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Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties in communication and social behavior. 
Early identification of autistic traits is necessary for timely treatment. However, clinical diagnostic methods remain costly, time-consuming, and 
inaccessible. AI-guided nonclinical screening techniques such as eye tracking and behavior analysis may offer a promising alternative. This is the 
first systematic bibliometric analysis attempting to discuss the effectiveness, limitations, and trends of AI-based methods proposed for identifying 
autistic traits using nonclinical analysis. The current study is an unprecedented bibliometric analysis of 152 Scopus and Web of Science articles 
(2018–2025). This analysis uses VOSviewer and Gephi to map different relations. Deep learning and hybrid transfer learning yield better results. 
However, most of the proposed methods possess low specificity. The proposed research establishes eye-gaze analysis as the most commonly 
employed technique in the present study, while key behavioral cues—facial expressions, attention changes, and verbal patterns—are yet to be 
studied. The key shortcoming is that no standardized evaluation system exists, with earlier work lacking rigorous benchmarks for specificity, 
interpretability, and bias mitigation. Furthermore, while transfer learning techniques are widely used due to dataset scarcity, no publicly available 
video-based datasets exist, restricting the development of multimodal ASD screening models. To fill these gaps, this paper suggests a benchmarking 
framework that focuses on multifeature evaluation (facial expressions and attention shifts) for better diagnosis. In addition, standardized specificity 
thresholds support clinical reliability and foster geographically diverse, openly available datasets to obtain fairness and generalizability. This study 
provides the bibliometric synthesis of nonclinical AI-based ASD screening. It proposes a benchmarking framework with multifeature evaluation, 
standardized specificity thresholds, and diverse open datasets and maps data modalities to suitable deep learning models. These contributions 
provide practical guidance and deliver actionable insights to advance scalable, multimodal, and interpretable ASD screening tools for early, 
noninvasive detection.

Keywords: autism spectrum disorder (ASD), artificial intelligence, deep neural network (DNN), eye tracking, behavioral analysis, feature 
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1. Introduction
“Autism spectrum disorder” (ASD) is a disability in children’s 

mental development [1]. Symptoms are generally observed when 
children are 12–18 months and diagnosed at the age of 2 years. The 
social behavior of a child with ASD is typical and can be easily 
identified in a group of children. Depression, anxiety, epilepsy, attention 
deficit hyperactivity disorder, difficulty sleeping, and self-injury are 
the significant symptoms observed in India. Children with ASD are 
unaware of or not interested in activities in their surroundings. They 
find it troublesome to deal with changes in places, food, people, or 

the regular placement of their belongings and communicating with 
others [2]. One common observation in a child with ASD is unusual 
movements in a crowd of children. In addition, they are extra active 
in routine day-to-day activities and perform restricted and repetitive 
exercises. Sometimes ASD is confused with deafness, where a child 
cannot talk because of deafness. However, doctors or parents perceive 
it as one of the symptoms of ASD. Figure 1 presents all notable key 
points regarding ASD. ASD has become an issue of concern worldwide. 
More than 1% of the children in the world are facing this problem. The 
overall count of patients has increased by 178% since 2020. One child 
in 100 children has autistic symptoms in India [3]. One of the major 
reasons behind the increase in the count is social stigma. In countries 
like India, many parents hesitate to reveal their child’s disability. They 
feel uncomfortable discussing their child at social gatherings, fearing 
that other people or children will make fun of them. Another issue 
commonly observed in India is ignorance regarding this disease. To 

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/	
by/4.0/).

1

*Corresponding author: Ranjeet Vasant Bidwe, Symbiosis Institute of Technology 
(Pune Campus), Symbiosis International (Deemed University), India. Email: ranjeet.
bidwe@sitpune.edu.in and Suraj Sawant, Department of Computer Science and 
Engineering, COEP Technological University, India. Email: sts.comp@coeptech.ac.in 

https://doi.org/10.47852/bonviewJCCE52026197
https://orcid.org/0000-0002-6801-3102
https://orcid.org/0000-0002-5433-4917
https://orcid.org/0000-0001-7415-1563
https://orcid.org/0000-0001-8526-5734
https://orcid.org/0000-0001-5677-7423
https://orcid.org/0000-0003-2653-3780
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:ranjeet.bidwe%40sitpune.edu.in?subject=
mailto:ranjeet.bidwe%40sitpune.edu.in?subject=
mailto:sts.comp%40coeptech.ac.in%20?subject=


Journal of Computational and Cognitive Engineering Vol. 00  Iss. 00  2025

address this issue and create awareness, April 2 is observed annually 
as World Autism Awareness Day (WAAD), where autism is discussed, 
which is otherwise overlooked. However, this is not enough; proper 
education and awareness are required so that people can accept this as 
any other socially accepted disorder and seek help [1].

2. Methods of Diagnosis
It is essential to understand that although there is no clinical test, 

such as a blood test, for the diagnosis of ASD, several assessment tools are 
widely used in clinical practice. Examples include the Modified Checklist 
for Autism in Toddlers, Autism Diagnostic Observation Schedule, and 
Autism Diagnostic Interview-Revised [4]. These tools enable clinical 
diagnosis and extensive clinical investigations, for example, structured 
interviews with the parent or caretaker, detailed behavioral observation, 
and neuropsychological assessments. In addition to this, several clinical 
methods such as fMRI, EEG [5], fNIRS, and MEG [6] provide a great 
value in research. Their help in mapping neurological patterns is seldom, 
if ever, done in clinically ASD diagnostic purposes. This research effort 
puts into perspective nonclinical diagnostic methods that complement 
the clinical approaches, focusing on indirect observational methods, 
developmental history, and specific attributes such as eye-gaze patterns. 
Such a distinction helps in attaining a holistic understanding of diagnostic 
pathways and underlines the potential of nonclinical methods to serve as 
supportive tools in early detection.

In addition to behavioral and observation diagnosis, the 
contribution of genetic testing in the diagnosis of ASD cannot be 
gainsaid. More recently, genetic testing has been recommended for 
all children who are diagnosed with ASD because this can explain 
an underlying molecular or genetic etiology in a sizable proportion. 
Techniques such as CMA and WES have been very useful in identifying 
genetic variations related to autism. Identifying the underlying genetic 
factors will not only facilitate a more specific diagnosis but also lead 
to individualized treatment and intervention that may benefit affected 
individuals and their families. Although the current research relates to 
nonclinical testing methods, incorporating information obtained from 
genetic testing can yield more valid diagnoses and more information 
regarding the etiology of ASD. Figure 2 summarizes various approaches 
used for the identification of autistic traits.

The attributes considered are the child’s attentiveness during 
activities, eye movement or eye position while observing objects, and 
expressions on the children’s faces during activities [7]. Measuring stress 
may also help in predicting ASD traits, which is also tested [8]. Because 
doctors are the ones who provide a diagnosis, this may be subjective. 
Sometimes, this method may provide a misleading diagnosis because 
there is no specific set of identifiable attributes that can describe the 
symptoms of ASD as yet. This disorder is called a spectrum disorder 
because each child may have distinctive behavior, which makes a clear 
diagnosis a challenging exercise.

Existing proposed approaches that perform nonclinical analysis 
use eye-gaze analysis, including eye tracking, eye movement, or eye 
positioning as an attribute for prediction. Children’s eye movement is 
one of the essential attributes in detecting ASD. However, there can 
be various reasons for not having a fixed or stable eye movement. The 
main issue with the nonclinical method of diagnosis is that it is very 
time-consuming and costly because it involves several hours spent with 
doctors to observe or perform the gait analysis activities. Most parents 
cannot afford this method.

AI has become very popular in the last decade. It has been proven 
to be a very efficient method for solving real-time issues [9]. Many 
bibliometric studies have demonstrated the effectiveness of DNN 
methods in addressing various complex problems. The adaptive nature 
of DNN helps in supporting a variety of multimodal input data [10]. A 
DNN model that works efficiently on images can also be used on video 
data. We can observe the continuous improvement in the accuracy of 
the model as we train the model. In addition, transfer learning methods 
can be very useful when a dataset has limited data inputs.

This paper provides information on bibliometric studies 
performed on articles that have used AI-based approaches to analyze 
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ASD. The articles considered for this study are downloaded from two 
famous databases, namely, “Scopus” and “Web of Science.”

This study is divided into two sections. First, quantitative 
analysis includes studying documents and providing information such 
as country, source, type of publications, year, citation, and keywords. 
The second part is a qualitative analysis that discusses the types of 
datasets available for study, the mainframe approach of prediction, 
the method used, results, and observations from the analysis using the 
proposed approaches. In addition, it discusses the performance metrics 
used for prediction. The insights of this analysis are as follows:

1)  What are the key trends and findings from the bibliometric study of 
AI-based approaches for nonclinical ASD screening, particularly in 
behavioral analysis?

2)  How effective are deep neural networks (DNNs) compared to 
traditional machine learning (ML) models in ASD trait identification, 
and what are the major challenges related to dataset availability, 
specificity, and model reliability?

3)  How can novel behavioral markers, such as attention and emotional 
expressions, enhance ASD screening, and what is the need for a 
multifeatured, multimodal analysis?

4)  How can transfer learning and explainable AI improve the 
performance, interpretability, and reliability of ASD prediction 
models?

5)  What standardized statistical methods are required to validate AI 
models for ASD screening and ensure consistent, reliable results?

Unlike prior reviews that primarily summarize clinical approaches 
or reiterate general limitations such as dataset scarcity, this study 
offers the first bibliometric and qualitative synthesis of non-clinical, 
AI-driven ASD screening methods. It introduces a bench-marking 
framework to address specificity, interpretability, and fairness and 
identifies underexplored behavioral markers (e.g., verbal cues, micro-
expressions, and motion-based features). Furthermore, by mapping 
data modalities (images, videos, and motion sensing) to appropriate 
deep learning models, this study provides practical guidance for future 
research and system design.

The organization of this paper is shown in Figure 3 and is 
presented as follows: Section 3 explains the research strategy and 
data analysis procedure, Section 4 starts with a quantitative analysis, 
Section 5 explains the qualitative analysis, Section 6 discusses the 
performance metrics used by the proposed approaches, Section 7 is a 
discussion section where the key observations and challenges of this 
study are discussed, and finally, Section 8 presents the conclusion and 
future scope of this study.

3. Research Strategy and Data Analysis Procedure
One of the famous evaluation techniques used to assess research 

needs is bibliometric analysis [11, 12]. In bibliometric analysis, we 
rigorously analyze academic literature and its scholarly communication. 
This analysis will help in creating a high research impact, identifying 
and computing knowledge gaps, resulting in deriving novel ideas in the 
field of study.

In this study, research documents were retrieved from two widely 
recognized and authoritative databases—Scopus and Web of Science 
(WoS). These platforms were selected due to their extensive coverage, 
reliability, and acceptance in bibliometric studies worldwide.

1)  Scopus, introduced by Elsevier in 2004, is the largest peer-reviewed 
research database, encompassing a broad range of disciplines, 
conference proceedings, and journals. Its comprehensive citation 
data and advanced search features make it highly suitable for 
bibliometric mapping.

2)  Web of Science, initially developed by Thomson Reuters and now 
maintained by Clarivate, offers curated coverage of the Science 
Citation Index (SCI) and the Social Sciences Citation Index (SSCI). 
It is recognized for its stringent indexing criteria and is widely used 
for high-quality citation analysis and trend mapping.

The inclusion of both databases ensures the completeness and 
reliability of the dataset, reduces potential bias from relying on a single 
source, and provides robust citation metadata required for tools such 
as VOSviewer and Gephi. These qualities make Scopus and WoS not 
only “famous” but also the most credible and comprehensive sources 
for conducting bibliometric analyses in scientific research.

Figure 4 presents the search strategy and Table 1 presents the 
keywords used for identifying relevant documents from the databases. 
The fundamental keywords for retrieving documents were “autism 
spectrum disorder” and “ASD.” Additional keywords were identified 
from abstracts and prior literature trends. Specifically, “deep neural 
network” and “transfer learning” were included because these techniques 
are highly prevalent in recent nonclinical ASD detection studies. In 
particular, transfer learning was considered essential due to the scarcity 
of large-scale, domain-specific datasets in autism research, which 
has led researchers to adapt pre-trained models (e.g., VGG, ResNet, 
and EfficientNet) for tasks such as gaze analysis, facial expression 
recognition, and behavioral feature extraction. By contrast, domain-
specific terms such as “MRI” and “ABIDE” were excluded because the 
focus of this study was limited to nonclinical approaches. The detailed 
queries used in Scopus and Web of Science are presented below.

1)  Query in Scopus:

(TITLE (ASD) OR TITLE (autism) OR TITLE (“Autism 
spectrum disorder”) AND TITLE-ABS-KEY (“Deep Neural Network”) 
AND NOT ALL (MRI)) AND PUBYEAR > 2011.

2)  Query in WoS:

(“ASD” (Title) OR “Autism Spectrum Disorder” (Title), AND 
“Deep Neural Networks” (All Fields) AND “DNN” (Abstract) AND 
“DNN” (Keyword Plus) NOT “MRI” (All Fields) NOT “ABIDE” (All 
Fields) AND 01-01-2012 to 31-10-2022 (Publication Date)).

When the above queries were given for the search, 114 and 89 
documents were retrieved from the databases “Scopus” and “Web of 
Science,” respectively. After removing duplicates, the final 152 papers 
were selected for further analysis. Metadata was extracted for these 
selected 152 documents, which have detailed information such as the 
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Organization of this paper
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name of the paper, the author’s name, the country and organization, 
the keywords used, the abstract, the year of publication, the publication 
type, the details of the publisher, the number of citations, and the details 
of the funding agency, if any. These details were retrieved on March 1, 
2025, and were used for further analysis.

The objective behind graphs is to analyze and understand the 
information studied easily and make it more interactive. These graphs 
were drawn using the software tools “VOSviewer” [13], “Gephi” [14], 
and “BibExel” [15]. These tools help in representing multidimensional 
data in graphical visualization. We can form different types of networks 
of authors, author keywords, sources of publication, country of 
publication, citations, co-citations, bibliographic couplings, etc. These 
tools are freely available for educational purposes. The following 
quantitative analysis is conducted in this paper:

1)  Year-wise analysis of documents
2)  Analysis of citations received
3)  Analysis of top keywords 
4)  Analysis of the type of document
5)  Analysis by geographical area
6)  Co-occurrence analysis for author keywords
7)  Citation analysis of the documents
8)  Citation analysis of the source of publication
9)  Analysis of the author by citations
10)  Bibliographic coupling of the documents.

In this study, the quantitative analyses were carried out with the 
primary goal of providing a comprehensive overview of the research 
landscape on nonclinical AI-based ASD detection. Specifically, these 
analyses aim to (i) trace the publication trends over time to understand 
the growth of interest in this domain, (ii) map collaborative networks 
among authors, institutions, and countries to highlight influential 
contributors and partnerships, (iii) analyze keyword co-occurrence and 
thematic clusters to uncover prevailing research themes, (iv) examine 
methodological preferences, such as the use of deep learning, transfer 
learning, and eye-gaze analysis, and (v) identify research gaps and 
future opportunities by correlating quantitative patterns with observed 
shortcomings such as dataset scarcity and lack of standardization. By 
aligning these objectives, quantitative analysis provides both a statistical 
foundation and meaningful insights that strengthen the bibliometric 
mapping of nonclinical approaches for ASD detection.

4. Quantitative Analysis

4.1. Year-wise analysis of documents
The prediction and analysis of ASD are always challenging. 

Several studies have been published regarding prediction. Let us analyze 
all studies published over the last 4–5 decades. We can find that several 
multidisciplinary studies have been published in medicine, neurology, 
psychology, and engineering. In this analysis, we have considered 
documents published in the engineering domain that perform behavioral 
analysis. Approximately 114 documents in Scopus and 89 in WoS have 
been published in the last decade. Since 2018, most of the documents 
have been published, which indicates that substantial work is ongoing 
in this field of study. Figure 5 gives the detailed statistics of the same.

4.2. Analysis of citations received
The citations received for the documents represent the importance 

and relative significance of the solutions or approaches proposed for the 
topic. Table 2 provides the detailed statistics of the citations received 
for the documents published in Scopus and WoS libraries. It has been 
observed that since 2018, more citations have been received for the 
documents. Tables 3 and 4 provide a list of the top 5 documents as per 
the count of citations received.

Figure 6 shows the alluvial diagram. The representation of the 
variations in flow over time and phases is known as an alluvial diagram 
or alluvial plot. This type of diagram is generally used to visualize the 
flow of complex data attributes, which is essential for understanding 
data. In this diagram, multiple vertical axes are allocated to the 
different variables. In addition, data values are presented in blocks 
on each axis.

Figure 6 provides a correlation between authors, publication year, 
and citation count of the top 20 highly cited documents downloaded 
from the Scopus database. This figure is created using rawgraphs.io. It 
shows the flow of the data from the author to the number of citations 
through the year of publication. The first vertical axis, named “Author,” 
represents author names; the second axis, named “Year,” represents the 
year of publication; and the third axis, named “Cited by,” represents the 
number of citations received. The authors on the first axis are written 
in descending order based on the received citations. The connection is 
initiated from the first axis (author) of the author names. Then, it passes 
through a second axis (year) representing the year of publication. The 
same connection is continued to the last axis (cited by) to the block 
of its respective citation count, e.g., connection initiated for the paper 
authored by Jiang M and Zhao Q (axis “Authors”) connected to block 
2017 (axis “Year”) and continued to block 92 (axis “Cited by”). This 
diagram provides the details of the papers published each year and the 
number of citations that they received. According to the analysis, most 
publications were published in 2019, but papers published in 2018 had 
a high impact because they received the largest number of citations. In 
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 Figure 5
Publication by year from Scopus and WoS

 Figure 4
Search strategy for extracting documents

Fundamental Keyword:
Autism Spectrum Disorder

Abstract Terms:
Deep Neural Network

Keyword:
ASD

Documents from

Scopus: 114

Documents from

WoS: 99 

Total after removing

duplicates: 152

Fundamental keyword ASD, “autism spectrum disorder”
Primary keyword using 
“AND”

Deep neural networks

Secondary keywords using 
“OR”

“Neural network,” “transfer learning”

Secondary keywords using 
“NOT”

“MRI,” “ABIDE”

Table 1
List of keywords used in the query
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Year <2018 2018 2019 2020 2021 2022 2023 2024 2025 Total
Scopus citation 9 12 40 69 148 247 352 525 129 1531
Web of Science citation 51 37 47 54 59 76 82 54 18 478

Table 2
Year-wise citations

References and years <2019 2020 2021 2022 2023 2024 2025 Total
[16] 2017 15 11 18 21 22 27 4 118
[17] 2018 3 9 10 12 16 14 4 68
[18] 2018 5 12 15 15 10 7 1 65
[19] 2018 0 5 8 12 14 22 4 65
[20] 2016 14 8 7 14 8 6 1 58

Table 3
Top 5 publications in Scopus (as per citations)

 Figure 6
Alluvial diagram of the top 20 documents with the highest number of citations

References and Years <2019 2020 2021 2022 2023 2024 2025 Total
[21] 2014 37 7 7 5 6 7 0 69
[22] 2015 29 10 9 7 7 5 0 65
[23] 2020 0 3 13 12 9 8 1 45
[24] 2016 13 4 8 9 6 2 0 42
[25] 2018 10 6 7 9 1 5 1 39

Table 4
Top 5 publications in WoS (as per citations)
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addition, it concludes that more focus is on prediction using nonclinical 
analysis.

4.3. Analysis of top keywords
Figure 7 shows a treemap representing the top 10 author key-

words of documents downloaded from Scopus. “Autism spectrum 
disorder” is the most common keyword, i.e., 150 times.

“Deep neural network” occurred 129 times, and it ranked second. 
“Human,” especially a child, is the keyword that occurs most of the 
time, which shows that a majority of work is carried out on children. In 
addition, it is mostly completed using CNN, so “convolutional neural 
network” is one of the most common keywords. “Disease,” “autism,” 
and “classification” are the other most occurring keywords. “Transfer 
learning” is the keyword that occurs less frequently, showing that 
there is a scope for working with transfer learning models in this 
domain. The later section will present the co-occurrence analysis for 
all key-words.

4.4. Analysis of the type of documents
Figures 8 and 9 show an analysis of the types of documents 

published in the field of study. Approximately 55% of papers are 
conference papers, and 44% are journal articles published in Scopus. In 
WoS, approximately 51% are conference papers, and 47% are journal 

articles. The remaining published documents are book chap-ters. Few 
literature surveys have been found on the topic, and no bibliometric 
analysis has been published yet.

Table 5 shows detailed information on the type of documents 
published in predicting ASD using DNN. A total of 114 and 89 papers 
were published in Scopus-indexed and WoS-indexed events, respec-
tively. Out of 203 documents published, approximately 107 docu-ments 
are conference papers. A total of 93 are journal articles.

4.5. Analysis by geographical area
An analysis by geographical area will provide detailed infor-

mation on countries actively working in that area to conduct research 
in a particular domain. It shows the severity of the research problem 
statement and the need for a solution to that problem. Figures 10 and 
11 are bar graphs providing information for documents published 
country-wise. The USA and India are the leading countries in pub-
lishing documents. The USA has published most of the documents in 
WoS, with a total of 18. India ranked second in the WoS publication 
list. India has published 14 documents. India has published the greatest 
number of documents, i.e., 40, in Scopus. The USA has published 17 
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Type of publication Scopus
Web of 
Science Total

Conference paper 58 49 107
Article/journal 54 39 93
Book chapter 2 1 3

114 89 203

Table 5
Publication counts by document type

 Figure 7
Top 10 Scopus keywords

 Figure 8
Document type published in Scopus

 Figure 9
Document type published in WoS

 Figure 10
Scopus country-wise publications
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documents, ranking second. The “National Natural Science Founda-
tion of China,” “National Science Foundation,” “Natural Sciences and 
Engineering Research Council of Canada,” “United States Department 
of Health Human Services,” “Wuhan University of Science and 
Technology,” “Institute of Automation Chinese Academy of Sci-ences,” 
and “National Institute of Health (NIH) USA” are the funding agencies 
who have supported these publications.

4.6. Co-occurrence analysis for author keywords
Figure 12 shows the co-occurrence analysis of the author key-

words selected from the documents downloaded from Scopus and WoS. 
“Autism spectrum disorder” is the most frequently used key-word. 
Other keywords are deep learning, autism, CNN, video atten-tion, 
transfer learning, etc. 

Table 6 gives detailed information regarding keywords, their 
number of links, and total link strength (TLS) values. Link strength 
and TLS are weighted attributes. Link attribute is a measure of co-
authorship of a given author with other authors, and TLS represents 
the total strength of co-authorship links between the respective re-
searchers and other researchers. “Autism spectrum disorder” has the 

largest number of links, i.e., 135, which means that this keyword is 
used 135 times in the documents in the domain, and a TLS value of 182 
means that 182 co-authors have used this keyword in their documents. 
Figure 13 shows the co-occurrence analysis for all keywords. 

4.7. Citation analysis of documents
The citations of the paper represent the impact of the work in 

the respective domain. Co-citation analysis will result in finding the 
most influential publication. A detailed analysis of the citations of the 
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 Figure 11
WoS country-wise publications

 Figure 12
Co-occurrence analysis for author keywords

Keyword Occurrence
Number of 

links

Total link 
strength 
(TLS)

Autism spectrum 
disorder

39 135 182

Deep neural 
network 

23 52 114

Deep learning 19 58 79
Autism 18 74 93
Convolutional 
neural network/s 
(CNN)

13 49 70

Machine learning 8 31 38
ASD 8 34 38
Classification 6 20 24
Visual attention 5 20 23
Transfer learning 4 18 21

Table 6
Author keywords: occurrence, number of links, and TLS
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documents is shown in Table 7. The paper written by Jiang et al. [19] 
received the most citations, i.e., 118. Zakari et al. [21] received 69, and 
Zunino et al. [17] received 68. These citations are from the most recently 
published documents. This concludes that a significant amount of work 
is ongoing in the field and requires more attention to provide a solution 
to the problem. After analysis, it was found that four documents by Eni 
et al. [26], Li et al. [27], Eni et al. [28], and Francese et al. [29] have 
cited papers from the above list for analysis. Figure 14 shows a graph of 
the citation analysis generated by the software VOSviewer. It represents 
nodes generated by the authors (different colors for each author) and 
links between these papers. If papers from different authors have cited 
each other, then the link connecting them will have a mixed color. Eni 
et al. have published two papers in the same domain, and their latest 
paper [28] has cited their previous paper [26], which is shown in red 
color. The link between papers written by Francese et al. [29] and Eni 
et al. [26] and that between papers written by Li et al. [27] and Eni et al. 
[ 26] have mixed colors.
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Document Citation
Jiang and Zhao [16] 118
Zakari et al. [21] 69
Zunino et al. [17] 68
Li et al. [18] 65
Jiang et al. [19] 65
Barakova et al. [22] 65
Rad and Furlanello [20] 58
Li et al. [23] 45
Tao and Shyu [30] 42
Eni et al. [26] 38

Table 7
Top 10 cited documents 

 Figure 13
Co-occurrence analysis for all keywords
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4.8. Citation analysis of the source of publication
Figure 15 shows a co-occurrence analysis of publication 

sources. Conferences and journals have their own set of domains of 
the documents that they publish. Sometimes it becomes difficult to 
find a publication source to publish the research. This section will help 
new researchers find the source to publish their articles. Figure 15 
presents the potential relationship between four publication sources: 
“IEEE Access,” “Proceedings of the Annual International Conference 
of the IEEE Engineering in Medicine and Biology Society (EMBS),” 
the “International Conference on Information Visualization,” and 
“Computer Speech and Language,” which are represented using nodes 
with different colors. Mixed-color links connecting various nodes 
denote that papers from the source have cited each other.

Table 8 shows the top 5 publication sources by Scopus. “Neu-
rocomputing” is the top source, with 4 published documents and 58 
citations. “IEEE Access” is another journal source with 3 documents 
and 51 citations. Approximately 50% of the documents are published 
at conferences. “Lecture Notes in Computer Science, Including 
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics,” “Proceedings of the Annual International Conference 
of the IEEE Engineering in Medicine and Biology Society (EMBS),” 
and “ACM Conference Proceedings” are the top conference sources 

where three documents are published each with a good number of 
citations. Table 9 shows the top 5 publication sources by WoS. “Lecture 
Notes in Computer Science” has published the largest number of 
documents, i.e., 9.

4.9. Analysis of the author by citations
Figure 16 and Table 10 provide the details of the authors who have 

contributed to the domain by having the greatest number of citations to 
their documents. This analysis is performed on all extracted documents 
from Scopus and WoS. Li X has published 4 documents; currently, 
65 citations are present. Jiang M has published 3 documents, and 152 
documents have been cited. Jayanthi A K is an Indian author who has 
published 3 documents. Even our team is actively working in the same 
area and has published 3 documents by Bidwe et al. [31], Vasant Bidwe 
et al. [32], and Bidwe et al. [33] to date. Figure 16 presents all authors 
who have contributed to that domain with nodes of different colors. 
The color of the link between two different nodes denotes whether the 
authors belonging to that node have cited each other. A mixed-color link 
means that both authors have cited each other in one or another paper 
published by them.

4.10. Bibliographic coupling of documents
Bibliographic coupling explains that if two articles share refer-

ences, they also discuss similar technical contents. This analysis 
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Source
Number of 
documents Citations

“Lecture Notes in Computer Science” 9 62
“Advances in Intelligent Systems and 
Computing”

4 3

“International Journal of Advanced 
Computer Science and Applications”

3 1

“Universal Access in Human-Computer 
Interaction Access to Learning Health 
and Well Being UAHCI 2015”

3 15

“Universal Access in Human-Computer 
Interaction Access to Learning Health 
and Well Being UAHCI 2018”

3 6

Table 9
Citation analysis by a source according to the number of 

citations: WoS

 Figure 14
Citation analysis document

Source
Number of 
documents Citations

“Neurocomputing” 4 58
“Lecture Notes in Computer Science, 
Including Subseries Lecture Notes 
in Artificial Intelligence and Lecture 
Notes in Bioinformatics”

3 12

“IEEE Access” 3 51
“Proceedings of the Annual Interna-
tional Conference of the IEEE En-
gineering in Medicine and Biology 
Society (EMBS)”

3 51

“ACM Conference Proceedings” 3 12

Table 8
Citation analysis by a source according to the number of 

documents: Scopus

 Figure 15
Citation analysis of the source of publication
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dictates that if two papers cite the third paper, there is a high probability 
that all three papers discuss the same subject matter. The size of the 
node is decided according to the paper’s citation count. A link will 
be created between nodes if the paper is cited in another paper. The 
mixed-color link denotes that papers have cited each other. Figure 17 
and Table 11 provide a detailed analysis of the bibliographic coupling 
of all publications from Scopus and WoS. Jiang M is the author with the 
highest TLS value (45) with 19 links. The study was performed on all 
available documents in the domain.

5. Qualitative Analysis
For qualitative analysis, articles are searched and downloaded 

from “Scopus” and “Web of Science” using the query explained in the 
above section named “Research Strategy and Data Analysis Procedure.” 
Downloaded articles are sorted based on the date of publication. There 
are three main types of data available for analysis. The first type of data 
is images. The second type is videos, and the third type is the use of a 
questionnaire.

The proposed approaches for clinical analysis of diagnosing ASD 
[36–39] have used three very famous open-source datasets of MRI 
images named ABIDE-I, ABIDE-II, and ABIDE preprocessed [40, 
41]. Autism Brain Imaging Data Exchange (ABIDE) is an initiative by 
“International Neuroimaging Data-Sharing Initiative.” These datasets 
contain more than 1000 “Resting-State functional Magnetic Resonance 
Imaging” (R-fMRI) images from more than 500 individ-uals with ASD 
and more than 500 typically developed individuals aged 5–64 years. 
For nonclinical analysis, Kaggle has published an open-source dataset 
containing children’s pictures. This dataset can be used for eye-gaze 
analysis, which can be further extended to the prediction of ASD. The 
same type of dataset is also released by Duan et al. [42]. The video 
dataset can be used for behavioral analysis. Most of the videos used 
for the analysis are recorded by the authors and used for experimental 
purposes. Videos are recorded either at home, in a hospital, or in a 
rehabilitation center. Because they do not want to reveal the identity of 
the children with ASD, the datasets are not made open source.

The survey-based analysis for the diagnosis of ASD will 
include answering a standard questionnaire. ASDetect [43, 44] by the 
“Olga Tennison Autism Research Centre” and the “American Autism 
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 Figure 16
Citation analysis by author

Author Citation
Jiang and Zhao [16] 118
Zunino et al. [17] 68
Li et al. [18] 65
Jiang et al. [19] 65
Rad and Furlanello [20] 58
Tao and Shyu [30] 42
Eni et al. [26] 38
Li et al. [27] 36
Duan et al. [34] 33
Lee et al. [35] 29

Table 10
Citation count by author
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Research Institute” have released the “Autism Treatment Evaluation 
Checklist” (ATEC) [45]. QCHAT and QCHAT-10 [46, 47], ADOS-2 
[48], ADI-R, CARS, and AQ-10 [49] are famous questionnaires that 
are freely available for assessing autistic traits in a child. The ASDetect 
app has a questionnaire that will help in the preliminary diagnosis of 
autism. This app claimed an accuracy of 81%–83%. We can use them 
for the preliminary assessment of children from ages 3 to 12. Figure 18 
summarizes the details of the types of analysis (clinical, non-clinical, 
and survey), methods used by them (eye-gaze analysis, MRI, and 
questionnaire), and various open-source datasets available for ASD 
analysis.

Figure 19 shows the traditional method of predicting ASD. 
The traditional method includes several stages. First, we need to find 
data for analysis; then, the data will be preprocessed and forwarded 
to an efficient AI model. Input data may be images, videos, or a set 
of questions. In preprocessing the data, videos will be converted into 
images. Images may be rescaled and reshaped to some size, or data 
augmentation methods can be applied to increase the size of the dataset.

In deep learning models, various types of layers collaborate 
to process input data and produce meaningful predictions. Figure 20 
illustrates the data flow across each layer and the corresponding outputs.

Convolutional layers play a crucial role in feature extraction 
by applying filters to the input data. These filters detect patterns 
such as edges, textures, and shapes and preserve spatial relationships 
in the data. Following this, pooling layers, such as max-pooling or 
average-pooling, reduce the spatial dimensions of the feature maps 
generated by the convolutional layers. This process retains the most 

important information, enhances computational efficiency, and helps in 
minimizing overfitting.

Flatten layers convert multidimensional feature maps into a one-
dimensional vector, preparing the data for processing by dense (fully 
connected) layers. These dense layers perform feature selection and 
classification by learning complex relationships between the extracted 
features and the target output through weighted connections.

The mathematical representations of these layers showcase how 
each processes a given input image, contributing to the model’s ability 
to produce an accurate final output. This layered approach highlights 
the distinct and complementary roles of each component in the deep 
learning pipeline.

Consider an image with spatial coordinates of (a,b), and its input 
feature is represented as I. Assume 𝒦 as the convolutional kernel with 
spatial coordinates of (x,y) and a size of 𝒦𝒽* 𝒦𝒲, where 𝒽 is the height 
and 𝒲 is the width of the image. The function of a convolutional layer 
is represented mathematically by Equation (1). 

ℱ  (𝒦*ℐ)  𝒦

The output of the pooling function can be represented as 
Equation (2), where 𝒫 represents the pooling function used in the 

𝒦𝒽 𝒦𝒲 (1)
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Document Citation TLS Number of links
Jiang and Zhao [16] 118 45 19
Zunino et al. [17] 68 30 15
Li et al. [18] 65 23 6
Jiang et al. [19] 65 3 12
Rad and Furlanello [20] 58 2 2
Duan et al. [34] 24 27 13
Li et al. [27] 19 7 6
Tao and Shyu [30] 19 12 18
Eni et al. [26] 16 16 8
Lee et al. [35] 21 24 3

Table 11
Bibliometric analysis of documents

 Figure 17
Bibliometric coupling of documents

 Figure 18
ASD analysis: types of analysis, methods, and datasets available

Non
Clinical

Clinical

Survey

Gaze Analysis of Eye

fMRI

Questionnaire

rsMRI

Kaggle

Zenodo

ABIDE-I

ABIDE-II

ASDetect

ATEC

QCHAT

Types of Analysis Method Datasets

ASD
ANALYSIS



Journal of Computational and Cognitive Engineering Vol. 00  Iss. 00  2025

analysis; mostly, it is max pooling, and the other available option is 
average pooling. In addition, 𝒮 represents the size of the pooling stride 
used in the analysis. 

ℱ  𝒫(I [a.𝒮:(a + 1).𝒮, b.𝒮:(b + 1).𝒮]).

The flatten layer, represented by Equation (3), later reshapes the 
input image I of size 𝒽 * 𝒲 * C to a one-dimensional array represented 
by Ð, and the height of the image is represented as 𝒽, width by 𝒲, and 
the number of channels by C. 

ℱ  =𝓇(I) = Ð.

Later feature classification by the dense layer can be 
mathematically represented as follows. It uses a specialized weight 
matrix of learned parameters, which are represented by 𝒲. Ð represents 
the one-dimensional vector, and later, a bias value of β is added to add 
nonlinearity. The dense layer function is represented by Equation (4).

ℱ  = α(𝒲.Ð + β) = μ.

α is the activation function used in the above analysis. There are 
various activation functions used to represent the output differently. 
SoftMax is the efficient choice of the activation function used in the 
CNN model. Assume that μ is the output produced by the dense layer 
and t represents the number of classes. The overall softmax function can 
be represented by Equation (5).

ℱ μ
μ

The overall output of CNN can be mathematically represented 
as Equation (6).

𝑜  = ℱ   (ℱ  (𝒲2.α(𝒲1.Ð + β1) + β2)).

The majority of the approaches proposed in this study are 
leveraging transfer learning methods, which are inspired by the 
architecture and functionality of convolutional neural networks (CNNs). 
Transfer learning is a powerful technique in deep learning where a pre-
trained model originally developed for a large and general dataset is 
fine-tuned for a specific task or domain with a smaller, more specialized 
dataset. By utilizing the knowledge already learned by the pre-trained 
model, transfer learning reduces the computational effort, training time, 
and amount of data required to achieve high performance, making it a 
popular choice for solving complex problems in areas such as image 
classification and object detection.

In these approaches, the predefined CNN-based transfer learning 
models incorporate the fundamental layers described earlier—
convolutional layers, pooling layers, flatten layers, and dense layers—
to perform feature extraction and subsequent classification. 

Data are typically preprocessed before inputting images into 
these transfer learning models to ensure compatibility and optimal 
performance. Common preprocessing steps include resizing images to 
match the input size expected by the pre-trained model, normalizing 

(2)

(3)

(4)

(5)

(6)
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 Figure 19
Traditional approach to the prediction of ASD 

 Figure 20
Traditional approach to the prediction of ASD
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pixel values to a standard range (e.g., 0 to 1), and applying data 
augmentation techniques such as rotation, flipping, or cropping to 
expand the dataset and improve the model’s robustness artificially. The 
input image I of size 𝒽 * 𝒲 * C is normalized using the mean  μ and 
standard deviation of σ, represented by Equation (7).

Then, this processed image is further given to a pre-trained 
network represented by ∅(Iimages ; θpretrained_models) of a transfer learning 
model for training. The model extracts the feature  during training 
and contributes to developing a feature vector ; it is represented by 
Equation (8).

ℱ = ∅

ℱ ∈ ℛ∂.

During the training phase, the model evaluates its loss value 
∇, which represents the difference between the predicted labels  
and actual labels  for all available Iprocessed. This loss value serves 
as feedback for the model, triggering the backpropagation process. In 
backpropagation, the gradients of the loss function with respect to the 
model’s parameters are calculated, and the weights of the network are 
updated in the opposite direction of the gradients to minimize the loss. 
The evaluated loss value is represented by Equation (10).

The model then iterates through multiple epochs to refine its 
learning. With each iteration, the model updates its weights and biases 
to better capture the relationships between the input features and the 
target labels. This iterative process gradually improves the model’s 
performance, leading to more accurate feature extraction and better 
classification results. Transfer learning, combined with these iterative 
training techniques, enables the model to adapt effectively to the 
specific task and leverages the strengths of the pre-trained CNN-based 
architecture. In addition, these transfer models can be fine-tuned further 
using learning from training data, represented by θfinetuned_pretrained_models 

and represented by Equation (11). Furthermore, a new set of features 
can be extracted, represented by Equation (12).

ℱ = ∅

Table 12 provides a detailed list of documents that are extracted 
from databases. The table provides information on the method of 
diagnosis and the dataset used for nonclinical analysis. In addition, 
it provides information on the results of the proposed model and 
observations noted from the paper. All papers have used machine 
learning or DNN-based approaches to predict ASD. The articles that 
use the ABIDE dataset for analysis have preferred ML-based classifiers 
to classify MRI images of autistic children with those of typically 
developing children. Many approaches have used special hardware 
devices to record the eye’s screen path when children are asked to watch 
some videos or images. Typically developing children focus more on the 
central part of the images. In contrast, children with autism were found 
to pay less attention to the central part and were trying to explore other 
things in the picture or the surroundings. Recording the screen path and 
using it for analysis is one of the ways of performing eye-gaze analysis. 
The other way of doing gaze analysis is by recording eye position 
and performing analysis. The recorded videos will mainly be used for 
observing attributes such as facial expressions, head poses, and head 
trajectory of autistic and typically developing children. These recorded 
gaze patterns or performed gaze analyses will help in identifying specific 
behavior changes in children. These appearance-based attributes will 
also help in doing gaze analysis and can be used as a prediction method. 
Questionnaire apps such as ASDetect or ATEC can be used easily at 
home for the preliminary analysis at the individual level. Few methods 
explore genes to identify autistic traits [50], and few have explored EEG 
signals recently [51–53]. Several other studies by Kollias et al. [54], 
Iwauchi et al. [55], Taha Ahmed and Jadhav [56], and Moridian et al. 
[57] have also helped in getting more detailed information.  

6. Performance Metrics
This section presents information of performance metrics used by 

the proposed methods shown in Table 12. AI-based model’s efficiency 

(7)

(8)

(9)

(10)

(11)

̂ (12)
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Document and year Method used Dataset type: source Results and observations
[58] 2025 Human action recogni-

tion (HAR) algorithms
Videos: 400 ASD and 
125 other developmen-
tally delayed children

The proposed model provides outstanding results on the bench-
marked Self-Stimulatory Behaviour Dataset (SSBD). It identi-
fied developmental delays of various kinds with an accuracy of 
78.57%.

[59] 2025 CNN, CNN-2 Videos: self-generated This proposed method measures the attention of children during 
activities. MediaPipe is used to extract essential features and 
measure attention based on them. This model achieved 97.1% 
of accuracy in predicting attention in categories highly engaged, 
moderately engaged, and not engaged.

[60] 2025 ML and feature engi-
neering techniques

Self-generated by 
combining two data-
sets

The first stage employs ML-based techniques, and the second 
stage identifies features from verbal, behavioral, and physical 
responses. Experimentation provides a classification accuracy of 
94% in identifying ASD with chi-square extracted features. 

[61] 2025 Hybrid 3DCNN and 
ResNet, with feature 
extraction models

Videos: self-generated 
using VR environment, 
short videos of 1–3 
minutes

Action recognition is completed by the 3DCNN and ResNet mod-
el, which achieved a maximum accuracy of 85% (±3%), AUC of 
80%, and sensitivity of 66%. The generalized linear mixed-effects 
model (GLMM) is used to analyze VR performance. 

Table 12
DNN-based approaches and their used methods, datasets, results, and observations
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Document and year Method used Dataset type: source Results and observations
[33] 2025 Hybrid model of 

ConvNextBase and 
LightGBM

Images: Kaggle A novel hybrid model with certain architectural modifications is 
proposed to identify correct eye positioning. The proposed model 
gives a prediction accuracy of 95% and a specificity of 98%, with 
an AUC of 91%.

[50] 2024 Deep convolutional 
neural network (DCNN) 
and attention-based 
YOLOv8 (AutYO-
LO-ATT)

Images: generated for 
identifying various 
emotions 

Six different emotions are correctly identified in real time by 
DCNN and classified by AutYOLOv8 with an accuracy of 97.2%. 
Other metrics also show the models’ good performance. 

[62] 2024 Chronological pelican 
remora optimization 
algorithm (CPROA), 
CNN

Images This approach utilized a CPROA with a CNN classifier, achieving 
95.2% accuracy, 95.8% recall, and 96.3% F1 score by optimizing 
functional connectivity-based feature selection. Both methods 
highlight the effectiveness of AI in ASD diagnosis, balancing 
end-to-end deep learning and handcrafted feature engineering for 
enhanced detection.

[63] 2024 Multitask cascaded 
convolutional networks 
(MTCNN), transfer 
learning, and face align-
ment algorithms

Images: self-generated This manuscript highlights the use of face alignment, which is 
more useful in predicting ASD. The ResNet50V2 model achieved 
the highest prediction accuracy of 93.97% and an AUC of 96.33%.

[64] 2024 Deep learning tech-
niques

Multimodal audio and 
video data

This study introduces a multimodal AI model integrating video 
and audio inputs to automate FOS-II annotation, reducing manual 
effort in assessing parent-child interactions in autism. Using deep 
learning for behavior recognition, the model enhances socially as-
sistive robots (SARs) by improving their understanding of autistic 
children’s behaviors. This approach ensures robust performance in 
uncontrolled home settings, supporting efficient ASD monitoring 
and digital health advancements.

[53] 2024 Skeleton-based motion 
tracking (e.g., Kinect, 
IMU sensors, or pose 
estimation techniques)

Multiple ASD diagno-
sis benchmarks

This study presents a physics-informed neural network (PINN) 
framework for ASD severity recognition by analyzing skele-
ton-based motion trajectories. The model encodes subject behavior 
into a higher-dimensional latent space using physics-based and 
non-physics-based decoders to predict future motion patterns. A 
classifier utilizes these embeddings for ASD severity classification, 
achieving state-of-the-art performance on multiple ASD diagnosis 
benchmarks and demonstrating applicability to fall prediction 
tasks.

[65] 2024 An interpretable AI 
framework to measure 
attention

Images This study presents an interpretable AI framework for ASD 
screening based on attention patterns using standard camera photos 
instead of high-precision eye trackers. The method automates 
diagnostic reasoning and enhances clinical trustworthiness by 
associating photos with semantically plausible attention patterns. 
Evaluations on both in-domain and out-of-domain data show high 
classification accuracy and generalizability, making it a cost-effec-
tive and scalable solution for ASD diagnosis.

[32] 2024 Transfer learning, HOG, 
and linear SVM

Images: Kaggle, Zeno-
do, self-generated

This paper works in two different phases. In the first phase, k-fold 
cross-validation is used, and ConvNextBase outperformed other 
algorithms with a prediction accuracy of approximately 88%. In 
the second phase, this paper proposes attention as a novel feature 
for autism prediction. Autistic traits are identified based on the 
EAR value.

[66] 2024 Transfer learning Images: Kaggle Images are evaluated on DenseNet121, VGG19, and InceptionV3. 
DenseNet121 outperformed others with an accuracy of approxi-
mately 96%.

[67] 2024 CNN with ISO Images: self-generated This paper proposes intelligent search optimizations based on 
CNN, which help in improving classification capabilities. The 
paper used k-fold cross-validation, which achieved an accuracy of 
up to 99% across various platforms.

Table 12
(Continued)
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Document and year Method used Dataset type: source Results and observations
[68] 2024 CNN Images: self-generated The dataset is self-generated, and eye screen paths are noted for 

further analysis. The CNN-based approach was used for the fea-
ture extraction, which achieved an accuracy of 95.59%.

[69] 2024 Transfer learning with 
fog and IoT

Images: emotion 
analysis

Autistic traits are identified based on the participants’ six different 
types of emotions. TL models are used for the analysis, where 
Xception outperformed ResNet and MobileNet with an accuracy 
of approximately 95% and better sensitivity, specificity, and AUC. 
Fog and IoT helped in faster real-time detection of data.

[70] 2024 Transfer learning Images A novel self-attention measuring system was developed, which 
improves the performance of ResNet101 and EfficientNetB3 and 
achieves an accuracy of 96.50%.

[71] 2023 Deep learning Images: self-generated Data are generated from 20 children, and various classification 
algorithms are used for classification. The maximum accuracy 
received is 73.8%.

[72] 2024 Deep learning Video This approach works on analyzing emotions for predicting autistic 
traits using CNN, and then, deep regression models are used for 
continuous emotion prediction. Then, clustering algorithms are 
used to classify participants according to predicted emotions.

[73] 2023 Deep learning and trans-
fer learning

Images: Kaggle A new algorithm called the control subgradient algorithm is pro-
posed for identifying autistic traits. Then, DenseNet121 with CNN 
is used to evaluate the performance of the system. This approach 
uses L1-regularization to improve the results further. This pro-
posed approach achieved an accuracy of up to 98%.

[74] 2023 Hybrid transfer learning Images: Kaggle A hybrid model of DQN and SPiralNet is used, and hyperparam-
eters are tuned using a driving training policy optimizer. This 
proposed model analyses ROI and predicted autistic traits. This 
model achieved an accuracy and specificity of 90.7% and 93.6%, 
respectively.

[31] 2023 Transfer learning Images: Zenodo InceptionV3 was much more accurate than VGG16, VGG19, 
and AlexNet, with 87.99% and 84.33% prediction accuracy in a 
test and validation dataset, respectively. This difference is highly 
significant in comparison with the other models proposed. In this 
study, the first Zenodo dataset was used.

[75] 2023 Computer vision Images: Kaggle, ac-
tion-based analysis

The first approach was used to judge the behaviors in recorded vid-
eos to find the autistic traits. Videos are recorded while performing 
the daily routine activities and sessions with the therapists. This 
paper by Abir and Ochim tries to synthesize a new model that can 
perform eye-gaze analysis, gesture analysis, and emotion recog-
nition using computer vision. The model, in its entirety, has an 
accuracy of 72%. This paper has made significant findings using a 
new and novel method.

[76] 2022 Advanced CNN: 1D 
CNN

Images: Kaggle In the present work, the hybridized model of MobileNetV2 and 
VGG19, with the help of ML models, gave an accuracy of 92%. 
This model uses facial landmarks to detect dangerous behavior in a 
person with autism.

[77] 2023 Advanced CNN: 1D 
CNN

Questionnaire: CSV 
data

As such, the proposed model for ASD thus provided 1D-CNN-
based screening accuracies of 99.45% for adult data, 98.66% for 
child data, and 90% for adolescent data.

[78] 2023 Advanced machine 
learning models

Questionnaire: CSV 
data

The KNN model outperformed all other models.

[79] 2023 Hybrid transfer learning 
models

Images: Kaggle The VGG16-MobileNet models achieved the best performance: 
AUC of 99.25%, accuracy of 98.8%, and precision of 99%.

[80] 2023 Hybrid DL models Images: Eye screen 
path, Kaggle

Autism screening techniques, such as fair AI, validations of the 
dataset using SMOTE, feature engineering, and optimization 
by advanced DL methods, have provided 99.64% accuracy and 
98.89% for both CNN-LSTM and GRU-CNN techniques in the 
hybrid model.

Table 12
(Continued)
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Document and year Method used Dataset type: source Results and observations
[81] 2023 Transfer learning Images: Kaggle Analyzed the VGG16 and VGG19 models and gave the model an 

accuracy score of 84%.
[82] 2023 Transfer learning, ex-

plainable AI
Images: Kaggle More focus has been given to pre-processing the data in the 

proposed model. The analysis is made up of MobileNetV2, 
ResNet50V2, and Xception. The input images’ pre-processing and 
data augmentation could make up for a maximum accuracy of up 
to 98.9% with an AUC of 99.9%.

[83] 2022 All proposed techniques All types of data This paper discusses various approaches for identifying autistic 
traits and discusses approaches proposed for identifying them with 
challenges.

[84] 2023 Advanced deep learning 
models and transfer 
learning: EfficientNet 
family

Images: Kaggle This proposed model uses EfficientNet and achieved an accuracy 
of 85%.

[85] 2023 Advanced machine 
learning models

Images: self-generated They developed the data using a self-prepared cartoon image 
dataset and then validated whether it helped in recognizing the 
symptoms related to autism. The suggested model is based on a 
logistic regression and attains an accuracy of 0.73, precision of 
0.73, and recall of 0.75.

[86] 2023 Advanced deep learning 
models and transfer 
learning: MobileNet 
family

Images: Kaggle This proposed model can better apply to input images that are 
almost very small. MobileNetV2 and MobileNetV3-Large can 
handle small input image sizes and pass a multiclassifier for better 
classification performance. From the table below, it is pretty 
evident how much better the training of the face classifier in these 
groups of datasets is, with an accuracy of 90.5% and an AUC of 
96.32%.

[87] 2023 Machine learning 
models

Images: Kaggle, 
QCHAT, self-gener-
ated

This dataset is collected and then balanced using SMOTE. The 
techniques applied to that task are DT, NV, KNN, RF, GB, MP, 
SVM, AB, and LR. By executing a specific feature selection, it has 
been reported that AB, LR, SVM, and MLP show the best results 
among the classes used, while they give an accuracy result of 
99.85%.

[88] 2023 Transfer learning 
models

Images: Kaggle VGG16 got an accuracy of 87.22%, whereas Xception got an 
accuracy of 91%.

[89] 2023 Transfer learning 
models

Images: self-generated VGG16 got an accuracy of 87.22%.

[90] 2023 Transfer learning 
models

Images: Kaggle VGG16 got an accuracy of 90.48%.

[91] 2022 DNN + explainable AI Images: Kaggle Using explainable AI (XAI) can help in providing a detailed expla-
nation, which may reduce overall diagnosis time.

[92] 2022 ML classifiers Images: self-generated The DNN-based model achieved approximately 78% of AUC, 
whereas the ML-based model reached approximately 67.80%. The 
model achieved better accuracy when trained on the original data-
set and tested on the augmented dataset. The DNN model could 
achieve AUC of up to 97%.

[93] 2022 Transfer learning 
models

Images: Kaggle AUC values received are 92.81%, 96.63%, and 95.06% by 
MobileNet, Xception, and EfficientNet, respectively. The highest 
prediction rate is obtained using EfficientNet at 59.33%.

[94] 2022 ML classifiers Images: Kaggle KNN and DT classifiers outperformed SVM and NB in the predic-
tion of dimensional reduction techniques. Both models achieved 
an accuracy near 100%.

[95] 2022 ML classifiers Survey/review paper Discussed how computer vision approaches can help in predicting 
and diagnosing ASD.

[47] 2022 New dataset Questionnaire: 
QCHAT

This questionnaire contains 25 questions and can be used for tod-
dlers aged 18–30 months.

Table 12
(Continued)
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can be evaluated using a confusion matrix [115]. The following are 
the basic terminologies and the confusion matrix used for evaluation. 
Figure 21 presents the confusion matrix.

TPA = child with autistic features predicted autistic.
FPA = child with healthy features predicted autistic.
TNH = child with autistic features predicted healthy.

17

Document and year Method used Dataset type: source Results and observations
[96] 2022 Hybrid transfer learning 

models
Images: self-generated Accuracies calculated: GoogLeNet = 93.6%, ResNet-18 = 97.6%, 

GoogLeNet + SVM = 95.5%, ResNet-18 + SVM = 94.5%.
[97] 2022 ML-based analysis Images: self-generated ANN provided the best accuracy of 98.94% after data were pre-

processed using techniques: PCA, SMOTE.
[98] 2021 ML classifiers Images: self-recorded Accuracy calculated: SVM = 92.31%, LDA = 89.74%, DT = 

84.62%, RF = 84.62%.
[99] 2021 ML classifiers Questionnaire: 

QCHAT
Sequential minimal optimization (SMO) based support vector ma-
chine (SVM) classifier outperformed other classifiers and achieved 
99.9% and 97.58% accuracy for the adolescent and adult datasets.

[100] 2021 ML classifiers Images: self-generated Results are taken on the Q-CHAT dataset. Accuracies received: LR 
= 97.15%, NB = 94.79%, SVM = 93.84%, KNN = 90.52%, RFC 
= 81.52%.

[101] 2021 PCA, DNN Questionnaire: ASD 
test app

The app contains a basic questionnaire based on behavioral analy-
sis and claims 81%–83% accuracy.

[102] 2021 DNN method with the 
use of XAI

Images: Kaggle DNN achieved an accuracy of 79% when using the first seven fea-
tures from the dataset for prediction. Using XAI helps in achieving 
good accuracy with detailed explanations for accurate prediction.

[103] 2021 ML classifiers Images: Kaggle Accuracy calculated: neural network = 99%, C4.5 Tree = 96%, 
random forest = 98%.

[104] 2021 ML classifiers Videos: self-generated/
recorded

AUROC and AUPRC scores: 0.98. Sensitivity = 96.0%, specificity 
= 80.0%, and accuracy = 88.0% by logistic regression classifier. 
Classifiers provide good sensitivity but not a satisfactory specific-
ity value.

[105] 2022 LSTM Videos: self-generated/
recorded

Classification based on appearance-based features from videos. 
LSTM with an accuracy of 96.7%.

[23] 2020 LSTM Videos: self-generated/
recorded

LSTM provides an accuracy of 92.6% with TPR = 91.6% and 
TNR = 93.4%.

[106] 2020 ML classifier Videos: self-generated/
recorded

ML classifier’s classification accuracy = 92.5% and MAE of 2.03 
on CARS.

[107] 2021 ML-based approach and 
DNN-based approach

Videos: self-generated/
recorded

The DNN-based approach used for behavioral analysis: smile: 
70% accuracy, look face: 68% accuracy, look object: 67%, vo-
calization: 53% accuracy. The ML classifier for diagnosis: 82% 
accuracy.

[108] 2020 ML classifiers Videos: self-generated/
recorded

Found improvement in accuracy compared to previous versions. 
LR achieved an accuracy of 89.57, and ADTree attained an accura-
cy of 87.14%.

[109] 2020 ML classifiers, CNN Survey/review paper CNN outperforms other models by an accuracy of 99.53%.
[110] 2019 CNN with temporal 

pyramid network
Videos: self-generated/
recorded

The proposed system has achieved an accuracy of 95.2%.

[111] 2018 ML classifiers Videos: self-generated/
recorded

Results obtained from clinical score sheets may differ from those 
collected on live data. Achieved maximum accuracy of 76%.

[30] 2019 Hybrid CNN and LSTM Images: IEEE ICME 
2019

The CNN-LSTM model achieved an accuracy of 74.22%.

[42] 2019 New dataset Images: self-generated An open-source dataset was made available for the study.
[112] 2019 ANN Images: self-generated ANN classifiers achieve more than 90% accuracy.
[113] 2018 DNN classifiers Images: self-generated Pictures are captured in the Tobii studio environment. The paper 

has experimented with attention by autistic and typically develop-
ing children during activities. Autistic children are found to be less 
attentive.

[114] 2018 RNN Images: self-generated The model achieved approximately 98% confidence for fitness 
values of 0.008–0.006, with the best accuracy value of 94%.

Table 12
(Continued)
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FNH = child with healthy features predicted healthy.
Accuracy = how many children were predicted correctly 

(autistic or healthy) out of the total number of children, represented by 
Equation (13).

Precision = how many children were predicted to be autistic who 
are autistic, represented by Equation (14).

Recall/sensitivity/true positive rate (TPR) = how many autistic 
children were predicted correctly out of the total autistic children 
predicted, represented by Equation (15).

Specificity = how many healthy children were predicted correctly 
out of the total healthy predicted, represented by Equation (16).

False positive rate (FPR) = how many healthy children were 
predicted to be autistic, represented by Equation (17).

The TPRA and FPRA values are used to draw the AUC [115]. 
AUC stands for “area under the ROC curve,” whereas ROC stands for 
“receiver operating characteristic curve.” AUC represents and measures 
aggregate performance across possible epoch values. TPRA represents 
the Y-axis, and FPRA represents the X-axis. In addition, coordinates will 
be plotted in this space for the value of the decided epochs. Then, a 
curve will be drawn joining all coordinates and will be called AUC, 
represented by Equation (18), and the detailed computation of the AUC 
value is represented by Equation (19), where i is the index of the point 
in the ROC curve and n is representing the total number of points in the 
ROC curve. 

If a curve is a diagonal straight line (TPRA = FPRA = 0 for all 
epochs), it means that the classifier is getting confused and cannot 
classify the data. The higher the value of AUC is, the better is the 
classifier’s performance. Most of the methods in Table 13 have been 
evaluated using accuracy, sensitivity, specificity, and AUROC value. 
The other metric used for the evaluation by a few approaches is the 
“Childhood Autism Rating Scale,” commonly known as CARS [116]. 
CARS is a clinical rating scale for professional clinicians to evaluate 
the presence of autistic traits in a child after direct observation. The 
cutoff CARS score is 28. Values evaluated above the cutoff score can 
be categorized into “mild to moderate” and “severe” levels of autistic 
attributes. The next section of this paper discusses detailed observations 
and challenges observed after qualitative analysis. 

7. Discussion
In quantitative analysis, we studied articles in the domain 

of interest. We conducted a detailed study of articles in two main 
sections: quantitative analysis, which is an analysis based on authors, 
organizations, keywords, sources, citations, countries of publication, 
funding agencies, etc., and qualitative analysis, which is an analysis 
of various types of input datasets used for prediction, the open-source 
datasets available for study, the traditional method of prediction, 
clinical and nonclinical methods of analysis, etc. It was found that many 
proposed approaches prefer ML-based classifiers for analysis. A few 
approaches have tried DNN-based classifiers to get better results. For 
clinical analysis, classifiers are doing satisfactory work. However, for 
nonclinical analysis, it is difficult to predict ASD based on the symptoms 
because we may observe different symptoms in every child. Therefore, 
ASD is called a spectrum disorder. This bibliometric analysis aims to 
survey available datasets, proposed methods, and their performance. 
Key observations and challenges to the study are listed below based on 
the analysis performed.

As part of the qualitative analysis, detailed tabular summaries 
were prepared to consolidate the findings from the reviewed studies. 
Table 12 presents DNN-based approaches along with their corresponding 
datasets, results, and observations, offering a comprehensive view of 
how deep learning has been applied in ASD prediction since 2018. 
Table 13 provides a comparative perspective on the sufficiency 
of clinical versus nonclinical methods, highlighting strengths and 
limitations in data availability. Table 14 synthesizes the methods used 
for identifying autistic traits, mapping classical ML, DNNs, transfer 
learning, and hybrid approaches. While these tables provide depth and 

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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 Figure 21
Confusion matrix for performance analysis

Category Techniques used India (% usage) Other countries (% usage) References
Clinical 
methods

MRI/brain imaging Limited (<5%) Moderate (~15%–20%) [117]
EEG (electroencephalogram) Rare (<5%) Moderate (~10%–15%)
Blood biomarkers (genetic testing) Rare (<5%) Moderate (~20%)
Gut microbiome testing Minimal (1%–3%) Emerging (~5%)
Stem cell/hyperbaric oxygen therapy Experimental (<2%) Experimental (<5%)

Nonclinical 
methods

Behavioral analysis (e.g., ADOS, ISAA, and CARS) High (~75%) High (~70%–80%)
Modified Checklist for Autism (M-CHAT) Moderate (~40%–50%) High (~70%)
Speech and social interaction observation High (~70%) High (~70%–80%)

Table 13
Analysis of methods used for the screening of ASD
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serve as reference material, the synthesis of their insights is discussed in 
Section 7.1 (Key observations) and Section 7.2 (Challenges to predict 
ASD), ensuring that essential conclusions are presented in a concise 
and reader-friendly manner. Later, this section summarizes the research 
gaps, challenges, and limitations of ASD. 

7.1. Key observations from the analysis
After conducting quantitative and qualitative analyses, the 

following key observations are listed:

1)  The fitness of the mind is as vital as the body. The world is currently 
dealing with a significant issue of ASD. Patients with ASD have 
trouble interacting and communicating with others, often referred 
to as “behavioral illness.” Young children often exhibit ASD 
symptoms, particularly in the first two years, that persist until 
appropriate therapy is administered.

2)  ASD can be treated clinically or nonclinically. There is no specific 
test for clinical analysis, such as a blood test or any comparable test. 
Doctors observe differences in the brain MRI and conclude. Usually, 
this method can be used at the age of 4 or above, which is a very late 
diagnosis.

3)  For a nonclinical diagnosis, children must go to the doctor with their 
parents for several sessions. In sessions, doctors will have personal 
interactions with parents and children and ask children to perform 
some activities. On the basis of the observations from personal 
interactions and activities performed by the child, the doctor will 
declare the result. This result may be subjective and misleading. 
In addition, this method of diagnosis is very time-consuming and 
costly, which is not affordable to many parents.

4)  Clinical and nonclinical methods play a vital role in autism screening 
and diagnosis, with significant variations in their adoption across 
India and other countries. In clinical methods, advanced techniques 

such as MRI/brain imaging and EEG are used moderately (~15%–
20% and ~10%–15%, respectively) in other countries. However, 
their usage remains limited in India, accounting for less than 5% due 
to infrastructure and accessi-bility challenges. Although emerging 
globally, blood biomarker analysis and gut microbiome testing are 
rarely adopted in India, with usage rates below 5%. Stem cell therapy 
and hyperbaric oxygen therapy are still experimental in both regions. 
Con-versely, nonclinical methods are more widely adopted in India 
due to their accessibility and cost-efficiency. Behavioral tools, such 
as the ISAA and CARS, are utilized in approximately 75% of cases 
in India, aligning closely with global usage (~70%–80%). The 
Modified Checklist for Autism (M-CHAT), alt-hough moderately 
adopted (~40%–50%) in India, enjoys a higher prevalence in other 
countries (~70%). Speech and social interaction observations show 
consistently high adoption rates (~70%–80%) across both regions. 
These patterns highlight significant reliance on nonclinical methods in 
India, driven by limited access to clinical diagnostic tools. However, 
the global scenario reflects a more balanced approach that integrates 
clinical and behavioral assessments. The need for enhanced infra-
structure and investment in clinical diagnostic methods is crucial to 
bridging the gap and improving autism diagnosis outcomes in India. 
Table 13 below provides a detailed analysis of the data sufficiency 
test performed for clinical and nonclinical analysis used for the 
screening of ASD.

5)	 The majority of the articles propose approaches for clinical analysis. 
They used an open-source dataset named ABIDE and several ML-
based classifiers for classification. SVM, RFC, NB, LR, KNN, and 
PCA are the favorite choices of researchers for analysis. In addition, 
many researchers prefer to use deep neu-ral-based approaches. 
DNNs have become very popular today as an automated and 
efficient solution to various real-time issues because of their adaptive 
nature, support for multimodal data, and continuous performance 
improvement. Researchers preferred CNN, RNN, or LSTM for 

19

Machine learning (ML) Deep neural networks (DNNs) Transfer learning (TL) Other methods
Support vector machines 
(SVMs)

Convolution neural network VGG family Explainable AI

Random forest classifier 
(RFC)

Recurrent neural network MobileNet family Hybrid models (deep learning 
or transfer learning models with 
ensemble learning)

K-nearest neighbors (KNNs) Long short-term memory EfficientNet family Computer vision techniques
Logistic regression (LR) 1D/2D/3D convolution neural network ResNet family HOG and linear SVM
Decision trees (DT) Deep attention neural network (DANN) Inception family Object detection techniques
Artificial neural networks 
(ANNs)

Deep convolutional neural network 
(DCNN) 

Xception Data augmentation techniques

Logistic regression (LR) Multitask cascaded convolutional net-
works (MTCNNs)

AlexNet SMOTE

Naive Bayes (NB) NasNet Special hardware devices
Linear discriminant analysis 
(LDA)

ConvNextBase Human action recognition (HAR)

Quadratic discriminant 
analysis (QDA)

SqueezeNet Feature engineering techniques

Principal component 
analysis (PCA)

GoogLeNet Chronological pelican remora 
optimization algorithm (CPROA)

Ensemble learning Hybrid models (various 
transfer learning models)

Skeleton-based motion tracking 
(e.g., Kinect, IMU sensors, or 
pose estimation techniques)

Table 14
Methods used for identifying autistic traits
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the analysis. A couple of researchers have tried using DANN for 
analysis and 3D-CNN. It was found that DNN-based classifiers 
work more efficiently than ML-based classifiers. Researchers also 
received exciting results using transfer learning. TL is widely used 
because of its advantages, such as generalization, saving training 
time, and improved accuracy. Ideally, a higher start, a higher slope, 
and a higher asymptote are the three significant benefits that we 
get from the successful application of TL. Table 14 summarizes 
the methods used by the proposed approaches for identifying 
autistic traits. Many new proposed pre-trained TL methods such 
as ConvNextBase, GoogLeNet, SqueezeNet, and hybrid models 
of these methods are being tested and are providing better results. 
Therefore, the popularity of using TL methods for predicting autistic 
traits has increased exponentially, which is shown in Figure 22. A 
few approaches include using the latest computer vision techniques 
such as HOG and linear SVM, data augmentation, and preprocessing 
techniques such as SMOTE. A very interesting method used is 
explainable AI, which helps in describing the analysis of autism 
prediction.

6)  It is important to emphasize that the choice of a deep learning model 
depends strongly on the type of data collected. For image-based data 
such as facial expression images, eye-region snapshots, or ROI-
focused frames, convolutional neural networks (CNNs) and their 
transfer learning variants (e.g., VGG, ResNet, and EfficientNet) 
are most effective due to their strong capability in extracting spatial 
features. For video-based data, where temporal dynamics such as 
gaze shifts, micro-expressions, or body movements are captured, 
models such as recurrent neural networks (RNNs), long short-term 
memory (LSTM), 3D-CNNs, and hybrid CNN–LSTM architectures 
are better suited because they can process both spatial and temporal 
dependencies. For motion-sensing data (e.g., gait patterns, skeleton 
tracking, or IMU sensor recordings), specialized approaches such 
as skeleton-based deep models, graph convolutional networks 
(GCNs), and human action recognition (HAR) models are more 
appropriate because they can learn structured spatiotemporal 
patterns in sequential motion data. In addition, transfer learning 
has been widely adopted across all of these modalities, enabling the 
adaptation of pre-trained models to autism-related datasets where 
sample sizes are often limited. To support this mapping, Table 12 
provides a detailed overview of the methods used, dataset types/
sources, and reported results from all relevant studies published 
since 2018, thereby serving as a reference point for selecting suitable 
modeling frameworks according to data modality.

7)  The nonclinical analysis is completed by performing eye-gaze 
analysis. One of the most trusted behavioral observations is eye 
positioning or tracking. Eye tracking is a noninvasive method where 
the system calculates the precise attention given to the regions of 
interest (ROI) from the picture based on the eye position. A visual 
attention model includes an efficient AI model that can be used 

for eye tracking. The system will evaluate children’s attentiveness 
to the ROI, and an early diagnosis can be made. A special set of 
hardware devices can be used to save screen paths for eye tracking, 
and based on the children’s at-tentiveness, ASD can be predicted. In 
addition, nonclinical analysis can be performed by recording videos 
of children while performing day-to-day activities. A gait analysis 
may help in predicting ASD.

8)  Along with clinical and nonclinical analyses, apps such as 
“ASDetect” or “ATEC” can help parents perform preliminary 
analysis at home individually. These are free apps and contain 
a set of questions that are based on regular activities. Answering 
those questions will help in predicting symptoms of ASD in their 
children. You can expect approximately 83% accuracy from these 
apps. QCHAT is also a similar kind of questionnaire that is widely 
used by clinical practitioners for analysis. Figure 23 provides briefs 
regarding research gaps, challenges, and limitations in studying 
ASD.

9)  Few approaches have tried applying explainable AI (XAI) for the 
analysis. Using XAI can help in achieving good accuracy with 
detailed explanations for accurate prediction.

10)  The research gaps found from current research include the 
following:
a.  Unavailability of the dataset because parents of autistic children 

do not wish to reveal their children’s identities.
b.  Available datasets have limitations, including a limited number 

of images and the lack of information such as age, gender, family 
history, and clinical reports. In addition, available datasets are 
not balanced (unequal number of male and female participants in 
dataset preparations).

c.  No open-source video dataset is available. The proposed 
approaches have been recorded for analysis but have not been 
released.

d.  Traditional ML classifiers are not proven reliable because they 
failed to provide a satisfactory specificity value.

e.  Unavoidable attributes of datasets, such as image resolution, 
video length, and noise, affect the algorithm’s performance. 

11)  The following are the limitations found in existing AI-based 
approaches used for the prediction of ASD:
a.  The majority of the approaches are better at classification, but 

they do not perform well in predicting diseases. They failed 
to provide a good specificity value, which is considered an 
important performance metric in predicting ASD. This is due 
to the difficulty of AI-based techniques in extracting accurate or 
relevant traits or data from existing datasets.

b.  The results produced by the approaches are not bias-free. The 
main reason is unbalanced sample inputs in available open-source 
datasets. The other reason is the transparency of the features used 
for prediction, assessment method, and results validation.

c.  No standard statistical method is available to choose the correct 
model for prediction and to validate the results produced by the 
model. K-fold validations can be a way to do this, but they have 
not been explored by methods proposed for nonclinical analysis.

d.  There are doubts regarding the fairness of the results produced by 
AI and the many ethical concerns regarding generating datasets 
and disclosing the identity of the participants.

e.  Because specificity is the most important performance metric, 
there is no AI technique to take responsibility for producing 
results correctly.

7.2. Challenges to predict ASD
1)  ASD is a spectrum disorder. It has been said that approximately 20–

100 various behavioral attributes are observed in patients with ASD. 
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 Figure 22
Trend of using TL for the prediction of autism
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Therefore, it becomes challenging to do multifeature classification 
to diagnose ASD. Clinical analysis can be performed after a certain 
age, which may be too late for the diagnosis. Nonclinical analyses 
are subjective, misleading, time-consuming, and costly.

2)  As per the recent survey by WHO and Statesman, we found 1 autistic 
child in every 100 children worldwide and approximately 1 in 500 
in India. There are more than 21.6 lakh autistic children present in 
India. The primary issue in India is the prevalence of parents who 
attempt to hide their child’s im-pairment from others. They feel 
uncomfortable bringing them to social functions because they worry 
that other adults or kids will make fun of them. In addition, it is 
a societal stigma in India that people are unaware of this illness. 
Therefore, creating awareness of this disease is necessary for further 
research extension.

3)  Unavailability of datasets is the main challenge in the research. As 
mentioned earlier, the ABIDE group is the only open-source dataset 
of MRI images, and for behavioral attribute analysis, only two 
datasets are made available by Kaggle and Zenodo. 

4)  The number of images in both datasets is presented in Table 15.
5)  The size of the available datasets, especially by Kaggle and Zenodo, is 

very limited, as shown in Table 14. Datasets have pictures of autistic 
and typically developing children, with fix-ation maps and screen 
paths. This information can be used to identify various visual traits 
of children. The available data have a limited number of pictures. 
Therefore, the size and quality of the dataset can be increased and 

improved using various data augmentation techniques, but this 
may affect the dataset’s quality. The process of data augmentation 
artificially adds more images using existing images in the dataset. 
It makes minor geometric transformations such as rotating existing 
images at some angle, flipping, translating color schemes, and adding 
some noise and makes a few more images available in the dataset for 
the model. This new addition may lead to noticing various attributes 
of the disease.

6)  In addition to the above, the following two more challenges are 
faced by the researchers:
a.  Performing multifeature classification: it has been said that 

approximately 20–100 various behavioral changes are observed 
in patients with ASD. We can observe different behaviors in 
each child. Therefore, it becomes challenging to do multifeature 
classification to diagnose ASD. In addition, analyses performed 
by practitioner doctors are subjective.

b.  Performing multimodal analysis: current research in this domain 
mainly predicts ASD using single-modality data such as MRI 
images, facial expression analysis, and eye-tracking signals. 
However, researchers have not yet explored comprehensive 
multimodal video datasets that combine video clips, images, 
and EEG signals for ASD prediction. Incorporating diverse 
data sources would enable richer behavioral pattern analysis, 
in-cluding gaze trajectories and attention shifts, leading to more 
accurate performance. This limitation is further illustrated in 
the qualitative analysis section, which shows the imbalance in 
available datasets across modalities and highlights the scarcity 
of multimodal video-based resources.

8. Conclusion and Future Directions
Early diagnosis of ASD is crucial for early intervention and 

improved quality of life. AI-based methods—particularly deep learning 
and transfer learning models—have been promising for nonclinical 
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 Figure 23
Research gaps, challenges, and limitations of ASD

Dataset
Autistic 
images

Non-Autistic 
images Total Images

Kaggle 1327 1327 2654
Zenodo 1270 1270 2540

Table 15
Number of images available in the datasets
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ASD screening. However, there are significant challenges, particularly 
in the availability of datasets, model specificity, and interpretability. 
While hybrid models achieve an accuracy as high as 98%, they do not 
provide good specificity values. Again, this is an important metric to 
assess a model, leading to increased false positive rates. Moreover, 
available datasets are not diverse, with most research utilizing small 
image-based samples, and there are no publicly accessible video 
datasets for a multimodal solution. The absence of standardized 
validation protocols further limits the clinical adoption of AI-based 
ASD screening.

To address these limitations, future research must prioritize:

1)  Developing geographically diverse, publicly available datasets, 
ensuring multimodal behavior analysis that includes eye gaze, facial 
expressions, attention patterns, motion cues, and speech features.

2)  Enhancing model specificity through optimized hybrid architectures, 
bias reduction techniques, and rigorous benchmarking frameworks.

3)  Integrating explainable AI (XAI) methods to improve transparency 
so that clinicians and caregivers can interpret AI-based predictions.

4)  Creating standardized validation metrics and aligning dataset 
development with regulatory requirements (e.g., GDPR and HIPAA) 
to ensure fairness, privacy, and clinical soundness.

5)  Designing compact AI models optimized for edge and mobile 
devices, enabling real-time, accessible ASD screening in low-
resource settings.

6)  Encouraging interdisciplinary collaborations between AI 
researchers, pediatricians, and behavioral scientists to validate AI-
based methods through large-scale, multisite clinical trials.

As a concrete example, the proposed benchmarking framework 
could be operationalized by defining minimum specificity thresholds 
(e.g., ≥85%) as a standard for model acceptance, requiring multimodal 
evaluation across at least two behavioral data types (e.g., gaze and facial 
expression datasets), and mandating the integration of explainable AI 
methods such as layer-wise relevance propagation (LRP) or Grad-
CAM to ensure interpretability. This framework would not only guide 
researchers in method selection but also establish practical criteria 
for clinical reliability, transparency, and fairness, thereby making AI-
based ASD screening tools more suitable for real-world deployment.

By advancing AI-powered, low-cost, and accessible screening 
methods, this research bridges the gap between AI research and 
healthcare translation. A viable, AI-assisted multimodal screening 
framework can assist in reducing diagnostic delays, enabling early 
intervention initiatives, and alleviating the burden for both individuals 
and healthcare practitioners. Ultimately, this research opens the door to 
the real-world translation of AI in ASD screening, fostering inclusivity, 
early intervention, and improved clinical decision-making.
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