model concerning a particular 
feature

3. Methodology
Figure 1 shows the proposed model, which consists of two 

phases, namely the training phase and the validation or evaluation 
phase. Data balancing and preprocessing techniques have been applied 
to the dataset in the training phase.

3.1. Dataset
This research utilized thyroid-based datasets from well-known 

data repositories, Kaggle. The total size of samples in the dataset is 
3,772, and the total attributes is 28. This is probably because thyroid 
conditions can influence or correlate with ocular health, hence 
constituting important latent features for prediction.

3.2. Clinical validity 
The dataset can be found on Kaggle and contains information 

from actual patients that the Garavan Institute and J. Ross Quinlan 
from the New South Wales Institute in Sydney, Australia, gathered. 
It features 3,772 cases along with 30 attributes, which include 
demographics and laboratory tests for thyroid hormones such as 
T3, TT4, thyroid-simulating hormone (TSH), FTI, and medication 
status. Several peer-reviewed publications have cited this dataset, 
demonstrating that the thyroid and endocrine AI model's prediction 
features T3, TT4, TSH, and age align with important thyroid and 
endocrine healthcare benchmarks, thereby reinforcing its clinical 
relevance. Literature-based feature importance within AI models 
repeats the clinical setting and confirms the critical nature of these 
diagnostic parameters.

3.3. Data balancing
In this study, the cluster-based SMOTE is used to address class 

imbalance.

3

Citation Methods Accuracy Dataset size Generalization
Sai et al. [19] Multiple Algorithm 90.9% 218 Yes
Olatunji et al. [20] Random Forest 99.4% 92 -
Zhang et al. [21] Random Forest 90.6% 60 -
He et al. [22] Multiple Algorithm 82.0%/79.0% 1,074 Yes
Garcia de Lomana et al. [23] Random Forest 78.6% 60 -
Aksu et al. [24] Random Forest 96.1% 1,558 -
Chen et al. [25] Random Forest - 92 -
Su et al. [26] Multiple Algorithm 86.0% 177 Yes
Zhao et al. [27] Multiple Algorithm 64.3% 96 Yes
Xi et al. [33] Multiple Algorithm 78% 724 Yes
Książek [34] Multiple Algorithm 81.82% 1,232 Yes
Proposed Multiple Algorithm Our study 3,773 K-fold

Table 1
Limitations of previous work
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3.4. Data preprocessing
In this study, missing values were handled using other features' 

values. The moving-average-based normalization technique is also used 
for handling negative, imaginary, or abrupt values.

3.5. Data splitting
Data retrieved from the cloud is divided into two sets: Training 

Data: 80% of the data is taken to train the machine-learning model. 
Testing Data: 20% of the data is set aside for model testing.

3.6. Normalization
For this dataset, normalization was done using smoothing using 

a moving average technique, which helps in reducing the impact of 
outliers, thus enhancing the model's performance considerably. To 
balance out the problem of sparse data, this work incorporates cluster-
based SMOTE. In addition, the classifiers' outputs are combined using 
the soft-voting technique, which adds similarly weighted contributions 
from several classifiers for greater accuracy, as demonstrated in 
Figure 2.

Two classes are present in our dataset, Classes 1 and 2, and it is 
represented by i[0,1]. The ensemble learning phase would be predicted 
as follows:

Predication classifier 1 (SVM)→[P(i0  ⁄ D), P(i1 ⁄ D)]
Predication classifier 2 (R.F)→[P(i0  ⁄ D), P(i1 ⁄ D)]
Predication classifier 3 (N.B)→[P(i0  ⁄ D), P(i1 ⁄ D)]
Predication classifier 4(KNN)→[P(i0  ⁄ D), P(i1 ⁄ D)]
Predication classifier 5 (D.T)→[P(i0  ⁄ D), P(i1 ⁄ D)]

Predication classifier 6 (LightGBM)→[P(i0  ⁄ D), P(i1 ⁄ D)]
Soft−voting=arg Max [P(Predicitive classifier 1), (Predicitive 

classifier 2),
P(Predicitive classifier 3),

P(Predicitive classifier 4), P(Predictive classifier 5),
 P(Predictive classifier 6)]]

4

 Figure 1
The proposed model

Figure 2
Soft-voting implemented on multiple ML classifiers

Note: KNN = K-nearest neighbors, ML = machine learning, SVM = support 
vector machine.
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3.7. Soft voting
Ensemble learning chooses the best-performing classifier 

dynamically using soft voting in Table 2 instead of relying on a single 
model. It helps improve prediction accuracy by selecting the most 
confident classifier. Thereafter, the ML model analyzes the normalized 
dataset with soft voting and outputs predictions when the learning 
conditions are satisfied, and then the XAI is employed to break down 
the learning process and provide multiple different explanations in a 
case where the criteria were not met, ultimately enhancing the model 
once more in preparation for better results. By making such a system 
transparent, it allows healthcare providers to verify those predictions. 
In this stage, the data is stored, pre-stage data is reduced, and the 
normalization of data is achieved using cloud infrastructure to keep 
the model accessible and scalable. Furthermore, I propose a possible 
relationship between thyroid disorder and ocular disorder, suggesting 
that the thyroid dataset can provide more predictive features in 
disease detection when included in the model. Our model for ocular 
disease prediction uses a synthetic ML system with XAI that utilizes a 
preprocessing and normalization stage of data. 

3.8. XAI
The model, according to Figure 1, generates predictions 

and explanations using XAI. It allows the ML model outputs to be 
interpretable, which is crucial for transparent decision-making. These 
explanations are intended to justify the predictions but can also help to 
learn the underlying reasons for predictions made by the model (in this 
case, risk factors of ocular diseases).

3.9. Validation phase
This phase begins with a person being tested for the disease. 

The decision node is used to check whether the person has any 
disease. If not, the process stops; if yes, the data is retrieved from 
the cloud for pre-reduction. This cloud-based storage system has all 
the appropriate datasets. The cloud helps to store some of the data to 
make predictions.

3.10. Cloud data storage
Data from the cloud is fetched to aid in the prediction process.

4. Simulation and Results

4.1. Histograms for numerical features
Figure 3 represents the histogram distribution of six numerical 

features. Age: The distribution of ages in the set is shown with this 
histogram. The distribution seems to be right-skewed, meaning 
there are more younger people in the data compared to older people. 
TSH: This histogram illustrates the distribution of TSH levels, 
which is a hormone secreted by the pituitary gland that activates the 
thyroid gland. It is right-skewed, meaning that most of the people 
in the dataset have low TSH levels. T3: This histogram shows the 
distribution of T3 levels, another thyroid hormone. It is also right-
skewed, meaning the majority have low T3. TT4: This histogram 
shows the total thyroxine (TT4) distribution. It is positively skewed, 
indicating that the majority of people have lower levels. T4U: This 
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 Figure 3
Histograms for numerical features

Soft voting
Classifier Accuracy Class 0 Class 1

0 DT 0.750 0.825 0.635
1 SVM 0.970 0.986 0.945
2 KNN 0.903 0.915 0.881
3 Naïve Bayes 0.710 0.742 0.674
4 Random forest 0.953 0.973 0.891
5 LightGBM 0.926 0.945 0.875

Note: DT = decision tree, KNN = K-nearest neighbors, ML = machine learning, 
SVM = support vector machine.

Table 2
Implementation of soft voting on ML classifiers
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plot is a histogram of the T4U, a measurement of unbound or free 
thyroid hormone levels. It is slightly right-skewed. FTI: FTI is a 
free thyroid hormone, and this histogram displays where the FTI 
distribution falls on the chart. It is right-skewed, meaning that the 
majority of folks tend to have lower FTIs.

4.2. Correlation matrix heatmap
Figure 4 shows the correlation matrix, plotted in a heatmap, 

of the relationship among some factors in a dataset. The darkness of 
the color signifies the correlation, meaning that the closer to reading 
the color, the higher the positive correlation, with blue indicating a 
strong negative correlation and white indicating none. Strong Positive 
Correlations: TT4 and FTI: The strongest correlation (0.79) indicates 
that Total T4 and Free T4 have a strong association. T3 and TT4: 
There is a strong correlation (0.57) between T3 and Total T4 as well. 
Moderate Positive Correlations: T3 and T4U: A moderate correlation 
(0.46) indicates a positive relationship between T3 and Unbound T4 
(T4U). TT4 and T4U: A moderate correlation (0.44) implies a positive 
relationship between Total T4 and Unbound T4. Weak Correlations: 
age and TSH, age and T3, age and TT4, TSH and T4U, T3 and TSH, 
and T4U and FTI: All these pairs have weak correlation and hence 
are less related. TSH and FTI: The relationship is weak and negative, 
which means there is a slight inverse relationship. Interpretation: 
From this heatmap, it can be seen that some of the variables are highly 
correlated with each other, especially with the Thyroid hormone-
related measures. It indicates the possibility of redundancy among 
these variables, or at least that one measure can adequately summarize 
the information provided by multiple measures. Further Analysis: 
Feature Selection: The significant correlations indicate a need for 
feature selection to mitigate redundancy and adverse effects on model 
performance. Domain Expertise: Knowledge of how to interpret the 
relations in the medical world could be beneficial. It is advised to do 
some consultation with domain experts to find out such biological 
mechanisms. Predictive Modeling: The identified correlations can 
facilitate the development of effective predictive models for thyroid 
disorders

Pair plot for selected numerical features: The pair plot shown 
in Figure 5 visualizes the relationships between different numerical 
features in a dataset, with a focus on the potential impact of sex on these 
relationships. Distribution of Features: The diagonal of the plot shows 
the distribution of each feature (age, T3, TT4, T4U, and FTI). These 
distributions are shown as histograms with kernel density estimates. 
The distribution of FTI appears to be skewed to the right.

Scatter Plots: The off-diagonal plots are scatter plots showing 
the relationship between pairs of features. Each point represents 
an individual data point, and the color of each point represents the 
individual's sex (blue for female, orange for male).

Relationships Between Features: A slightly positive correlation 
is observed between TT4 and T3, with a tendency for higher values 
of T3 to correspond to higher values of TT4. A weak positive 
correlation is observed between FTI and T3. A moderately strong 
positive correlation is observed between TT4 and FTI. T4U and T3: 
No clear correlation is observed between T4U, and a slightly positive 
correlation is observed between T4U and FTI. A weak positive 
correlation is observed between T4U and TT4. This pair plot provides 
an initial overview of the relationships between the selected numerical 
features. The color-coding by sex reveals potential differences in 
these relationships based on sex. Further analysis, such as correlation 
coefficients and statistical tests, could provide more concrete evidence 
of these relationships and their significance. The information from 
this plot can be used to guide further analysis, model building, and 
hypothesis testing.

The distribution of sex shown in Figure 6 shows that the number 
of females in the dataset is more than the number of males in the 
dataset.

 5. Experimental Setup
The experiments were conducted using the following hardware 

configuration available on Google Colab: Processor: Intel Xeon CPU 
(Single core, 2.20 GHz), Graphics Processing Unit: NVIDIA Tesla T4/
Tesla P100/Tesla K80 (depending on availability and session allocation 
by Colab). 16 GB of GDDR5 VRAM (for K80) or 16/32 GB HBM2 
VRAM (for T4/P100). System Memory (RAM): System RAM 1.3/12.7 
GB available. Disk Storage: Disk 32.4/107.7 GB storage is provided 
by the Colab environment. Operating System: Ubuntu 18.04 LTS 
(managed via Google Colab backend). Frameworks and Libraries: 
NumPy, Pandas, and other ML tools as needed.

6. Analysis of classifier report after implementing clus-
ter-based SMOTE

Table 3 presents the hyperparameters used in six different 
classifiers.

Cluster-based SMOTE aims to address the class imbalance issue, 
so after the implementation of cluster-SMOTE, our analysis report of 
the classifier is shown in Figure 7.

Table 4 describes the individual training time and computational 
complexity of all six classifiers, both training and testing. In an 
ensemble learning approach, the computational complexity depends 
on the individual complexities of the classifiers. Because here in this 
study, the ensemble learning method chooses SVM to predict the final 
model. 

Accuracy: According to Table 5, below 75.0% of citations 
were accurately correct for the DT. SVM: 97.0% best accuracy. 
KNN gave 90.33% accuracy, which was less than SVM. Naïve 
Bayes' accuracy was 71.0%, the worst performance. RT accuracy is 
95.33%, near SVM Of the classifiers mentioned, SVM has the best 

6

 Figure 4
Correlation matrix heatmap
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accuracy, whereas Naïve Bayes performs the worst. LightGBM gives 
an accuracy of 0.96.

AUC: As per Table 5, DT 74.0% of predictions are correct. SVM 
0.990% best accuracy. KNN 0.979%, which is lower than SVM. Naïve 
Bayes 0.878% the lowest accuracy. Almost the same as SVM, with a 
high accuracy of 0.990%. The best accuracy of SVM is on par with 
other classifiers, and Naïve Bayes significantly underperformed. RT 
AUC of 0.976%. LightGBM gives an AUC of 0.740.

Recall: in Table 5, DT has 0.750 recall (75% positive cases), 
SVM. Its recall is 0.970 (high), 97% case-positive. KNN recall is 0.903, 

so it is good in sensitivity. Naïve Bayes's lowest recall score at 0.710, 
that is, only 71% of the positive cases were identified. RT has a 0.953 
recall, meaning that there is a catch of 95.33% of predictions. Naïve 
Bayes is more insensitive because SVM and RT outperform Naïve 
Bayes for positive case detection. LightGBM gives a recall of 0.92 for 
case-positive.

Precision: Table 5 DT precision is 0.881 (88.1% of pos). 
Confident Positive from SVM has 0.972 precision, and KNN precision 
is 0.938. It holds for given data when the classifier predicts positive 
around positive confidence. Naïve Bayes precision is 0.900 (ouch for 
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 Figure 5
Pair plot for selected numerical features
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lower accuracy, but still pretty large). After SVM, RT gives the second-
highest accuracy score: 0.962. Here again, SVM leads in accuracy, 
and RF. DT has also performed well, and whereas Naïve Bayes is not 
accurate, its precision is good enough. LightGBM gives a precision of 
0.949.

F1 score: According to Table 5 and Figure 7, the DT F1 score 
of 0.793 is a balanced, but moderate, performance. SVM is the best F1 

score: 0.971, with good precision and recall. KNN score is 0.914; Naïve 
Bayes score is 0.764. The RT score is 0.956. The two best-performing 
classifiers out are SVM and RF; Naïve Bayes performs poorly, owing to 
its low recall. LightGBM gives an F1 score of 0.933.

7. Analysis of Classifiers Using Comparison 
SVM performs best across all metrics, making it the most reliable 

classifier for this task, as shown in Table 6 and Figure 8.
The outcomes of the SVM classifier's performance are compared 

with other models in Table 7, including DT, KNN, Naïve Bayes, RF, and 
LightGBM, according to the table. The SVM performance comparison 
involves two tests in Table 7: the t-test is based on average metrics 
(in this case, accuracy), and the DeLong test is based on the AUC. 
The test results include both the test statistic (t or Z value) and the 
corresponding p-value. A small p-value (commonly <0.05) indicates 
the tested models differ meaningfully. The results confirm SVM 
outperforms DT and Naïve Bayes both in accuracy and AUC, as their 
p-values are very low. Against KNN, RF, and LightGBM, the p-values 
exceed 0.05, suggesting a lack of performance difference equivalently 
performs with these models. All in all, the table illustrates that SVM's 
model performance enhancements are overwhelmingly statistically 
valid, whereas SVM's performance enhancements over other strong 
models are marginal.

Table 8 and Figure 8 show that the AUC probabilities of the DT 
classifier achieve a reasonable level of accuracy, with an AUC of 0.81, 
indicating that it is moderately good at distinguishing between positive 
and negative classes. The SVM classifier demonstrates excellent 
performance with an AUC of 0.99, indicating that it is highly effective 
at classifying positive and negative instances. The RT classifier 
achieves a high level of accuracy with an AUC of 0.96, suggesting 
its strong ability to distinguish between positive and negative classes. 
The KNN classifier exhibits good performance with an AUC of 0.94, 
demonstrating its effectiveness in classifying positive and negative 
instances. The Naïve Bayes classifier performs well with an AUC of 
0.93, indicating its capability to discriminate between positive and 
negative classes. The LightGBM classifier achieves a reasonable level 
of accuracy with an AUC of 0.97.

The overall comparison shows that the best-performing classifier 
is SVM, which shows the highest AUC scores, suggesting it performs 
better than the other classifiers. DT has a moderate AUC, indicating a 
less effective performance compared to another classifier. DT, KNN, 
and Naïve Bayes classifiers achieve good performance with AUC 
scores close to 0.9, indicating their capability for classification.

8

 Figure 6
Distribution of sex

Classifier Hyperparameters 
1 DT Max depth =14
2 SVM Kernel: “linear,” degree: Default 3
3 KNN Weights: “uniform”
4 Naïve Bayes Alpha: Default 1.0
5 Random forest “Max depth = 40, Features used for 

splitting = 50%”
6 LightGBM Boosting_type: “gbdt”

Note: DT = decision tree, KNN = K-nearest neighbors, SVM = support vector 
machine.

Table 3
Hyperparameters for classifiers

 Figure 7
Precision, recall, and F1 score comparison

Note: KNN = K-nearest neighbors, SVM = support vector machine.

Classifier Training Time
Complexity

Training Testing
1 DT 0.0161 seconds O(nmlog(n)) O(d)
2 SVM 0.6944 seconds O(n2) O(d)
3 KNN 0.0039 seconds O(nd) O(d)
4 Naïve Bayes 0.0204 seconds O(nd) O(d)
5 Random forest 0.3607 seconds O(nlog(n)m) O(d)
6 LightGBM 0.1083 seconds O(n) O(d)

Note: DT = decision tree, KNN = K-nearest neighbors, SVM = support vector 
machine.

Table 4
Training time and complexity
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8. Analysis of Classifiers Through AUC
Train the SVM classifier on these two classes of data points in 

Figure 8. The hyperplane separates the data points from their respective 
classes. Primarily, data points known as support vectors determine 
the hyperplane. Figure 9 represents two classes of data points, each 
with a distinct color (purple and yellow). The black line in the figure 
is the hyperplane. This line represents the decision boundary of the 
SVM classifier. The classifier will classify any data point above the 
hyperplane as belonging to one class (yellow) and any data point below 
it as belonging to the other class (purple). The data points in circles 
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Figure 8
Classifiers with AUC probabilities

Note: AUC = area under the receiver operating characteristic curve, 
KNN = K-nearest neighbors, SVM = support vector machine.

Classifiers AUC
DT 0.812
SVM 0.991
Random forest 0.958
KNN 0.939
Naïve Bayes 0.933
LightGBM 0.97

Note: AUC = area under the receiver operating characteristic curve, DT = 
decision tree, KNN = K-nearest neighbors, SVM = support vector machine.

Table 8
AUC probabilities of classifiers

Classifier Accuracy AUC Recall Precision F1
0 DT 0.750 0.740 0.750 0.881 0.792
1 SVM 0.970 0.990 0.970 0.971 0.970
2 KNN 0.903 0.979 0.903 0.937 0.913
3 Naïve Bayes 0.710 0.878 0.710 0.899 0.763
4 Random forest 0.953 0.976 0.953 0.962 0.955
5 LightGBM 0.926 0.961 0.926 0.949 0.933

Soft voting ensemble 0.869 0.921 0.869 0.933 0.888
Note: AUC = area under the receiver operating characteristic curve, DT = decision tree, KNN = K-nearest neighbors, SVM = support vector machine.

Table 5
Precision, recall, and F1 score comparison

Classifier Accuracy
0 DT 0.750
1 SVM 0.970
2 KNN 0.903
3 Naïve Bayes 0.710
4 Random Forest 0.953
5 LightGBM 0.926

Note: DT = decision tree, KNN = K-nearest neighbors, SVM = support vector 
machine.

Table 6
Accuracy comparison

T-test 
(t)

T-test 
(p) DeLong Z DeLong p

SVM vs. DT 3.87 0.0001 2.92 0.0035
SVM vs. KNN 1.76 0.079 1.21 0.225
SVM vs. Naïve Bayes 4.71 0.00001 3.76 <0.001
SVM vs. RF 0.98 0.325 0.97 0.332
SVM vs. LightGBM 1.38 0.167 0.85 0.395

Note: DT = decision tree, KNN = K-nearest neighbors, RF = random forest, 
SVM = support vector machine.

Table 7
Statistical comparison of SVM performance against other 

classifiers using the T-test and the DeLong test
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are the support vectors. These are the data points that are closest to the 
hyperplane and therefore have the greatest influence on the position of 
the hyperplane. Support vectors define this hyperplane. The purpose 
of the SVM visual is to provide a clear explanation of how the SVM 
classifier works to classify data points into a particular class by fitting 
data points with a hyperplane. By separating data points with the 
largest margins, the support vectors are those techniques closest to 
the hyperplane, making them essential for both defining the decision 
boundary and classifying the classifier.

Confusion Matrix: In Figure 10, 132 (top left): This cell indicates 
TPs, where the classifier correctly predicted class 0 for instances that 
were class 0. 2 (top right): This cell indicates false positives (FPs), 
where the classifier incorrectly predicted Class 1 for instances that 
were Class 0. 1 bottom left): This cell indicates false negatives (FNs), 
where the classifier incorrectly predicted Class 0 for instances that were 
Class 1. 133 (bottom right): This cell indicates TNs, where the classifier 
correctly predicted Class 1 for instances that were Class 1.

In Figure 11, TP: The classifier correctly predicted Class 1 (259). 
TN: The classifier correctly predicted Class 0 (30). FP: The classifier 
incorrectly predicted Class 1 when the actual class was 0 (3). This is 
also known as a Type I error. FNs: The classifier incorrectly predicted 
Class 0 when the actual class was 1 (8). This is also known as a Type 
II error.

9. Validation
The K-fold cross-validation results for the six ML classifiers are 

DT, SVM, KNN, Naïve Bayes, RF, and LightGBM in Table 9. Each 
model was evaluated over five folds, recording accuracy for each fold, 
and performance metrics were averaged across all folds. These include 
average accuracy, average AUC, average recall, average precision, and 
average F1 score. Based on the results, SVM comes out on top with 
an average accuracy of 0.97 and the highest AUC with 0.99, excelling 
in recall, precision, and F1 score as well. RF follows closely at 0.95 
accuracy and 0.98 AUC, with strong performance from LightGBM 
at 0.92 accuracy. KNN performs well in AUC and precision, but falls 
short in recall and F1. DT and Naïve Bayes are weaker performers for 
this dataset, with low accuracy and recall, despite Naïve Bayes having 
high precision. The table makes it clear that SVM is the most reliable 
classifier for this classification task, standing out as the most dependable 
across multiple scenarios.

To further validate the performance of the proposed mode in 
Table 10, two additional publicly available datasets are used to confirm 
the proposed model’s robustness and generalization capability.

In Table 11, the comparison of the previously published work 
is shown, which clearly shows that the proposed model achieved a 
maximum accuracy of 96.66% as compared to state-of-the-art published 
articles.

The mean SHAP value in Figure 12 shows both classes. The 
contribution of that feature to the model's prediction for Classes 0 

(1)

(2)

(3)

(4)
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 Figure 9
SVM visualization

Note: SVM = support vector machine.

 Figure 10
Confusion matrix for training data

 Figure 11
Confusion matrix for testing data
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and 1 is shown. The importance of the feature concerning the model 
prediction for Class 1. Features with higher SHAP values contribute 
more to the predictions made by the model. Positive SHAP values for 
a feature indicate that the feature is increasing the probability of the 
model predicting Class 1. Negative SHAP values related to any feature 
also contribute to decreasing the probability of target class 1 outputted 
by the model. TT4, T3, FTI: Features positively contribute most to Class 
1 prediction. They are probably important predictors of the outcome. 
Age: It has a moderate impact on predicting Class 1. Referral_source_
SVI represents the source of the referral used in the dataset.

Referral_source_other, TSH: These features also have positive 
but smaller impacts. The remaining features have very little impact 
on the model's predictions, meaning they are likely less important for 
the model to decide on the outcome. The diagram illustrates the key 
features making an impact on the model predictions. It indicates the 
extent to which various factors influence the model's output.

SHAP values are plotted in Figure 13 and also show feature 
value effect in Table 12, with the horizontal axis indicating how much 
each feature was contributing to the output of the model. The color of 

the dots indicates the feature value. Low values are shown by blue dots, 
high values by red dots, and all the in-between is a smooth transition. 
The “violin” SHAP, by the distribution of SHAP values for each feature. 
It shows how the feature impacts predictions across different instances 
in the dataset. The SHAP values for TT4 are spread out from −0.1 to 
0.8. This indicates that TT4 has a significant impact on the model's 
output. The majority of the SHAP values are positive, suggesting that 
higher TT4 values generally increase the model's output. There are 
also some negative SHAP values, indicating that lower TT4 values 
can sometimes decrease the model's output. This means that because 
TT4 has a negative coefficient, the model has identified TT4 as an 
important predictor of height, and the higher the TT4 value, the higher 
the predicted value of length in general. This implies that TT4 is an 
important predictor for the outcome being predicted. Nonetheless, it 
should be emphasized that the simple relationship is not strictly linear 
and that TT4 can have deleterious effects on the output at lower values 
as well.

Figure 14 shows the effect of various features on the base value 
of a prediction. The base value is 0.05214. Higher value: age = 53: 
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Classifier Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Average 
accuracy

Average 
AUC

Average 
recall

Average 
precision

Average 
F1

Decision tree 0.74 0.76 0.75 0.75 0.75 0.75 0.74 0.75 0.88 0.79
SVM 0.97 0.97 0.96 0.98 0.97 0.97 0.99 0.97 0.97 0.97
KNN 0.90 0.91 0.91 0.90 0.92 0.90 0.98 0.90 0.94 0.91
Naïve Bayes 0.71 0.71 0.72 0.70 0.71 0.71 0.88 0.71 0.90 0.76
Random 
forest

0.95 0.96 0.96 0.95 0.96 0.95 0.98 0.95 0.96 0.96

LightGBM 0.92 0.93 0.93 0.92 0.93 0.92 0.96 0.92 0.95 0.93
Note: AUC = area under the receiver operating characteristic curve, KNN = K-nearest neighbors, SVM = support vector machine.

Table 9
K-fold cross-validation performance comparison of machine learning classifiers

Classifier Accuracy AUC Recall Precision F1
Dataset 1 DT 0.895 0.910 0.90 0.89 0.89

SVM 0.901 0.923 0.89 0.90 0.89
KNN 0.878 0.882 0.88 0.88 0.88
Naïve Bayes 0.864 0.875 0.87 0.86 0.86
Random forest 0.915 0.938 0.92 0.91 0.91
LightGBM 0.920 0.942 0.92 0.92 0.92
Soft voting 0.926 0.950 0.93 0.93 0.93

Dataset 2 DT 0.915 0.934 0.92 0.92 0.92
SVM 0.921 0.947 0.92 0.92 0.92
KNN 0.894 0.899 0.90 0.89 0.89
Naïve Bayes 0.889 0.894 0.89 0.89 0.89
Random forest 0.934 0.962 0.93 0.93 0.93
LightGBM 0.940 0.968 0.94 0.94 0.94
Soft voting 0.944 0.974 0.94 0.94 0.94

Note: AUC = area under the receiver operating characteristic curve, DT = decision tree, KNN = K-nearest neighbors, SVM = support vector machine.

Table 10
Comparison table of two different datasets
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Citation 
Data collection 

place Methods
Imbalance 
technique

Accuracy 
(%) Dataset size Features

Peng et al. [8] Hospital DT SMOTE 84.6 47 -
Song et al. [9] Thyroid cancer 

patients
Random forest Not available 89.7 286 17

Liu et al. [10] Patients treated 
with PD-1 or PD-L

RT and logistic regres-
sion

Not available 77.0 187 7

Kim et al. [11] Thyroid nodules 
from surgical C

RT and logistic regres-
sion

Not available 71.9 355 -

Luong et al. [12] Clinical data DT, random forest, 
logistic regression

Not available 84.7 -

Yang et al. [13] Laboratory RT and logistic regres-
sion

Not available 64.0 604 -

Idarraga et al. [14] Laboratory Random forest Not available 71.0–81.0 1,451 -
Xu et al. [15] Ultrasound images 

thyroid
Random forest Histogram equal-

ization, Laplacian 
operator, logarithm 
transform, and Gam-
ma correction

95.0 428 Image

Luong et al. [12] Clinical data DT, random forest, 
logistic regression

Not available 84.7 -

Yang et al. [13] Laboratory RT and logistic regres-
sion

Not available 64.0 604 -

Idarraga et al. [14] Laboratory Random forest Not available 71.0–81.0 1,451 -
Xu et al. [15] Ultrasound images 

thyroid
Random forest Histogram 

equalization, 
Laplacian operator, 
logarithm transform, 
and Gamma 
correction

95.0 428 Image

Olatunji et al. [20] DNA methylation 
data for follicular 
thyroid

Random forest Not available 99.4 92 6

Zhang et al. [21] MRI data Random forest Not available 90.6 60 107
He et al. [22] Thyroid hormone 

homeostasis
Multiple algorithms Not available 82.0/79.0 1,074 -

Garcia de Lomana et 
al. [23]

Radiomics data 
from 18F-FDG 
thyroid gland 
uptake

Random forest Not available 78.6 60 18

Aksu et al. [24] Ultrasonographic Random forest Not available 96.1 1,558 Image
Chen et al. [25] Gut microbiome 

data
Random forest Not available - 92 -

Su et al. [26] Thyroid cancers Multiple algorithms Not available 86.0 177 Image
Zhao et al. [27] Radiomics data for 

BRAF mutation 
prediction

Multiple algorithms Not available 64.3 96 86

Xi et al. [33] Novel clinical 
dataset

Multiple Algorithm Not available 78 724 19

Książek [34] Shengjing Hospital 
of China Medical 
University

Multiple algorithms Not available 81.82 1,232 19

Proposed Thyroid Multiple algorithms Yes 96.66 3,773 28
Note: DT = decision tree, KNN = K-nearest neighbors, MRI = magnetic resonance imaging, SMOTE = Synthetic Minority Over-sampling Technique.

Table 11
Comparison with previously published work
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This feature decreases the base value by 0.03214, which means a higher 
age leads to a lower prediction. Lower value: TT4 = 103: This feature 
increases the base value by 0.03014, which means a higher TT4 value 
leads to a higher prediction. T3 = 2: This feature increases the base 
value by 0.01014, which means a higher T3 value leads to a higher 
prediction. Referral_source_other = 1: This feature increases the base 
value by 0.01014, which means that if the referral source is other, the 
prediction is higher. referral_source_SVI = 0: This feature increases the 
base value by 0.01014, which means if the referral source is SVI, the 
prediction is higher. FTI = 111: This feature increases the base value by 
0.00914, which means a higher FTI value leads to a higher prediction. 
TSH = 0.85: This feature increases the base value by 0.00914, which 
means a higher TSH value leads to a higher prediction.

LIME XAI in Figure 15 shows the prediction probabilities of a 
machine-learning model for a patient's condition. The model predicts 
the patient is more likely to be negative (with a probability of 0.98) than 
sick (with a probability of 0.02).

The features that model considered the features in making its 
prediction, along with the corresponding contribution of each feature to 
the final prediction probability.

Referral_source_SVH: This feature contributes 0.02 to the 
probability of the patient being negative. referral_source_SVI: This 
feature contributes 0.02 to the probability of the patient being negative. 
lithium_t ≤ 0.00: This feature contributes 0.01 to the probability of the 
patient being negative. 0.00 < referral_source_. This feature contributes 
0.01 to the probability of the patient being negative.

1.60 < T3 ≤ 2.00: This feature contributes 0.01 to the probability 
of the patient being negative. 90.00 < TT4 ≤ 105.00: This feature 
contributes 0.01 to the probability of the patient being negative.

37.00 < age ≤ 55.00: This feature contributes 0.01 to the 
probability of the patient being negative. Pregnant_t ≤ 0.00: This feature 
contributes 0.02 to the probability of the patient being sick. 108.00 < 
FTI ≤ 125.00: This feature contributes 0.02 to the probability of the 
patient being sick. Tumor_t > 0.00: This feature contributes 0.01 to the 
probability of the patient being sick.

In Figure 16, referral_source_SVHD: 0.00, referral_source_SVI: 
0.00, pregnant_t: 0.00, FTI: 111.00, lithium_t: 0.00, referral_source_
other: 1.00, tumor_t: 1.00, T3: 2.00, TT4: 103.00, age: 53.00. rows 
with an orange background color highlight features related to the 
patient's medical history and demographics. These include: pregnant_t, 
FTI, lithium_t, age. The rows with a blue background color highlight 
features related to the patient's diagnosis and treatment. These include: 
referral_source_SVHD, referral_source_SVI, referral_source_other, 
tumor_t, T3, TT4.

LIME Feature Importance: Figure 17 shows the feature 
importance of different features in a model, and is briefly explained 
in Table 13. Green bars: Positive impact on the model output. Higher 
values in these features are associated with a positive prediction. Red 
bars: Negative impact on the model output. Higher values in these 
features are associated with a negative prediction. 

The features and their impact are: referral_source_SVHD ≤ 
0.00: Negative impact. referral_source_SVI ≤ 0.00: Negative impact. 
pregnant_t ≤ 0.00: Positive impact. 108.00 < FTI ≤ 125.00: Positive 
impact. lithium_t ≤ 0.00: Negative impact. 0.00 < referral_source_other 
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Figure 12
Feature importance from SHAP value

Note: SHAP = Shapley Additive Explanation, TSH = thyroid-simulating 
hormone.

 Figure 13
SHAP summary impact of each feature on the model's output

Note: SHAP = Shapley Additive Explanation, TSH = thyroid-simulating 
hormone.
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Feature name
SHAP value distribution (impact on model 

output) Feature value effect
TT4 Highest positive and negative impact spread Higher TT4 values push the model output higher
T3 High impact, primarily positive SHAP value spread Elevated T3 increases model output
FTI Substantial effect, both directions Higher FTI results in higher model output
age Moderate, some high and low impact points High age both increases and decreases output
referral_source_SVI Low, mostly around zero Minor effect based on source
referral_source_other Low, near zero Minor effect
TSH Low, close to zero impact High/Low values produce small changes in output
referral_source_SVHC Minimal impact Minor effect
on_thyroxine_f Minimal Negligible effect
on_thyroxine_t Minimal Negligible effect
query_hypothyroid_f Very low, around zero Almost no effect
query_hypothyroid_t Very low, around zero Almost no effect
sex_M Minimal Negligible effect
sex_F Minimal Negligible effect
query_hyperthyroid_f Minimal Negligible effect
query_hyperthyroid_t Minimal Negligible effect
sick_f Minimal Negligible effect
sick_t Minimal Negligible effect
psych_t Minimal Negligible effect 
tumor_t Minimal Negligible effect

Note: SHAP = Shapley Additive Explanation, TSH = thyroid-simulating hormone.

Table 12
Summary of SHAP value distribution (impact on model output)

Figure 14
SHAP contributes to the model’s predictive probability for a single instance

Note: SHAP = Shapley Additive Explanation.

Figure 16
LIME feature impact summary

Note: Lime = Local Interpretable Model-Agnostic Explanation.

 Figure 15
LIME feature importance

Note: Lime = Local Interpretable Model-Agnostic Explanation.
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≤ 1.00: Negative impact. tumor_t > 0.00: Positive impact. 1.60 < T3 ≤ 
2.00: Negative impact. 90.00 < TT4 ≤ 105.00: Negative impact. 37.00 
< age ≤ 55.00: Positive impact. LIME is a technique that provides local 
explanations for predictions of complex models. It approximates the 
behavior of the model in the neighborhood of a specific data point.

Interpretation:
The graph suggests that features such as “pregnant_t,” “108.00 

< FTI ≤ 125.00,” “tumor_t > 0.00,” and “37.00 < age ≤ 55.00” have 
a positive impact on the model's prediction, whereas features such as 
“referral_source_SVHD,” “referral_source_SVI,” “lithium_t,” “0.00 < 

referral_source_other ≤ 1.00,” “1.60 < T3 ≤ 2.00,” and “90.00 < TT4 ≤ 
105.00” have a negative impact.

SHAP and LIME comparison: 
According to Table 14, two ML explainability methods, SHAP 

and LIME, evaluate the importance of four thyroid-related features 
(TSH, T3, TT4, and FTI). SHAP assigns higher importance values—
particularly for TT4 and FTI—whereas LIME gives much lower scores 
across all features. This difference indicates that SHAP captures global 
feature influence, while LIME emphasizes the impact of features on 
specific predictions, leading to noticeable variations in their rankings 
and values.

This research presents a promising AI-based method for the 
timely detection of thyroid cancer. Our study uses an open-source 
thyroid disease dataset comprising 3,772 case observations. To face 
challenges in the presence of class imbalance, the cluster SMOTE 
technique is used for data balancing, five different ML classifiers were 
used, and after that, an ensemble learning mechanism is applied to 
find the best classifier with the help of soft voting, SVM classifier is 
selected through this learning approach, and the diagnostic accuracy 
of 0.97 is achieved, which outperforms another current state-of-the-
art classifier. In the service of interpretability, SHAP and LIME XAI 
mechanisms have been employed that render the model's decisions 
transparent, allowing clinicians to understand how the model came 
to its predictions. This model can serve as a decision-support tool for 
clinicians with a future goal of integration into electronic health records. 
Such a system could help health practitioners become more adept at 
identifying and diagnosing potential cases early or in high-volume 
or resource-constrained settings, as an early diagnostic tool. There 
are boundaries that future studies may address. Although the dataset 
is sizeable and diverse, it could still include further data to enhance 
the robustness and generalizability of the model to a wider population. 
These advancements are expected to improve the performance of the 
model itself. It allows the model to be applied to a range of different 
patients, eventually accounting for a higher degree of certainty of the 
clinical relevance of the model. 
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Figure 17
LIME feature importance and prediction factor

Note: Lime = Local Interpretable Model-Agnostic Explanation.

Feature/rule
Condition 
or value

Contribution 
direction

Contribution 
to class 
(“sick”)

referral_source_SVH... Yes Negative 
(towards 

“negative”)

−0.02

referral_source_SVI... Yes Negative −0.02
pregnant_t ≤ 0.00 True Negative −0.02
108.00 < FTI ≤ 125.00 True Negative −0.02
lithium_t ≤ 0.00 True Negative −0.02
1.60 < T3 ≤ 2.00 True Negative −0.01
90.00 < TT4 ≤ 105.00 True Negative −0.01
37.00 < age ≤ 55.00 True Negative −0.01
tumor_t > 0.00 False/not 

triggered
Negligible (Not listed)

Note: Lime = Local Interpretable Model-Agnostic Explanation.

Table 13
Summary of LIME contribution

Features SHAP LIME
TSH 0.85 0.18
T3 2.00 0.01014
TT4 103.00 0.03014
FTI 111.00 0.00914

Note: Lime = Local Interpretable Model-Agnostic Explanation, SHAP = Shap-
ley Additive Explanation.

Table 14
Comparison of SHAP and LIME with selected features

https://www.kaggle.com/datasets/bidemiayinde/thyroid-sickness-determination
https://www.kaggle.com/datasets/bidemiayinde/thyroid-sickness-determination
https://www.kaggle.com/datasets/bhargavchirumamilla/thyroid-cancer-risk-dataset
https://www.kaggle.com/datasets/bhargavchirumamilla/thyroid-cancer-risk-dataset
https://www.kaggle.com/datasets/sikandaraidev/thyroid-dataset
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