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Abstract: Computational modeling has contributed to many fields of medicine and has been proven very useful for diagnosing complex diseases.
A special case is that of myocardial infarction (MI), a prevalent cardiovascular disease where computational modeling approaches have been
useful for detecting abnormalities. The aim of this paper is to propose enhanced computational models for the human left ventricle (LV) to estimate
the strain and stress distributions in healthy and diseased subjects. Computational models were developed and evaluated using human LV of 20
patients with MI and 20 healthy controls using cardiac magnetic resonance imaging acquisitions and simulation tools. The finite element technique
was employed for LV modeling. Comparative analysis revealed higher global strains in healthy subjects compared to MI patients, particularly
global circumferential, longitudinal, and radial strains. The average stress distributions were 67.9 + 5.01 kPa in healthy models and 78.3 + 8.21
kPa in infarcted regions. Model-derived strain data indicated an overall average of —0.15 + 0.06 for healthy models and 0.2 + 0.04 for infarcted
regions. LV strain values were compared with those obtained from two feature-tracking algorithms to validate the proposed models, resulting in
very promising findings. The work presented here highlights the importance of computational modeling for quantitative and qualitative analyses of
heart disease and the potential of using such models in other organs. When combined with imaging data, the proposed models can have significant
implications for improved patient care and treatment strategies.
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1. Introduction diagnosis and treatment of patients with MI [8—11]. Although they
are essential for detecting abnormalities, they offer no information
regarding the mechanical properties of the altered myocardium and its
remodeling process [12].

Computational modeling, particularly through the finite element
(FE) method, is a powerful approach for solving complex physical
problems governed by partial differential equations. By discretizing a
system into smaller, manageable elements, the FE method enables the
analysis of intricate geometries, material behaviors, and multiphysics
interactions that are often intractable analytically. In cardiology, its
utility is significantly enhanced when it is integrated with imaging
techniques such as cardiac MRI [13, 14], allowing for a detailed
assessment of strain and stress distributions in the left ventricle (LV).
To accurately replicate cardiac biomechanics in these models, it is
essential to incorporate the in vivo biomechanical properties of the
human myocardium with high precision.
*Corresponding author: Mohamed Deriche, Artificial Intelligence Research Centre, Although the FE method and cardiac MRI are well-established
Ajman University, United Arab Emirates. Email: m.deriche@ajman.ac.ae tools in cardiac modeling, the novelty of our work lies in the integration

Cardiovascular diseases are the leading cause of mortality
worldwide and a major contributor to disability [1]. The majority of
cardiovascular disease-related deaths result from heart failure, stroke,
and coronary artery disease [2]. Among this, myocardial infarction
(MI) is one of the most common outcomes [3, 4]. Post-MI remodeling
can alter the mechanical properties of the myocardium and cardiac
muscle, potentially leading to heart failure [5]. Studies have shown
that post-MI remodeling involves structural and functional changes in
the heart, including alterations in size, shape, myocardial composition,
contractility, and stiffness [6, 7].

Cardio-radiology relies on the accurate analysis of
electrocardiograms, invasive or computed tomography coronary
angiograms, and magnetic resonance imaging (MRI) data for the
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strategy and modeling choices specifically tailored to simulate the
mechanical behavior of MI. Unlike previous studies that focus primarily
on healthy myocardium or apply simplified boundary conditions, our
approach leverages patient-specific MRI-derived geometries combined
with a regionally differentiated mechanical model that distinguishes
infarcted, border-zone (transitional), and healthy myocardial tissue.

Moreover, we simulate active myocardial contraction using a
thermal strain-based approach, which enables a physiologically realistic
representation of systolic function without relying on complex active
tension models. The inclusion of fiber orientation further accounts for the
anisotropic properties of myocardial tissue, enhancing the physiological
fidelity of the model. These methodological advancements make
our framework particularly well suited for analyzing and predicting
the biomechanical consequences of MI and hold promise for future
applications in diagnosis and treatment planning.

A concise summary of the main contributions of the research is
presented below:

1) Development of a patient-specific FE model: A detailed FE model
of the LV was constructed using cardiac MRI data from both MI
patients and healthy controls. The model incorporates personalized
LV geometry, infarct localization via LGE, and anisotropic
myocardial properties to simulate heart-specific mechanics.

2) Clinically applicable computational framework: A novel framework
was introduced, which integrates cardiac MRI with biomechanical
modeling to noninvasively assess myocardial stiffness and
contractility, especially in infarcted regions.

3) Enhanced characterization of infarct mechanics: The approach
provides a robust and reliable method to quantify infarct-induced
mechanical changes, supporting disease monitoring, early risk
assessment, and tailored treatment strategies.

4) Computational efficiency and scalability: The model uses simplified
yet physiologically valid assumptions (e.g., thermal strain to mimic
contraction) for efficient strain simulation, making it feasible and
attractive for clinical adoption and large-scale studies.

The remainder of this paper is organized as follows. The literature
review is described in Section 2. The functionality of the framework is
described in Section 3. The testing surroundings are also covered in
Section 3. The performance outcomes of both the current and suggested
frameworks are presented in Section 4. The conclusion of this paper is
described in Section 5.

2. Related Works

Various researchers have conducted studies by employing
computational modeling to assist physicians and reduce subjective
decisions in cardiovascular diagnosis [15-19]. Genet et al. [15] focused
on understanding the distribution of myofiber stress in the LV during
end-diastole (ED) and end-systole (ES), intending to inform the design
of heart failure treatments using computational modeling. The main
idea of the study revolved around investigating the myofiber stress
patterns in a normal human heart to provide insights that can guide
the development of targeted treatments for heart failure. The results
demonstrated distinct stress patterns between ED and ES, with higher
stress concentrations observed in specific regions of the ventricular wall.
Furthermore, Al-Ani and Deriche [16] developed a dynamic model of
LV function using the immersed boundary method and Lagrangian
FE method for describing both geometry and local features from
clinical images and using an orthotropic constitutive model for passive
elasticity, which allowed the quantification of local stress and strain
throughout the cardiac cycle. Despite the simplifications introduced
into the models, they predicted detailed displacement and strain
distributions that were generally in agreement with CMR measurements

and previous clinical studies. Additionally, in 2018, a research study
reported by Wang et al. [17] presented a biomechanical model of the
LV by combining cardiac MRI data and hemodynamic data determined
by cardiac catheterization. Using computational modeling techniques,
a 3D FE model of the time-varying LV geometry was aligned with the
cardiac MRI data. The proposed method showed that the ED myofiber
strain in the middle ventricle was significantly higher in patients with
acute heart failure than in controls and that diastolic myocardial stiffness
was significantly higher in patients with reduced ejection fraction (EF)
than in patients with preserved EF and controls. Recently, Rumindo
et al. [18] conducted a study to estimate subject-specific myocardial
stiffness and contractility in healthy individuals. They achieved this
by constructing LV models from data obtained through cardiac MRI
acquisition. The modeling approach was extensively validated by
comparing measured or estimated local circumferential strain with
other measures of global LV function. The prognostic significance
of these indices needs to be further explored through longitudinal
clinical studies. Recent efforts in disease modeling, including the
spatio-temporal prediction of COVID-19 prevalence and mortality
using artificial neural networks [19], have underscored the potential of
data-driven approaches to capture complex disease dynamics. In the
context of cardiac modeling, previous studies reported by Genet et al.
[15], Al-Ani and Deriche [16], and Rumindo et al. [18] have primarily
focused on healthy cohorts, utilizing either idealized or patient-specific
geometries to assess myocardial stress, strain, and stiffness under
normative physiological conditions. Despite these advances, results
could still be improved. Thus, our study addresses a critical research
gap by focusing specifically on MI, incorporating MRI-based infarct
geometry and tissue alterations to model the pathological behavior of
the LV.

3. Proposed Methodology

This section presents the proposed method for developing a
computational model of a human LV. The process is structured into the
following three main steps: 1) cardiac MRI data acquisition, 2) model
simulation, and 3) validation, as illustrated in Figure 1.

3.1. Study subjects

In this study, cardiac MRI datasets were acquired from 20 healthy
controls (4 females and 16 males; age range = 23-74 years) with no
history of cardiovascular diseases and from 20 patients (3 females and
17 males; age range = 2370 years) who had an MI. The image datasets
were acquired using two MRI machines (Siemens Medical Solution,
Erlangen, Germany) with electrocardiographic gating (ECG): one at
the Principal Military Hospital of Instruction of Tunis, Tunisia, and
the other at the Pitié Salpétriere University Hospital, France. The local
ethics committee approved the study with a waiver of informed consent.

3.2. Image acquisition and LV reconstruction

LV endocardial and epicardial contours were semi-automatically
segmented using the CVI42 software (Circle Cardiovascular Imaging)
at the ES and ED phases in both short- and long-axis cine images. The
functional characteristics of the LV, including ES and ED volumes, EF,
and stroke volume (SV), as well as the geometric characteristics, such
as ED wall thickness and fractional wall thickening, were automatically
calculated from the segmented LV contours. Then, the segmented
contours at ES were processed with CATIA V5 (Dassault Systems) to
reconstruct the LV surfaces. Finally, the obtained geometry was meshed
with hexahedral elements in Abaqus FE software (Dassault Systems)
(Figure 2).
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Figure 2
LV reconstruction from cardiac MRI: (a) cardiac MRI images
(short and long axes) at ES, (b) myocardium segmentation using a
semi-automatic method, and (¢) final meshed LV geometry at ES

For the MI model, the infarcted region was defined by combining
short-axis and long-axis LGE images with reconstructed LV geometry
at ES. To ensure no change in material behavior transition from a
damaged infarcted region to a healthy region, three transition regions
were successively identified at a 10 mm distance from the border of the
infarct [16]. Figure 3 displays LGE short- and long-axis images and the
corresponding MI model.

3.3. Myocardial fiber structure

A rule-based fiber orientation was incorporated to identify the
mechanical properties of the myocardium. The wall of the LV contains
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Figure 3
LV model built for an MI patient: (a) LGE short- and long-axis
images at ES and (b) LV reconstruction outlined in color to
represent transition regions

1.00
0.75
0.50
0.25
0.00

(b)

Note: 0: healthy myocardium, 1: the core of the infarcted myocardium

two layers, namely, the epicardium and endocardium. The epicardium is
the outer layer, and the endocardium is the inner layer. The myocardial
fiber structure was assigned using the Laplace—Dirichlet-Region
growing-FEM algorithm. According to Palit et al. [20] and Wong and
Kuhl [21], the helix or fiber angle varies from an endocardial +60°
angle to an epicardial —60° angle relative to the basal slice. Figure 4
shows the orientation of the fibers assigned to the myocardium. There
are three orthonormal axes: the fiber (f), sheetlet-normal (n), and
sheetlet (s) axes. The fiber angle (a) refers to the angle that is formed
between the local circumferential direction (u ) and the projection of
the fiber axe (f) on a plane perpendicular to a local radial direction (u,).
An additional important angle is the sheetlet angle (), which represents
the angle between the local radial direction (un) and sheetlet axe in a
single element (Figure 4(a)). The Laplace—Dirichlet-Region growing-
FEM algorithm required three inputs: the LV mesh geometry, a cloud
of points in a plane parallel to the short-axis slice orientation directly
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Figure 4
(a) Fiber (f), sheetlet-normal (n), and sheetlet (s) material axes in black; local circumferential (uc), local radial (un), and local longitudi-
nal (uz) directions in cyan; (b) fiber orientation in the LV model with transmural distribution of fiber angle (a); and (c) the arrows in red
and green indicate (f) and (s) orientations, respectively

(c)

Fiber angle in radian
1

under the basal nodes’ intersection, and the definition of fiber angles
from histological data. The fiber orientation results of the LV geometry
with the color map angle in radian are shown in Figure 4(b).

3.4. Proposed FE LV modeling

The FE method was chosen to determine the mechanical LV
response of each subject, caused by pressure and volume variations
during the cardiac cycle. In the present study, the ES geometry was
used to model the LV because it offers useful information regarding
cardiac function and can boost the assessment of its performance. This
phase is important as it reflects to the minimal volume applied to the LV
myocardial wall and reflects its contractile capacity [22-24]. A passive
transversely anisotropic Fung-type law composed of four parameters,
namely, C,, bf, b, and bﬁ, that details the degree of nonlinearity and
anisotropy in the systolic mechanical properties of the myocardial
tissue is introduced by Guccione et al. [25].

¥(E) = %(eQ—l), )
with

Q = beff2 + bt (E‘ss2 + Ennz + Esn2 + Ens2)

bulE*+E 2+E,2+E 2 @
+ft s +—sf +—fn +—nf ’

where C| is the passive linear parameter to be identified for each subject,
Q is the quadratic function of three principal strain components, b,and
b, represent stiffness at the local myocardial fiber and at the transversal
direction, respectively, and b_ft is shear rigidity. The ratios between
parameters b, b, and b, were set to 1.0, 0.4, and 0.7, respectively,
consistent with the findings of Wenk et al. [26], where b, = 0.4 b -and
b,=0.7b, Using this approach, the number of material parameters
to be identified is reduced to two: C, and b. E indicates the Green—
Lagrange strain tensor, where the subscripts f, 1, and s and denote the
myofiber, sheet-normal, and sheet directions, respectively.

The following initial material parameters were replicated by
Rumindo et al. [18], where C; was set to 0.08 kPa and bf, b, and bﬂ
were set to 16.15, 6.46, and 11.31, respectively. In the LV MI model,
the passive material behavior was modeled by changing the material
properties in the infarcted region. It was supposed that the passive

parameter (C,)) in the infarcted region increased 50 times more than that
in the normal myocardium, and the transition region was defined to have
normal passive properties, as suggested in previous studies [22, 26-28].
Specifically, there was no variation between the infarcted and healthy
regions in the LV parameters of passive materials (bf, b,, and bﬁ) [28].
The Fung-type material law was implemented using the user material
in FE solver Abaqus. Our study focused on the passive properties of
the myocardium. We recognize the importance of incorporating an
active stress or strain component to accurately simulate myocardial
contraction. To achieve this, we employed an active strain model using
a thermal strain tensor. An active strain implemented by a thermal strain
tensor in Abaqus can be simply described as follows [28]:

e =a. AT, (3)

where « is the thermal expansion coefficient and AT is the temperature
difference. The thermal expansion coefficient in the fiber direction
was adjusted to o, = —0.32, and the thermal expansion coefficient in
the normal sheetlet and sheetlet directions was adjusted to o, = a =
0.21 to maintain near incompressibility of the myocardial tissue. These
values are based on previous studies reported by Fan et al. [28] and
empirical adjustments to reflect the mechanical properties of cardiac
muscle fibers. The negative sign indicates contraction in the direction
of the fibers, which corresponds to the physiological shortening of
myocardial fibers during systole. The active material’s contractility
in the infarcted region was suppressed by setting the thermal strain
expansion coefficient to zero. In the transition region between healthy
and infarcted tissue, normal passive properties were retained, and
contractility was reduced by 50%, inspired by Fan et al. [28]. The
passive parameters were identified by minimizing the deviation from
the ES pressure—volume relationship (EDPVR) curve, as predicted by
the formulation of Klotz et al. [29]. The Nelder—Mead optimization
algorithm was used, available in Matlab (MathWorks) [30], a two-loop
optimization process, inspired by the approach of Genet et al. [15].
The outer loop focused on optimizing b, by minimizing the
deviation from the Klotz curve, which represents the standard EDPVR.
At each iteration of this outer loop, an inner loop was executed to adjust
C, for the given bj. The cost function for diastolic personalization
was defined as the sum of squared errors between the normalized
real volumes (MRI measured) and the simulated volumes, evaluated
over a pressure range from 0 to 20 mmHg. With no subject-specific
pressure data available, standardized ED and ES pressure values of 9



Journal of Computational and Cognitive Engineering

Vol. 00 Iss. 00 2025

and 120 mmHg, respectively, were applied, as recommended by Genet
et al. [15], Al-Ani and Deriche [16], Wang et al. [17], and Rumindo
et al. [18]. The surface of the epicardium was homogeneous Neumann
boundary conditions, and the endocardium surface was subjected to
a uniform LV pressure. The basal line has been fixed to take account
of the significantly higher stiffness of the annulus compared with
the myocardium. This fixed basal constraint eliminates any rigid
body motion, thus ensuring the stability of the simulation. We have
implemented a two-point simulation in our model (two steps), applying
pressure at two distinct points: ES pressure was set to 120 mmHg and
ED pressure was set to 9 mmHg for healthy subjects and to 16 mmHg
for patients with MI because ED pressure in patients with MI was
higher than that in healthy subjects, applied on the endocardial surface
[18]. Basal nodes were positioned longitudinally, and the endocardium
annulus was fixed [28]. The stress in the myocardium was simulated
using Abaqus. The computational model incorporates EDV and ESV
derived from MRI images, and we utilized data from cardiac MRI
acquisitions to reconstruct the LV geometry.

3.5. Model validation

The accuracy of the developed model was validated by comparing
simulated LV volumes with those obtained from cardiac MRI data. In
addition to volume validation, we compared the circumferential strain
values, measured using feature tracking (FT) on cine MR images and
interpolated on the FE mesh using a combination of nearest neighbor
and inverse-distance-weighting (IDW) methods for comparison
with the personalized simulation strains. We focused on global
circumferential strain as it provides the most consistent and reliable
data for comparison. Previous studies have shown that the global radial
strain derived from the FT technique has a low correlation with other
methods for measuring LV strain and is less robust and reproducible

[31-33]. Longitudinal strain was not included in the comparison due to
the acquisition of only two long-axis images, which was insufficient for
reliable analysis.

The cardiac MRI-FT analysis was processed using two software:
CVI42 and CardioTrack (Sorbonne University), developed on Matlab
(MathWorks) [34]. Using CVI42, endocardium and epicardium
contours were identified in the whole cardiac cycle for short- and
long-axis slices. Both global circumferential strain (GCS) and global
radial strain (GRS) were analyzed in the short-axis slices (basal, mid
ventricular, and apical). Global longitudinal strain (GLS) was assessed
in three long-axis slices (2-chamber, 3-chamber, and 4-chamber).

Statistical analyses were performed using SPSS software
(version 16.0, IBM SPSS Inc., USA). Statistical tests were considered
statistically relevant with a p-value less than 0.05. Distribution tests
were performed on all data, and continuous variables were assigned
a mean * standard deviation (SD). The dataset’s characteristics and
cardiac MRI metrics were tested using Student’s t-test.

4. Simulated and Experimental Results

To validate the proposed model, we conducted extensive
experiments and simulation studies, which are detailed in the
subsections below.

4.1. Clinical and cardiac MRI subjects’ characteristics

In Table 1, we present a description of the dataset used and its
characteristics, as well the corresponding cardiac MRI functional and
geometric metrics. No significant variation was observed in gender,
age, body mass index, and heart rate between the MI patients and
controls. We note that the average heart rate was higher in MI patients
than in controls, although such a difference did not reach statistical

Table 1
Characteristics and cardiac MRI measures of the MI patients studied and healthy controls
Variable Healthy controls (n = 20) Patients with MI (n = 20) p-value
Clinical characteristics
Gender (male/female) 16/4 17/3
Age (year) 48 [23-74] 52 [23-70] 0.176
BMI (kg/m2) 25.65+3.20 26.60 +4.08 0.425
HR (beat/minute) 69.05 +£9.33 75.45+10.73 0.06
Cardiac MRI characteristics of LV
Functional
ESV (ml) 54.80+12.72 99.00 +26.52 <0.001
EDV (ml) 144.00 £ 20.37 185.80 +36.26 0.001
SV (ml) 89.30+11.76 86.70 +23.63 0.067
EF (%) 63.10+4.24 45.75+£10.07 <0.001
Geometric
ED wall thickness_basal (mm) 7.57+1.71 8.78 £ 1.96 0.040
ED wall thickness_medial (mm) 6.79 +1.22 8.47+2.15 <0.001
ED wall thickness_apical (mm) 5.68 +1.24 7.47+1.76 <0.001
Fractional wall thickening_basal (%) 65+ 14 41+ 11 <0.001
Fractional wall thickening_medial (%) 67+ 11 41+ 14 <0.001
Fractional wall thickening_apical (%) 71+ 14 35+12 <0.001

Note: BMI: body mass index; HR: heart rate; MRI: magnetic resonance imaging; LV: left ventricle; ESV: end-systolic volume; EDV: end-diastolic volume; SV:

stroke volume; EF: ejection fraction; ED: end-diastole
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significance. However, important differences were noted in volumetric
LV parameters (ESV and EDV), with significantly higher values in MI
patients than in healthy controls. Although the EF was significantly
lower in M1 patients (all p <0.001), a slight variation was found between
healthy controls and patients with MI in terms of SV (p = 0.067).

Using the studied dataset, the ED wall thickness and fractional
wall thickening, from the basal to apical level of the LV, were computed
for healthy controls and patients with MI (Table 1). Regarding the ED
wall thickness, the mean normal values for healthy controls were 7.57
+ 1.71 mm for basal slices, 6.79 + 1.22 mm for mid-LV slices, and
5.68 £ 1.24 mm for apical slices. For patients with MI, the average
normal values were 8.78 = 1.96 mm (basal), 8.47 £ 2.15 mm (mid-
LV), and 7.47 + 1.76 mm (apical). The average values of fractional wall
thickening of healthy controls were 65% + 14% (basal slices), 67% +
11% (mid-LV slices), and 71% + 14% (apical slices). For MI subjects,
the fractional wall thickening values were 41% =+ 11% (basal), 41% +
14% (mid-LV), and 35% + 12% (apical) (all p < 0.05).

4.2. Simulated volumes for investigating mechanical
behavior

The LV volumes simulated by the developed models were
compared with the LV volumes obtained from the cardiac MRI data
(Table 2). On average, the simulated volumes and those obtained from
cardiac MRI ES data were equal to 55.59 + 12.39 ml vs. 54.80 + 12.72
ml for healthy subjects and 102.00 + 25.99 ml vs. 99.00 + 26.52 ml
for patients with MI, respectively. The mean ED volumes simulated by
the built models compared to those obtained from cardiac MRI for the
healthy subjects were 151.32 +22.04 ml vs. 144 +20.37 ml and 191.13
+ 36.30 ml vs. 185.80 + 38.26 ml for patients with MI, respectively.
Both ES and ED simulated volumes closely aligned with those obtained
from the cardiac MRI. The difference in LV volumes was within the
range 3%—5%.

4.3. Global strain analysis

The LV global strains, namely, GCS, GLS, and GRS, derived
from the built models and FT techniques in patients with MI were
considerably lower than those in healthy controls. All p-values were
lower than 0.001 (Table 3). The average global circumferential strains
calculated for the two categories using the built models were —17.5%
+ 1.1% and —11.2% =+ 1.9%, respectively, and those obtained by the
CVI42 software were —18.7% + 1.9% and —12.0% + 3.2% respectively.

The global circumferential strains computed using the CardioTrack
software were —19.2% =+ 1.9% for healthy subjects and —13.4% £ 3.2%
for patients with MI. The average global longitudinal strains computed
by both software for the healthy controls were in the same range: —17.5%
+1.3% (CVI42) and —18.9% =+ 2.3% (CardioTrack). Global radial strain
was impaired in patients with MI compared with healthy controls (18%
+5.6%vs.32.3%+5.6%by CVI42 and 43.4% £ 3% vs. 62.8% + 11.6%
by CardioTrack). Global radial strain was impaired in patients with MI
compared with healthy controls (18% + 5.6% vs. 32.3% + 5.6% by CVI
42 and 43.4% £ 3% vs. 62.8% + 11.6% by CardioTrack). Additionally,
receiver operating characteristic curve (ROC curve) analysis was used
to compare each method and to assess strain parameters’ capacity to
differentiate patients with MI from healthy controls (Table 4). Figure 5
illustrates the ROC curve of the global circumferential strain results
obtained with the proposed method, CVI142, and CardioTrack with area
under the curve (AUC) of each method.

4.4. Subject-specific passive material parameters

Table 5 presents the passive material parameters identified for
each subject, as well as the mean values and the standard deviation. The
table clearly demonstrates a distinction in the passive parameter (C,)
between healthy subjects and patients with MI. The mean (C,) value
for healthy myocardium is 0.088 kPa, and in the infarcted region, it
increases to 6.094 kPa (p-value < 0.001). This significant difference
supports findings from previous studies, which suggested that the
passive myocardium in infarcted regions becomes approximately
50 times stiffer compared to healthy myocardium [19, 28-30]. No
significant difference was observed in the LV parameters of passive
materials (b,,b, and b ) between healthy controls and patients with MI
(all p-value > 0.05).

4.5. Distributions of strain and stress

Figure 6 shows the ES stress and strain distribution in proximity
to the endocardium and epicardium in both models. The average stress
value was 0.073 = 0.01 MPa (73 kPa) in the healthy model. The average
systole stress was 0.082 + 0.04 MPa (82 kPa) in the infarcted region.
The average fiber strain distribution value was —0.15 £+ 0.06 in the
healthy model and 0.2 = 0.04 in the infarcted region. The distribution
of stress at ES was characterized by a nonuniform pattern. The highest
stress values were observed near the subendocardial layer. In the MI
model, the stress distribution was altered due to the presence of the
infarcted region.

Table 2
ES and ED simulated volumes and those obtained from cardiac MRI
ESV_CMR ESV_Finite EDV_Finite
(ml) Element (ml) % variation EDV_CMR (ml) Element (ml) % variation
Healthy subjects 54.80 £ 12.72 55.59 +£12.39 2 144.00 +=20.37 151.32 +22.04 5
Patients with MI 99.00 +26.52 102.00 + 25.99 3 185.80 = 38.26 191.13 £36.30 3
Note: ESV and EDV values are expressed as mean + SD
Table 3
LV myocardium global strain computed parameters
Healthy controls Patients with MI
Method GCS (%) GLS (%) GRS (%) GCS (%) GLS (%) GRS (%)
CVIi42 -18.7+1.9 -17.5+£1.3 323+5.6 -12.0£3.1 -13.4+£32 18.0£5.6
CardioTrack -192+1.9 -189+23 62.8 +11.6 —-13.4+32 —-12.7+3.4 43.4+34
Simulated -17.5+£1.1 - - -11.2+19 - -
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Table 4
ROC curve analysis for the used dataset
Variable AUC £ SE p-value Sensitivity (%) Specificity (%)
MI vs. healthy controls
Cardiac MRI parameters of LV
ESV 0.94 +£0.03 <0.001 90 90
EDV 0.83 +£0.07 <0.001 85 75
N\ 0.65+0.09 0.100 55 75
EF 0.98 +0.02 <0.001 95 90
Feature-tracking parameters
GCS_CVI42 0.96 +0.03 <0.001 90 95
GCS_CardioTrack 0.94+0.04 <0.001 95 85
GLS CVI42 1£0.00 <0.001 100 100
GLS CardioTrack 0.93 £0.02 <0.001 85 80
Simulated parameters
ESV 0.93+£0.03 <0.001 90 85
EDV 0.81+0.07 0.001 90 70
Stress 0.84 +0.06 <0.001 75 70
GCS 1£0.00 <0.001 100 100

Figure 5
ROC curves for simulated, CVI 42, and CardioTrack global
circumferential strains
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The infarcted region is often stiffer than the healthy myocardium
and leads to areas of elevated stress around the infarcted zone. A
positive value of strain in the infarcted region is a result of the altered or
decreased normal contractile function. The global strain values obtained
using the proposed method and those analyzed by cardiac MRI-FT
software show a considerable variation in GCS and GLS strains when
comparing patients with MI to healthy controls. However, a difference

was observed in GRS derived from the two software. This significant
difference could be explained by the fact that CardioTrack is based on
contour detection whereas the other software uses the intra-myocardial
structure to calculate the radial myocardial strain. According to Table 4,
the cardiac LV parameters derived from MRI, namely, ESV, EDV, and
EF, indicated a good performance, with the respective average AUCs of
0.98, 0.88, and 0.98. Similarly, average AUCs of 0.93, 0.81, and 0.84
were obtained with the simulated LV parameters: ESV, EDV, and stress.
The outcomes of this study demonstrate that CVI42 and the proposed
method show a slight increase in performance than the CardioTrack
software in the circumferential direction (proposed method AUC:
1 and GCS_CVI42 AUC: 0.85 vs. GCS_CardioTrack AUC: 0.94).
The Bland-Altman plots illustrated in Figure 7 and the average
AUC values presented in Table 4 reveal a subtle distinction in strain
analysis software in the range of inter-operator variability and equal
differences between patients and healthy controls. Such a difference is
related to technical differences in implementation. Indeed, CVI42 and
CardioTrack software utilize the FT technique. However, differences
may exist as one of the techniques is mainly contours-based and the
other is intra-myocardial-based.

5. Discussion

This study used the FE method and measurements from cardiac
MRI acquisition to estimate mechanical parameters in healthy controls
and patients with MI. The potential of cardiac strain and stress analysis
in detecting cardiac abnormalities, prognosis, guiding therapy, and
patient follow-up was demonstrated. Accordingly, the changes found
in terms of strain magnitude are more likely due to the presence of MI
[42]. Patients with MI exhibited lower LV global strain values, obtained
using the cardiac MRI-FT software and the proposed method, than
those derived from healthy controls. ES stress and strain distributions
are relatively homogenous due to the underlying myocardium structure
throughout the wall [16, 17]. Compared with the healthy model,
these parameters in the infarcted LV model are more pronounced
in the infarcted region. These significant variations have also been
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Table 5
Estimated passive material parameters for healthy subjects and patients with MI

Healthy Myocardial infarction
Subject C, (KPa) b, b, b, Patient C, b, b, b,
1 0.123 10.72 4.29 7.51 1 7.081 12.51 5.00 8.76
2 0.095 14.67 5.87 10.27 2 5.873 15.35 6.14 10.75
3 0.103 14.50 5.80 10.15 3 6.421 13.74 5.50 9.62
4 0.074 17.08 6.83 11.96 4 5.493 17.12 6.85 11.98
5 0.106 14.19 5.68 9.93 5 6.721 12.12 4.85 8.48
6 0.085 17.52 7.01 12.26 6 6.423 10.51 4.20 7.36
7 0.069 13.44 5.38 9.41 7 7.264 11.08 4.43 7.76
8 0.071 12.78 5.11 8.95 8 6.280 17.88 7.15 12.52
9 0.065 16.73 6.69 11.71 9 6.241 15.38 6.15 10.77
10 0.072 18.15 7.26 12.70 10 5.643 17.46 6.98 12.22
1 0.076 12.57 5.03 8.80 11 5.868 15.75 6.30 11.02
12 0.089 16.94 6.78 11.86 12 7.113 13.00 5.20 9.10
13 0.064 14.14 5.66 9.90 13 5.152 11.20 4.48 7.84
14 0.072 17.82 7.13 12.47 14 6.564 16.75 6.70 11.73
15 0.128 15.29 6.12 10.70 15 5.552 18.79 7.52 13.15
16 0.110 18.58 7.43 13.01 16 5.821 13.40 5.36 9.38
17 0.095 12.40 4.96 8.68 17 6.770 15.16 6.06 10.61
18 0.081 15.00 6.00 10.50 18 6.624 16.24 6.50 11.37
19 0.074 18.30 7.32 12.81 19 4.127 17.15 6.86 12.00
20 0.119 16.43 6.57 11.50 20 4.840 13.87 5.55 9.71
Mean 0.088 15.36 6.15 10.75 Mean 6.094 14.72 5.89 10.31
SD 0.019 2.28 0.91 1.59 SD 0.807 2.47 0.99 1.73
Figure 6
Simulation results of healthy and infarcted LV models regarding the fiber stress and strain distributions near the myocardium
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demonstrated by Guccione et al. [25]. They utilized an FE model to
explore the transmural distribution of fiber stress across the canine LV,
providing valuable data on the variations in stress from the apex to
the base. In contrast, our study refines this investigation by applying
a static model to human LV data, enabling a more focused comparison
of stress and strain in both healthy and infarcted myocardial regions.
Furthermore, ES stress and strain distribution results correlated well

with those in previous studies. As an example, in a study by Al-Ani and
Deriche et al. [16], where the authors computed models of LV under
healthy and pathological conditions using cardiac MRI images of a
healthy subject and a patient with MI, the stress distribution values were
64 + 19 kPa and 65 + 32 kPa in the healthy model and in the infarcted
region, respectively. Similarly, in the study by Wong and Kuhl [21],
the fiber strain distribution values were —0.19 + 0.04 and 0.02 + 0.02
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Figure 7
Bland-Altman plots for strain quantification methods CVI42 and
CardioTrack for each group of subjects’ (a) circumferential strain
and (b) longitudinal strain
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in the healthy model and in the infarcted region, respectively, which
correlates well with the overall average of —0.15 + 0.06 for the healthy
model and 0.2 & 0.04 for the infarcted region found in the current study.
In literature, several state-of-the-art studies [15, 35-41] that use the FT
technique for LV strain measurements also utilize the same imaging
modalities, cardiac MRI, as this study but with a variable number of
subjects (Table 6).

Although the proposed method yields promising results, several
limitations should be acknowledged. First, the use of a simplified
FE model may introduce biases in estimating regional mechanical
behavior. Specifically, the assignment of uniform material properties
to infarcted and peri-infarcted regions may lead to underestimation or
overestimation of local stress and strain, particularly in areas exhibiting
significant tissue heterogeneity. Second, the model does not account for
multiphysical interactions such as electrical conduction, hemodynamics,
and metabolic activity, all of which are critical to cardiac function and
remodeling. The omission of these physiological processes may hinder
the model’s ability to capture the intricate coupling between mechanical
and biological responses. Third, the study is based on a relatively small
dataset, potentially limiting the generalizability and robustness of the
findings. The significant results of this study encourage one to consider
expanding the used dataset and exploring the potential of artificial
intelligence (AI) and machine learning in future research projects.
Al could be employed to refine parameter estimation, enabling more
precise personalization of the model based on patient-specific data.
For example, it could be used to analyze large datasets from MRI or
other imaging modalities to optimize the mechanical properties of the
myocardium in both healthy and infarcted regions [43, 44].

6. Conclusion

In this work, an FE model was developed using cardiac MRI data
to simulate LV stress and strain distributions at ES for both healthy
individuals and MI patients. The model included data from 40 subjects
and enabled the estimation of GCS, GLS, and GRS. These strain
measurements were then compared with those obtained via the FT
technique. The results demonstrated strong correlation, highlighting
the capability of the proposed method to accurately capture myocardial
deformation. Notably, the strain patterns derived from the model showed
significant potential in distinguishing between healthy and infarcted
myocardium. The findings suggest that this FE-based approach could
serve as a valuable diagnostic tool for assessing myocardial viability
and improving clinical decision-making in cardiac care.

Table 6
Studies providing normal and pathological cardiac MRI-FT LV strain measurements

Healthy controls

Patients with MI

Study Mean + SD Mean + SD

GCS (%) GLS (%) GRS (%) GCS (%) GLS (%) GRS (%)
Morton et al. [35] -17.4+£4.0 -20.5+5.0 20.8 £ 6.0 - - -
Augustine et al. [36] —-21.0+3.0 —-19.0+3.0 25.0+£6.0 - - -
Genet et al. [15] —17.6+5.8 —-13.9+29 - - - -
Taylor et al. [37] —26.1+4.0 -213+£5.0 39.8 + 8.0 - - -
Yu et al. [38] -20.8 +2.8 -15.5+2.7 38.5+9.3 -16.9+2.2 -13.1+2.2 284 +5.1
Qu et al. [39] -17.0+2.7 —154+23 44.4+£13.0 - - -
Wang et al. [40] -19.3+£0.0 —13.5+2.6 39.6+0.0 -14.7+0.0 -89+23 24.1+0.0
Polacin et al. [41] -19.9+£2.0 -18.9+4.0 39.8 +6.0 -10.7+5.0 -10.7+5.0 27.9+5.0
Our study, 2025 -18.7+1.9 -17.5+£1.3 323+5.6 -11.9+3.1 -13.38+3.2 17.9+5.6
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