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Abstract: Feature selection plays an essential role in solving the challenges of the “curse of dimensionality” in data analysis, aiming to
increase the learning algorithms’ performance. A key challenge in this field is achieving accurate attribute selection when handling both
numerical and nominal attributes. To address this problem, we demonstrate a hybrid intuitionistic fuzzy (IF) similarity-based approach
that flexibly handles mixed types of data for more precise attribute selection. The study shows an IF granular structure to manage noise
in heterogeneous data and enhances the concepts of IF rough entropy, joint entropy, and conditional entropy to provide a comprehensive
framework to deal with uncertainty. Moreover, IF rough mutual information is implemented to extract both uncertainty and the association
between conditional attributes and the decision class, forming the basis of a novel attribute selection approach. The proposed algorithm
contains intuitionistic fuzzification, evaluation of fuzzy mutual information to compute the significance of features, and recursive selection
of the most important attributes, thus effectively reducing dimensionality. We set up a theoretical foundation using IF sets, IF information
system, IF relation theory, and hybrid similarity relations, which ensures the robustness of the approach. The method is rigorously evaluated
on seven benchmark datasets, showing superior performance on various metrics, including accuracy, sensitivity, and specificity, when
compared with existing attribute selection approaches. Results demonstrate increased prediction of phospholipidosis-positive molecules
with a sensitivity of 89.56%, a specificity of 92.63%, an accuracy of 95.98%, an AUC of 0.968, and an MCC of 0.908, which represents
the strong class differentiation ability of the model. These findings underscore the effectiveness of the hybrid IF similarity-based attribute
selection approach, which makes it a valuable tool for managing high-dimensional datasets and advancing the field of attribute selection.
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1. Introduction

In today’s era, there is a rapid growth of data day by day at
an unprecedented scale, which is larger in sample size and higher
in dimensions. This reflects features that negatively impact the
machine learning (ML) problem. It is problematic for traditional
algorithms to manage high-dimensional data for effective model
training. To mitigate the problem of redundant features from this
sort of data, it is very critical to avoid the curse of dimensional-
ity. Feature selection or reduction is emerging as a valuable method
to mitigate such problems, which is an effective method to extract
low-dimensional data from high-dimensional data on the basis of
specific evaluation criteria. The primary goal is to reduce the data to
make data analysis effective by extracting key characteristics from
high-dimensional data by analyzing low low-dimensional subset of
data. Currently, the major focus of feature selection is to recog-
nize patterns to train ML algorithms effectively. It is essential to
have appropriate evaluation criteria for selecting features, which
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directly impact the effectiveness of the process. Two approaches
for making criteria functions for evaluation: the filter method and
the wrapper method. The wrapper method utilizes a classifier for
evaluating the selected subsets of features, but not all classifiers
are suitable for this method. A classifier comfortable with wrapper
methods must have the capability to handle high-dimensional fea-
tures to produce accurate classification results evenwhen the sample
size is limited. While the filter method selects the features through
an evaluation criterion like consistency [1], correlation [2], mutual
information (MI) [3], and Euclidean distance [4], it is developed for
the evaluation of the effectiveness of subsets of the features.

Rough set theory [5] is mainly used for selecting features.
One of the approaches [6] consists of detecting the random rela-
tionships between conditional and decision features by leveraging a
random probe-based strategy for identifying reducts. This approach
confirms that attributes having common properties are not simul-
taneously selected, as identified through dependency analysis.
Conventional rough set theory [7] relies on equivalence relations,
which are best suited for data that is discrete in nature. How-
ever, there may be chances for loss of information by discretizing
continuous data, which potentially affects the performance of learn-
ing methods. To mitigate this, a neighborhood rough set [8] was
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proposed, which considers the neighbor instances and gives a fea-
ture reduction algorithm that eliminates redundant and irrelevant
attributes effectively. Moreover, an enhanced neighborhood rough
set model [9] has been introduced, with a corresponding feature
selection, to avoid the issue due to discretization up to a certain
extent. An improved rough set model has also been developed, also
known as extension of knowledge based on the rough approximation
(EKRA), to reduce boundary regions [10], resulting in more accu-
rate feature selection. In fuzzy rough sets, the similarity between
objects is assessed using fuzzy relations instead of crisp equivalence
relations [11]. This method overcomes the limitations of conven-
tional rough set theory to handle continuous data [12], which enables
it to directly evaluate real-valued data. Fuzzy rough set theory has
proved its flexibility in preprocessing the data and has been applied
to select the features [13] successfully. To increase the precision
of the measure of fuzzy relations, a Gaussian kernel rough set has
been given, with some limitations, like the long-tail phenomenon in
high-dimensional data. To improve this, a new Student-t kernelized
fuzzy rough set model (SKFRS) has been proposed by Yang et al.
[14], which consists of fuzzy rough feature selection algorithms.
Uncertain information is evaluated by SKFRS by leveraging fuzzy
divergence and is effective in noise reduction for discrete or real-
valued data, without any requirement of user-supplied information.
One of the approaches [15] that leverages the discernibility matrix
for reducing the dimensionality, on the other hand, is critical reduc-
tion based on fuzzy rough sets [16], which identifies key conditional
attributes for specified decision classes. Fuzzy rough feature selec-
tion has also been implemented within a graph theory framework
[17] to show the time-consuming behavior of existing methods for
large-scale datasets. For managing the multi-modal features in clas-
sification, a multi-kernel fuzzy rough set model has been proposed
by Mondal and Singh [18] for dealing with fuzziness in this type of
data. Another approach by An et al. [19] that is focused on selecting
the features on the basis of fuzzy relationships between the attributes
and decisions takes into account class densities that vary in the data
distributions. Since fuzzy rough dependency functions do not give
classification errors, the alternative approaches [20] rely on inner
product dependency, and last, an adaptive weighted kernel density
estimation method [21] has been given to mitigate the limitations
of traditional feature selection approaches, especially in calculat-
ing correlations [22], redundancies, and noise in feature data. While
these approaches mostly rely on dropping features that are redun-
dant and irrelevant, moreover, processing such as extracting the
features sometimes results in crucial information through these
features.

However, misclassification of samples can result when there is
significant overlap between several categories of data [23]. Addi-
tionally, traditional methods only reflect the membership of a
sample to a set by limiting their ability to handle the latter uncer-
tainty. This makes the requirement for the model to not only fit
the data effectively but also handle later uncertainty that increases
due to the presence of uncertainty not only in judgment but also
in identification. This is where intuitionistic fuzzy (IF) sets [24]
manage uncertainty by taking membership and non-membership
of a sample. On the other hand, rough and IF sets both reflect
the context of imprecision. It has been explained in research by
Jensen and Shen [25] that the lower and upper approximations of
IF rough sets are themselves IF sets. In recent years, various IF
rough set models have been proposed: Jensen and Shen [25] pro-
posed a method for attribute reduction using fuzzy rough method;
Chakrabarty et al. [26] proposed concept of IF rough set; Zhan
and Sun [27] also proposed IF rough sets with applications in
multi-attribute for decision-making; Pandey et al. [28] proposed a
method for selecting features using IF entropymethod; De et al. [29]

proposed a database for IF set; Zhang et al. [30] demonstrated a
method using fuzzy rough sets based on overlap function for fea-
ture selection and edge extraction of images; Mahmood et al. [31]
introduced a confidence level aggregation operators on the bases
of IF rough sets; Mazarbhuiya and Shenify [32] proposed method
for anomaly detection based on IF rough set; Xin et al. [33] pro-
posed a novel method on for selecting attribute on the basis of IF
three-way cognitive clustering; and Huang et al. [34] developed a
risk evaluation model for effect analysis using IF rough method and
implemented on various decision-making problems. It has also been
examined by Tiwari et al. [35] that the relation between rough sets
and IF sets shows that fuzzy rough sets can be taken into account
as intuitionistic fuzzy sets (IFSs). Further research shows the var-
ious applications for IF rough set models, which include feature
selection and reduction of attribute techniques: one such method,
established by Hu et al. [36], uses genetic algorithms for attribute
reduction using fuzzy kernel-induced relations; Esmail et al. [37]
introduced rough set theory for IF information systems; Huang et al.
[38] proposed a dominance approach on the basis of rough set in IF
information systems; a method for attribute reduction in an categor-
ical decision information is proposed by He et al. [39] on the basis
of fuzzy rough set; Shreevastava et al. [40] proposed an IF neigh-
borhood rough set model for selecting features; and Tiwari et al.
[41] discussed new approaches for attribute reduction on the basis
of IF rough set to reduce the attributes in the IF information system.
Another model was developed byHuang et al. [38], leveraging a dis-
tance function, and was generalized for the reduction of attributes.
Moreover, methods that were based on discernibility matrix [36,
42] have been proposed for the reduction of attributes, while oth-
ers are the combination of fuzzy sets and information entropy to
develop new reduction algorithms. The properties of IF rough sets
are examined in several studies that present methods for the reduc-
tion of attributes and the extraction of rules. Other models have been
implemented for the selection of a subset of attributes, and many
feature subset selection [40, 43] have been proposed for supervised
and semi-supervised datasets. Additionally, an IF clustering algo-
rithm [23] has been developed for selecting the features for tracking
the objects. Nowadays, a number of studies [41, 44–46] have intro-
duced the IF rough set model, which has been implemented to select
features. Despite these advancements, there is no single method that
is capable of fully addressing both dataset [47] fitting and sample
classification differentiation.

The IF set [24] is an enhanced generalization of the tradi-
tional fuzzy set, which incorporates both themembership degree and
non-membership degree for classes in target data. A nuanced rep-
resentation of inherent ambiguities is provided by this model in the
real-world information compared to conventional fuzzy sets. The
integration of IF set with rough set theory for the development of
the IF rough set uses the approximations of rough set for describing
the IF sets [27, 48, 49] by linking IF relations between the objects.
Zhou and Wu [50] and Zhou et al. [51] explored the approxima-
tion operators for the IF rough set with the help of constructive
and axiomatic approaches. Moreover, IF rough sets model is devel-
oped for interval-valued data by analyzing hierarchical structures
and uncertaintymeasures. For IF roughmodels, a generalized frame-
work has been provided by Ghosh et al. [52] on the basis of binary
relations between two universes, and the reduction of attributes has
been studied byXin et al. [33] andHesameddini et al. [53]with struc-
tures of reductions that are constructedwith the help of discernibility
matrices. These studies reflect the increasing attention of IF rough
set in the research community. However, there is a great focus on
generalization [54–56] of models, exploration of property [57–59],
and descriptions of measures [35, 60] with limited application in
areas such as granular computing and feature selection.
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A hybrid IF similarity relation is an algebraic structure for-
mulated to evaluate the similarity between data objects with both
numerical and categorical features, using the concepts of IFSs [61].
In IFSs, every component has a degree of membership (𝜇), a degree
of non-membership (𝜈), and a hesitation degree (𝜋) = (1 − 𝜇 − 𝜈).
The hybrid component is about integrating various similarity mea-
sures specifically suited to address different types of data within
a single IF paradigm. For example, numerical features could be
compared based on their distance-based measures, and categorical
features could implement set-theoretic or probabilistic measures.
This hybridization allows a comprehensive similarity measurement
that can cater to the heterogeneity of real-world data.

The hybrid IF similarity relation is more suitable for hetero-
geneous data since it effectively works on mixed types of data
by utilizing specific measures of similarity for multiple types of
features, that is, numerical and categorical data. Integrating the
principles of IF set and rough set, it captures membership, non-
membership, and hesitation degrees, thus allowing uncertainty and
vagueness present in real-world data. This fine-grained approach
supports a better similarity evaluation compared to classical crisp
approaches. In turn, this improves decision-making in multiple
applications, such as medical diagnosis, pattern recognition, and
feature selection, by suitably extracting the similarity between
sophisticated data objects.

The recursive selection of features begins by training a random
forest (RF) model on the set of whole features to compute the rel-
ative importance (RI) of every feature, based on information gain
across all trees. Features are ranked according to RI, and the features
with less importance are excluded in each iteration. A new RF is
then trained on the reduced set of features, and the importance of the
feature is computed. This process repeats recursively. The criterion
for removing features at every step is their RI ranking. The process
does not internal stopping criterion; instead, multiple subset sizes
of features are evaluated eventually on the basis of the performance
of the model on the validation set. The optimal number of features
is selected on the basis of the subset that results in high validation
accuracy.

The study offers multiple notable contributions. It demon-
strates a new hybrid IF similarity relation, which is capable of
handling both nominal and numerical features, giving a more com-
prehensive approach for the feature analysis. To handle noise within
mixed data, an IF granular structure is proposed, which enhances
the resilience of the data. The study further demonstrates the IF
rough entropy concepts, joint entropy, and conditional entropy
that allow a deeper understanding of uncertainty in information
entropy. Moreover, it gives IF rough MI to use uncertainty and the
correlation between conditional features and decision classes. Uti-
lizing this approach, the study proposes a novel feature selection
approach that prioritizes relevant features while reducing dimen-
sionality. Finally, a framework built on these proposed methods is
provided specifically to improve the predictive accuracy for finding
phospholipidosis-positive molecules, which showcase the practical
effectiveness of the method.

2. Theoretical Background

2.1. Illustration: IF set

If set A in V is a storage of well-defined objects that is given as
follows:

A = {⟨v, 𝛼A(v), 𝛽A (v)⟩ |v ∈ V } (1)

Let V represent the set of data points. Moreover, 𝛼A ∶ V → [0, 1]and𝛽A ∶ V → [0, 1] satisfy the condition 0 ≤ 𝛼A (v) + 𝛽A (v) ≤ 1
for v ∈ V. Here, 𝛼A (v) and 𝛽A (v) denote the membership and non-
membership degrees of an element v ∈ V, respectively.

Additionally, 𝜋A (v) = 1 − 𝛼A (v) − 𝛽A (v) shows the degree
of hesitancy of the given element v ∈ V. Hence, A is referred to as
the IF set.

2.2. Illustration: Intuitionistic fuzzy information
system (IFIS)

An intuitionistic fuzzy information system (IFIS) is described
as a structure S = (W, A ∪ B, I, IF), where W represents a non-
empty finite set of objects referred to as the universe. The set A
shows the conditional features, while B = {b} is a singleton set
consisting of the decision feature, with A ∩ B = 𝜙. The set I
shows the collection of all IF values and is composed of two subsets
I1 and I2, corresponding to the domains of conditional and deci-
sion attributes, respectively. The information function IF maps each
object-attribute pair to an IF value, that is, IF ∶ W × (A ∪ B) → I,
where IF (x, a) ∈ I1 ∀a ∈ A and IF (x, b) ∈ I2 are for the deci-
sion attribute b ∈ B. Each value IF(x, a) or IF(x, b) is denoted
as a pair (𝛼 (x) , 𝛽 (x)), where 𝛼(x) and 𝛽(x) show the member-
ship and non-membership degrees of the object x under the given
attribute. When 𝛼 (x) + 𝛽 (x) = 1 for all objects and attributes,
the IFIS minimizes to a standard fuzzy information system. Hence,
a fuzzy information system is considered a special case of an
IFIS [62].

2.3. Illustration: IF relation

Consider R (bk, bl) = (𝛼A (bk, bl) , 𝛽A(bk, bl), where k, l ∈
1, 2, . . . , N, is a binary relation of IF, which is added to the system.
R (bk, bl) be an IF relation for the condition [63]:
1) For any k and l,

𝛼R (bk, bl) = 1 and 𝛽R (bk, bl) = 0 (2)

2) Symmetry: For any k and l,

𝛼R (bk, bl) = 𝛼R (bl, bk) and 𝛽R (bk, bl)= 𝛽R (bl, bk) ∀ bk bl ∈ W
(3)

2.4. Illustration: MI

MI can be represented in terms of the broadly defined con-
cepts of entropy and conditional entropy, which is represented in the
provided equation:

I (E;F) = H (F) − H (F ∣ E) (4)

here, E ⊆ Z, H (F) represents the entropy of information, and
H (F ∣ E) is the entropy of the condition. MI evaluates the reduc-
tion in uncertainty about F due to E, and similarly, its information
is evaluated. It simplifies the amount of information that E pro-
vides about F or vice versa. Moreover, H (E) denotes the amount
of information that is included E itsef, which represents that
I (E;E) = H (E).
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2.5. Illustration: Impact of conditional feature

For an IFIS and C ⊆ Y, if a conditional feature that is ran-
domly chosen c ∈ (Y − C) , its significance can be represented by
the equation, which is given by:

SGF (c,C,E) = I (C ∪ {c};E) − I (C;E) = H (E ∣ C)−H (E ∣ C ∪ {c}) (5)

and C = ∅, SGF (c, C, E) = H (E) − H (E ∣ c) = I (c;E), which is
the MI between the condition attribute c and decision attribute E.
If the evaluated value of SGF (c, C, E) is high, then it implies that,
given the known subset of features C, the dimension c is found to
be more valuable for the decision feature that is available.

3. Proposed Method

Assume P and Q are two IFSs in U. Then:

1) If P ⊆ Q i f f 𝜇P (ui) ≤ 𝜇Q (ui) and 𝜈P (ui) ≥ 𝜈Q (ui) for any
ui ∈ U [24].

2) P ≼ Q that represents P is less fuzzy than Q; that is, for any
ui ∈ U, the following statements hold,

a. If 𝜇Q (ui) ≤ 𝜈Q (ui) then 𝜇P (ui) ≤ 𝜇Q (ui) and 𝜈P (ui) ≥𝜈Q (ui)
b. If 𝜇Q (ui) ≥ 𝜈Q (ui) then 𝜇P (ui) ≥ 𝜇Q (ui) and 𝜈P (ui) ≤𝜈Q (ui)

3.1. IF relation

An IF relation is defined by (W, Z, V{IF}, IF) , ∀ z ∈ Z and
wi, w j in W, the hybrid similarity denoted by Sh

z (wi, w j) , between
wi, w j w.r.t any given z can be represented as:

Sh
z (wi, w j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, i f z (wi) = z (w j) and if z is nominal
0, i f z (wi) ≠ z (w j) and if z is nominal

1 − 1
2n
∑n

i=1
||𝜇P (ui) − 𝜇Q (ui)||+ ||𝜈P (ui) − 𝜈Q (ui)|| ;

i f ||𝜇P (ui) − 𝜇Q (ui)|| ≤ 𝜁z and||𝜈P (ui) − 𝜈Q (ui)|| ≥ 𝜁z and if z is
numerical

0; i f ||𝜇P (ui) − 𝜇Q (ui)|| ≥ 𝜁z and||𝜈P (ui) − 𝜈Q (ui)|| ≤ 𝜁z and if z is
numerical

(6)

4. Granular Structure

A fuzzy granular structure organizes data into overlapping
granules with varying membership levels, which improves the
robustness of noise. It handles noise using feature-based similarity
averaging, decreases the impact of outliers with the help of grad-
ual membership, and maintains stability utilizing fuzzy granular
structure distance. This allows reliable analysis even with noisy or
slightly varied data.

The IF granule ∀ui ∈ W is represented by Z1, which is given
as:

μϵ[ui]ϵP = { 0, if μShZ (wi, wj) ≤ ϵμShZ (wi, wj) , if μShZ (wi, wj) > ϵ (7)

Further:

νϵ[ui]ϵP = { 0, if νShZ (wi, wj) ≤ ϵνShZ (wi, wj) , if νShZ (wi, wj) > ϵ (8)

This holds for all p ∈ P ∈ Z and 𝜀 ∈ [0, 1].
With a granulation structure IF is present, rough entropy is

defined within the IF rough framework, which allows the IF rough
entropy of a feature to be represented as follows:

Entropy: Entropy serves as a fundamental measure of uncer-
tainty in information systems; on the other hand, conventional
Shannon entropy extracts the nuances of uncertainty in datasets
characterized by vagueness and hesitation. To address this, IF
entropy extends the concept by using membership degrees, non-
membership, and hesitation, which provides a more comprehensive
assessment of uncertainty.

Burillo and Bustince [64] defined entropy as a real-value func-
tion E: IFS(Y  )→ R

+ is referred to as an entropy measure on the
collection of IFSs IFS(Y  ) if it satisfies the following properties:

1) (EP1) E (B) = 0 if and only if B is a classical fuzzy set on Y.
2) (EP2) E (B) = | Y | = M if and only if the membership and non-

membership functions of B, denoted by 𝛼B(  y) and 𝛽B(  y), are
both 0 ∀y ∈ Y.

3) (EP3) E (B) = E (B′) ∀B ∈ IFS(Y  ), where B′ denotes the
complement of B.

4) (EP4) If B1 ⊆ B2, then E (B1) ≥ E(B2).
In the context of fuzzy rough sets, information entropy com-

putes uncertainty by assuming both inner-class and outer-class
information, which extracts the granularity of effective partitions of
data, and provides a more nuanced understanding of uncertainty in
environments of fuzzy.

Furthermore, based on hybrid similarity relation, MI frame-
works have been demonstrated to handle high-dimensional datasets
with inherent uncertainty; these frameworks use IF rough entropy,
joint entropy, and conditional entropy to calculate uncertainty and
relevancy of features, which enhances the performance of learning
algorithms in complex data environments.

These advancements in the measure of entropy in IF and fuzzy
rough set frameworks provide more robust tools for uncertainty
quantification, particularly in systems where ambiguity of data and
hesitation are prevalent.

4.1. Illustration: IF rough entropy

The rough entropy of IF of Z1 is described as:

RE (Z1) = RE (Sh
Z) = − 1

n
∑n

i=1 log2
1| [ui]Sh

Z1
| (9)

It is evident that 0 ≤ RE (Z1) ≤ log2n iff ∀ui ∈ W, Sh
Z1
=

1, |||[ui]Sh
Z1

||| = n. In this case, all pairs of samples that are observed

distinctly result in the space of granulation being at its maximum.
Conversely,∀ui≠u j, Sh

Z1
(ui, u j)=0,which implies that |||[ui]Sh

Z1

|||=
1. Thus, RE (Z1)= log2n=0. At this point, the granulation space is
created as low as possible.
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4.2. Illustration: IF joint rough entropy

The joint rough entropy Z1 or Z2 of the IF system can be
represented by:

RE (Z1,Z2) = RE (Sh{Z1∪Z2}) =− 1
n
∑n

i=1 log2 1|[ui]Sh
Z1
∩[ui]Sh

Z2
| (10)

4.3. Illustration: IF rough conditional entropy

The IF rough Condition entropy of Z1 w.r.t Z2 is given as:

RE (Z1|Z2) = − 1
n
∑n

i=1
|||[ui]Sh

Z1

|||| [ui]Sh
Z1
∩ [ui]Sh

Z2
| (11)

Intuitionistic fuzzy rough mutual information (IFRMI): It
extracts the correlation between conditional features and decision
classes by integrating the concepts of IF and rough set theory.
This approach assumes the membership, non-membership, and hes-
itation, which enables for nuanced assessment of uncertainty and
similarity in datasets consisting of both numerical and nominal
features.

In the aspect of rough, it represents the use of lower and upper
approximation in rough set theory, which describes the data gran-
ules’ boundaries based on similarity relations. In the framework of
IFRMI, these approximations are built using a hybrid similarity rela-
tion that uses mixed types of data. By calculating the MI between
these approximations and the decision classes, IFRMI quantifies
the amount of information shared, effectively calculating each fea-
ture’s relevance. This method allows the identification of significant
features that contribute the accurate decision-making, even in the
presence of uncertainty and imprecision inherent in mixed datasets.

4.4. Illustration: IF rough mutual information

The IF rough MI of Z1 and Z2 is evaluated as:

I (Z1;Z2) = − 1
n
∑n

i
log2

|||[ui]Sh
Z1

||| ∩ |||[ui]Sh
Z2

||||||[ui]Sh
Z1

||| |||[ui]Sh
Z2

||| (12)

The IF rough MI of Z1 and D is evaluated as:

I (D;Z1) = − 1
n
∑n

i
log2

|||[ui]Sh
Z1

||| ∩ ||[ui]D|||||[ui]Sh
Z1

||| ||[ui]D|| (13)

With the use of this, IF rough MI I(d;Z1) evaluates the correla-
tion between Z1 and D, which is the decision feature. IF rough MI
between D and Z2 is greater, and it reflects a strong correlation
between Z1 and Z2.

In a given IFIS, consider a subset C of condition feature Z.
Then, for any K ∈ (Z − C), the impact of Y compared to P and D
(decision features) is expressed as 𝜎(K, C,F) that is represented by
the equation:

𝜎 (K,C,F) = I (C ∪ K;F) − I (K,F) (14)

K = 𝜙, 𝜎 (G,C,F), and can be expressed as 𝜎 (K,F) =
RE (F) − RE (F|K) = I(K,F), which shows the MI of IF

conditional feature set G and decision features D. If 𝜎(G,C,F)
increases, it shows that the IF conditional feature G becomes more
relevant to the feature D.

5. Algorithm: Feature Selection Using IFIS and
Hybrid Similarity Relation

Step 1: Given a real-valued information system ⟨K, C ∪ F⟩ and
adaptive radius 𝜁ₐ.
Step 2: Implement intuitionistic fuzzification for ⟨K, C⟩.
Step 3: Evaluate mutual information (MI) I(F; U) for the IFIS
based on hybrid similarity relation Sh, where U ⊆ C.
Step 4: Initialize S←∅.
Step 5: Loop Until Convergence: Repeat the following steps until
I(U; F) = I(C; F):
- Set K← S.
- For each feature x ∈ (C − U):
• Calculate the conditional feature significance Ω(x, U, F).

- Select the attribute that gives the maximum value of Ω(x, U, F).
- If multiple features have the maximum value, select the one that,
when combined with U, gives the smallest output value.
- Update S← U ∪ {x}.
Step 6: Return the set S.

Figure 1 shows the flow chart for the proposed feature selection
method using IFIS and hybrid similarity relation.

6. Experiment

In this experiment, the proposed method’s performance is eval-
uated by comparing it with earlier fuzzy approaches and IFS-based
techniques. The steps of preprocessing are done using MATLAB
[65], while the learning algorithms are performed in WEKA [65].
Initially, fuzzification and intuitionistic fuzzification from real-time
data are implemented with the methods that are proposed by Jensen
and Shen [25] and Tan et al. [66], respectively. Before performing
the reduction, the datasets are transformed into IF decision systems.
For simplicity, we use a straightforward method by calculating the
similarity degree between objects. Various threshold parameter val-
ues are adjusted in the proposed approach to find a reduct. The
reduced datasets are created by minimizing the noise to the great-
est extent which is possible. The reduct is evaluated by varying the
adaptive radius between 0.1 and 0.8 in small intervals. The final
reduct is computed on the basis of that value of the adaptive radius,
which produces the reduced dataset by minimizing the redundancy
and maximizing the relevancy. The whole experiment follows this
setup to produce the comprehensive results.

7. Dataset

Seven benchmark datasets were chosen from the University
of California, Irvine (UCI) Machine Learning Repository by Kelly
et al. [67] to carry out the experiments. The dataset details are dis-
cussed in Table 1. The shape of the datasets shows that the data
ranges from small to large, with the number of rows ranging from
64 to 1941 and the number of features ranging from 15 and 10000.

8. Classifiers

Three different learning techniques [68] were leveraged in this
experiment to evaluate the performance of the reduced datasets gen-
erated from various feature selection approaches. RARF and IBK
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Figure 1
Flow chart for feature selection using intuitionistic fuzzy
information system (IFIS) and hybrid similarity relation
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were utilized to evaluate the overall accuracy of the classification
and standard deviations by using multiple validation approaches
across the seven datasets. Furthermore, J48 and PARTmethods were
also implemented to calculate the performance by using various
performance metrics on the reduced datasets [69]. This evaluation
aims to demonstrate the effectiveness of the proposed method com-
pared with existingmethods for differentiating between positive and
negative classes.

9. Data Splitting

The method for attribute selection is employed on the whole
dataset. After getting the reduced data, each algorithm is used with
a 66:34 split of data and k-fold cross-validation. In the proportional
split method, the data is grouped into two groups: 66% random data
for training the learning algorithm and 34% kept for testing the algo-
rithm. In the k-fold cross-validation, the dataset is split into random
k subsets, where k-1 subsets are utilized for training the algorithm
and the remaining subsets are kept for testing. This step is exe-
cuted k-times, with a different subset that serves as the test set each
time. The final performance is computed by averaging the evalu-
ation metrics across each iteration. In this study, the value of k is
set to 10.

10. Evaluation Metrics

The prediction evaluated from the three learning algorithms
is computed from multiple categories, which is evaluated with
threshold-independent evaluation metrics. These metrics are eval-
uated on the basis of true positive values (TRPve), true negative
(TRNve), false positive (FLPve), and false negative (FLNve). TRPve
denotes the number of positive classes that are correctly predicted
as positive, while TRNve shows the number of negative classes
that are predicted correctly as negative. FLNve represents the sam-
ple counts that are predicted positives as incorrect, and FLPve
shows the incorrectly predicted negative samples. To compute the
overall performance of each algorithm, multiple parameters are
employed that include specificity (Sp), sensitivity (Sn), Area Under
the Curve (AUC), accuracy (Ac), and Matthew’s correlation coef-
ficient (MCC). These performance metrics can be described as
follows:

Sn measures the percentage of positive classes that are correctly
classified and described as:

Sn = TRPve
TRPve + FLNve

∗100 (15)

Sp evaluates the effective percentage of negative classes with
a correctly classified and is directed by:

Sn = TRNve
TRNve + FLPve

∗100 (16)

Table 1
Characteristics of datasets and their reduced sizes

Dataset Instances Attributes MIFRFS LIFRFS DIFRFS IFRFS Proposed Method

Arrhythmia 452 262 159 145 178 129 84
Leaf 340 15 12 10 11 9 8
Arcene 200 10000 225 165 271 188 86
Db-world-bodies-steamed 64 3721 25 47 52 36 29
Movement Libras 270 90 37 54 61 43 39
Parkinsons 195 22 14 11 16 10 12
Steel Plates Faults 1941 33 25 22 15 12 14
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Acmeasures the amount of required correctly classified positive and
negative classes, and it is given by:

Ac = TRPve + TRNve
TRPve + FLNve + TRNve + FLPve

∗100 (17)

AUC is used to evaluate the critical and relevant area under the
receiver operating characteristic (ROC) curve. The closer the value
is to 1 for AUC, the better the predictor performs.

Matthews correlation coefficient is a highly valuable and
anticipated parameter that is calculated by the equation:

MCC = TRPve∗TRNve−FLNve∗FLPve√√√√(TRPve + FLPve) (TRPve + FLNve)(TRNve + FLNve) (TRNve + FLPve) ∗ 100 (18)

Matthews correlation coefficient is not only used for demon-
strating the effectiveness of binary classification but also used for
validating the efficiency. Matthews correlation coefficient value
tending to 1 reflects the high reliability of the reflector.

11. Result Discussion

The seven benchmark datasets details along with their reducts
obtained from four earlier methods and the proposed approach are

shown in Table 1. The real-time data was converted into fuzzy and
IF values with the help of well-established methods introduced by
Jensen and Shen [25] and Kelly et al. [67]. The process of reduction
was implemented on the whole dataset using fuzzy and IF-assisted
methods. Mutual Information based IFRFS (MIFRFS), Different
classes ratio based IFRFS (DIFRFS), Laplace summation opera-
tor based IFRFS (LIFRFS), and Intuitionistic fuzzy rough feature
selection (IFRFS) were utilized for the analysis of comparison as
shown in Table 2. The proposed approach decreased the reduct size
to a range from 8 to 84, with smaller reduct sizes in comparison
with previous approaches. For the bank marking datasets, Fuzzy
set-based feature reduction method (FSFrM) showed a smaller
reduction size; on the other hand, Feature selection using fuzzy
rough mutual information (FSFrMI) [25, 70] output smaller sizes
for thyroid-hypothyroid and fertility diagnosis datasets in compar-
ison with IFRFSMI. For the breast cancer datasets, FSFrM and
FRFS resulted in similar reduction sizes, and FRFS outperformed
a comparable size to the proposed approach for the fertility diag-
nosis data. On the basis of the reduction in Table 1, it is ensured
that the proposed approach consistently generated a more reduced
dimension throughout the various datasets in comparison to pre-
vious methods. The process of reduction, visualized on various
methods, reflects that the proposed approach gives a higher over-
all percentage attribute elimination as the number of conditional

Table 2
Performance of classifiers using reduced datasets from state-of-the-art and proposed methods (10-fold CV)

Dataset Classifier MIFRFS LIFRFS DIFRFS IFRFS
Proposed
method

J48 82.33 ± 4.624 86.31 ± 6.593 91.8 ± 4.791 79.21 ± 6.985 90.32 ± 4.982Arrhythmia
PART 78.43 ± 6.234 81.43 ± 5.952 81.12 ± 6.563 77.83 ± 3.935 86.35 ± 3.211

J48 71.52 ± 7.215 74.18 ± 5.873 72.45 ± 4.534 77.81 ± 5.652 79.12 ± 4.161Leaf
PART 68.21 ± 8.994 69.53 ± 8.653 66.33 ± 8.185 71.29 ± 7.422 73.26 ± 5.771

J48 84.44 ± 6.663 88.36 ± 5.292 83.21 ± 8.364 82.11 ± 8.915 91.59 ± 6.211Arcene
PART 78.53 ± 7.434 80.83 ± 4.182 79.48 ± 9.533 77.15 ± 6.265 84.64 ± 5.181

J48 78.32 ± 9.885 83.93 ± 10.253 86.73 ± 8.532 81.33 ± 8.514 89.32 ± 7.171Db-world-bodies-
steamed PART 69.43 ± 11.534 68.31 ± 8.445 73.44 ± 8.732 70.83 ± 10.413 74.31 ± 8.631

J48 72.31 ± 8.924 74.93 ± 12.623 77.53 ± 9.551 72.05 ± 11.225 75.52 ± 9.332Movement Libras
PART 56.21 ± 7.655 61.23 ± 10.823 65.56 ± 12.432 59.29 ± 9.634 68.21 ± 10.711

J48 87.38 ± 8.383 84.61 ± 9.094 82.46 ± 8.775 90.78 ± 7.281 89.23 ± 7.932Parkinsons
PART 78.41 ± 9.593 75.65 ± 0.524 71.66 ± 10.535 79.31 ± 8.662 80.06 ± 7.531

J48 78.31 ± 8.473 75.72 ± 6.884 78.91 ± 8.322 74.48 ± 5.925 83.53 ± 3.211Steel
Plates Faults PART 71.79 ± 7.541 69.32 ± 8.774 70.46 ± 7.843 68.87 ± 8.935 70.97 ± 8.112

J48 3.85 3.14 2.71 3.85 1.57Average Rank
PART 3.57 3.85 3.28 0.71 1.14

J48 3.7801F-statistics
PART 4.5734

F-tabular F(4,24) 2.776
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features increases. To calculate the learning performance, J48 and
PART algorithms were implemented, which measure the standard
deviation and overall accuracy. The datasets, which were reduced
with existing and proposed approaches, were assessed using 10-fold
cross-validation to prevent overfitting. The results with rankings are
summarized in Table 2. As a result, it can be concluded that our
proposed method outperforms other attribute selection techniques
throughout the various datasets.

On the Arrhythmia dataset, J48 gives a high accuracy of
90.32% with the proposed method, which is slightly less than
DIFRFS (91.89%), but outperforms better than MIFRFS (82.33%)
and IFRFS (79.21%). Similarly, PART describes the improved per-
formance with the proposed method by leveraging the accuracy of
86.35% in comparison to other methods. On the Leaf dataset, the
proposedmethod gives a notable improvement in both J48 (79.12%)
and PART (73.26%) compared to the other methods. On the Arcene
dataset, the proposed method shows the highest accuracy using RF
with an accuracy of 91.59%, and PART has an accuracy of 84.64%,
which gives better performance compared to other methods, espe-
cially IFRFS and DIFRFS. In the Db-world-bodies-steamed dataset,
both J48 and PART classifiers achieved an improved accuracy with
the proposed method by achieving an accuracy of 89.32% and
74.31%, respectively. On the Movement Libras dataset, the pro-
posed method did not perform well but still improved classifier
performance compared to MIFRFS and IFRFS. The same situation
occurred in the case of the Parkinson’s dataset, where J48 (89.23%)
and PART (80.06%) gave better results using the proposed method.
Last for the Steel Plates Faults dataset, J48 posted the best results
and a high accuracy rate of 83.53% outcompeting all the other algo-
rithms, while PART followed behind with moderate performance
of 70.97%. Collectively, these results assert the efficiency of the
proposed method in increasing the level of classification accuracy
of PART and J48 algorithms, as shown in Figures 2 and 3, respec-
tively, in a number of datasets and classifiers higher than the utilized
MIFRFS and IFRFS heuristics. The complete results are visual-
ized in Figure 4, which demonstrates that the proposed approach

is highly effective for both low- and high-dimensional data, as the
reduced dataset output by the approach gives consistent accuracies
through various learning algorithms. The assumptions that we have
made for validating the impact of the proposed approach are as
follows:

Null assumptions:All approaches that are used are equivalent.
Alternative assumptions: There is a difference between the

methods that are employed.
Two major methods, which are used for testing: the Friedman

test [71] and the Bonferroni–Dunn test [72], are implemented for
validating the proposed method’s effectiveness. The Friedmann test
is used for conducting the comparative analysis of various models.
The Bonferroni–Dunn test is implemented for the determination of
methods that are effectively different from the proposed method.
The null assumptions are rejected at an 𝛼 level of significance if
there is a difference between the mean ranks that exceeds the critical
distance value. In this method, the average ranks for RARF and IBK
methods on the basis of the proposed approach are recorded as min-
imum values in Table 2, which clearly shows the superiority of our
methods that are established. Moreover, the evaluated F-statistics
on the basis of IFRFSMI are greater for J48 and PART compared to
the F-tabular value. Specifically, for J48 and PART, the F-statistic
values are 3.7801 and 4.5734, while the tabulated value is 2.776 at
a significant level of 5%. Since the calculated F-statistic is greater
than the tabulated (critical) value, we reject the null hypothesis, indi-
cating that the model is statistically significant. Thus, according to
the Dunn test, our proposed approach is effectively different.

Case study: An application for the discriminator between
positive and negative classes.

The one main application of the ML approach in cheminfor-
matics is the reduction of a large chemical space that concerns
specific properties of interest. This reduces the chemical space that
can subsequently be confirmed through experiments, which high-
lights the importance of the accuracy of ML techniques. A notable
point is the accumulation of phospholipids in several tissues, such
as the kidneys and eyes, mainly because of cationic amphiphilic

Figure 2
Mean accuracy comparison of PART on reduced datasets
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Figure 3
Comparison of mean accuracy using J48 on reduced datasets from existing and proposed methods

Figure 4
All reduction comparison for different datasets by earlier and proposed approaches

molecules, which are highly accurate for ML predictive models, can
lead to the early screening of compounds that induce phospholipido-
sis during drug discovery workflows, thus minimizing the cost and
time related to wet lab experiments.

The current method can open the way for progressive research
into the early screening of phospholipidosis-inducing molecules.
The dataset comprises 185 compounds in total, which includes 102
classified as PPL+ and 83 as PPL-. All 83 PPL compounds tested

negative under electron microscopy. Of the 102 PPL+ compounds,
68 were confirmed positive using electron microscopy, while the
remaining 32 were represented as PPL+ on the basis of the presence
of foamy macrophages. The proposed methods are implemented
on the dataset from Nath and Sahu [69] to create an effectively
decreased form by reducing the noise, anomaly, and imprecision
in the data and eliminating redundant and irrelevant attributes.
Three classifiers of several categories are chosen to measure their
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Table 3
Performance metrics of nine classifiers on the reduced dataset using 10-fold

cross-validation

Classifiers Sensitivity Specificity Accuracy AUC MCC
Naive Bayes 87.23 73.45 81.65 0.901 0.698
SMO 86.8 73.34 79.80 0.871 0.623
IBK 89.38 89.68 88.56 0.906 0.811
RARF 91.50 87.87 92.98 0.965 0.865
PART 75.48 75.96 78.34 0.821 0.598
JRip 79.64 83.68 81.87 0.887 0.686
Random Forest 88.96 89.53 91.52 0.936 0.778
J48 78.34 79.64 78.91 0.789 0.623
(Nath 2019) 86.27 90.20 88.32 0.869 0.765
RARF (h2o) 89.56 92.63 95.98 0.968 0.908

performance on this reduced dataset, with the help of metrics such
as AUC, sensitivity, MCC, accuracy, and specificity. Moreover,
a comprehensive method that represents the overall performance
evaluation of all three classifiers at the optimal decision thresh-
old is discussed using the ROC curve, which provides a visual
representation of classifier performance.

The results in Table 3 show the performance evaluation of the
nine learning algorithms that are implemented to reduce the dataset
generated by our proposed method, which classifies data into posi-
tive and negative classes on a 10-fold cross-validation process. The
results denote that the RARF(h2o) classifier achieves the overall
best performance. Additionally, the high AUC value of RARF(h2o)
denotes that it maintains a strong balance between true positive and
false positive rates across various thresholds, while the MCC score
makes sure that the robustness of the classifier in managing the
imbalanced data. Algorithms like Naïve Bayes and Sequential min-
imal optimization (SMO) performed poorly across the evaluation
metrics, with accuracy of 81.65% and 79.80%, respectively, and
MCC scores below 0.7. Overall, the results show that the proposed
approach increases the performance of the classifiers significantly
on the data.

The comparison between the RF(h2o) classifier based on the
previous method and the results obtained from the proposed method
shows a clear improvement across all key metrics. The existing
RF(h2o) methods show 86.7% of sensitivity, 90.1% of accuracy,
93.0% of specificity, an MCC of 0.808, and an AUC of 0.922. The
proposed method RF(h2o) yields superior results, with a sensitiv-
ity of 89.56%, an accuracy of 95.98%, a specificity of 92.63%, an
MCC of 0.908, and an AUC of 0.968. The metrics represent a great
sensitivity enhanced by 2.86%, accuracy increased by 5.88%, and
MCC gained by 0.100, along with an enhancement in AUC of 0.046.
On the other hand, specificity drops from 93.0% to 92.63%; all the
improvements in other metrics support the fact that our proposed
method obtains better and more consistent results than the current
RF(h20) method. Thus, the proposed method is more effective for
the classification task.

Furthermore, when compared to the state-of-the-art ensemble
model by Nath and Sahu [69], which utilized a stacking ensem-
ble with RF as a meta-classifier, our proposed method continuously
demonstrated enhanced capability. Nath and Sahu [69], using their
best model with JOElib descriptors and structural alerts, attained
an overall accuracy of 88.32%, sensitivity of 86.27%, specificity
of 90.20%, MCC of 0.765, and AUC of 0.869. This shows that
the proposed RF(h2o) model not only outperforms conventional
implementations but also outperforms advanced ensemble methods,

setting up its effectiveness and robustness for classification tasks
like phospholipidosis prediction.

12. Conclusion

This study established a new IF similarity relation that can han-
dle the frequently produced both nominal and numerical features
and provided a more robust method for feature analysis. To mit-
igate noise in mixed data, an IF granular structure was proposed
to increase the resilience of the real-valued data. Moreover, the
research developed IF rough entropy, which included joint entropy
and conditional entropy, offering a more comprehensive under-
standing of uncertainty in information entropy. IF roughMIwas also
demonstrated to capture both later uncertainty and the correlation
between conditional features and decision classes. This foundation
presented a novel feature selection approach that gives impor-
tance to relevant features by reducing the dimensionality comprised
of irrelevant and redundant attributes in the real-valued datasets.
The proposed method reduced the size of the data effectively,
maintained the classification accuracy, and demonstrated superior
performance across various metrics, such as accuracy, sensitivity,
specificity, MCC, and AUC when computed on seven benchmark
datasets. This research provides key benefits over conventional fea-
ture selection methods as it uses both numerical and categorical
features, which find and remove the redundant and irrelevant fea-
tures for optimizing the classification accuracy, and significantly
minimizes the size of the data, hence reducing the computational
costs. These features give a promising advancement in feature selec-
tion, as they can attain dimensionality reduction without sacrificing
classification accuracy, which makes it a valuable tool for data sci-
entists who work with high-dimensional datasets. Consequently,
this approach represented a meaningful contribution to the field of
feature selection, which optimizes the performance of the classi-
fication and increases the efficiency of the data analysis process.
Finally, this approach was employed to improve the discrimination
performance of positive and negative samples of phospholipidosis
molecules. In the future, this method can be upgraded with more
precise tolerance parameters. Moreover, a probabilistic IFS-assisted
hybrid similarity relation can be presented to enhance the prediction
performance.
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