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Abstract: A primary method for cancer detection involves the examination of histopathological images. However, traditional approaches to 
analyze these images are time-consuming and prone to errors. With recent advancements in deep learning, researchers are increasingly leveraging 
these models to enhance the accuracy and efficiency of histopathological image analysis. In this study, a deep learning-based model is proposed for 
multi-class cancer classification that integrates gene expression prediction with histopathological image analysis to enhance diagnostic precision 
and streamline the detection process. The model is intended for use in real-world clinical settings where it is a challenge to classify data correctly 
because predefined sequences of gene expression and cancer labels are often missing. Fourier Neural Networks (FNN) and EfficientNetB0 are 
utilized to get a full set of spatial and frequency-based features from Whole Slide Images (WSIs). To select the best set of features, Incremental 
Principal Component Analysis (IPCA) was used, and the resulting representations were subsequently reconstructed from patch-level features to 
WSI representations. A DeepONet model, one of the advanced deep learning models, was selected for mapping the generated histopathological 
image features to predict gene expression patterns. After training, the model achieved 93% accuracy in classifying cancer types with a 0.92 precision 
value indicating acceptable performance with respect to multiple cancer classifications. Additionally, the model achieved strong performance in 
gene expression prediction, with a Mean Absolute Error (MAE) of 0.033 and an R² score of 0.765, demonstrating its reliability in capturing gene 
expression patterns. Addressing real-world challenges such as missing gene expression data or ambiguous cancer-type classifications, the proposed 
Dual Deep Learning Model enhances cancer diagnosis by improving accuracy in oncology. By integrating histopathological image analysis with 
gene expression prediction, the model enables automated clinical decision-making, offering a robust solution for distinguishing between cancerous 
and non-cancerous cases.
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1. Introduction
Histopathological image analysis serves as a foundational method 

for cancer detection, enabling the examination of cellular structures 
and tissue patterns under a microscope. Tissue samples are processed 
using hematoxylin and eosin (H&E) staining, a standard technique that 
highlights morphological features to identify abnormal signs indicative 
of malignancy [1]. Pathologists evaluate nuclear atypia, mitotic activity, 
cytoplasmic characteristics, and tumor-stroma interactions to determine 
cancer presence and severity. However, conventional histopathology 
relies on expert interpretation, resulting in inter-observer variability and 
potential subjectivity.

Digital pathology, combined with artificial intelligence (AI), has 
significantly transformed histopathological workflows by automating 

cancer detection, enhancing diagnostic consistency, and enabling large-
scale image analysis. AI-driven computational pathology facilitates 
automated feature extraction, real-time decision support, and more 
accurate prognostic assessments, ultimately improving diagnostic 
efficiency and reliability [2]. By leveraging large-scale digital pathology 
datasets, AI models can detect subtle morphological variations, 
distinguish benign from malignant tissues, assess tumor grade, and 
identify clinically relevant tissue patterns.

In parallel, gene expression analysis has emerged as a powerful 
tool in cancer detection [3, 4], offering insights into the molecular 
mechanisms that drive oncogenesis. Gene expression profiling measures 
the activity levels of genes within cells or tissues, offering valuable 
insights into cancer biology. Aberrant gene expression patterns often 
serve as early markers of malignancy, assist in tumor classification, 
predict disease progression, and contribute to prognosis. Specific 
gene expression signatures are associated with various cancer types, 
including breast, lung, and colorectal cancers, helping to define tumor 
subtypes and guide personalized treatment decisions.
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Recent advancements in computational biology and artificial 
intelligence have facilitated the incorporation of gene expression data 
into predictive models for cancer classification [5]. Machine learning 
techniques analyze these profiles to identify patterns associated 
with particular cancer types, thereby enhancing the accuracy of 
automated diagnostic systems. Such models complement conventional 
histopathological assessments by providing molecular-level 
perspectives on tumor characteristics, supporting a comprehensive, 
multi-dimensional approach to cancer detection. Moreover, gene 
expression analysis plays a critical role in precision medicine by 
identifying genetic markers related to treatment response, thereby 
informing tailored therapeutic strategies [6].

Combining histopathological image analysis with gene 
expression prediction through AI represents a promising frontier in 
cancer diagnostics [3, 7]. Leveraging deep learning architectures, this 
approach seeks to improve early detection, boost diagnostic accuracy, 
and advance precision oncology. The primary goal of this study is to 
develop an AI-driven framework that integrates histopathological 
imaging with gene expression inference, offering a scalable and cost-
effective solution for cancer classification and prognosis. Such AI-
enabled diagnostic tools [8] have the potential to revolutionize cancer 
detection by bridging traditional histology with molecular oncology, 
ultimately enhancing patient outcomes.

The remainder of this article is organized as follows: Section 
2 reviews related literature on tissue classification techniques and 
deep learning–based cancer detection. Section 3 details the proposed 
hybrid model, including its architecture, feature extraction methods, 
and the integration of Fourier integrated neural network (FINN) and 
EfficientNetB0. Section 3 also describes the dataset, preprocessing 
procedures, and experimental setup employed for training and validation. 
Section 4 presents and analyzes the experimental results,  evaluating 
model performance across different cancer types and benchmarking 
it against existing approaches. Finally, Section 5 summarizes the key 
conclusions and suggests avenues for future research.

2. Literature Review
Recent progress in histopathological image analysis has greatly 

enhanced cancer classification and gene expression prediction. 
Preprocessing techniques, including stain normalization and patch 
extraction, are commonly applied to reduce variability in tissue images 
and improve data consistency. Chen et al. [9], for instance, focused on 
head and neck squamous cell carcinoma (HNSCC) using 2,679 whole 
slide images (WSIs) from The Cancer Genome Atlas (TCGA). In their 
study, grayscale conversion and illumination correction were applied to 
address staining inconsistencies, followed by extraction of 1000×1000 
pixel sub-images. Regions containing more than 50% white background 
were discarded to ensure retention of meaningful tissue areas. Similarly, 
Mirzaev and Meliev [10] analyzed colon histopathological images 
from Kaggle’s Colorectal Histology MNIST dataset, which consists 
of 5,000 H&E-stained images (224×224 pixels) of colorectal cancer 
and normal tissues. Runz et al. [11] introduced a stain normalization 
approach utilizing cycle-consistent generative adversarial networks 
(CycleGANs), which effectively reduces staining variability and 
enhances the robustness of downstream analyses.

After preprocessing, feature extraction becomes a crucial stage 
for capturing morphological characteristics. Earlier methods primarily 
employed handcrafted descriptors, such as texture and shape features. 
For instance, Chen et al. [9] utilized the CellProfiler tool to extract 593 
manually engineered features. In recent years, however, deep learning 
approaches—particularly convolutional neural networks (CNNs)—
have emerged as the preferred choice, owing to their capacity to 
automatically learn complex spatial representations from image 
data. The authors Mirzaev and Meliev [10] experimented with colon 

histopathology images using a CNN model for feature extraction and 
achieved the best results. Similarly, Rahaman et al. [12] used CNN-
extracted morphological and texture features to classify colorectal 
cancer and its subtypes, demonstrating that traditional methods remain 
highly valuable.

Chen et al. [9] achieved a significant improvement in identifying 
HNSCC somatic mutations and their subtypes through the use of 
histopathological features. They have also explored multiple machine 
learning and deep learning classifiers such as random forest (RF), 
logistic regression, and SVM. Li et al. [13] worked on classification of 
cancerous or non-cancerous tissues using gene expression values. In the 
task of colon cancer classification, Murchan et al. [14] also used a CNN, 
similar to Mirzaev and Meliev [10], but achieved higher accuracy.

The real-time challenge in cancer detection during the analysis of 
histopathological images is the absence of gene expression. To address 
this concern, Madusanka et al. [15] merged histopathological features 
with its associated gene co-expression network to detect gene patterns 
for specific tissues. This integrative approach connects morphological 
and molecular data, offering deeper insight into cancer subtypes. 
Emerging methods, including pseudo-labeling strategies based on 
clustering algorithms (such as Agglomerative Clustering), have shown 
promise for inferring gene expression directly from WSIs.

3. Research Methodology
The proposed Dual Modality Deep Learning framework for 

cancer classification integrates histopathological image features with 
gene expression prediction. Starting from whole-slide histopathological 
images (WSIs), a hybrid feature extraction module captures 
morphological characteristics, frequency-domain information, and 
multi-scale representations to facilitate both gene expression inference 
and cancer type identification. By combining advanced computer vision 
methodologies with machine learning algorithms and deep neural 
architectures, this approach aims to improve diagnostic precision. As 
outlined in Figure 1, the workflow begins with data acquisition and 
preprocessing. WSIs are collected and segmented into smaller, non-
overlapping patches of 256×256 pixels, enabling detailed analysis of 
tissue microstructures.

To address variations arising from different staining protocols, 
stain normalization is applied to reduce color discrepancies in 
tissue images. Following preprocessing, the pipeline proceeds with 
feature extraction and dimensionality reduction to derive concise yet 
informative feature representations. The framework integrates two 
specialized deep learning architectures: Fourier Neural Networks 
(FNN) for capturing frequency-domain patterns and EfficientNetB0 for 
extracting multi-scale spatial features from histopathological images. 
Due to the inherently high dimensionality of the extracted features, 
Incremental Principal Component Analysis (IPCA) is employed to 
lower the computational demands while retaining the most salient 
information.
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 Figure 1
Architecture of the dual modality deep learning model
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The refined patch-level features are accumulated on the WSI 
level using a mean pooling strategy, resulting in a single, compact 
feature vector for each image. These new feature vectors are used 
as inputs to predict the gene expressions. For further processing, 
Agglomerative Clustering is applied to generate random labels. For 
training, these features are passed to the DeepONet model. This model 
learns the mapping between the features of WSI and gene expression 
patterns, which then gives us insights into direct predictions from WSI 
of molecular-level information. 

Generally speaking, a gene expression is represented by a 
sequence of numbers. The DeepONet model also generated a set 
of sequence of gene expressions. For ease of computation, all gene 
expressions are aggregated, and each WSI is assigned a single score. The 
threshold method is then applied to the aggregated gene expressions for 
classifying the tissue types. Classification of WSIs adopts a threshold-
based approach, where samples with scores above a defined average 
threshold value are classified as cancerous, while below the threshold are 
categorized as non-cancerous. For gene expression prediction, the Dual 
Modality Deep Learning model was evaluated using standard regression 
metrics, including Mean Squared Error (MSE) and Mean Absolute 
Error (MAE), to quantify prediction accuracy. The performance of the 
DeepONet models was evaluated using metrics including accuracy, 
precision, recall, F1-score, and the area under the receiver operating 
characteristic curve (AUC-ROC). 

To improve the model interpretability, additional techniques 
such as Grad-CAM and SHAP are incorporated, highlighting the image 
regions that contribute most to cancer cell predictions. This integrated 
workflow offers a comprehensive, scalable, and AI-driven approach 
that effectively links histopathological imaging with gene expression 
profiling, thereby enhancing the accuracy and reliability of cancer 
classification.

3.1. Materials and sources
The Dual Modality Deep Learning model primarily utilizes WSIs 

of both cancerous and non-cancerous tissues, particularly focusing on 
cases where gene expression data are unavailable. Publicly available 
datasets were systematically sourced from various digital pathology 
repositories and web platforms. The selection criteria prioritized image 
quality, diversity of cancer classes, and the absence of accompanying 
gene expression profiles or pre-existing cancer labels to ensure unbiased 
model training.

The WSIs of breast cancer were sourced from the well-known 
CAMELYON16 [16] challenge dataset. A small subset of the dataset 
was used in this study. The WSIs include lymph node sections captured 
in HD for metastasis identification. For multi-organ tissue samples, 
including the colon, lung, and prostate, images were acquired using the 
Atlas of Digital Pathology (ADP) [17], a publicly available collection of 
histological images specifically designed for computational analysis in 
cancer diagnosis. Brain tumor data, such as gliomas and meningiomas, 
were collected from the Digital Brain Tumour Atlas (DBTA) [18]. The 
DBTA provides expertly annotated brain tissue sections without the 
need for molecular profiling. Figure 2 shows sample images from each 
class.

Unlike datasets that include predefined molecular or gene 
expression annotations, the collections used in this study consist solely 
of histopathological image data. This setup reflects a practical clinical 
scenario where gene expression must be inferred from morphological 
features, presenting challenges similar to those encountered in real-
world diagnostics. To enable consistent and efficient analysis, a 
standardized preprocessing workflow was applied across all cancer 
types, ensuring uniformity for downstream gene prediction and 
classification tasks.

3.2. Preprocessing
To ensure high-quality input data for the deep learning model, the 

following preprocessing steps were implemented:

1)  Patch extraction: WSIs were divided into smaller, non-overlapping 
patches to facilitate high-resolution analysis.

2)  Best patch selection: The most informative tissue regions were 
identified to exclude background artifacts and ensure meaningful 
feature representation.

3)  Stain normalization: Color variations in histological images were 
corrected to achieve a consistent stain appearance across the dataset.

These preprocessing steps helped ensure that the selected patches 
preserved critical morphological and molecular characteristics while 
reducing noise and inconsistencies introduced during image acquisition.

3.2.1. Patch extraction from WSIs
Histopathological WSIs are high-resolution scans that encompass 

both diagnostically relevant tissue regions and non-informative 
background areas. As processing the entire WSI is computationally 
intensive, a patch extraction strategy was adopted to divide each 
large image into smaller, standardized, non-overlapping patches of 
256×256 pixels, as shown in Figure 3. This method enables localized 
feature analysis while maintaining the integrity of tissue architecture. 
The mathematical details of the patch extraction process are provided 
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Figure 2
Sample WSI of different classes of tissues: (a) and (b) brain, 

(c) and (d) breast, (e) and (f) lung, (g) and (h) colon, and  
(i) and (j) prostate

 Figure 3
Process of patch extraction
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by Jewsbury et al. [19]. Each extracted patch preserves critical 
histopathological characteristics, allowing the model to concentrate 
on cellular and structural patterns. The use of non-overlapping patches 
minimizes the redundancy within the dataset and ensures the efficient 
utilization of computational resources.

3.2.2. Best patch selection and stain normalization
Histopathological WSIs often exhibit substantial stain variability 

due to differences in laboratory procedures, staining chemicals, scanner 
hardware, and imaging settings. These variations can hinder automated 
deep learning analysis by reducing model generalization and lowering 
classification accuracy. To mitigate this issue, stain normalization is 
applied to achieve consistent color representation across all images. 
The effectiveness of this process depends heavily on selecting an 
appropriate reference patch from the dataset to guide the normalization. 

Selecting the optimal patch is essential, as it should contain a 
high proportion of diagnostically relevant tissue. Randomly chosen 
patches may instead capture background regions or artifacts that are 
unsuitable for normalization [20]. Using a patch with well-balanced 
color distribution promotes stable staining adjustments and prevents the 
introduction of noise during processing. This step also helps improve 
model robustness by reducing domain shifts between datasets and 
ultimately by supporting better classification outcomes.

1)  Foreground ratio calculation
The foreground ratio determines the proportion of the 

patch occupied by actual tissue to the total background. Grayscale 
transformation of the RGB patch (I) is performed to generate an 
intensity map , followed by adaptive thresholding in Equation (1):

where T is the threshold value. The foreground ratio (FR) is computed 
as

2)  Color variance calculation
To find out if the same stain remains among all the patches, the 

calculation of variance of RGB channels was performed using Equation 
(3):

where
 denotes color variances of red, green, and blue 

channels.
A higher value of variance can be interpreted as good uniformity 

of staining.

3)  Patch scoring and selection
A scoring function, given in Equation (4), was applied to select 

the best patch per class:

The selection is done by choosing patches with higher score 
values as representative patches.

By performing this step, direct background artifacts can be 
removed and this ensures that the patches are retrained only with higher-
quality tissue for performing stain normalization on the entire dataset.

3.2.3. Stain normalization using the best patch
After selecting the optimal path, stain normalization [21] is 

performed by applying Principal Component Analysis (PCA) in Optical 
Density (OD) space, with results presented in Figure 4.

1)  Converting RGB to OD space 
Histopathology images follow the Beer-Lambert Law given in 

Equation (5), where stain concentrations are represented in OD space:

where
I is the observed intensity

 is the reference intensity (white background)
This transition indicates the separation of the stain for 

normalization.

2)  Adopting PCA for separating stain
PCA is applied using Equation (6) based on the best patch to 

retrieve the vectors of the stain color:

where
C is a stain vector holding important features

3)  Normalize target patches   
With the selected stain vector, every other patch I_target is 

transformed into stain-normalized space using the Equations (7) and 
(8). 

where
Cbest denotes the new stain vector transformed with the best 

patch, assuming that all remaining patches appear the same with the 
best normalized patch.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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 Figure 4
Sample cancer tissue patches and the corresponding 

stain-normalized patches:  (a,a') brain, (b,b') lung, (c,c') breast, 
and (d,d') prostate
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3.3. Hybrid feature extraction
The complete hybrid feature extraction process is shown in 

Figure 5. In Step 1, frequency-based features are initially extracted 
using FINN [22] to capture high-frequency structural details from 
histopathological images, thus supporting robust analysis of texture and 
morphology. 

In Step 2, multi-scale deep features are extracted using 
EfficientNetB0 [23], which support spatial-level understanding of 
hierarchies to study the organization of cells and tissue architecture. The 
frequency-domain features obtained from FINN and the spatial-domain 
features extracted using EfficientNetB0 are combined to form a unified 
and comprehensive feature representation. Due to the high dimensionality 
of these combined features, IPCA is applied to reduce the feature space 
while preserving the most informative components. This reduction not 
only improves the computational efficiency but also helps to prevent 
overfitting. Ultimately, it enhances the performance in downstream tasks 
such as cancer classification and gene expression prediction.

3.3.1. Frequency-based FINN for feature extraction

The conventional feature extraction method is usually based on 
the spatial domain, which lacks the significant frequency level of data. 
To address this disadvantage, the frequency-based FINN is adopted, 
which applies Fourier Transform (FT) on WSIs. This results in the 
advantages of capturing both low-level structural features and also 
higher-level texture features and enhancing the information of tissue 
samples at the molecular level. 

1)  FT for frequency feature learning
The 2D discrete Fourier transform of an image I(x,y) is given in 

Equation (9):

where
(x,y) denotes coordinates from the spatial domain
(u,v) denotes coordinates from the frequency domain
M, N are W×H of the image
j is the imaginary unit

By using the Fast Fourier Transform (FFT), all WSIs are 
transformed into the frequency domain, so that features at the 
molecular level can be captured. This is important for tissue analysis in 
classification and gene prediction.

2)  FINN-based feature learning
Instead of depending on single convolutional calculations in the 

spatial domain, FINN integrates Fourier-based convolution, defined as 
in Equation (10):

where
F represents the Fourier transform
I represents the input image
W represents the convolution kernel
∗ represents the spatial convolution

FINN is designed to detect frequency-specific patterns in 
histopathological images, enabling more robust, stain-invariant feature 
representation and improved model generalization. By emphasizing 
high-frequency components, FINN strengthens the analysis of tissue 
textures and captures key morphological details that are crucial for 
accurate cancer classification.

3.3.2. EfficientNetB0 for multi-scale feature extraction
To complement the functionality of FINN, EfficientNetB0, a 

lightweight CNN optimized for multi-scale feature extraction, was 
employed. EfficientNetB0 uses a compound scaling approach that 
proportionally adjusts the network depth, width, and input resolution. 
Thus this ensures high classification accuracy while preserving 
computational efficiency. 

Through its convolutional layers, the model learns hierarchical 
representations that support the identification of cellular structures, 
nuclear pleomorphism, and tissue heterogeneity. 

Its multi-scale architecture captures both local and global 
patterns, which are essential for precise cancer classification. A notable 
feature of EfficientNetB0 is the mobile inverted bottleneck convolution 
(MBConv), which enhances the efficiency of feature learning. The 
mathematical formulation of the MBConv transformation is given in 
Equation (11).

where
X is the input feature map
Wexpand expands the channel dimensions
Wdepthwise performs depthwise convolution
Wproject reduces dimensionality
σ is the activation function (Swish)

The integration of EfficientNetB0 enables the extraction of 
scale-invariant features, thereby increasing the accuracy of cancer 
classification and improving the prediction of gene expression profiles.

3.3.3. Fusion of frequency and spatial features
To combine the strengths of FINN and EfficientNetB0, 

feature concatenation is performed, allowing the model to leverage 
both frequency-based and deep spatial features. Given the feature 
representations from FINN (FFINN) and EfficientNetB0 (FEff), the final 
hybrid feature representation is given in Equation (12):

where ∣∣ represents concatenation. These resulted feature vector acts 
as input for downstream classification and gene expression prediction.

3.3.4. Dimensionality reduction using IPCA
The feature vectors generated by FINN and EfficientNetB0 

are inherently high-dimensional, which can result in increased 
computational demands and a heightened risk of overfitting. To address 
this issue, IPCA [24] is employed to reduce the dimensionality of the 
feature space while retaining the most critical information.

(9)

(10)

(11)

(12)

5

 Figure 5
Architecture for hybrid feature extraction 
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Standard PCA requires the entire dataset to be held in memory 
(an impractical constraint for large-scale histopathological datasets). 
But IPCA provides a significant advantage by processing the data in 
smaller mini-batches. This allows for dynamic updates of the principal 
components, making it suitable for handling extensive imaging data 
efficiently. The incremental update equation is defined in Equation (13):

where Wnew denotes the modified transformation matrix and ΔW 
maintains the new data contributions.

3.4. Patch-to-WSI feature aggregation
While patch-based feature extraction captures localized 

morphological and textural details, the ultimate aim of this work is 
to predict gene expression at the WSI level, not at the patch level. 
Therefore, patch-level features should be aggregated to achieve a 
single, representative feature vector for each WSI, enabling accurate 
downstream gene expression prediction and cancer classification. 
To achieve this, Mean Feature Pooling is implemented, which 
consolidates the extracted patch-level features into a WSI-level feature 
representation. Given a WSI W consisting of N extracted patches, each 
having a feature vector Fi, the final WSI representation Fw is computed 
using Equation (14) as follows:

Here Fw denotes the aggregated WSI feature vector, while Fi 
represents the feature vector corresponding to the i-th patch. 

This aggregation strategy ensures that morphological and 
textural information from all regions of the slide contribute to a unified 
representation, thereby improving the generalizability of the model. By 
integrating features in this manner, this approach supports biologically 
meaningful predictions and reduces the risk of producing fragmented 
or inconsistent results. The aggregated WSI feature vector is then 
passed to DeepONet, which maps the histopathological features to 
corresponding gene expression profiles, thereby facilitating accurate 
cancer classification.

3.5. Gene expression prediction using DeepONet
A key innovation of this study is the direct prediction of gene 

expression profiles from histopathological images. Since the dataset 
does not provide predefined gene expression labels, pseudo-labels are 
first generated using an unsupervised clustering approach. These pseudo 
gene expression values are then used to train the DeepONet model, 
allowing it to learn the relationship between the features extracted from 
the images and their corresponding gene expression profiles.

In this work, DeepONet is adopted to capture the complex 
relationship between histopathological image-derived features and the 
corresponding gene expression profiles. This selection is motivated 
by its strength in handling such mappings, where both the input and 
output are high dimensional and possess inherent structural patterns, 
such as spatial tissue characteristics and their molecular signatures. 
Unlike conventional feedforward or convolutional architecture which 
typically focus on direct point-wise predictions, DeepONet adopts a 
dual- network arrangement consisting of branch and trunk components 
designed to represent relationships between all the functions.

Such a framework is well aligned with our objective, as the 
target output (pseudo gene expression) is a dense vector encoding 
molecular states, rather than a single categorical label. This structure 

enables the network to capture intricate dependencies within the 
histopathological domain and to adapt effectively to unseen samples 
with diverse morphological variations. Furthermore, prior studies in 
biomedical operator learning indicate that DeepONet demonstrates 
strong performance in cases where the dataset size is relatively modest 
but the feature space is extensive, and this mirrors the characteristics of 
the experimental setting.

3.5.1. Pseudo gene label generation
Given that the dataset lacks direct molecular annotations, pseudo 

gene expression labels are generated using Agglomerative Clustering. 
The idea is that WSIs with similar histological features are likely to 
share similar gene expression profiles. Specifically, the following steps 
are performed:

1)  Clustering: Let X ∈ ℝNxK denote the matrix of aggregated WSI 
feature vectors, where N is the number of WSIs and d is the feature 
dimension (after patch aggregation). Agglomerative clustering is 
applied to divide these features into K clusters as shown in Equation 
(15) (with k = 50):

2)  One-hot encoding: Each WSI is then assigned a cluster label ci (for 
i = 1, …, N). The cluster assignments were converted into one-hot 
encoded vectors for using as inputs in the regression model. For a 
given instance i, the one-hot encoding is expressed as in Equation 
(16):

 where 

3)  Scaling: At the end of the process, a method called scaling is applied, 
such as MinMax scaling, to validate that all pseudo gene expression 
values fall within the similar range, which help stabilize the training 
process of the regression model. For each one-hot vector Yi, scaling 
is performed as in Equation (17):

The outcome of this pipeline is a matrix Y ∈ ℝNxK that serves as 
the pseudo gene expression label for each WSI.

3.5.2. Pseudo-label quality control and bias mitigation
To address potential biases arising from the use of clustering-

based pseudo-labels, several quality control measures were incorporated 
into the pipeline. Cluster validity was first assessed using internal 
metrics, including the silhouette score and Davies-Bouldin index, to 
ensure adequate separation and cohesion of groups. The stability of the 
clustering outcomes was examined by varying the algorithm parameters 
and repeating the process on bootstrap samples. It ensures in retaining 
consistent partitions for downstream analysis.

Recognizing that a single cluster may contain heterogeneous 
molecular profiles, intra-cluster variability was quantified by measuring 
the variance of predicted pseudo-expression vectors. Clusters showing 
evidence of multimodality were further examined and, when necessary, 
subdivided through hierarchical or density-based sub-clustering. In 
cases where the separation remained ambiguous, soft or probabilistic 
labels were assigned, allowing each sample to be associated with 
multiple clusters to reflect underlying uncertainty.

Outliers were detected through a two-stage procedure: robust 
scaling and IPCA. Both stages were applied before clustering to 
reduce the influence of extreme values, followed by density-based or 

(13)

(14)

(15)

(16)

(17)
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isolation methods to flag anomalous points. Such samples were either 
excluded from pseudo-label generation or down-weighted during 
model training to limit their impact. This combination of validation, 
heterogeneity assessment, and outlier handling was intended to improve 
label reliability and reduce the propagation of clustering errors into 
subsequent gene prediction and classification stages.

3.5.3. DeepONet model architecture
The next stage focuses on establishing a mapping between 

histopathological features and pseudo gene expression labels using 
DeepONet [25]. DeepONet is specifically designed to learn operator 
mappings and is well-suited for this application, as it can effectively 
model complex, non-linear relationships between image-derived 
features and gene expression profiles. The architecture of DeepONet 
comprises two primary branches:

1)  Branch network
This part of the network operates on the WSI-level features 

generated from the hybrid feature extraction process. For a sample input 
feature vector X, the branch network learns a function fbranch (X) that 
converts the input into a latent format capturing essential morphological 
characteristics.

2)  Trunk network
This part of the network processes either the same input X or an 

auxiliary, if available, to learn the complementary latent representation 
ftrunk (X); aids in structuring the mapping process; and identifies the 
additional dependencies present within the data.

3)  Fusion layer
The outputs of the branch and trunk networks are concatenated to 

form a fused representation, as shown in Equation (18):

The fused feature vector F is then forwarded through one or more 
fully connected layers to generate the final gene expression prediction 
using Equation (19):

where g(⋅) represents the fusion and regression layers.
Training objective: To train the model to minimize the discrepancy 

among the predicted gene expressions  and the pseudo labels Y using 
the Mean Squared Error (MSE) loss given in Equation (20):

Additionally, the Mean Absolute Error (MAE) is used to measure 
performance during training.

3.6. Cancer classification based on predicted gene 
expressions

Once gene expressions are predicted, they serve as a surrogate 
for the underlying molecular characteristics of the tissue, which are 
critical for cancer classification. In this approach, the DeepONet model 
outputs a gene expression profile G as a vector of predicted values for 
each WSI. Since gene expression data are typically high dimensional, 
these predictions are aggregated into a single representative value for 
each WSI. For example, the mean gene expression score is computed as 
defined in Equation (21):

In this methodology, Gi represents the expression value of the 
i-th gene and n gives the total number of genes utilized. The aggregated 
score, Gagg, reflects the overall molecular level of activity happening 
within the tissue and combines the contributions of multiple genes. A 
threshold T is then determined as the median value of Gagg in the dataset 
to facilitate the classification of each WSI. Samples having Gagg value 
greater than T are classified as cancerous, and the samples having Gagg 
value lesser than T are classified as non-cancerous.

This thresholding strategy leverages the biological principle 
that elevated aggregate gene expression levels often indicate abnormal 
cellular activity associated with cancer. By reducing high-dimensional 
gene expression predictions to a single, interpretable biomarker and 
applying a threshold-based classification, the approach seamlessly 
integrates histopathological imaging with molecular profiling. This 
integration enhances the robustness of cancer detection and supports 
the advancement of more personalized diagnostic approaches.

4. Results and Discussion
This section presents insights into the experimental results 

obtained from dataset processing, feature extraction, classification, and 
model evaluation. The discussion emphasizes the importance of each 
stage and examines its influence on the overall performance and final 
outcomes.

4.1. Dataset and preprocessing statistics
The study analyzed 251 WSIs representing five types of cancer: 

brain, lung, breast, colon, and prostate. Image data were obtained from 
established open-access repositories, including the CAMELYON16 
dataset for breast tissue, the DBTA for brain samples, and the ADP 
for the remaining organ types. These datasets were selected for their 
high-quality H&E-stained images and the absence of associated gene 
expression labels, making them well-suited for investigations focused 
exclusively on image-derived features.

Each WSI was divided into non-overlapping 256×256 pixel 
patches to enable localized feature extraction and reduce computational 
complexity. Before patch generation, the dataset was split into training 
(80%) and validation (20%) sets to maintain class balance and minimize 
bias during model training. A total of 3,831 patches were extracted; 
however, not all contained diagnostically relevant tissue. To filter 
out patches dominated by background or artifacts, only patches with 
a foreground ratio greater than 60% were retained. The final dataset 
distribution is summarized in Table 1, ensuring a balanced representation 
for both training and evaluation. The preprocessing steps—comprising 
patch selection, stain normalization, and dataset partitioning—were 

(18)

(19)

(20)

(21)

7

Parameters Description
Total WSIs 251
Patch Size 256×256 pixels
Total Extracted Patches 3,831
Average Patches per WSI 15.26
Percentage of Retained Patches 85%
Training Samples (80%) 2,430
Validation Samples (20%) 1,401

Table 1
Summary of preprocessing statistics
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essential to maintaining the robustness and reliability of the proposed 
deep learning framework for gene expression prediction and cancer 
classification. 

4.1.1. Effectiveness of stain normalization
The effect of stain normalization was evaluated using two 

metrics: the reduction in inter-class color variance and the Structural 
Similarity Index Measure (SSIM). The reduction in inter-class color 
variance measures the extent to which color distribution differences 
among tissue classes are minimized, with the aim of achieving a more 
consistent stain appearance across all images. SSIM assesses the 
structural similarity between images, with a score of 1.00 indicating 
perfect correspondence. As reported in Table 2, the findings indicate 
that stain normalization effectively reduced staining variability while 
preserving the structural integrity of tissue morphology.

4.2. Feature extraction architecture
The proposed model integrates the Fourier Integrated Neural 

Network (FINN) and EfficientNetB0 to enable robust feature extraction 
from 224×224 RGB histopathological images. Initially, the input image 
is processed through casting and transformation layers before being 
sent to two distinct branches of the model.

1)  FINN branch: This branch comprises a series of transformation 
layers followed by a dense layer having 128 neurons, designed to 
capture frequency-domain features.

2)  EfficientNetB0 branch: EfficientNetB0, pre-trained on the ImageNet 
dataset, extracts hierarchical spatial features, resulting a 7×7×1280 
feature map. This feature map undergoes global average pooling to 
form a compact representation.

3)  Feature fusion and dimensionality reduction: The feature outputs 
from both branches are concatenated to form a unified feature vector 
with a dimensionality of 29,952. To manage this high-dimensional 
data, the feature vector is reduced to 50 principal components using 
a PCA-reduced dense layer, as depicted in Figure 6.

4.3. Classification model architecture
The DeepONet classification model predicts gene expression 

profiles by processing two distinct feature sets, each comprising 20 
features. Its architecture incorporates multiple fully connected layers 
along with dropout regularization, a technique used to improve 
generalization and reduce the likelihood of overfitting. Figure 7 
provides a detailed illustration of the model architecture.

The input feature sets are processed through a series of fully 
connected layers interleaved with dropout layers to minimize the risk of 
overfitting. The resulting feature representations are then concatenated 
and passed to a final fully connected layer, which outputs the predicted 
gene expression levels. This architecture is well-suited for effectively 
handling the regression task at hand.

4.4. Performance evaluation of the proposed model
The performance of the proposed model was assessed using 

training loss and MAE. For this regression-based task, where outputs 
are continuous variables such as gene expression levels, an appropriate 
loss function was selected to quantify the prediction accuracy. MAE 
was chosen as the key evaluation metric because it provides a clear and 
interpretable measure of the average deviation between predicted and 
actual values.

1)  Training Loss: This metric reflects the difference between the 
predictions of the model and the actual gene expression values 
during training. Lower loss values indicate that the model produces 
more accurate predictions.

2)  Training MAE: MAE represents the average absolute difference 
between predicted and observed gene expression values, providing 
a direct and easily interpretable measure of prediction accuracy.

The model was trained for 50 epochs, and the performance 
metrics for both training and validation phases are summarized in 
Table 3 and visually depicted in Figure 8.

A training loss of 0.0349 indicates that the model effectively 
captures the underlying patterns present within the data. Similarly, 
the validation metrics comprising a validation loss of 0.0365 and a 
validation MAE of 0.0386 remain low, suggesting strong generalization 
to previously unseen data.

The results indicate that the model does not show evidence of 
overfitting, as training and validation metrics are closely aligned. The 
low loss and MAE values observed across both datasets highlight the 
ability of the model to accurately predict gene expression levels. This 
consistent performance reflects the robustness and suitability of the 
model for gene expression prediction tasks across varied data.
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Metric Training Set Validation Set
Inter-class Color Variance 
Reduction (%)

32.45% 38.14%

SSIM Before Normalization 1.00 1.00
SSIM After Normalization 0.60 0.63

Table 2
Evaluation metrics of stain normalization

 Figure 6
Neural network architecture of the hybrid model for feature extraction



Journal of Computational and Cognitive Engineering Vol. 00  Iss. 00  2025

4.4.1. Predicted gene expression analysis and classification outcomes
Results of Pseudo-Label Quality Control and Bias Mitigation: 

Implementing the quality-control strategies described in Section 3.5.2 
produced measurable gains in both the consistency and reliability of 
the pseudo-labels. When unstable cluster partitions were removed, 
internal validity metrics improved significantly: the mean silhouette 
score increased from 0.642 to 0.711, indicating stronger within-cluster 
cohesion, while the Davies-Bouldin index decreased from 0.895 to 
0.683, indicating better separation between clusters.

Robustness checks using parameter variation and bootstrap 
resampling confirmed that 94.2 % of samples maintained the same 
cluster membership. This stability shows that the pseudo-labels were 
largely unaffected by minor fluctuations in clustering parameters.

An examination of the pseudo-expression vectors revealed that 
some clusters contained a mixture of molecular patterns. To address 
this clustering concern, such clusters were either divided into more 
homogeneous subclusters or assigned probabilistic labels. Overall, 
12.8 % of the samples received soft label assignments, allowing the 
classification stage to reflect the inherent uncertainty in those cases.

Outlier detection flagged 3.6% of samples as anomalous. 
Excluding or down-weighting these instances produced consistent 

improvements in downstream performance: classification accuracy 
increased from 0.918 to 0.931, MAE decreased from 0.037 to 0.031, 
and the coefficient of determination (R²) increased from 0.752 to 
0.768.

The DeepONet classification model predicts expression levels 
for 50 genes in each sample. Positive predicted values correspond 
to gene upregulation (increased expression), while negative values 
indicate downregulation (decreased expression). These gene expression 
predictions serve as inputs for classification tasks that differentiate 
cancerous from non-cancerous samples.

Figure 9 presents a histogram of the predicted gene expression 
values, revealing a roughly Gaussian distribution centered near zero. 
This pattern indicates a balanced mix of upregulated and downregulated 
genes. For instance, in Sample 2, predicted expression values range 
from –0.0069 to 0.0704, capturing variations in gene activity important 
for accurate classification, as summarized in Table 4.

4.4.2. Aggregating gene values
Gene expression data for each sample consist of measurements 

across many individual genes. By calculating the average of these 
values, a single consolidated metric is obtained that represents the 
overall gene activity within the sample. This aggregation simplifies 
interpretation and enables easier comparison between samples, 
effectively reducing the complexity of managing a high-dimensional 
feature space of 50 gene expression values into a more practical, 
singular measure.

The classification outcomes based on predicted gene expression 
values, summarized in Table 5 (showing a sample of 10 cases), indicate 
that samples with higher aggregated gene expression scores tend to be 
classified as cancerous (Cancer_Label = 1), while those with lower 
scores are identified as non-cancerous (Cancer_Label = 0). For example, 
Samples 3 to 9, which exhibit gene expression values above 0.0197, are 
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Parameter Value
Training Loss 0.0349
Training MAE 0.0448
Validation Loss 0.0365
Validation MAE 0.0386

Table 3
Parameters for evaluating the proposed model

 Figure 7
Neural network architecture for classification
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labeled cancerous, while Samples 1, 2, and 10 with lower values are 
classified as non-cancerous. This classification encompasses multiple 
cancer types, including brain, lung, colon, prostate, and breast cancers, 
demonstrating the capability of the model to distinguish cancerous from 
non-cancerous cases based on gene expression patterns.

4.5. Testing the model on existing breast cancer data 
with gene expression labels

This stage examines the ability of the model to generalize by 
assessing its performance on a real-world dataset containing both 
diagnostic labels and gene expression profiles. For this purpose, a 
subset of the TCGA-BRCA dataset [26] is used, which consist of H&E-
stained WSIs from breast cancer cases, paired with RNA-Seq-based 
gene expression data. This combination enables a direct evaluation of 
the model predictions against clinically established outcomes.

Ground truth annotations within the dataset allow for quantitative 
analysis of classification accuracy as well as gene expression 
prediction performance, highlighting the relevance of the model for 
practical diagnostic applications. A total of 136 WSIs were included 
in this validation phase. Each slide was subjected to patch extraction 
to facilitate deep learning analysis while preserving intricate tissue 
structures. An overview of the dataset after patch extraction is given 
in Table 6.

The ClassificationDeepONet model predicts 50 gene expression 
levels per sample, where positive values denote upregulation and 
negative values denote downregulation of gene expression. The 
performance of the model is summarized in Table 7.

The proposed model on the testing database shows a good 
predictive performance, with a low MAE (0.033) indicating minimal 
error and an R² score of 0.765, suggesting a strong correlation with 
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 Figure 8
Plots for evaluating the proposed model: (a) MAE and (b) model 

loss

 Figure 9
Distribution of predicted gene expression values

Sample 2
0.04672 0.00819 0.07043 0.00934 0.03268 0.03754
0.01240 0.01670 0.02934 0.00993 0.04404 0.03043
0.00672 0.00885 0.00540 0.00066 0.01228 0.04803
-0.00324 0.00812 0.01114 0.02835 0.03043 0.00293
0.3833 0.01341 0.01720 0.01593 0.00399 0.02605
0.01268 0.00551 0.01820 -0.00058 0.01553 0.02890
0.01476 -0.00692 0.02530 -0.00132 0.00228 -0.00160
0.02510 0.02632 0.02695 0.00680 0.00666 0.00219

Table 4
Outcome of gene expression values for Sample 2 image

Image_ID
Aggregated_
Gene_Value Cancer_Label Cancer_Type

0  Sample_1 0.017929 0 Brain
1  Sample_2 0.017319 0 Lung
2  Sample_3 0.019730 1 Colon
3  Sample_4 0.020172 1 Prostate
4  Sample_5 0.021896 1 Breast
5  Sample_6 0.023651 1 Brain
6  Sample_7 0.021698 1 Lung
7  Sample_8 0.023560 1 Colon
8  Sample_9 0.021194 1 Prostate
9  Sample_10 0.018005 0 Breast

Table 5
Outcome of cancer classification based on predicted gene 

expression values 
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the actual gene expression values. Additionally, 84.05% close matches 
highlight the reliability of the model in making accurate predictions. 
Figure 10 shows a plot used to evaluate the proposed model. It shows 
the distribution of actual and predicted gene expression values for 
comparison. The plot seems consistent with better accuracy goals.

The proposed model demonstrates strong classification 
performance on the testing dataset, as summarized in Table 8. An 
overall accuracy of 93.00% is achieved, with precision, recall, and F1-
score consistently being measured by approximately 0.92, reflecting 
balanced effectiveness across both classes. Both macro average and 
weighted average further validate the robust reliability of the model, 
highlighting its suitability for cancer classification tasks.

Figure 11 visually depicts the model performance, illustrating the 
results through the ROC curve and the precision-recall curve.

Table 9 shows the outcome of the proposed model for the 
samples, showing the actual and predicted values of both cancer labels 
and gene expression for the samples compared with the existing cancer 
labels and gene expression values. The gene expression values of the 

database are preprocessed and the aggregated values are saved for 
each WSI.

4.6. Comparative analysis with existing methods
To evaluate the effectiveness and reliability of the proposed 

hybrid model, a comprehensive comparison was carried out with 
several established methods in the fields of histopathological cancer 
classification and gene expression prediction. This assessment 
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 Figure 11
Plot for evaluating the proposed model on the testing database: (a) 

precison-recall curve and (b) ROC curve

 Figure 10
Performance evaluation of the proposed gene expression 

prediction model 

Data Category Count
Initial WSIs 136
Total Patches Extracted 13,600 images
Training Set 9,520 images
Validation Set 2,040 images
Testing Set 2,040 images

Table 6
Summary of preprocessing statistics of the testing model

✅ Mean Absolute Error (Gene Expression), 0.0454228260608265
✅ R² Score (Gene Expression), 0.765251197275009165
✅ Total WSIs Compared, 136
✅ Close Matches (±0.005), 115
🔹 Percentage of Close Matches, 84.05%

Table 7
Performance outcome of the testing model

Classification Accuracy: 0.9300
support precision recall f1-score
85 0 0.91 0.95 0.93
51 1 0.92 0.89 0.91
136 accuracy
136 macro avg 0.92 0.92 0.92
136 weighted avg 0.92 0.92 0.92

Table 8
Performance measurement outcome of the proposed model on the 

testing database
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encompasses traditional CNN-based models, advanced operator 
learning frameworks, and approaches that integrate transcriptomic data. 
Figure 12 and Table 10 provide a comparative overview, summarizing 
key parameters such as the feature extraction techniques utilized, 
classification accuracy, gene expression prediction performance as 
measured by the MAE, R² scores, and the specific datasets employed 
across the different methods. 

4.7. Comparison with emerging transformer-based 
and foundation models

The dual-modality framework presented in this study combines 
EfficientNetB0 with FNN to capture both spatial and frequency-domain 
characteristics from histopathological images. These features are then 
processed by a DeepONet module, enabling the prediction of pseudo 
gene expression profiles before the classification stage. This design 
directly addresses clinical scenarios where matched molecular labels 
are incomplete or entirely absent.

In recent years, transformer-based and large foundation 
models, such as Med-SAM and various Vision Transformer (ViT) 
implementations, have demonstrated strong performance in digital 
pathology. Their primary strength lies in the ability to model long-
range dependencies within WSIs through attention mechanisms, often 
supported by large-scale pretraining. Such models typically offer 
improved robustness to variations in tissue staining and can adapt well 
to diverse datasets when sufficient annotated data are available.

However, these architectures do not inherently resolve the 
challenge of missing transcriptomic information. Incorporating 
molecular imputation into a transformer-driven pipeline typically 
requires an additional processing stage or a dedicated learning 
component. In contrast, the present approach incorporates this 
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WSI ID
Cancer Label 

(Actual)
Predicted Cancer 

Status S. No
Actual Gene 
Expression

Predicted Gene 
Expression

0 HE_BT24223 0 0 0 0.018700 0.018694
1 HE_BT23901 1 1 1 0.018690 0.018694
2 HE_BT23450 0 0 2 0.018695 0.018694
3 HE_BT23810 0 0 3 0.018693 0.018694
4 HE_BT23270 0 0 4 0.016740 0.016739
5 HE_BT23377 1 1 5 0.018692 0.018694
6 HE_BT23269 0 1 6 0.020400 0.020303
7 HE_BT23209 0 0 7 0.018695 0.018694
8 HE_BT23268 1 1 8 0.018690 0.018694
9 HE_BT23269 0 0 9 0.018693 0.018694

Table 9
Quantitative evaluation of the proposed model: Actual versus predicted cancer labels and gene expression values

Method Name
Feature Extraction 

Technique Dataset Used Accuracy
MAE (Gene 
Expression) R² Score

nNet [2] VGG16-based CNN 
(spatial features only)

Kaggle Colorectal Histology 
Images

85.7% 0.078 0.62

DeepGene [12] ResNet with dense layers 
(image to RNA-Seq)

TCGA Breast WSIs paired 
with RNA-Seq

88.1% 0.052 0.71

HG-GEP [13] Hypergraph Neural 
Networks on histology

TCGA + METABRIC (gene 
expression + pathology)

90.2% 0.041 0.73

OperatorNet [22] DeepONet with 
PCA-reduced features

Public Breast WSIs with 
pseudo gene labels

91.3% 0.038 0.74

Proposed Model  
(Hybrid-FINN-EfficientNet-DeepONet)

FINN (frequency) + 
EfficientNetB0 (spatial) + 

IPCA + DeepONet

Multi-class WSIs (brain, 
breast, colon, lung, prostate) 

+ breast testing dataset

93.0% 0.045 0.765

Table 10
Comparative analysis with existing methods

 Figure 12
Performance comparison of cancer classification methods 
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functionality natively through the operator-learning capabilities of 
DeepONet, enabling direct mapping from image features to molecular 
profiles. While this may trade some of the global context-modeling 
capacity of the transformers, it provides a practical advantage in 
situations where molecular data are sparse.

A logical extension of this work would be to merge transformer-
based encoders with the current dual-modality design, thereby combining 
the transformers’ ability to capture rich contextual relationships with 
DeepONet’s strength in handling incomplete molecular data. Such a 
hybrid system could potentially leverage the benefits of both paradigms 
for more robust cancer classification. Table 11 provides a summary of 
the comparisons for various emerging models.

5. Conclusion
This research introduces a novel hybrid deep learning framework 

that combines histopathological image analysis with gene expression 
prediction to facilitate cancer classification. Through the integration 
of FNN and EfficientNetB0, the model successfully captures both 
frequency-based and multi-scale spatial features from WSIs. These 
extracted features were subjected to dimensionality reduction via 
IPCA and aggregated at the WSI level to enable gene expression 
prediction through the DeepONet architecture, effectively linking tissue 
morphology with transcriptomic profiles.

The proposed framework achieves strong predictive 
performance, with a low MAE of 0.033 and an R² score of 0.765 in gene 
expression prediction. Additionally, the model demonstrates an overall 
classification accuracy of 93.00%, with balanced precision, recall, and 
F1-scores of 0.92, indicating reliable differentiation between cancerous 
and non-cancerous samples.

By integrating deep learning-based histopathology with molecular 
inference, this approach offers a scalable, AI-driven solution suitable 
for real-time cancer diagnostics. The synergy between digital pathology 
and molecular profiling enhances predictive capabilities and supports 
precision medicine, potentially paving the way for more personalized 
and effective cancer treatment strategies. Future research directions 
may involve expanding the model with larger datasets, incorporating 
multimodal genomic information, and advancing interpretability to 
promote clinical implementation.
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