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Abstract: A primary method for cancer detection involves the examination of histopathological images. However, traditional approaches to
analyze these images are time-consuming and prone to errors. With recent advancements in deep learning, researchers are increasingly leveraging
these models to enhance the accuracy and efficiency of histopathological image analysis. In this study, a deep learning-based model is proposed for
multi-class cancer classification that integrates gene expression prediction with histopathological image analysis to enhance diagnostic precision
and streamline the detection process. The model is intended for use in real-world clinical settings where it is a challenge to classify data correctly
because predefined sequences of gene expression and cancer labels are often missing. Fourier Neural Networks (FNN) and EfficientNetBO are
utilized to get a full set of spatial and frequency-based features from Whole Slide Images (WSIs). To select the best set of features, Incremental
Principal Component Analysis (IPCA) was used, and the resulting representations were subsequently reconstructed from patch-level features to
WSI representations. A DeepONet model, one of the advanced deep learning models, was selected for mapping the generated histopathological
image features to predict gene expression patterns. After training, the model achieved 93% accuracy in classifying cancer types with a 0.92 precision
value indicating acceptable performance with respect to multiple cancer classifications. Additionally, the model achieved strong performance in
gene expression prediction, with a Mean Absolute Error (MAE) of 0.033 and an R? score of 0.765, demonstrating its reliability in capturing gene
expression patterns. Addressing real-world challenges such as missing gene expression data or ambiguous cancer-type classifications, the proposed
Dual Deep Learning Model enhances cancer diagnosis by improving accuracy in oncology. By integrating histopathological image analysis with
gene expression prediction, the model enables automated clinical decision-making, offering a robust solution for distinguishing between cancerous
and non-cancerous cases.
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1. Introduction cancer detection, enhancing diagnostic consistency, and enabling large-
scale image analysis. Al-driven computational pathology facilitates
automated feature extraction, real-time decision support, and more
accurate prognostic assessments, ultimately improving diagnostic
efficiency and reliability [2]. By leveraging large-scale digital pathology
datasets, Al models can detect subtle morphological variations,
distinguish benign from malignant tissues, assess tumor grade, and
identify clinically relevant tissue patterns.

In parallel, gene expression analysis has emerged as a powerful
tool in cancer detection [3, 4], offering insights into the molecular
mechanisms that drive oncogenesis. Gene expression profiling measures
the activity levels of genes within cells or tissues, offering valuable
insights into cancer biology. Aberrant gene expression patterns often
serve as early markers of malignancy, assist in tumor classification,
predict disease progression, and contribute to prognosis. Specific
*Corresponding author: Neelima Nizampatnam, Department of Electronics and ~ ene expression signatures are associated with various cancer types,
Communication Engineering, Amrita School of Engineering-Bengaluru, India. Email:  including breast, lung, and colorectal cancers, helping to define tumor
n_neelima@blr.amrita.edu subtypes and guide personalized treatment decisions.

Histopathological image analysis serves as a foundational method
for cancer detection, enabling the examination of cellular structures
and tissue patterns under a microscope. Tissue samples are processed
using hematoxylin and eosin (H&E) staining, a standard technique that
highlights morphological features to identify abnormal signs indicative
of malignancy [1]. Pathologists evaluate nuclear atypia, mitotic activity,
cytoplasmic characteristics, and tumor-stroma interactions to determine
cancer presence and severity. However, conventional histopathology
relies on expert interpretation, resulting in inter-observer variability and
potential subjectivity.

Digital pathology, combined with artificial intelligence (Al), has
significantly transformed histopathological workflows by automating
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Recent advancements in computational biology and artificial
intelligence have facilitated the incorporation of gene expression data
into predictive models for cancer classification [5]. Machine learning
techniques analyze these profiles to identify patterns associated
with particular cancer types, thereby enhancing the accuracy of
automated diagnostic systems. Such models complement conventional
histopathological — assessments by providing molecular-level
perspectives on tumor characteristics, supporting a comprehensive,
multi-dimensional approach to cancer detection. Moreover, gene
expression analysis plays a critical role in precision medicine by
identifying genetic markers related to treatment response, thereby
informing tailored therapeutic strategies [6].

Combining histopathological image analysis with gene
expression prediction through Al represents a promising frontier in
cancer diagnostics [3, 7]. Leveraging deep learning architectures, this
approach seeks to improve early detection, boost diagnostic accuracy,
and advance precision oncology. The primary goal of this study is to
develop an Al-driven framework that integrates histopathological
imaging with gene expression inference, offering a scalable and cost-
effective solution for cancer classification and prognosis. Such Al-
enabled diagnostic tools [8] have the potential to revolutionize cancer
detection by bridging traditional histology with molecular oncology,
ultimately enhancing patient outcomes.

The remainder of this article is organized as follows: Section
2 reviews related literature on tissue classification techniques and
deep learning—based cancer detection. Section 3 details the proposed
hybrid model, including its architecture, feature extraction methods,
and the integration of Fourier integrated neural network (FINN) and
EfficientNetB0. Section 3 also describes the dataset, preprocessing
procedures, and experimental setup employed for training and validation.
Section 4 presents and analyzes the experimental results, evaluating
model performance across different cancer types and benchmarking
it against existing approaches. Finally, Section 5 summarizes the key
conclusions and suggests avenues for future research.

2. Literature Review

Recent progress in histopathological image analysis has greatly
enhanced cancer classification and gene expression prediction.
Preprocessing techniques, including stain normalization and patch
extraction, are commonly applied to reduce variability in tissue images
and improve data consistency. Chen et al. [9], for instance, focused on
head and neck squamous cell carcinoma (HNSCC) using 2,679 whole
slide images (WSIs) from The Cancer Genome Atlas (TCGA). In their
study, grayscale conversion and illumination correction were applied to
address staining inconsistencies, followed by extraction of 1000x1000
pixel sub-images. Regions containing more than 50% white background
were discarded to ensure retention of meaningful tissue areas. Similarly,
Mirzaev and Meliev [10] analyzed colon histopathological images
from Kaggle’s Colorectal Histology MNIST dataset, which consists
of 5,000 H&E-stained images (224%224 pixels) of colorectal cancer
and normal tissues. Runz et al. [11] introduced a stain normalization
approach utilizing cycle-consistent generative adversarial networks
(CycleGANSs), which effectively reduces staining variability and
enhances the robustness of downstream analyses.

After preprocessing, feature extraction becomes a crucial stage
for capturing morphological characteristics. Earlier methods primarily
employed handcrafted descriptors, such as texture and shape features.
For instance, Chen et al. [9] utilized the CellProfiler tool to extract 593
manually engineered features. In recent years, however, deep learning
approaches—particularly convolutional neural networks (CNNs)—
have emerged as the preferred choice, owing to their capacity to
automatically learn complex spatial representations from image
data. The authors Mirzaev and Meliev [10] experimented with colon

histopathology images using a CNN model for feature extraction and
achieved the best results. Similarly, Rahaman et al. [12] used CNN-
extracted morphological and texture features to classify colorectal
cancer and its subtypes, demonstrating that traditional methods remain
highly valuable.

Chen et al. [9] achieved a significant improvement in identifying
HNSCC somatic mutations and their subtypes through the use of
histopathological features. They have also explored multiple machine
learning and deep learning classifiers such as random forest (RF),
logistic regression, and SVM. Li et al. [13] worked on classification of
cancerous or non-cancerous tissues using gene expression values. In the
task of colon cancer classification, Murchan et al. [14] also used a CNN,
similar to Mirzaev and Meliev [10], but achieved higher accuracy.

The real-time challenge in cancer detection during the analysis of
histopathological images is the absence of gene expression. To address
this concern, Madusanka et al. [15] merged histopathological features
with its associated gene co-expression network to detect gene patterns
for specific tissues. This integrative approach connects morphological
and molecular data, offering deeper insight into cancer subtypes.
Emerging methods, including pseudo-labeling strategies based on
clustering algorithms (such as Agglomerative Clustering), have shown
promise for inferring gene expression directly from WSIs.

3. Research Methodology

The proposed Dual Modality Deep Learning framework for
cancer classification integrates histopathological image features with
gene expression prediction. Starting from whole-slide histopathological
images (WSIs), a hybrid feature extraction module captures
morphological characteristics, frequency-domain information, and
multi-scale representations to facilitate both gene expression inference
and cancer type identification. By combining advanced computer vision
methodologies with machine learning algorithms and deep neural
architectures, this approach aims to improve diagnostic precision. As
outlined in Figure 1, the workflow begins with data acquisition and
preprocessing. WSIs are collected and segmented into smaller, non-
overlapping patches of 256x256 pixels, enabling detailed analysis of
tissue microstructures.

To address variations arising from different staining protocols,
stain normalization is applied to reduce color discrepancies in
tissue images. Following preprocessing, the pipeline proceeds with
feature extraction and dimensionality reduction to derive concise yet
informative feature representations. The framework integrates two
specialized deep learning architectures: Fourier Neural Networks
(FNN) for capturing frequency-domain patterns and EfficientNetBO for
extracting multi-scale spatial features from histopathological images.
Due to the inherently high dimensionality of the extracted features,
Incremental Principal Component Analysis (IPCA) is employed to
lower the computational demands while retaining the most salient
information.

Figure 1

Architecture of the dual modality deep learning model
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The refined patch-level features are accumulated on the WSI
level using a mean pooling strategy, resulting in a single, compact
feature vector for each image. These new feature vectors are used
as inputs to predict the gene expressions. For further processing,
Agglomerative Clustering is applied to generate random labels. For
training, these features are passed to the DeepONet model. This model
learns the mapping between the features of WSI and gene expression
patterns, which then gives us insights into direct predictions from WSI
of molecular-level information.

Generally speaking, a gene expression is represented by a
sequence of numbers. The DeepONet model also generated a set
of sequence of gene expressions. For ease of computation, all gene
expressions are aggregated, and each WSI is assigned a single score. The
threshold method is then applied to the aggregated gene expressions for
classifying the tissue types. Classification of WSIs adopts a threshold-
based approach, where samples with scores above a defined average
threshold value are classified as cancerous, while below the threshold are
categorized as non-cancerous. For gene expression prediction, the Dual
Modality Deep Learning model was evaluated using standard regression
metrics, including Mean Squared Error (MSE) and Mean Absolute
Error (MAE), to quantify prediction accuracy. The performance of the
DeepONet models was evaluated using metrics including accuracy,
precision, recall, Fl-score, and the area under the receiver operating
characteristic curve (AUC-ROC).

To improve the model interpretability, additional techniques
such as Grad-CAM and SHAP are incorporated, highlighting the image
regions that contribute most to cancer cell predictions. This integrated
workflow offers a comprehensive, scalable, and Al-driven approach
that effectively links histopathological imaging with gene expression
profiling, thereby enhancing the accuracy and reliability of cancer
classification.

3.1. Materials and sources

The Dual Modality Deep Learning model primarily utilizes WSIs
of both cancerous and non-cancerous tissues, particularly focusing on
cases where gene expression data are unavailable. Publicly available
datasets were systematically sourced from various digital pathology
repositories and web platforms. The selection criteria prioritized image
quality, diversity of cancer classes, and the absence of accompanying
gene expression profiles or pre-existing cancer labels to ensure unbiased
model training.

The WSIs of breast cancer were sourced from the well-known
CAMELYONI16 [16] challenge dataset. A small subset of the dataset
was used in this study. The WSIs include lymph node sections captured
in HD for metastasis identification. For multi-organ tissue samples,
including the colon, lung, and prostate, images were acquired using the
Atlas of Digital Pathology (ADP) [17], a publicly available collection of
histological images specifically designed for computational analysis in
cancer diagnosis. Brain tumor data, such as gliomas and meningiomas,
were collected from the Digital Brain Tumour Atlas (DBTA) [18]. The
DBTA provides expertly annotated brain tissue sections without the
need for molecular profiling. Figure 2 shows sample images from each
class.

Unlike datasets that include predefined molecular or gene
expression annotations, the collections used in this study consist solely
of histopathological image data. This setup reflects a practical clinical
scenario where gene expression must be inferred from morphological
features, presenting challenges similar to those encountered in real-
world diagnostics. To enable consistent and efficient analysis, a
standardized preprocessing workflow was applied across all cancer
types, ensuring uniformity for downstream gene prediction and
classification tasks.

Figure 2
Sample WSI of different classes of tissues: (a) and (b) brain,
(¢) and (d) breast, (e) and (f) lung, (g) and (h) colon, and
(i) and (j) prostate

3.2. Preprocessing

To ensure high-quality input data for the deep learning model, the
following preprocessing steps were implemented:

1) Patch extraction: WSIs were divided into smaller, non-overlapping
patches to facilitate high-resolution analysis.

2) Best patch selection: The most informative tissue regions were
identified to exclude background artifacts and ensure meaningful
feature representation.

3) Stain normalization: Color variations in histological images were
corrected to achieve a consistent stain appearance across the dataset.

These preprocessing steps helped ensure that the selected patches
preserved critical morphological and molecular characteristics while
reducing noise and inconsistencies introduced during image acquisition.

3.2.1. Patch extraction from WSIs

Histopathological WSIs are high-resolution scans that encompass
both diagnostically relevant tissue regions and non-informative
background areas. As processing the entire WSI is computationally
intensive, a patch extraction strategy was adopted to divide each
large image into smaller, standardized, non-overlapping patches of
256x256 pixels, as shown in Figure 3. This method enables localized
feature analysis while maintaining the integrity of tissue architecture.
The mathematical details of the patch extraction process are provided

Figure 3

Process of patch extraction
y Y "




Journal of Computational and Cognitive Engineering

Vol. 00 Iss. 00 2025

by Jewsbury et al. [19]. Each extracted patch preserves critical
histopathological characteristics, allowing the model to concentrate
on cellular and structural patterns. The use of non-overlapping patches
minimizes the redundancy within the dataset and ensures the efficient
utilization of computational resources.

3.2.2. Best patch selection and stain normalization

Histopathological WSIs often exhibit substantial stain variability
due to differences in laboratory procedures, staining chemicals, scanner
hardware, and imaging settings. These variations can hinder automated
deep learning analysis by reducing model generalization and lowering
classification accuracy. To mitigate this issue, stain normalization is
applied to achieve consistent color representation across all images.
The effectiveness of this process depends heavily on selecting an
appropriate reference patch from the dataset to guide the normalization.

Selecting the optimal patch is essential, as it should contain a
high proportion of diagnostically relevant tissue. Randomly chosen
patches may instead capture background regions or artifacts that are
unsuitable for normalization [20]. Using a patch with well-balanced
color distribution promotes stable staining adjustments and prevents the
introduction of noise during processing. This step also helps improve
model robustness by reducing domain shifts between datasets and
ultimately by supporting better classification outcomes.

1) Foreground ratio calculation

The foreground ratio determines the proportion of the
patch occupied by actual tissue to the total background. Grayscale
transformation of the RGB patch (I) is performed to generate an
intensity map Iy, followed by adaptive thresholding in Equation (1):

B(z,y)
1, Igey(z,y) <T (Region of Tissue)
0, Iyey(z,y) >T (Background area)

(M

where T is the threshold value. The foreground ratio (FR) is computed
as

x5 @

FR = Total Pizels

2) Color variance calculation
To find out if the same stain remains among all the patches, the
calculation of variance of RGB channels was performed using Equation

Q3):

Thop = Oh+ 06+ 0 3)
where

0%,0%,0% denotes color variances of red, green, and blue
channels.

A higher value of variance can be interpreted as good uniformity
of staining.

3) Patch scoring and selection
A scoring function, given in Equation (4), was applied to select
the best patch per class:

Score = (FR x 100) + (0% x 0.01) 4)

The selection is done by choosing patches with higher score
values as representative patches.

By performing this step, direct background artifacts can be
removed and this ensures that the patches are retrained only with higher-
quality tissue for performing stain normalization on the entire dataset.

3.2.3. Stain normalization using the best patch

After selecting the optimal path, stain normalization [21] is
performed by applying Principal Component Analysis (PCA) in Optical
Density (OD) space, with results presented in Figure 4.

1) Converting RGB to OD space
Histopathology images follow the Beer-Lambert Law given in
Equation (5), where stain concentrations are represented in OD space:
OD = —log (%) %)
where
1 is the observed intensity
I is the reference intensity (white background)

This transition indicates the separation of the stain for
normalization.

2) Adopting PCA for separating stain
PCA is applied using Equation (6) based on the best patch to
retrieve the vectors of the stain color:

C = PCA(Iop) (6)

where
C'is a stain vector holding important features

3) Normalize target patches

With the selected stain vector, every other patch I target is
transformed into stain-normalized space using the Equations (7) and
(8).

I(I')D =Iop X Cbest_l X Ctm'get (7)

I' = exp (—1I)p) X 255 ®)
where

C,,, denotes the new stain vector transformed with the best
patch, assuming that all remaining patches appear the same with the

best normalized patch.

Figure 4
Sample cancer tissue patches and the corresponding
stain-normalized patches: (a,a') brain, (b,b') lung, (c,c') breast,
and (d,d") prostate
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3.3. Hybrid feature extraction

The complete hybrid feature extraction process is shown in
Figure 5. In Step 1, frequency-based features are initially extracted
using FINN [22] to capture high-frequency structural details from
histopathological images, thus supporting robust analysis of texture and
morphology.

In Step 2, multi-scale deep features are extracted using
EfficientNetBO [23], which support spatial-level understanding of
hierarchies to study the organization of cells and tissue architecture. The
frequency-domain features obtained from FINN and the spatial-domain
features extracted using EfficientNetB0 are combined to form a unified
and comprehensive feature representation. Due to the high dimensionality
of these combined features, IPCA is applied to reduce the feature space
while preserving the most informative components. This reduction not
only improves the computational efficiency but also helps to prevent
overfitting. Ultimately, it enhances the performance in downstream tasks
such as cancer classification and gene expression prediction.

3.3.1. Frequency-based FINN for feature extraction

The conventional feature extraction method is usually based on
the spatial domain, which lacks the significant frequency level of data.
To address this disadvantage, the frequency-based FINN is adopted,
which applies Fourier Transform (FT) on WSIs. This results in the
advantages of capturing both low-level structural features and also
higher-level texture features and enhancing the information of tissue
samples at the molecular level.

1) FT for frequency feature learning
The 2D discrete Fourier transform of an image /(x,y) is given in
Equation (9):

M-1N-1

Flu,) = 3 3 I(z,y)e 2 (3)

=0 y=0

©

where
(xx,y) denotes coordinates from the spatial domain
(u,v) denotes coordinates from the frequency domain
M, N are WxH of the image
Jj is the imaginary unit
By using the Fast Fourier Transform (FFT), all WSIs are
transformed into the frequency domain, so that features at the

molecular level can be captured. This is important for tissue analysis in
classification and gene prediction.

2) FINN-based feature learning

Instead of depending on single convolutional calculations in the
spatial domain, FINN integrates Fourier-based convolution, defined as
in Equation (10):

Figure 5
Architecture for hybrid feature extraction
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F(I*W) = F(I) - F(W) (10)

where
F represents the Fourier transform
I represents the input image
W represents the convolution kernel

* represents the spatial convolution

FINN is designed to detect frequency-specific patterns in
histopathological images, enabling more robust, stain-invariant feature
representation and improved model generalization. By emphasizing
high-frequency components, FINN strengthens the analysis of tissue
textures and captures key morphological details that are crucial for
accurate cancer classification.

3.3.2. EfficientNetB0 for multi-scale feature extraction

To complement the functionality of FINN, EfficientNetB0, a
lightweight CNN optimized for multi-scale feature extraction, was
employed. EfficientNetBO uses a compound scaling approach that
proportionally adjusts the network depth, width, and input resolution.
Thus this ensures high classification accuracy while preserving
computational efficiency.

Through its convolutional layers, the model learns hierarchical
representations that support the identification of cellular structures,
nuclear pleomorphism, and tissue heterogeneity.

Its multi-scale architecture captures both local and global
patterns, which are essential for precise cancer classification. A notable
feature of EfficientNetBO is the mobile inverted bottleneck convolution
(MBConv), which enhances the efficiency of feature learning. The
mathematical formulation of the MBConv transformation is given in
Equation (11).

Y = U(Wezp(md~ X) Wdepthwise- Wproject (1 1)

where
X is the input feature map
W expands the channel dimensions

expand

depiise performs depthwise convolution

W reduces dimensionality

project

o is the activation function (Swish)

The integration of EfficientNetBO enables the extraction of
scale-invariant features, thereby increasing the accuracy of cancer
classification and improving the prediction of gene expression profiles.

3.3.3. Fusion of frequency and spatial features

To combine the strengths of FINN and EfficientNetBO,
feature concatenation is performed, allowing the model to leverage
both frequency-based and deep spatial features. Given the feature
representations from FINN (F va) and EfficientNetB0 (F Eﬂ), the final

hybrid feature representation is given in Equation (12):

Fuyiria = [Frinn || Frgy) (12)
where || represents concatenation. These resulted feature vector acts
as input for downstream classification and gene expression prediction.

3.3.4. Dimensionality reduction using IPCA

The feature vectors generated by FINN and EfficientNetB0
are inherently high-dimensional, which can result in increased
computational demands and a heightened risk of overfitting. To address
this issue, [PCA [24] is employed to reduce the dimensionality of the
feature space while retaining the most critical information.
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Standard PCA requires the entire dataset to be held in memory
(an impractical constraint for large-scale histopathological datasets).
But IPCA provides a significant advantage by processing the data in
smaller mini-batches. This allows for dynamic updates of the principal
components, making it suitable for handling extensive imaging data
efficiently. The incremental update equation is defined in Equation (13):

Wnew = Wprev + AW (13)
where W denotes the modified transformation matrix and AW
maintains the new data contributions.

3.4. Patch-to-WSI feature aggregation

While patch-based feature extraction captures localized
morphological and textural details, the ultimate aim of this work is
to predict gene expression at the WSI level, not at the patch level.
Therefore, patch-level features should be aggregated to achieve a
single, representative feature vector for each WSI, enabling accurate
downstream gene expression prediction and cancer classification.
To achieve this, Mean Feature Pooling is implemented, which
consolidates the extracted patch-level features into a WSI-level feature
representation. Given a WSI W consisting of N extracted patches, each
having a feature vector F, the final WSI representation F is computed
using Equation (14) as follows:

(14)
Fy = %Z?LlFi

Here F denotes the aggregated WSI feature vector, while F,
represents the feature vector corresponding to the i-th patch.

This aggregation strategy ensures that morphological and
textural information from all regions of the slide contribute to a unified
representation, thereby improving the generalizability of the model. By
integrating features in this manner, this approach supports biologically
meaningful predictions and reduces the risk of producing fragmented
or inconsistent results. The aggregated WSI feature vector is then
passed to DeepONet, which maps the histopathological features to
corresponding gene expression profiles, thereby facilitating accurate
cancer classification.

3.5. Gene expression prediction using DeepONet

A key innovation of this study is the direct prediction of gene
expression profiles from histopathological images. Since the dataset
does not provide predefined gene expression labels, pseudo-labels are
first generated using an unsupervised clustering approach. These pseudo
gene expression values are then used to train the DeepONet model,
allowing it to learn the relationship between the features extracted from
the images and their corresponding gene expression profiles.

In this work, DeepONet is adopted to capture the complex
relationship between histopathological image-derived features and the
corresponding gene expression profiles. This selection is motivated
by its strength in handling such mappings, where both the input and
output are high dimensional and possess inherent structural patterns,
such as spatial tissue characteristics and their molecular signatures.
Unlike conventional feedforward or convolutional architecture which
typically focus on direct point-wise predictions, DeepONet adopts a
dual- network arrangement consisting of branch and trunk components
designed to represent relationships between all the functions.

Such a framework is well aligned with our objective, as the
target output (pseudo gene expression) is a dense vector encoding
molecular states, rather than a single categorical label. This structure

enables the network to capture intricate dependencies within the
histopathological domain and to adapt effectively to unseen samples
with diverse morphological variations. Furthermore, prior studies in
biomedical operator learning indicate that DeepONet demonstrates
strong performance in cases where the dataset size is relatively modest
but the feature space is extensive, and this mirrors the characteristics of
the experimental setting.

3.5.1. Pseudo gene label generation

Given that the dataset lacks direct molecular annotations, pseudo
gene expression labels are generated using Agglomerative Clustering.
The idea is that WSIs with similar histological features are likely to
share similar gene expression profiles. Specifically, the following steps
are performed:

1) Clustering: Let X € R¥™X denote the matrix of aggregated WSI
feature vectors, where N is the number of WSIs and d is the feature
dimension (after patch aggregation). Agglomerative clustering is
applied to divide these features into K clusters as shown in Equation
(15) (with £ = 50):

{C1,Cy,...,C} = AgglomerativeClustering(X) (15)

2) One-hot encoding: Each WSI is then assigned a cluster label ¢, (for
i=1, ..., N). The cluster assignments were converted into one-hot
encoded vectors for using as inputs in the regression model. For a
given instance i, the one-hot encoding is expressed as in Equation

(16):

1, Zf C; = k
0, otherwise

Yi = [y, Yizyoovv e ,Yik) where Yix = { (16)
3) Scaling: At the end of the process, a method called scaling is applied,
such as MinMax scaling, to validate that all pseudo gene expression
values fall within the similar range, which help stabilize the training
process of the regression model. For each one-hot vector Y, scaling

is performed as in Equation (17):

Y;—min(Y)

scaled __
Yi " max(Y)—min(Y)

a7

The outcome of this pipeline is a matrix ¥ € R"X that serves as
the pseudo gene expression label for each WSI.

3.5.2. Pseudo-label quality control and bias mitigation

To address potential biases arising from the use of clustering-
based pseudo-labels, several quality control measures were incorporated
into the pipeline. Cluster validity was first assessed using internal
metrics, including the silhouette score and Davies-Bouldin index, to
ensure adequate separation and cohesion of groups. The stability of the
clustering outcomes was examined by varying the algorithm parameters
and repeating the process on bootstrap samples. It ensures in retaining
consistent partitions for downstream analysis.

Recognizing that a single cluster may contain heterogeneous
molecular profiles, intra-cluster variability was quantified by measuring
the variance of predicted pseudo-expression vectors. Clusters showing
evidence of multimodality were further examined and, when necessary,
subdivided through hierarchical or density-based sub-clustering. In
cases where the separation remained ambiguous, soft or probabilistic
labels were assigned, allowing each sample to be associated with
multiple clusters to reflect underlying uncertainty.

Outliers were detected through a two-stage procedure: robust
scaling and IPCA. Both stages were applied before clustering to
reduce the influence of extreme values, followed by density-based or
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isolation methods to flag anomalous points. Such samples were either
excluded from pseudo-label generation or down-weighted during
model training to limit their impact. This combination of validation,
heterogeneity assessment, and outlier handling was intended to improve
label reliability and reduce the propagation of clustering errors into
subsequent gene prediction and classification stages.

3.5.3. DeepONet model architecture

The next stage focuses on establishing a mapping between
histopathological features and pseudo gene expression labels using
DeepONet [25]. DeepONet is specifically designed to learn operator
mappings and is well-suited for this application, as it can effectively
model complex, non-linear relationships between image-derived
features and gene expression profiles. The architecture of DeepONet
comprises two primary branches:

1) Branch network

This part of the network operates on the WSI-level features
generated from the hybrid feature extraction process. For a sample input
feature vector X, the branch network learns a function f,  (X) that
converts the input into a latent format capturing essential morphological
characteristics.

2) Trunk network

This part of the network processes either the same input X or an
auxiliary, if available, to learn the complementary latent representation
S (X); aids in structuring the mapping process; and identifies the
additional dependencies present within the data.

3) Fusion layer
The outputs of the branch and trunk networks are concatenated to
form a fused representation, as shown in Equation (18):

F= Cmcat(fbranch(X)y ftrunk(X)) (18)

The fused feature vector £ is then forwarded through one or more
fully connected layers to generate the final gene expression prediction
using Equation (19):

Y =g(F) (19)

where g(-) represents the fusion and regression layers.

Training objective: To train the model to minimize the discrepancy
among the predicted gene expressions Y and the pseudo labels Y using
the Mean Squared Error (MSE) loss given in Equation (20):

_ 2 (20)
MSE= YV |Y - Yi|

Additionally, the Mean Absolute Error (MAE) is used to measure
performance during training.

3.6. Cancer classification based on predicted gene
expressions

Once gene expressions are predicted, they serve as a surrogate
for the underlying molecular characteristics of the tissue, which are
critical for cancer classification. In this approach, the DeepONet model
outputs a gene expression profile G as a vector of predicted values for
each WSI. Since gene expression data are typically high dimensional,
these predictions are aggregated into a single representative value for
each WSI. For example, the mean gene expression score is computed as
defined in Equation (21):

_ 1
Gagg*_ 71Gi

i1 @n

In this methodology, G, represents the expression value of the
i-th gene and n gives the total number of genes utilized. The aggregated
score, Gugg, reflects the overall molecular level of activity happening
within the tissue and combines the contributions of multiple genes. A
threshold 7'is then determined as the median value of G in the dataset
to facilitate the classification of each WSI. Samples having Gugg value
greater than 7 are classified as cancerous, and the samples having Gagg
value lesser than 7 are classified as non-cancerous.

This thresholding strategy leverages the biological principle
that elevated aggregate gene expression levels often indicate abnormal
cellular activity associated with cancer. By reducing high-dimensional
gene expression predictions to a single, interpretable biomarker and
applying a threshold-based classification, the approach seamlessly
integrates histopathological imaging with molecular profiling. This
integration enhances the robustness of cancer detection and supports
the advancement of more personalized diagnostic approaches.

4. Results and Discussion

This section presents insights into the experimental results
obtained from dataset processing, feature extraction, classification, and
model evaluation. The discussion emphasizes the importance of each
stage and examines its influence on the overall performance and final
outcomes.

4.1. Dataset and preprocessing statistics

The study analyzed 251 WSIs representing five types of cancer:
brain, lung, breast, colon, and prostate. Image data were obtained from
established open-access repositories, including the CAMELYON16
dataset for breast tissue, the DBTA for brain samples, and the ADP
for the remaining organ types. These datasets were selected for their
high-quality H&E-stained images and the absence of associated gene
expression labels, making them well-suited for investigations focused
exclusively on image-derived features.

Each WSI was divided into non-overlapping 256x256 pixel
patches to enable localized feature extraction and reduce computational
complexity. Before patch generation, the dataset was split into training
(80%) and validation (20%) sets to maintain class balance and minimize
bias during model training. A total of 3,831 patches were extracted;
however, not all contained diagnostically relevant tissue. To filter
out patches dominated by background or artifacts, only patches with
a foreground ratio greater than 60% were retained. The final dataset
distribution is summarized in Table 1, ensuring a balanced representation
for both training and evaluation. The preprocessing steps—comprising
patch selection, stain normalization, and dataset partitioning—were

Table 1

Summary of preprocessing statistics
Parameters Description
Total WSIs 251
Patch Size 256%256 pixels
Total Extracted Patches 3,831
Average Patches per WSI 15.26
Percentage of Retained Patches 85%
Training Samples (80%) 2,430
Validation Samples (20%) 1,401
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essential to maintaining the robustness and reliability of the proposed
deep learning framework for gene expression prediction and cancer
classification.

4.1.1. Effectiveness of stain normalization

The effect of stain normalization was evaluated using two
metrics: the reduction in inter-class color variance and the Structural
Similarity Index Measure (SSIM). The reduction in inter-class color
variance measures the extent to which color distribution differences
among tissue classes are minimized, with the aim of achieving a more
consistent stain appearance across all images. SSIM assesses the
structural similarity between images, with a score of 1.00 indicating
perfect correspondence. As reported in Table 2, the findings indicate
that stain normalization effectively reduced staining variability while
preserving the structural integrity of tissue morphology.

4.2. Feature extraction architecture

The proposed model integrates the Fourier Integrated Neural
Network (FINN) and EfficientNetB0 to enable robust feature extraction
from 224x224 RGB histopathological images. Initially, the input image
is processed through casting and transformation layers before being
sent to two distinct branches of the model.

1) FINN branch: This branch comprises a series of transformation
layers followed by a dense layer having 128 neurons, designed to
capture frequency-domain features.

2) EfficientNetB0 branch: EfficientNetBO0, pre-trained on the ImageNet
dataset, extracts hierarchical spatial features, resulting a 7x7x1280
feature map. This feature map undergoes global average pooling to
form a compact representation.

3) Feature fusion and dimensionality reduction: The feature outputs
from both branches are concatenated to form a unified feature vector
with a dimensionality of 29,952. To manage this high-dimensional
data, the feature vector is reduced to 50 principal components using
a PCA-reduced dense layer, as depicted in Figure 6.

Table 2
Evaluation metrics of stain normalization

Metric Training Set Validation Set
Inter-class Color Variance 32.45% 38.14%
Reduction (%)

SSIM Before Normalization 1.00 1.00
SSIM After Normalization 0.60 0.63

4.3. Classification model architecture

The DeepONet classification model predicts gene expression
profiles by processing two distinct feature sets, each comprising 20
features. Its architecture incorporates multiple fully connected layers
along with dropout regularization, a technique used to improve
generalization and reduce the likelihood of overfitting. Figure 7
provides a detailed illustration of the model architecture.

The input feature sets are processed through a series of fully
connected layers interleaved with dropout layers to minimize the risk of
overfitting. The resulting feature representations are then concatenated
and passed to a final fully connected layer, which outputs the predicted
gene expression levels. This architecture is well-suited for effectively
handling the regression task at hand.

4.4. Performance evaluation of the proposed model

The performance of the proposed model was assessed using
training loss and MAE. For this regression-based task, where outputs
are continuous variables such as gene expression levels, an appropriate
loss function was selected to quantify the prediction accuracy. MAE
was chosen as the key evaluation metric because it provides a clear and
interpretable measure of the average deviation between predicted and
actual values.

1) Training Loss: This metric reflects the difference between the
predictions of the model and the actual gene expression values
during training. Lower loss values indicate that the model produces
more accurate predictions.

2) Training MAE: MAE represents the average absolute difference
between predicted and observed gene expression values, providing
a direct and easily interpretable measure of prediction accuracy.

The model was trained for 50 epochs, and the performance
metrics for both training and validation phases are summarized in
Table 3 and visually depicted in Figure 8.

A training loss of 0.0349 indicates that the model effectively
captures the underlying patterns present within the data. Similarly,
the validation metrics comprising a validation loss of 0.0365 and a
validation MAE of 0.0386 remain low, suggesting strong generalization
to previously unseen data.

The results indicate that the model does not show evidence of
overfitting, as training and validation metrics are closely aligned. The
low loss and MAE values observed across both datasets highlight the
ability of the model to accurately predict gene expression levels. This
consistent performance reflects the robustness and suitability of the
model for gene expression prediction tasks across varied data.

Figure 6
Neural network architecture of the hybrid model for feature extraction
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Figure 7
Neural network architecture for classification
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Table 3
Parameters for evaluating the proposed model
Parameter Value
Training Loss 0.0349
Training MAE 0.0448
Validation Loss 0.0365
Validation MAE 0.0386

4.4.1. Predicted gene expression analysis and classification outcomes

Results of Pseudo-Label Quality Control and Bias Mitigation:
Implementing the quality-control strategies described in Section 3.5.2
produced measurable gains in both the consistency and reliability of
the pseudo-labels. When unstable cluster partitions were removed,
internal validity metrics improved significantly: the mean silhouette
score increased from 0.642 to 0.711, indicating stronger within-cluster
cohesion, while the Davies-Bouldin index decreased from 0.895 to
0.683, indicating better separation between clusters.

Robustness checks using parameter variation and bootstrap
resampling confirmed that 94.2 % of samples maintained the same
cluster membership. This stability shows that the pseudo-labels were
largely unaffected by minor fluctuations in clustering parameters.

An examination of the pseudo-expression vectors revealed that
some clusters contained a mixture of molecular patterns. To address
this clustering concern, such clusters were either divided into more
homogeneous subclusters or assigned probabilistic labels. Overall,
12.8 % of the samples received soft label assignments, allowing the
classification stage to reflect the inherent uncertainty in those cases.

Outlier detection flagged 3.6% of samples as anomalous.
Excluding or down-weighting these instances produced consistent

improvements in downstream performance: classification accuracy
increased from 0.918 to 0.931, MAE decreased from 0.037 to 0.031,
and the coefficient of determination (R?) increased from 0.752 to
0.768.

The DeepONet classification model predicts expression levels
for 50 genes in each sample. Positive predicted values correspond
to gene upregulation (increased expression), while negative values
indicate downregulation (decreased expression). These gene expression
predictions serve as inputs for classification tasks that differentiate
cancerous from non-cancerous samples.

Figure 9 presents a histogram of the predicted gene expression
values, revealing a roughly Gaussian distribution centered near zero.
This pattern indicates a balanced mix of upregulated and downregulated
genes. For instance, in Sample 2, predicted expression values range
from —0.0069 to 0.0704, capturing variations in gene activity important
for accurate classification, as summarized in Table 4.

4.4.2. Aggregating gene values

Gene expression data for each sample consist of measurements
across many individual genes. By calculating the average of these
values, a single consolidated metric is obtained that represents the
overall gene activity within the sample. This aggregation simplifies
interpretation and enables easier comparison between samples,
effectively reducing the complexity of managing a high-dimensional
feature space of 50 gene expression values into a more practical,
singular measure.

The classification outcomes based on predicted gene expression
values, summarized in Table 5 (showing a sample of 10 cases), indicate
that samples with higher aggregated gene expression scores tend to be
classified as cancerous (Cancer Label = 1), while those with lower
scores are identified as non-cancerous (Cancer Label =0). For example,
Samples 3 to 9, which exhibit gene expression values above 0.0197, are
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Figure 8
Plots for evaluating the proposed model: (a) MAE and (b) model
loss
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Figure 9
Distribution of predicted gene expression values
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labeled cancerous, while Samples 1, 2, and 10 with lower values are
classified as non-cancerous. This classification encompasses multiple
cancer types, including brain, lung, colon, prostate, and breast cancers,
demonstrating the capability of the model to distinguish cancerous from
non-cancerous cases based on gene expression patterns.

10

Table 4
Outcome of gene expression values for Sample 2 image
Sample 2
0.04672  0.00819  0.07043  0.00934  0.03268  0.03754
0.01240  0.01670  0.02934  0.00993  0.04404  0.03043
0.00672  0.00885  0.00540  0.00066 0.01228  0.04803
-0.00324  0.00812  0.01114  0.02835  0.03043  0.00293
0.3833 0.01341  0.01720  0.01593  0.00399  0.02605
0.01268  0.00551 0.01820 -0.00058 0.01553  0.02890
0.01476  -0.00692  0.02530  -0.00132  0.00228 -0.00160
0.02510  0.02632  0.02695  0.00680  0.00666  0.00219
Table 5

Outcome of cancer classification based on predicted gene
expression values

Aggregated_
Image_ID Gene_Value Cancer_Label Cancer_Type
0 Sample 1 0.017929 0 Brain
1 Sample 2 0.017319 0 Lung
2 Sample 3 0.019730 1 Colon
3 Sample 4 0.020172 1 Prostate
4 Sample 5 0.021896 1 Breast
5 Sample_6 0.023651 1 Brain
6 Sample 7 0.021698 1 Lung
7 Sample 8 0.023560 1 Colon
8 Sample 9 0.021194 1 Prostate
9 Sample 10 0.018005 0 Breast

4.5. Testing the model on existing breast cancer data
with gene expression labels

This stage examines the ability of the model to generalize by
assessing its performance on a real-world dataset containing both
diagnostic labels and gene expression profiles. For this purpose, a
subset of the TCGA-BRCA dataset [26] is used, which consist of H&E-
stained WSIs from breast cancer cases, paired with RNA-Seq-based
gene expression data. This combination enables a direct evaluation of
the model predictions against clinically established outcomes.

Ground truth annotations within the dataset allow for quantitative
analysis of classification accuracy as well as gene expression
prediction performance, highlighting the relevance of the model for
practical diagnostic applications. A total of 136 WSIs were included
in this validation phase. Each slide was subjected to patch extraction
to facilitate deep learning analysis while preserving intricate tissue
structures. An overview of the dataset after patch extraction is given
in Table 6.

The ClassificationDeepONet model predicts 50 gene expression
levels per sample, where positive values denote upregulation and
negative values denote downregulation of gene expression. The
performance of the model is summarized in Table 7.

The proposed model on the testing database shows a good
predictive performance, with a low MAE (0.033) indicating minimal
error and an R? score of 0.765, suggesting a strong correlation with
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Table 6
Summary of preprocessing statistics of the testing model
Data Category Count
Initial WSIs 136

Total Patches Extracted 13,600 images

Training Set 9,520 images
Validation Set 2,040 images

Testing Set 2,040 images

Table 7
Performance outcome of the testing model

Mean Absolute Error (Gene Expression), 0.0454228260608265
R? Score (Gene Expression), 0.765251197275009165

Total WSIs Compared, 136

Close Matches (£0.005), 115

& Percentage of Close Matches, 84.05%

the actual gene expression values. Additionally, 84.05% close matches
highlight the reliability of the model in making accurate predictions.
Figure 10 shows a plot used to evaluate the proposed model. It shows
the distribution of actual and predicted gene expression values for
comparison. The plot seems consistent with better accuracy goals.

The proposed model demonstrates strong classification
performance on the testing dataset, as summarized in Table 8. An
overall accuracy of 93.00% is achieved, with precision, recall, and F1-
score consistently being measured by approximately 0.92, reflecting
balanced effectiveness across both classes. Both macro average and
weighted average further validate the robust reliability of the model,
highlighting its suitability for cancer classification tasks.

Figure 11 visually depicts the model performance, illustrating the
results through the ROC curve and the precision-recall curve.

Table 9 shows the outcome of the proposed model for the
samples, showing the actual and predicted values of both cancer labels
and gene expression for the samples compared with the existing cancer
labels and gene expression values. The gene expression values of the

Figure 10
Performance evaluation of the proposed gene expression
prediction model
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Table 8
Performance measurement outcome of the proposed model on the
testing database

Classification Accuracy: 0.9300

support precision recall  fl-score

85 0 0.91 0.95 0.93

51 1 0.92 0.89 0.91

136 accuracy

136 macro avg 0.92 0.92 0.92

136 weighted avg 0.92 0.92 0.92
Figure 11

Plot for evaluating the proposed model on the testing database: (a)
precison-recall curve and (b) ROC curve
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database are preprocessed and the aggregated values are saved for
each WSI.

4.6. Comparative analysis with existing methods

To evaluate the effectiveness and reliability of the proposed
hybrid model, a comprehensive comparison was carried out with
several established methods in the fields of histopathological cancer
classification and gene expression prediction. This assessment

11
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Table 9
Quantitative evaluation of the proposed model: Actual versus predicted cancer labels and gene expression values
Cancer Label Predicted Cancer Actual Gene Predicted Gene
WSI ID (Actual) Status S. No Expression Expression
0 HE BT24223 0 0 0 0.018700 0.018694
1 HE BT23901 1 1 1 0.018690 0.018694
2 HE BT23450 0 0 2 0.018695 0.018694
3 HE BT23810 0 0 3 0.018693 0.018694
4 HE BT23270 0 0 4 0.016740 0.016739
5 HE BT23377 1 1 5 0.018692 0.018694
6 HE BT23269 0 1 6 0.020400 0.020303
7 HE BT23209 0 0 7 0.018695 0.018694
8 HE BT23268 1 1 8 0.018690 0.018694
9 HE BT23269 0 0 9 0.018693 0.018694

encompasses traditional CNN-based models, advanced operator
learning frameworks, and approaches that integrate transcriptomic data.
Figure 12 and Table 10 provide a comparative overview, summarizing
key parameters such as the feature extraction techniques utilized,
classification accuracy, gene expression prediction performance as
measured by the MAE, R? scores, and the specific datasets employed
across the different methods.

Figure 12
Performance comparison of cancer classification methods

4.7. Comparison with emerging transformer-based
and foundation models

The dual-modality framework presented in this study combines
EfficientNetBO0 with FNN to capture both spatial and frequency-domain
characteristics from histopathological images. These features are then
processed by a DeepONet module, enabling the prediction of pseudo
gene expression profiles before the classification stage. This design
directly addresses clinical scenarios where matched molecular labels
are incomplete or entirely absent.

In recent years, transformer-based and large foundation

models, such as Med-SAM and various Vision Transformer (ViT)
" implementations, have demonstrated strong performance in digital
'% pathology. Their primary strength lies in the ability to model long-
= range dependencies within WSIs through attention mechanisms, often
2 supported by large-scale pretraining. Such models typically offer
2 improved robustness to variations in tissue staining and can adapt well
> . . .
= to diverse datasets when sufficient annotated data are available.
However, these architectures do not inherently resolve the
nNet DeepGene HG-GEP _ OperatorNet  Proposed challenge of missing transcriptomic information. Incorporating
Model molecular imputation into a transformer-driven pipeline typically
M Accuracy - 85.70% 88.10% 90.20% 91.30% 93.00% requires an additional processing stage or a dedicated learning
W R*Score  0.62 0.71 0.73 0.74 0.765 . .
component. In contrast, the present approach incorporates this
Table 10
Comparative analysis with existing methods
Feature Extraction MAE (Gene
Method Name Technique Dataset Used Accuracy Expression) R? Score
nNet [2] VGG16-based CNN Kaggle Colorectal Histology 85.7% 0.078 0.62
(spatial features only) Images
DeepGene [12] ResNet with dense layers TCGA Breast WSIs paired 88.1% 0.052 0.71
(image to RNA-Seq) with RNA-Seq
HG-GEP [13] Hypergraph Neural TCGA + METABRIC (gene 90.2% 0.041 0.73
Networks on histology expression + pathology)
OperatorNet [22] DeepONet with Public Breast WSIs with 91.3% 0.038 0.74
PCA-reduced features pseudo gene labels
Proposed Model FINN (frequency) + Multi-class WSIs (brain, 93.0% 0.045 0.765
(Hybrid-FINN-EfficientNet-DeepONet)  EfficientNetBO (spatial) +  breast, colon, lung, prostate)
IPCA + DeepONet + breast testing dataset
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Table 11
Comparative analysis with transformer-based and foundation models

Proposed Dual-Modality (EfficientNetB0 + FNN +

Aspect DeepONet)

Transformer/Foundation Models (e.g., Med-SAM,
ViT variants)

Primary objective
then classify cancer types

Handling missing

molecular labels

Global context modeling

Data and compute needs

Robustness to domain
shift

Best use case

molecular signal

and constrained compute

Complementarity
interpretation

Predict pseudo gene expression from images and
Built-in via DeepONet (image—pseudo-expression)

Moderate: patch aggregation + frequency features

Lower to moderate: practical on modest datasets
Moderate: improved by augmentation and explicit
Clinical settings with limited paired transcriptomics

Directly provides molecular signals for downstream

Learn large-scale image representations for tasks such
as segmentation/classification

Not inherent; requires separate imputation or fusion
strategies

Strong: self-attention captures long-range dependencies
Higher: benefits from large pretraining corpora and
compute

High with transfer learning or large domain-specific
pretraining

Settings with large annotated/pretraining datasets or
when global context is critical

Excellent image encoders that could enhance the pipe-
line if combined

functionality natively through the operator-learning capabilities of
DeepONet, enabling direct mapping from image features to molecular
profiles. While this may trade some of the global context-modeling
capacity of the transformers, it provides a practical advantage in
situations where molecular data are sparse.

A logical extension of this work would be to merge transformer-
based encoders with the current dual-modality design, thereby combining
the transformers’ ability to capture rich contextual relationships with
DeepONet’s strength in handling incomplete molecular data. Such a
hybrid system could potentially leverage the benefits of both paradigms
for more robust cancer classification. Table 11 provides a summary of
the comparisons for various emerging models.

5. Conclusion

This research introduces a novel hybrid deep learning framework
that combines histopathological image analysis with gene expression
prediction to facilitate cancer classification. Through the integration
of FNN and EfficientNetBO, the model successfully captures both
frequency-based and multi-scale spatial features from WSIs. These
extracted features were subjected to dimensionality reduction via
IPCA and aggregated at the WSI level to enable gene expression
prediction through the DeepONet architecture, effectively linking tissue
morphology with transcriptomic profiles.

The proposed framework achieves strong predictive
performance, with a low MAE of 0.033 and an R? score of 0.765 in gene
expression prediction. Additionally, the model demonstrates an overall
classification accuracy of 93.00%, with balanced precision, recall, and
F1-scores of 0.92, indicating reliable differentiation between cancerous
and non-cancerous samples.

By integrating deep learning-based histopathology with molecular
inference, this approach offers a scalable, Al-driven solution suitable
for real-time cancer diagnostics. The synergy between digital pathology
and molecular profiling enhances predictive capabilities and supports
precision medicine, potentially paving the way for more personalized
and effective cancer treatment strategies. Future research directions
may involve expanding the model with larger datasets, incorporating
multimodal genomic information, and advancing interpretability to
promote clinical implementation.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

Data are available from the corresponding author upon reason-
able request.

Author Contribution Statement

Anju Das: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Resources, Data curation,
Writing — original draft, Visualization. Neelima Nizampatnam:
Conceptualization, Methodology, Software, Validation, Formal analy-
sis, Investigation, Resources, Data curation, Writing — original draft.
Somnath Ganguly: Investigation, Data curation, Writing — review &
editing, Visualization, Supervision, Project administration. Joon Ho
Choi: Validation, Investigation, Writing — review & editing, Visualiza-
tion, Supervision, Project administration.

References

[1] Aswathy, M. A. & Jagannath, M. (2017). Detection of breast
cancer on digital histopathology images: Present status and fu-
ture possibilities. Informatics in Medicine Unlocked, 8, 74-79.
https://doi.org/10.1016/j.imu.2016.11.001

[2] Schmauch, B., Romagnoni, A., Pronier, E., Saillard, C., Maill¢,
P., Calderaro, J., ..., & Wainrib, G. (2020). A deep learning
model to predict RNA-SEquation expression of tumours from
whole slide images. Nature Communications, 11(1), 3877.
https://doi.org/10.1038/s41467-020-17678-4

[3] Alharbi, F. & Vakanski, A. (2023). Machine learn-
ing methods for cancer classification using gene ex-
pression data: A review. Bioengineering, 10(2), 173.

https://doi.org/10.3390/bioengineering 10020173

[4] Saillard, C., Schmauch, B., Laifa, O., Moarii, M., Toldo, S.,
Zaslavskiy, M., ..., & Calderaro, J. (2020). Predicting surviv-
al after hepatocellular carcinoma resection using deep learn-
ing on histological slides. Hepatology, 72(6), 2000-2013.
https://doi.org/10.1002/hep.31207

[5]1 Merritt, C. R., Ong, G. T., Church, S. E., Barker, K., Danaher, P.,
Geiss, G., ..., & Beechem, J. M. (2020). Multiplex digital spatial

13


https://doi.org/10.1016/j.imu.2016.11.001
https://doi.org/10.1038/s41467-020-17678-4
https://doi.org/10.3390/bioengineering10020173
https://doi.org/10.1002/hep.31207

Journal of Computational and Cognitive Engineering

Vol. 00

Iss. 00 2025

[11]

[12]

[14]

[16]

14

profiling of proteins and RNA in fixed tissue. Nature Biotechnol-
ogy, 38(5), 586—599. https://doi.org/10.1038/s41587-020-0472-9
Wulezyn, E., Steiner, D. F., Xu, Z., Sadhwani, A., Wang,
H., Flament-Auvigne, 1., ..., & Stumpe, M. C. (2020). Deep
learning-based survival prediction for multiple cancer types
using histopathology images. PLOS ONE, 15(6), ¢0233678.
https://doi.org/10.1371/journal.pone.0233678

Mohamed, T. 1. A., Ezugwu, A. E., Fonou-Dombeu, J. V.,
Ikotun, A. M., & Mohammed, M. (2023). A bio-inspired con-
volution neural network architecture for automatic breast
cancer detection and classification using RNA-SEqua-
tion gene expression data. Scientific Reports, 73(1), 14644.
https://doi.org/10.1038/s41598-023-41731-z

Esfahani, M. S., Hamilton, E. G., Mehrmohamadi, M.,
Nabet, B. Y., Alig, S. K., King, D. A., ..., & Alizadeh, A. A.
(2022). Inferring gene expression from cell-free DNA frag-
mentation profiles. Nature Biotechnology, 40(4), 585-597.
https://doi.org/10.1038/s41587-022-01222-4

Chen, L., Zeng, H., Zhang, M., Luo, Y., & Ma, X. (2021). His-
topathological image and gene expression pattern analysis for
predicting molecular features and prognosis of head and neck
squamous cell carcinoma. Cancer Medicine, 10(13), 4615-4628.
https://doi.org/10.1002/cam4.3965

Mirzaev, N. & Meliev, F. (2024). Investigation of histological
image classification methods using different feature extraction
techniques. American Journal of Artificial Intelligence, 8(2),
41-47. https://doi.org/10.11648/j.2jai.20240802.12

Runz, M., Rusche, D., Schmidt, S., Weihrauch, M. R.,
Hesser, J.,, & Weis, C.-A. (2021). Normalization of HE-
stained histological images using cycle consistent genera-
tive adversarial networks. Diagnostic Pathology, 16(1), 71.
https://doi.org/10.1186/s13000-021-01126-y

Rahaman, M. M., Millar, E. K. A., & Meijering, E. (2023). Breast
cancer histopathology image-based gene expression prediction
using spatial transcriptomics data and deep learning. Scientific Re-
ports, 13(1), 13604. https://doi.org/10.1038/s41598-023-40219-0
Li, B., Zhang, Y., Wang, Q., Zhang, C., Li, M., Wang, G., & Song,
Q. (2024). Gene expression prediction from histology images via
hypergraph neural networks. Briefings in Bioinformatics, 25(6),
bbae500. https://doi.org/10.1093/bib/bbae500

Murchan, P., O’Brien, C., O’Connell, S., McNevin, C. S.,
Baird, A.-M., Sheils, O., .., & Finn, S. P. (2021). Deep
learning of histopathological features for the prediction
of tumour molecular genetics. Diagnostics, 11(8), 1406.
https://doi.org/10.3390/diagnostics 11081406

Madusanka, N., Jayalath, P., Fernando, D., Yasakethu, L.,
& Lee, B.-1. (2023). Impact of H&E stain normalization on
deep learning models in cancer image classification: Perfor-
mance, complexity, and trade-offs. Cancers, 15(16), 4144.
https://doi.org/10.3390/cancers15164144

Ehteshami Bejnordi, B., Veta, M., Johannes van Diest, P., van Gin-
neken, B., Karssemeijer, N., Litjens, G., ..., & Venancio, R. (2017).

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

(23]

[26]

Diagnostic assessment of deep learning algorithms for detection
of lymph node metastases in women with breast cancer. JAMA,
318(22),2199-2210. https://doi.org/10.1001/jama.2017.14585
Bankhead, P.,, Loughrey, M. B., Fernandez, J. A.,
Dombrowski, Y., McArt, D. G., Dunne, P. D., ..., & Hamilton,
P. W. (2017). QuPath: Open source software for digital
pathology image analysis. Scientific Reports, 7(1), 16878.
https://doi.org/10.1038/s41598-017-17204-5
Roetzer-Pejrimovsky, T., Moser, A.-C., Atli, B., Vogel, C. C.,
Mercea, P. A., Prihoda, R., ..., & Woehrer, A. (2022). The digital
brain tumour atlas, an open histopathology resource. Scientific
Data, 9(1), 55. https://doi.org/10.1038/s41597-022-01157-0
Jewsbury, R., Bhalerao, A., & Rajpoot, N. (2021). A quadtree im-
age representation for computational pathology. In 2021 IEEE/
CVF International Conference on Computer Vision Workshops,
648-656. https://doi.org/10.1109/ICCVW54120.2021.00078
Salvi, M., Molinari, F., Acharya, U. R., Molinaro, L., &
Meiburger, K. M. (2021). Impact of stain normalization and patch
selection on the performance of convolutional neural networks
in histological breast and prostate cancer classification. Comput-
er Methods and Programs in Biomedicine Update, 1, 100004.
https://doi.org/10.1016/j.cmpbup.2021.100004

Hoque, M. Z., Keskinarkaus, A., Nyberg, P., & Seppinen,
T. (2024). Stain normalization methods for histopathol-
ogy image analysis: A comprehensive review and exper-
imental comparison. [Information Fusion, 102, 101997.
https://doi.org/10.1016/j.inffus.2023.101997

Peng, P, Xie, L., & Wei, H. (2021). A deep fourier neural network
for seizure prediction using convolutional neural network and ra-
tios of spectral power. International Journal of Neural Systems,
31(08), 2150022. https://doi.org/10.1142/S0129065721500222
Poudel, S. & Lee, S.-W. (2021). Deep multi-scale attentional fea-
tures for medical image segmentation. Applied Soft Computing,
109, 107445. https://doi.org/10.1016/j.as0c.2021.107445
Goémez-Pedrero, J. A., Estrada, J. C., Alonso, J., Quiroga, J.
A., & Vargas, J. (2022). Incremental PCA algorithm for fringe
pattern demodulation. Optics Express, 30(8), 12278-12293.
https://doi.org/10.1364/OE.452463

Kag, V., Sarkar, D. R., Pal, B., & Goswami, S. (2024).
Learning hidden physics and system parameters with
deep operator networks. arXiv  Preprint: 2412.05133.
https://doi.org/10.48550/ARXIV.2412.05133

The Cancer Genome Atlas Network. (2012). Comprehensive
molecular portraits of human breast tumours. Nature, 490(7418),
61-70. https://doi.org/10.1038/nature11412

for

How to Cite: Das, A., Nizampatnam, N., Ganguly, S., & Choi, J. H. (2025). From
Tissue
Classification
Expression Pattern. Journal of Computational and Cognitive Engineering.
https://doi.org/10.47852/bonview]CCE52026442

Image to Transcriptomics: Dual Modality Deep Learning Model

of Cancer Using Histopathological Images and Gene



https://doi.org/10.1038/s41587-020-0472-9
https://doi.org/10.1371/journal.pone.0233678
https://doi.org/10.1038/s41598-023-41731-z
https://doi.org/10.1038/s41587-022-01222-4
https://doi.org/10.1002/cam4.3965
https://doi.org/10.11648/j.ajai.20240802.12
https://doi.org/10.1186/s13000-021-01126-y
https://doi.org/10.1038/s41598-023-40219-0
https://doi.org/10.1093/bib/bbae500
https://doi.org/10.3390/diagnostics11081406
https://doi.org/10.3390/cancers15164144
https://doi.org/10.1001/jama.2017.14585
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1038/s41597-022-01157-0
https://doi.org/10.1109/ICCVW54120.2021.00078
https://doi.org/10.1016/j.cmpbup.2021.100004
https://doi.org/10.1016/j.inffus.2023.101997
https://doi.org/10.1142/S0129065721500222
https://doi.org/10.1016/j.asoc.2021.107445
https://doi.org/10.1364/OE.452463
https://doi.org/10.48550/ARXIV.2412.05133
https://doi.org/10.1038/nature11412
https://doi.org/10.47852/bonviewJCCE52026442

