
Received: 3 June 2025 | Revised: 30 July 2025 | Accepted: 8 September 2025 | Published online: 20 October 2025

RESEARCH ARTICLE Journal of Computational and Cognitive Engineering
2025, Vol. 00(00) 1-12

DOI: 10.47852/bonviewJCCE52026343

An Improved Computational Model 
Based on Cardiac Imaging Data for the 
Quantitative and Qualitative Assessment 
of the Mechanical Properties of the 
Human Left Ventricle

Rania Awadi1  , Narjes Benameur1, Wafa Baccouch1  , Mohamed Deriche2,*  , Arnab Palit3  , Moncef Aloui4  , 
Nadjia Kachenoura5, and Salam Labidi1

1 Laboratory of Biophysics and Medical Technologies, University of Tunis El Manar, Tunisia
2 Artificial Intelligence Research Centre, Ajman University, United Arab Emirates
3 Warwick Manufacturing Group, The University of Warwick, UK
4 Military Hospital of Tunis, University of Tunis El Manar, Tunisia
5 Laboratoire d’Imagerie Biomédicale, Sorbonne Université, France

Abstract: Computational modeling has contributed to many fields of medicine and has been proven very useful for diagnosing complex diseases. 
A special case is that of myocardial infarction (MI), a prevalent cardiovascular disease where computational modeling approaches have been 
useful for detecting abnormalities. The aim of this paper is to propose enhanced computational models for the human left ventricle (LV) to estimate 
the strain and stress distributions in healthy and diseased subjects. Computational models were developed and evaluated using human LV of 20 
patients with MI and 20 healthy controls using cardiac magnetic resonance imaging acquisitions and simulation tools. The finite element technique 
was employed for LV modeling. Comparative analysis revealed higher global strains in healthy subjects compared to MI patients, particularly 
global circumferential, longitudinal, and radial strains. The average stress distributions were 67.9 ± 5.01 kPa in healthy models and 78.3 ± 8.21 
kPa in infarcted regions. Model-derived strain data indicated an overall average of −0.15 ± 0.06 for healthy models and 0.2 ± 0.04 for infarcted 
regions. LV strain values were compared with those obtained from two feature-tracking algorithms to validate the proposed models, resulting in 
very promising findings. The work presented here highlights the importance of computational modeling for quantitative and qualitative analyses of 
heart disease and the potential of using such models in other organs. When combined with imaging data, the proposed models can have significant 
implications for improved patient care and treatment strategies.
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1. Introduction
Cardiovascular diseases are the leading cause of mortality 

worldwide and a major contributor to disability [1]. The majority of 
cardiovascular disease-related deaths result from heart failure, stroke, 
and coronary artery disease [2]. Among this, myocardial infarction 
(MI) is one of the most common outcomes [3, 4]. Post-MI remodeling 
can alter the mechanical properties of the myocardium and cardiac 
muscle, potentially leading to heart failure [5]. Studies have shown 
that post-MI remodeling involves structural and functional changes in 
the heart, including alterations in size, shape, myocardial composition, 
contractility, and stiffness [6, 7].

Cardio-radiology relies on the accurate analysis of 
electrocardiograms, invasive or computed tomography coronary 
angiograms, and magnetic resonance imaging (MRI) data for the 

diagnosis and treatment of patients with MI [8–11]. Although they 
are essential for detecting abnormalities, they offer no information 
regarding the mechanical properties of the altered myocardium and its 
remodeling process [12].

Computational modeling, particularly through the finite element 
(FE) method, is a powerful approach for solving complex physical 
problems governed by partial differential equations. By discretizing a 
system into smaller, manageable elements, the FE method enables the 
analysis of intricate geometries, material behaviors, and multiphysics 
interactions that are often intractable analytically. In cardiology, its 
utility is significantly  enhanced when it is integrated with imaging 
techniques such as cardiac MRI [13, 14], allowing for a detailed 
assessment of strain and stress distributions in the left ventricle (LV). 
To accurately replicate cardiac biomechanics in these models, it is 
essential to incorporate the in vivo biomechanical properties of the 
human myocardium with high precision.

Although the FE method and cardiac MRI are well-established 
tools in cardiac modeling, the novelty of our work lies in the integration 
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strategy and modeling choices specifically tailored to simulate the 
mechanical behavior of MI. Unlike previous studies that focus primarily 
on healthy myocardium or apply simplified boundary conditions, our 
approach leverages patient-specific MRI-derived geometries combined 
with a regionally differentiated mechanical model that distinguishes 
infarcted, border-zone (transitional), and healthy myocardial tissue.

Moreover, we simulate active myocardial contraction using a 
thermal strain-based approach, which enables a physiologically realistic 
representation of systolic function without relying on complex active 
tension models. The inclusion of fiber orientation further accounts for the 
anisotropic properties of myocardial tissue, enhancing the physiological 
fidelity of the model. These methodological advancements make 
our framework particularly well suited for analyzing and predicting 
the biomechanical consequences of MI and hold promise for future 
applications in diagnosis and treatment planning.

A concise summary of the main contributions of the research is 
presented below:

1)  Development of a patient-specific FE model: A detailed FE model 
of the LV was constructed using cardiac MRI data from both MI 
patients and healthy controls. The model incorporates personalized 
LV geometry, infarct localization via LGE, and anisotropic 
myocardial properties to simulate heart-specific mechanics.

2)  Clinically applicable computational framework: A novel framework 
was introduced, which integrates cardiac MRI with biomechanical 
modeling to noninvasively assess myocardial stiffness and 
contractility, especially in infarcted regions.

3)  Enhanced characterization of infarct mechanics: The approach 
provides a robust and reliable method to quantify infarct-induced 
mechanical changes, supporting disease monitoring, early risk 
assessment, and tailored treatment strategies.

4)  Computational efficiency and scalability: The model uses simplified 
yet physiologically valid assumptions (e.g., thermal strain to mimic 
contraction) for efficient strain simulation, making it feasible and 
attractive for clinical adoption and large-scale studies.

The remainder of this paper is organized as follows. The literature 
review is described in Section 2. The functionality of the framework is 
described in Section 3. The testing surroundings are also covered in 
Section 3. The performance outcomes of both the current and suggested 
frameworks are presented in Section 4. The conclusion of this paper is 
described in Section 5.

2. Related Works
Various researchers have conducted studies by employing 

computational modeling to assist physicians and reduce subjective 
decisions in cardiovascular diagnosis [15–19]. Genet et al. [15] focused 
on understanding the distribution of myofiber stress in the LV during 
end-diastole (ED) and end-systole (ES), intending to inform the design 
of heart failure treatments using computational modeling. The main 
idea of the study revolved around investigating the myofiber stress 
patterns in a normal human heart to provide insights that can guide 
the development of targeted treatments for heart failure. The results 
demonstrated distinct stress patterns between ED and ES, with higher 
stress concentrations observed in specific regions of the ventricular wall. 
Furthermore, Al-Ani and Deriche [16] developed a dynamic model of 
LV function using the immersed boundary method and Lagrangian 
FE method for describing both geometry and local features from 
clinical images and using an orthotropic constitutive model for passive 
elasticity, which allowed the quantification of local stress and strain 
throughout the cardiac cycle. Despite the simplifications introduced 
into the models, they predicted detailed displacement and strain 
distributions that were generally in agreement with CMR measurements 

and previous clinical studies. Additionally, in 2018, a research study 
reported by Wang et al. [17] presented a biomechanical model of the 
LV by combining cardiac MRI data and hemodynamic data determined 
by cardiac catheterization. Using computational modeling techniques, 
a 3D FE model of the time-varying LV geometry was aligned with the 
cardiac MRI data. The proposed method showed that the ED myofiber 
strain in the middle ventricle was significantly higher in patients with 
acute heart failure than in controls and that diastolic myocardial stiffness 
was significantly higher in patients with reduced ejection fraction (EF) 
than in patients with preserved EF and controls. Recently, Rumindo 
et al. [18] conducted a study to estimate subject-specific myocardial 
stiffness and contractility in healthy individuals. They achieved this 
by constructing LV models from data obtained through cardiac MRI 
acquisition. The modeling approach was extensively validated by 
comparing measured or estimated local circumferential strain with 
other measures of global LV function. The prognostic significance 
of these indices needs to be further explored through longitudinal 
clinical studies. Recent efforts in disease modeling, including the 
spatio-temporal prediction of COVID-19 prevalence and mortality 
using artificial neural networks [19], have underscored the potential of 
data-driven approaches to capture complex disease dynamics. In the 
context of cardiac modeling, previous studies reported by Genet et al. 
[15], Al-Ani and Deriche [16], and Rumindo et al. [18] have primarily 
focused on healthy cohorts, utilizing either idealized or patient-specific 
geometries to assess myocardial stress, strain, and stiffness under 
normative physiological conditions. Despite these advances, results 
could still be improved. Thus, our study addresses a critical research 
gap by focusing specifically on MI, incorporating MRI-based infarct 
geometry and tissue alterations to model the pathological behavior of 
the LV.

3. Proposed Methodology
This section presents the proposed method for developing a 

computational model of a human LV. The process is structured into the 
following three main steps: 1) cardiac MRI data acquisition, 2) model 
simulation, and 3) validation, as illustrated in Figure 1.

3.1. Study subjects
In this study, cardiac MRI datasets were acquired from 20 healthy 

controls (4 females and 16 males; age range = 23–74 years) with no 
history of cardiovascular diseases and from 20 patients (3 females and 
17 males; age range = 23–70 years) who had an MI. The image datasets 
were acquired using two MRI machines (Siemens Medical Solution, 
Erlangen, Germany) with electrocardiographic gating (ECG): one at 
the Principal Military Hospital of Instruction of Tunis, Tunisia, and 
the other at the Pitié Salpêtrière University Hospital, France. The local 
ethics committee approved the study with a waiver of informed consent.

3.2. Image acquisition and LV reconstruction 
LV endocardial and epicardial contours were semi-automatically 

segmented using the CVI42 software (Circle Cardiovascular Imaging) 
at the ES and ED phases in both short- and long-axis cine images. The 
functional characteristics of the LV, including ES and ED volumes, EF, 
and stroke volume (SV), as well as the geometric characteristics, such 
as ED wall thickness and fractional wall thickening, were automatically 
calculated from the segmented LV contours. Then, the segmented 
contours at ES were processed with CATIA V5 (Dassault Systems) to 
reconstruct the LV surfaces. Finally, the obtained geometry was meshed 
with hexahedral elements in Abaqus FE software (Dassault Systems) 
(Figure 2).
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For the MI model, the infarcted region was defined by combining 
short-axis and long-axis LGE images with reconstructed LV geometry 
at ES. To ensure no change in material behavior transition from a 
damaged infarcted region to a healthy region, three transition regions 
were successively identified at a 10 mm distance from the border of the 
infarct [16]. Figure 3 displays LGE short- and long-axis images and the 
corresponding MI model.

3.3. Myocardial fiber structure 
A rule-based fiber orientation was incorporated to identify the 

mechanical properties of the myocardium. The wall of the LV contains 

two layers, namely, the epicardium and endocardium. The epicardium is 
the outer layer, and the endocardium is the inner layer. The myocardial 
fiber structure was assigned using the Laplace–Dirichlet-Region 
growing-FEM algorithm. According to Palit et al. [20] and Wong and 
Kuhl [21], the helix or fiber angle varies from an endocardial +60° 
angle to an epicardial −60° angle relative to the basal slice. Figure 4 
shows the orientation of the fibers assigned to the myocardium. There 
are three orthonormal axes: the fiber (f), sheetlet‐normal (n), and 
sheetlet (s) axes. The fiber angle (α) refers to the angle that is formed 
between the local circumferential direction (uc) and the projection of 
the fiber axe (f) on a plane perpendicular to a local radial direction (un). 
An additional important angle is the sheetlet angle (β), which represents 
the angle between the local radial direction (un) and sheetlet axe in a 
single element (Figure 4(a)). The Laplace–Dirichlet-Region growing-
FEM algorithm required three inputs: the LV mesh geometry, a cloud 
of points in a plane parallel to the short-axis slice orientation directly 
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 Figure 1
Proposed method workflow for FE LV modeling

Figure 2
LV reconstruction from cardiac MRI: (a) cardiac MRI images 

(short and long axes) at ES, (b) myocardium segmentation using a 
semi-automatic method, and (c) final meshed LV geometry at ES

 Figure 3
LV model built for an MI patient: (a) LGE short- and long-axis 

images at ES and (b) LV reconstruction outlined in color to 
represent transition regions

Note: 0: healthy myocardium, 1: the core of the infarcted myocardium
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under the basal nodes’ intersection, and the definition of fiber angles 
from histological data. The fiber orientation results of the LV geometry 
with the color map angle in radian are shown in Figure 4(b).

3.4. Proposed FE LV modeling
The FE method was chosen to determine the mechanical LV 

response of each subject, caused by pressure and volume variations 
during the cardiac cycle. In the present study, the ES geometry was 
used to model the LV because it offers useful information regarding 
cardiac function and can boost the assessment of its performance. This 
phase is important as it reflects to the minimal volume applied to the LV 
myocardial wall and reflects its contractile capacity [22–24]. A passive 
transversely anisotropic Fung-type law composed of four parameters, 
namely, C0, bf, bt, and bft, that details the degree of nonlinearity and 
anisotropy in the systolic mechanical properties of the myocardial 
tissue is introduced by Guccione et al. [25].

with 

where C0 is the passive linear parameter to be identified for each subject, 
 is the quadratic function of three principal strain components, bf and 

bt represent stiffness at the local myocardial fiber and at the transversal 
direction, respectively, and b_ft is shear rigidity. The ratios between 
parameters bf , bt, and bft were set to 1.0, 0.4, and 0.7, respectively, 
consistent with the findings of Wenk et al. [26], where bt = 0.4 bf and 
bft = 0.7 bf . Using this approach, the number of material parameters 
to be identified is reduced to two: C0 and bf.  indicates the Green–
Lagrange strain tensor, where the subscripts f, n, and s and denote the 
myofiber, sheet-normal, and sheet directions, respectively.

The following initial material parameters were replicated by 
Rumindo et al. [18], where C0 was set to 0.08 kPa and bf  , bt , and bf t 
were set to 16.15, 6.46, and 11.31, respectively. In the LV MI model, 
the passive material behavior was modeled by changing the material 
properties in the infarcted region. It was supposed that the passive 

parameter (C0) in the infarcted region increased 50 times more than that 
in the normal myocardium, and the transition region was defined to have 
normal passive properties, as suggested in previous studies [22, 26–28]. 
Specifically, there was no variation between the infarcted and healthy 
regions in the LV parameters of passive materials (bf , bt , and bft) [28]. 
The Fung-type material law was implemented using the user material 
in FE solver Abaqus. Our study focused on the passive properties of 
the myocardium. We recognize the importance of incorporating an 
active stress or strain component to accurately simulate myocardial 
contraction. To achieve this, we employed an active strain model using 
a thermal strain tensor. An active strain implemented by a thermal strain 
tensor in Abaqus can be simply described as follows [28]: 

where 𝛼 is the thermal expansion coefficient and ΔT is the temperature 
difference. The thermal expansion coefficient in the fiber direction 
was adjusted to αff = −0.32, and the thermal expansion coefficient in 
the normal sheetlet and sheetlet directions was adjusted to αnn = αss = 
0.21 to maintain near incompressibility of the myocardial tissue. These 
values are based on previous studies reported by Fan et al. [28] and 
empirical adjustments to reflect the mechanical properties of cardiac 
muscle fibers. The negative sign indicates contraction in the direction 
of the fibers, which corresponds to the physiological shortening of 
myocardial fibers during systole. The active material’s contractility 
in the infarcted region was suppressed by setting the thermal strain 
expansion coefficient to zero. In the transition region between healthy 
and infarcted tissue, normal passive properties were retained, and 
contractility was reduced by 50%, inspired by Fan et al. [28]. The 
passive parameters were identified by minimizing the deviation from 
the ES pressure–volume relationship (EDPVR) curve, as predicted by 
the formulation of Klotz et al. [29]. The Nelder–Mead optimization 
algorithm was used, available in Matlab (MathWorks) [30], a two-loop 
optimization process, inspired by the approach of Genet et al. [15].

The outer loop focused on optimizing bf by minimizing the 
deviation from the Klotz curve, which represents the standard EDPVR. 
At each iteration of this outer loop, an inner loop was executed to adjust 
C0 for the given bf . The cost function for diastolic personalization 
was defined as the sum of squared errors between the normalized 
real volumes (MRI measured) and the simulated volumes, evaluated 
over a pressure range from 0 to 20 mmHg. With no subject-specific 
pressure data available, standardized ED and ES pressure values of 9 

(1)

(2)

(3)
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 Figure 4
(a) Fiber (f), sheetlet‐normal (n), and sheetlet (s) material axes in black; local circumferential (uc), local radial (un), and local longitudi-

nal (uz) directions in cyan; (b) fiber orientation in the LV model with transmural distribution of fiber angle (α); and (c) the arrows in red 
and green indicate (f) and (s) orientations, respectively
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and 120 mmHg, respectively, were applied, as recommended by Genet 
et al. [15], Al-Ani and Deriche [16], Wang et al. [17], and Rumindo 
et al. [18]. The surface of the epicardium was homogeneous Neumann 
boundary conditions, and the endocardium surface was subjected to 
a uniform LV pressure. The basal line has been fixed to take account 
of the significantly higher stiffness of the annulus compared with 
the myocardium. This fixed basal constraint eliminates any rigid 
body motion, thus ensuring the stability of the simulation. We have 
implemented a two-point simulation in our model (two steps), applying 
pressure at two distinct points: ES pressure was set to 120 mmHg and 
ED pressure was set to 9 mmHg for healthy subjects and to 16 mmHg 
for patients with MI because ED pressure in patients with MI was 
higher than that in healthy subjects, applied on the endocardial surface 
[18]. Basal nodes were positioned longitudinally, and the endocardium 
annulus was fixed [28]. The stress in the myocardium was simulated 
using Abaqus. The computational model incorporates EDV and ESV 
derived from MRI images, and we utilized data from cardiac MRI 
acquisitions to reconstruct the LV geometry.

3.5. Model validation
The accuracy of the developed model was validated by comparing 

simulated LV volumes with those obtained from cardiac MRI data. In 
addition to volume validation, we compared the circumferential strain 
values, measured using feature tracking (FT) on cine MR images and 
interpolated on the FE mesh using a combination of nearest neighbor 
and inverse-distance-weighting (IDW) methods for comparison 
with the personalized simulation strains. We focused on global 
circumferential strain as it provides the most consistent and reliable 
data for comparison. Previous studies have shown that the global radial 
strain derived from the FT technique has a low correlation with other 
methods for measuring LV strain and is less robust and reproducible 

[31–33]. Longitudinal strain was not included in the comparison due to 
the acquisition of only two long-axis images, which was insufficient for 
reliable analysis.

The cardiac MRI-FT analysis was processed using two software: 
CVI42 and CardioTrack (Sorbonne University), developed on Matlab 
(MathWorks) [34]. Using CVI42, endocardium and epicardium 
contours were identified in the whole cardiac cycle for short- and 
long-axis slices. Both global circumferential strain (GCS) and global 
radial strain (GRS) were analyzed in the short-axis slices (basal, mid 
ventricular, and apical). Global longitudinal strain (GLS) was assessed 
in three long-axis slices (2-chamber, 3-chamber, and 4-chamber).

Statistical analyses were performed using SPSS software 
(version 16.0, IBM SPSS Inc., USA). Statistical tests were considered 
statistically relevant with a p-value less than 0.05. Distribution tests 
were performed on all data, and continuous variables were assigned 
a mean ± standard deviation (SD). The dataset’s characteristics and 
cardiac MRI metrics were tested using Student’s t-test.

4. Simulated and Experimental Results
To validate the proposed model, we conducted extensive 

experiments and simulation studies, which are detailed in the 
subsections below.

4.1. Clinical and cardiac MRI subjects’ characteristics 
In Table 1, we present a description of the dataset used and its 

characteristics, as well the corresponding cardiac MRI functional and 
geometric metrics. No significant variation was observed in gender, 
age, body mass index, and heart rate between the MI patients and 
controls. We note that the average heart rate was higher in MI patients 
than in controls, although such a difference did not reach statistical 

5

Variable Healthy controls (n = 20) Patients with MI (n = 20) p-value
  Clinical characteristics
    Gender (male/female) 16/4 17/3
    Age (year) 48 [23–74] 52 [23–70] 0.176
    BMI (kg/m2) 25.65 ± 3.20 26.60 ± 4.08 0.425
    HR (beat/minute) 69.05 ± 9.33 75.45 ± 10.73 0.06
  Cardiac MRI characteristics of LV
Functional
    ESV (ml) 54.80 ± 12.72 99.00 ± 26.52 <0.001
    EDV (ml) 144.00 ± 20.37 185.80 ± 36.26 0.001
    SV (ml) 89.30 ± 11.76 86.70 ± 23.63 0.067
    EF (%) 63.10 ± 4.24  45.75 ± 10.07 <0.001
Geometric
ED wall thickness_basal (mm) 7.57 ± 1.71 8.78 ± 1.96 0.040
ED wall thickness_medial (mm) 6.79 ± 1.22 8.47 ± 2.15 <0.001
ED wall thickness_apical (mm) 5.68 ± 1.24 7.47 ± 1.76 <0.001
Fractional wall thickening_basal (%) 65 ± 14 41 ± 11 <0.001
Fractional wall thickening_medial (%) 67 ± 11 41 ± 14 <0.001
Fractional wall thickening_apical (%) 71 ± 14 35 ± 12 <0.001

Note: BMI: body mass index; HR: heart rate; MRI: magnetic resonance imaging; LV: left ventricle; ESV: end-systolic volume; EDV: end-diastolic volume; SV: 
stroke volume; EF: ejection fraction; ED: end-diastole

Table 1
Characteristics and cardiac MRI measures of the MI patients studied and healthy controls
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significance. However, important differences were noted in volumetric 
LV parameters (ESV and EDV), with significantly higher values in MI 
patients than in healthy controls. Although the EF was significantly 
lower in MI patients (all p < 0.001), a slight variation was found between 
healthy controls and patients with MI in terms of SV (p = 0.067).

Using the studied dataset, the ED wall thickness and fractional 
wall thickening, from the basal to apical level of the LV, were computed 
for healthy controls and patients with MI (Table 1). Regarding the ED 
wall thickness, the mean normal values for healthy controls were 7.57 
± 1.71 mm for basal slices, 6.79 ± 1.22 mm for mid-LV slices, and 
5.68 ± 1.24 mm for apical slices. For patients with MI, the average 
normal values were 8.78 ± 1.96 mm (basal), 8.47 ± 2.15 mm (mid-
LV), and 7.47 ± 1.76 mm (apical). The average values of fractional wall 
thickening of healthy controls were 65% ± 14% (basal slices), 67% ± 
11% (mid-LV slices), and 71% ± 14% (apical slices). For MI subjects, 
the fractional wall thickening values were 41% ± 11% (basal), 41% ± 
14% (mid-LV), and 35% ± 12% (apical) (all p < 0.05).

4.2. Simulated volumes for investigating mechanical 
behavior

The LV volumes simulated by the developed models were 
compared with the LV volumes obtained from the cardiac MRI data 
(Table 2). On average, the simulated volumes and those obtained from 
cardiac MRI ES data were equal to 55.59 ± 12.39 ml vs. 54.80 ± 12.72 
ml for healthy subjects and 102.00 ± 25.99 ml vs. 99.00 ± 26.52 ml 
for patients with MI, respectively. The mean ED volumes simulated by 
the built models compared to those obtained from cardiac MRI for the 
healthy subjects were 151.32 ± 22.04 ml vs. 144 ± 20.37 ml and 191.13 
± 36.30 ml vs. 185.80 ± 38.26 ml for patients with MI, respectively. 
Both ES and ED simulated volumes closely aligned with those obtained 
from the cardiac MRI. The difference in LV volumes was within the 
range 3%–5%.

4.3. Global strain analysis
The LV global strains, namely, GCS, GLS, and GRS, derived 

from the built models and FT techniques in patients with MI were 
considerably lower than those in healthy controls. All p-values were 
lower than 0.001 (Table 3). The average global circumferential strains 
calculated for the two categories using the built models were −17.5% 
± 1.1% and −11.2% ± 1.9%, respectively, and those obtained by the 
CVI42 software were −18.7% ± 1.9% and −12.0% ± 3.2% respectively. 

The global circumferential strains computed using the CardioTrack 
software were −19.2% ± 1.9% for healthy subjects and −13.4% ± 3.2% 
for patients with MI. The average global longitudinal strains computed 
by both software for the healthy controls were in the same range: −17.5% 
± 1.3% (CVI42) and −18.9% ± 2.3% (CardioTrack). Global radial strain 
was impaired in patients with MI compared with healthy controls (18% 
± 5.6% vs. 32.3% ± 5.6% by CVI 42 and 43.4% ± 3% vs. 62.8% ± 11.6% 
by CardioTrack). Global radial strain was impaired in patients with MI 
compared with healthy controls (18% ± 5.6% vs. 32.3% ± 5.6% by CVI 
42 and 43.4% ± 3% vs. 62.8% ± 11.6% by CardioTrack). Additionally, 
receiver operating characteristic curve (ROC curve) analysis was used 
to compare each method and to assess strain parameters’ capacity to 
differentiate patients with MI from healthy controls (Table 4). Figure 5 
illustrates the ROC curve of the global circumferential strain results 
obtained with the proposed method, CVI42, and CardioTrack with area 
under the curve (AUC) of each method.

4.4. Subject-specific passive material parameters
Table 5 presents the passive material parameters identified for 

each subject, as well as the mean values and the standard deviation. The 
table clearly demonstrates a distinction in the passive parameter (C0) 
between healthy subjects and patients with MI. The mean (C0) value 
for healthy myocardium is 0.088 kPa, and in the infarcted region, it 
increases to 6.094 kPa (p-value < 0.001). This significant difference 
supports findings from previous studies, which suggested that the 
passive myocardium in infarcted regions becomes approximately 
50 times stiffer compared to healthy myocardium [19, 28–30]. No 
significant difference was observed in the LV parameters of passive 
materials (bf ,bt, and bft) between healthy controls and patients with MI 
(all p-value > 0.05).

4.5.  Distributions of strain and stress
Figure 6 shows the ES stress and strain distribution in proximity 

to the endocardium and epicardium in both models. The average stress 
value was 0.073 ± 0.01 MPa (73 kPa) in the healthy model. The average 
systole stress was 0.082 ± 0.04 MPa (82 kPa) in the infarcted region. 
The average fiber strain distribution value was −0.15 ± 0.06 in the 
healthy model and 0.2 ± 0.04 in the infarcted region. The distribution 
of stress at ES was characterized by a nonuniform pattern. The highest 
stress values were observed near the subendocardial layer. In the MI 
model, the stress distribution was altered due to the presence of the 
infarcted region.

6

ESV_CMR
 (ml)

ESV_Finite 
Element (ml) % variation EDV_CMR (ml)

EDV_Finite 
Element (ml) % variation

Healthy subjects 54.80 ± 12.72 55.59 ± 12.39 2 144.00 ± 20.37 151.32 ± 22.04 5 
Patients with MI 99.00 ± 26.52 102.00 ± 25.99 3 185.80 ± 38.26 191.13 ± 36.30 3 

Note: ESV and EDV values are expressed as mean ± SD

Table 2
ES and ED simulated volumes and those obtained from cardiac MRI

Method
Healthy controls Patients with MI

GCS (%) GLS (%) GRS (%) GCS (%) GLS (%) GRS (%)
CVI42 −18.7 ± 1.9 −17.5 ± 1.3 32.3 ± 5.6 −12.0 ± 3.1 −13.4 ± 3.2 18.0 ± 5.6
CardioTrack −19.2 ± 1.9 −18.9 ± 2.3 62.8 ± 11.6 −13.4 ± 3.2 −12.7 ± 3.4 43.4 ± 3.4
Simulated  −17.5 ± 1.1 - - −11.2 ± 1.9 - -

Table 3
LV myocardium global strain computed parameters
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The infarcted region is often stiffer than the healthy myocardium 
and leads to areas of elevated stress around the infarcted zone. A 
positive value of strain in the infarcted region is a result of the altered or 
decreased normal contractile function. The global strain values obtained 
using the proposed method and those analyzed by cardiac MRI-FT 
software show a considerable variation in GCS and GLS strains when 
comparing patients with MI to healthy controls. However, a difference 

was observed in GRS derived from the two software. This significant 
difference could be explained by the fact that CardioTrack is based on 
contour detection whereas the other software uses the intra-myocardial 
structure to calculate the radial myocardial strain. According to Table 4, 
the cardiac LV parameters derived from MRI, namely, ESV, EDV, and 
EF, indicated a good performance, with the respective average AUCs of 
0.98, 0.88, and 0.98. Similarly, average AUCs of 0.93, 0.81, and 0.84 
were obtained with the simulated LV parameters: ESV, EDV, and stress. 
The outcomes of this study demonstrate that CVI42 and the proposed 
method show a slight increase in performance than the CardioTrack 
software in the circumferential direction (proposed method AUC: 
1 and GCS_CVI42 AUC: 0.85 vs. GCS_CardioTrack AUC: 0.94). 
The Bland–Altman plots illustrated in Figure 7 and the average 
AUC values presented in Table 4 reveal a subtle distinction in strain 
analysis software in the range of inter-operator variability and equal 
differences between patients and healthy controls. Such a difference is 
related to technical differences in implementation. Indeed, CVI42 and 
CardioTrack software utilize the FT technique. However, differences 
may exist as one of the techniques is mainly contours-based and the 
other is intra-myocardial-based.

5. Discussion
This study used the FE method and measurements from cardiac 

MRI acquisition to estimate mechanical parameters in healthy controls 
and patients with MI. The potential of cardiac strain and stress analysis 
in detecting cardiac abnormalities, prognosis, guiding therapy, and 
patient follow-up was demonstrated. Accordingly, the changes found 
in terms of strain magnitude are more likely due to the presence of MI 
[42]. Patients with MI exhibited lower LV global strain values, obtained 
using the cardiac MRI-FT software and the proposed method, than 
those derived from healthy controls. ES stress and strain distributions 
are relatively homogenous due to the underlying myocardium structure 
throughout the wall [16, 17]. Compared with the healthy model, 
these parameters in the infarcted LV model are more pronounced 
in the infarcted region. These significant variations have also been 
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Variable AUC ± SE p-value Sensitivity (%) Specificity (%)
MI vs. healthy controls
Cardiac MRI parameters of LV
ESV 0.94 ± 0.03 <0.001 90 90
EDV 0.83 ± 0.07 <0.001 85 75
SV 0.65 ± 0.09 0.100 55 75
EF 0.98 ± 0.02 <0.001 95 90
Feature-tracking parameters
GCS_CVI42 0.96 ± 0.03 <0.001 90 95
GCS_CardioTrack 0.94 ± 0.04 <0.001 95 85
GLS_CVI42 1 ± 0.00 <0.001 100 100
GLS_CardioTrack 0.93 ± 0.02 <0.001 85 80
Simulated parameters
ESV 0.93 ± 0.03 <0.001 90 85
EDV 0.81 ± 0.07 0.001 90 70
Stress 0.84 ± 0.06 <0.001 75 70
GCS 1 ± 0.00 <0.001 100 100

Table 4
ROC curve analysis for the used dataset

 Figure 5
ROC curves for simulated, CVI 42, and CardioTrack global 

circumferential strains
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demonstrated by Guccione et al. [25]. They utilized an FE model to 
explore the transmural distribution of fiber stress across the canine LV, 
providing valuable data on the variations in stress from the apex to 
the base. In contrast, our study refines this investigation by applying 
a static model to human LV data, enabling a more focused comparison 
of stress and strain in both healthy and infarcted myocardial regions. 
Furthermore, ES stress and strain distribution results correlated well 

with those in previous studies. As an example, in a study by Al-Ani and 
Deriche et al. [16], where the authors computed models of LV under 
healthy and pathological conditions using cardiac MRI images of a 
healthy subject and a patient with MI, the stress distribution values were 
64 ± 19 kPa and 65 ± 32 kPa in the healthy model and in the infarcted 
region, respectively. Similarly, in the study by Wong and Kuhl [21], 
the fiber strain distribution values were −0.19 ± 0.04 and 0.02 ± 0.02 
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 Figure 6
Simulation results of healthy and infarcted LV models regarding the fiber stress and strain distributions near the myocardium

Healthy Myocardial infarction
Subject C0 (KPa) bf bt bf Patient C0 bf bt bft

1 0.123 10.72 4.29 7.51 1 7.081 12.51 5.00 8.76
2 0.095 14.67 5.87 10.27 2 5.873 15.35 6.14 10.75
3 0.103 14.50 5.80 10.15 3 6.421 13.74 5.50 9.62
4 0.074 17.08 6.83 11.96 4 5.493 17.12 6.85 11.98
5 0.106 14.19 5.68 9.93 5 6.721 12.12 4.85 8.48
6 0.085 17.52 7.01 12.26 6 6.423 10.51 4.20 7.36
7 0.069 13.44 5.38 9.41 7 7.264 11.08 4.43 7.76
8 0.071 12.78 5.11 8.95 8 6.280 17.88 7.15 12.52
9 0.065 16.73 6.69 11.71 9 6.241 15.38 6.15 10.77
10 0.072 18.15 7.26 12.70 10 5.643 17.46 6.98 12.22
11 0.076 12.57 5.03 8.80 11 5.868 15.75 6.30 11.02
12 0.089 16.94 6.78 11.86 12 7.113 13.00 5.20 9.10
13 0.064 14.14 5.66 9.90 13 5.152 11.20 4.48 7.84
14 0.072 17.82 7.13 12.47 14 6.564 16.75 6.70 11.73
15 0.128 15.29 6.12 10.70 15 5.552 18.79 7.52 13.15
16 0.110 18.58 7.43 13.01 16 5.821 13.40 5.36 9.38
17 0.095 12.40 4.96 8.68 17 6.770 15.16 6.06 10.61
18 0.081 15.00 6.00 10.50 18 6.624 16.24 6.50 11.37
19 0.074 18.30 7.32 12.81 19 4.127 17.15 6.86 12.00
20 0.119 16.43 6.57 11.50 20 4.840 13.87 5.55 9.71
Mean 0.088 15.36 6.15 10.75 Mean 6.094 14.72 5.89 10.31
SD 0.019 2.28 0.91 1.59 SD 0.807 2.47 0.99 1.73

Table 5
Estimated passive material parameters for healthy subjects and patients with MI
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in the healthy model and in the infarcted region, respectively, which 
correlates well with the overall average of −0.15 ± 0.06 for the healthy 
model and 0.2 ± 0.04 for the infarcted region found in the current study. 
In literature, several state-of-the-art studies [15, 35–41] that use the FT 
technique for LV strain measurements also utilize the same imaging 
modalities, cardiac MRI, as this study but with a variable number of 
subjects (Table 6). 

Although the proposed method yields promising results, several 
limitations should be acknowledged. First, the use of a simplified 
FE model may introduce biases in estimating regional mechanical 
behavior. Specifically, the assignment of uniform material properties 
to infarcted and peri-infarcted regions may lead to underestimation or 
overestimation of local stress and strain, particularly in areas exhibiting 
significant tissue heterogeneity. Second, the model does not account for 
multiphysical interactions such as electrical conduction, hemodynamics, 
and metabolic activity, all of which are critical to cardiac function and 
remodeling. The omission of these physiological processes may hinder 
the model’s ability to capture the intricate coupling between mechanical 
and biological responses. Third, the study is based on a relatively small 
dataset, potentially limiting the generalizability and robustness of the 
findings. The significant results of this study encourage one to consider 
expanding the used dataset and exploring the potential of artificial 
intelligence (AI) and machine learning in future research projects. 
AI could be employed to refine parameter estimation, enabling more 
precise personalization of the model based on patient-specific data. 
For example, it could be used to analyze large datasets from MRI or 
other imaging modalities to optimize the mechanical properties of the 
myocardium in both healthy and infarcted regions [43, 44].

6. Conclusion
In this work, an FE model was developed using cardiac MRI data 

to simulate LV stress and strain distributions at ES for both healthy 
individuals and MI patients. The model included data from 40 subjects 
and enabled the estimation of GCS, GLS, and GRS. These strain 
measurements were then compared with those obtained via the FT 
technique. The results demonstrated strong correlation, highlighting 
the capability of the proposed method to accurately capture myocardial 
deformation. Notably, the strain patterns derived from the model showed 
significant potential in distinguishing between healthy and infarcted 
myocardium. The findings suggest that this FE-based approach could 
serve as a valuable diagnostic tool for assessing myocardial viability 
and improving clinical decision-making in cardiac care.
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 Figure 7
Bland–Altman plots for strain quantification methods CVI42 and 
CardioTrack for each group of subjects’ (a) circumferential strain 

and (b) longitudinal strain

Study
Healthy controls

Mean ± SD
Patients with MI

Mean ± SD
GCS (%) GLS (%) GRS (%) GCS (%) GLS (%) GRS (%)

Morton et al. [35] −17.4 ± 4.0 −20.5 ± 5.0 20.8 ± 6.0 - - -
Augustine et al. [36] −21.0 ± 3.0 −19.0 ± 3.0 25.0 ± 6.0 - - -
Genet et al. [15] −17.6 ± 5.8 −13.9 ± 2.9 - - - -
Taylor et al. [37] −26.1 ± 4.0 −21.3 ± 5.0 39.8 ± 8.0 - - -
Yu et al. [38] −20.8 ± 2.8 −15.5 ± 2.7 38.5 ± 9.3 −16.9 ± 2.2 −13.1 ± 2.2 28.4 ± 5.1
Qu et al. [39] −17.0 ± 2.7 −15.4 ± 2.3  44.4 ± 13.0 - - -
Wang et al. [40] −19.3 ± 0.0 −13.5 ± 2.6 39.6 ± 0.0 −14.7 ± 0.0 −8.9 ± 2.3 24.1 ± 0.0
Polacin et al. [41] −19.9 ± 2.0 −18.9 ± 4.0 39.8 ± 6.0 −10.7 ± 5.0 −10.7 ± 5.0 27.9 ± 5.0
Our study, 2025 −18.7 ± 1.9 −17.5 ± 1.3 32.3 ± 5.6 −11.9 ± 3.1 −13.38 ± 3.2 17.9 ± 5.6

Table 6
Studies providing normal and pathological cardiac MRI-FT LV strain measurements
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