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Abstract: This paper provides a logic-based method for the categorization of the puzzle difficulty levels of Sudoku using deterministic measures of
computational complexity. Shifting from heuristic, statistical, or machine-based paradigms, the method presents four symbolic measures: constraint
density metric (CDM), logical inference depth (LID), guessing complexity (GC), and constraint graph tightness (CGT). These are derived from the
Constraint Satisfaction Problem theory and implemented using R programming without the application of data-driven inference. The new method
assesses puzzle complexity based on pre-solving properties yielding consistent outputs that align with theoretical NP-completeness measures.
Difficulty levels are grounded on strict numerical criteria, e.g., CDM over 700, LID 14 or higher, GC over 6, and CGT approaching 30, indicative of
increased structural complexity. The method is compared with rule-based, backtracking, and solver-based methods using benchmarks and shown
to run with linear time and space complexity O(n) compared with traditional methods with time and space complexity O(n?) or exponential growth
O(2"). The method presents a reproducible, scalable method for analytically assessing puzzles and provides a formal, non-heuristic method for
evaluating complexity within combinatorial logic systems.
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1. Introduction

The computational classification of Sudoku puzzle hardness
provides a fascinating point of overlap for discrete mathematics,
artificial intelligence, and computer science theory. Sudoku, which may
appear to be simple at first glance, is based on constraint satisfaction
principles that reveal a rich landscape of structural and algorithmic
complexity. A diverse series of methodologies has evolved over the
last two decades to assess puzzle hardness, ranging from metaheuristic
methods [1] and rule-based methods [2] to evolutionary computation
[3] and zero-knowledge proof schemes [4]. These models are usually
dependent on solution paths, heuristics of behavior, or massive dataset
trawling for deriving estimates of hardness.

The classification of Sudoku within the realm of NP-complete
challenges [5] serves to endorse intrinsic computation hardness
residing within its solution, particularly when solved without third-
party inference or solver bias. These subsequent attempts have tried
decreasing the complexity of it using FPGA-based solvers [6], SAT-
based encodings within Sudoku formulas [7], and Al-aided methods
such as memristive neural networks [8] and photonic spike-based
techniques [9]. Although efficient within performance terms, they
are still based on the implementation of the solution process, which
produces dependencies on machine-based guessing, backtracking, or
probabilistic convergence.
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Recent work has also discussed psychological modeling [10]
and hardness indicators based on entropy [11], commonly resorting to
human gameplay traces to qualify puzzles as “easy,” “moderate,” or
“hard.” Although pedagogically and entertainingly helpful, they lack the
formal and theoretic clarity required for reproducibility and consistent
benchmarking across unsolved instances. Another line of research,
e.g., by McGuire et al. [12], has shown the computational insolvability
of even minimal Sudoku puzzles, and less obviously, the exponential
growth of solution space under partial constraints. Attempts at encoding
hardness as a function of initial clues’ number [13] or block symmetries
[14] have illustrated that such surface metrics are insufficient to
account for the combinatorial entanglements present at a deeper puzzle
structure. A major research gap thus remains for creating a mechanism
to predict puzzle hardness without puzzle solution, simulation runs, or
statistical calibration.

In response to this challenge, this work takes a symbolic
approach based on reasoning and theory of computation. By flipping
the focus from “how long a puzzle takes to solve” to “how densely
it is logically constrained,” a new deterministic and theoretically
sound complexity estimation pathway is proposed for Sudoku puzzle
prediction of difficulty level without resorting to data-driven, statistical,
or machine learning-based methods. The main goal of this work is to
establish mathematical formulations for constraint satisfaction and
computational complexity theory-based prediction of puzzle difficulty
levels without using data-driven, statistical, or machine learning-based
methods for that purpose.

To that end, the current work puts forth a new symbolic framework
introducing four new logical measures, namely, constraint density metric
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(CDM), logical inference depth (LID), guessing complexity (GC), and
constraint graph tightness (CGT), each of which encodes different
computational properties of a puzzle’s logical complexity. These
measures are precisely defined and implemented using deterministic
functions of R constraints. The proposed symbolic framework runs on
the structural features of the puzzle before solution, without resorting
to any trial-and-error, supervised learning, or statistical calibration
stepwise requirement.

This symbolic-only method is tested on a sample of typical
puzzles with diverse difficulty levels and compared with other methods
for evaluation, including heuristic-based predictors and solver-included
classifiers. Early metric scores derived on classified puzzle sets indicate
a strong correlation of metric intensity levels with defined measures of
puzzle hardness, e.g., CDM > 700, LID > 14, GC > 6, and CGT = 30.
Additionally, the proposed model has O(n) time and space complexity
compared to conventional solving algorithms with O(n?) or O(2")
complexity growth, especially with backtracking or quantum-based
formulation.

By refraining from statistical inference, behavioral modeling,
and machine learning, the present study presents a unique reproducible
system for the prediction of puzzle hardness based on symbolic
measures from the Constraint Satisfaction Problem (CSP) theory
and theory of computation. This technology connects the dots from
the theoretically formulated NP-complete problem to the actual,
deterministic evaluation of a puzzle and forms a foundation for further
research toward symbolic logic systems and toward classifying a puzzle
on the basis of its syntactic form.

This work has the following main contributions:

1) It creates a deterministic, symbolic complexity estimation model
that does not require the use of solver-based heuristics, statistical
inference, or training data.

2) It detects and quantifies four new symbolic measures, namely,
CDM, LID, GC, and CGT, from the syntactic and structural features
of Sudoku problems.

3) Itindicates that the measures in question, tried on 1 million puzzles,
all consistently suggest difficulty classes with no solution execution.

4) It has linear runtime and submegabyte memory usage for the
symbolic system, making the system scalably deployable on
unsolved puzzle spaces, learning environments, and symbolic-Al
applications.

2. Literature Review

Many studies have explored Sudoku as a benchmark for
combinatorial optimization and constraint satisfaction. Initial research
attempts made use of mathematical models based on linear and integer
programs. Recent demonstration of Sudoku constraint validation has
been performed on neuromorphic hardware by Pignari et al. [15], with
efficient evaluation in real time using spiking architectures, as well as
based on binary integer linear programming by formulation of odd/even
variants by Yu et al. [16]. Ates and Cavdur [17] promoted hybrid puzzle
generation with hybrid mathematical programming and integration with
heuristics. Béjar et al. [18] verified that Sudoku is NP-complete even
with structured patterns of clue elimination, confirming its theoretical
status even when not necessarily solved with heuristics. Bailey et al.
[19] illustrated connections with Sudoku, Gerechte designs, and affine
spaces, deepening its combinatorial and algebraic representation.
Metaheuristics for Sudoku were analyzed by Notice et al. [20], who
used algorithm selection for four solvers from a local-search base and
showed that methods that are specific to instances are superior to general
methods with regard to success and speed measures albeit typically with
exponential behavior reflective of O(n!) search. Outside of symbolic

representations, heuristic and metaheuristic methods have become even
more prominent. Vamsi et al. [21] constructed an automated puzzle
solver with CNN-based digit extraction and grid reconstruction for
solving Sudoku. Kim and Eor [22] used multi-armed bandit selection
of genetic algorithm for improving adaptivity of selection in Sudoku,
and Pal et al. [23] presented a hybrid classical-quantum solver on the
noisy intermediate scale of devices. Jana et al. [24] suggested using
neighborhood-based mutation in genetic algorithms to solve Sudoku
with faster convergence along with guaranteed performance regardless
of puzzle hardness. Chatzinikolaou et al. [25] utilized irregular learning
cellular automata to simulate adaptive human reasoning, and a hybrid
evolutionary solver based on genetic and firefly mating methods [26]
exhibited efficient convergence with respect to the level of difficulty.
Jana et al. [27] resolved higher complexity within 3D Sudoku with dual
solver configurations and elimination methods.

Tao et al. [28] demonstrated an implementation of a Sudoku
solution using blended glial-cell SNN with faster and sparser
inference without traditional rule-based reasoning. Explainability
and solver transparency have also been investigated. Bjornsson et
al. [29] quantified mental efforts within solver responses to match
human judgment with difficulty classification. Mulamba et al. [30]
introduced a hybrid image-to-constraint solver integrating visual
recognition with constraint reasoning for addressing human error and
digit misclassification. Chang et al. [31] critically analyzed SATNet’s
capacity for visual puzzle-based logic inference and exposed its failure
without symbolic grounding. Diah et al. [32] compared breadth-first
search (BFS), depth-first search (DFS), and human solution strategies
on 9 x 9 Sudoku problems and concluded that although DFS was
generally faster overall, solution paths best mimicked human reasoning
more frequently than BFS. Hardware applications have also contributed
to the field. Chatzinikolaou et al. [8] introduced a memristor-based
oscillator circuit with emphasis on parallel computation and low
power for puzzle solution. Vidyashree et al. [33] described Sudoku
as a graph-coloring problem and modeled it as an 81-node graph that
could be solved using coloring heuristics. Cheewaprakobkit et al. [34]
integrated an explainable rule-based reasoning component in addition
to a recurrent relational network to make decision-making in solving
Sudoku transparent and explainable, and Nishikawa and Toda [35]
proposed an exact CSP-based solver that can generate guaranteed
solvable clue sets with human reasoning.

Parallels from cryptography and secure computation have drawn
on Sudoku as inspiration for their work. Masadeh et al. [36] presented a
lightweight stream cipher based on the combinatorics of Sudoku. Robert
et al. [37] constructed a physical ZKP protocol for the Suguru puzzle,
and Sasaki et al. [38] introduced a card-based ZKP for Sudoku that
protects solution confidentiality without revealing the solution. Serrano
and Findler [39] illustrated a Sudoku solver for HipHop (interleaving
JavaScript and Esterel) with functional-concurrent composition for
implementing symbolic logic. A prominent area of research activity
across recent years has centered on estimating difficulty. Wang [40]
constructed a validated dataset with the help of the Cloud Sudoku app,
collecting human-playing statistics such as solving time and success
rate. Ananya and Singh [41] created an augmented reality Sudoku
solver that leverages real-time digit recognition and in-line constraint-
solving to assist users interactively. Valenzuela et al. [42] and Behrens
et al. [43] reported the utility of solver behavior in terms of perceived
difficulty, wherein flexible switching of tactics enhances human-solving
intuition alignment. Maria Jeyaseeli et al. [44] investigated valid graph
label numbers for Sudoku constraint graphs, providing insight into
solution space structure and complexity. Hasanah et al. [45] contrasted
ant colony optimization with the conventional backtracking for Sudoku,
with ACO doing better for tougher puzzles but backtracking suited for
simpler puzzles.
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Other research has touched on solver optimization. Wang et al.
[46] designed a genetic algorithm based on local search using matrix
encoding and elite learning, and Pathak and Kumar [47] integrated
uncertainty scores based on entropy with evolutionary methods for
hard puzzle solving. Lloyd et al. [48] designed a benchmark suite for
Japanese puzzle games for black-box comparison across solvers and
games. Lin and Wu [49] designed a new algorithm for minimizing
search space for minimum-clue Sudoku that outperformed McGuire’s
exhaustive checker using disjoint minimal unavoidable sets (DMUS).
Kitsuwan et al. [50] proposed a dynamic load balancer with solver-
specific prediction to minimize computation delay.

Although comprehensive, a principal research gap remains
unfilled, with most of the difficulty estimation models depending on
solver traces, machine learning, or game-playing measures, which
create bias or require exhaustive computation. Few models directly
operate on the structural description of a Sudoku puzzle to estimate its
difficulty. Notice et al. [20] and Hasanah et al. [45] depended on solver
behavior or heuristic adaptation, for instance, whereas Vamsi et al. [21]
depended on convolutional pipelines that mask logical structure. That
gap is filled in this work with a formulation of a deterministic symbolic
system from four constraint-based measures: CDM, LID, GC, and CGT
[51]. That formulation avoids statistical inference usage and solver-
heuristic dependence, providing a reproducible, Mantere and Koljonen
[52] symbolically founded system for complexity estimation with
foundations on constraint satisfaction and computational theory [53].

Table 1 is a comprehensive comparative overview of significant
schemes of computation adopted in a previous piece of research for
estimating Sudoku puzzle difficulty and solving it [54]. It summarizes
the time and space complexity of each algorithm or platform from
their principal computation steps. We present each entry with
reference, method used, core algorithmic operation, and corresponding
computation cost, followed by major findings and limitations from their
respective empirical evaluation or intrinsic characteristics. The tabular
analysis demonstrates the richness of the set of methods, ranging
from symbolic logic, evolutionary heuristics, and neural networks to
their implementation with accelerators and cryptography analogs, and
indicates that a majority of incumbent approaches (e.g., metaheuristics
[7, 8], ML-based solvers [9, 12], and CSP encodings [25]) rely on
solver-specific performance or tuning with a dependence on data. Our
new symbolic approach, on the contrary, is solver path- and statistical
inference-independent, thus forming a standing point for estimating
the efficiency and scalability of the proposed symbolic metric-based
scheme of the current work.

3. Theoretical Foundations

Analyzing the structural and logical intricacies of Sudoku
challenges requires casting them within formal computational
frameworks. Unlike approaches that concentrate on heuristics or machine
learning-based methods, the present research builds exclusively on the
concepts of CSPs and theory of computation, ensuring mathematical
rigor and reproducibility.

3.1. Sudoku as a CSP

Sudoku puzzle instances are systematically modeled as cases of
the CSP, which is a fundamental paradigm in artificial intelligence and
theoretical computer science. This representation forms the foundation
for studying the intrinsic complexity of Sudoku using formal definitions
of variables, domains, and constraints without resorting to heuristics or
solution enumeration.

Let the Sudoku grid be denoted as a finite structure G = (V, D,
(), where V is a set of variables, D is the domain, and C is a set of
all binary constraints enforced over variable pairs. This mathematics

makes possible the deterministic analysis of puzzles of Sudoku without
appeal to empirical or heuristic approaches.

Definition 3.1 (Sudoku CSP Instance): Let G = (V, D, C) be a
CSP instance representing a standard 9 x 9 Sudoku puzzle, where:

1. The variable set is defined as shown in Equation (1)

V= {uv;;[1 <4,5 <9} (1)

Here, each variable v; j € V corresponds to the grid cell located at
row i and column j. Thus, |V| = 81.

2. The domain function D assigns to each variable a set of possible
values, as shown in Equation (2):
D(vi,j) C {172779} (2)
Initially, for blank cells, D(v;;) = {1,...,9}; for pre-filled cells,
D(v;;) = {k} for some k € {1,...,9}.

3. The constraint set C CV x V is a set of unordered variable pairs
(vij» Ypa) such that the values of the two variables must be distinct
under Sudoku rules.

The constraints can be classified formally into three types:
a. Row constraint as shown in Equation (3):

Vi € {1, ceey 9},V] #£q€ {1, e ,9}, (’l}i’]‘,’l)i}q) eC. 3)
b. Column constraint as shown in Equation (4):
Vied{l,...,9},Yi#pe{l,...,9}, (vij,vp;) €C. )

c. Box constraint: Let B, ; denote the 3 x 3 subgrid (box) with box
indices r, s € {0,1,2}, where as shown in Equation (5):

Brg={vj]3r+1<i<3r+3,3s+1<3j<3s+3}. (5
As described in Equation (6), then:
v’Ua,ba Ve,d € Br,s7 (aa b) 7é (C, d) = (Ua,ba Uc,d) € C. (6)

Observation 3.1: Each variable participates in exactly 20
constraints: 8 within its row and column (excluding itself), and 4 to 6
within its box, depending on overlaps. Thus, as shown in Equation (7):

deg(vi,j) = 20Vv;; € V. 7
This uniform constraint degree leads to a well-connected
constraint graph G¢ = (V, C), which is central to symbolic difficulty
analysis.
Remark 3.1 (Domain Reduction in CSP Propagation): During
constraint propagation (e.g., via arc consistency or singleton checks),
the domain D(v; ;) may be reduced incrementally as shown in Equation

(8):

D(vi;) ¢ D(vi;;)\{k}, if Fvpq €

Peers(v; ;)s.t.0(vpq) =k, (8)

where 6:V — D is a partial assignment and Peers(v;;) is a
set of variables constrained with v; ;. This process enables symbolic
metrics to detect how “constrained” a variable is before solving. Hence,
domain size evolution under constraints becomes a central indicator of
difficulty.
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Table 1
Time and space complexity of related works
Complexity
SI. No. Reference = Method/algorithm Time Space Key findings Limitations
1 [15] Neuromorphic 88%—96% faster Data scales Real-time validation using Hardware-specific
validation of CSP Est. O(n?) linearly spiking architectures; high  performance and limited
solutions Est. O(n) spike reduction generalization
2 [17] MILP with heuristics O(2") O(n?) Integer linear program Solver-dependent;
formulation efficient only with
commercial solvers
3 [20] Local-search meta-  Solver-dependent Near-linear Instance-based selection High variance;
heuristics + algo- worst-case: O(n!) Theoretical improves success rate and  scalability issues on
rithm selection upper bound:  speed on various puzzle complex grids
o(n?) instances
4 [31] SATNet integration ~ O(n?) O(n?) SAT-based symbolic layer  Fails without
in DNN intermediate labels
5 [8] Memristive oscillator Analog parallel Circuit- Analog waveform solving  Only validated via
circuits dependent dynamics SPICE simulation
6 [22] GA + multi-armed ~0.8 s per puzzle O(m?) Adaptive arm selection Bandit tuning adds
bandit selection O(gn!) speeds up convergence in  hyperparameter
varied difficulty puzzles complexity
7 [24] Genetic algorithm ~1-4 s per puzzle; O(m?) Enhanced GA avoids poor Limited to 9 x 9, no
+ neighborhood worst-case exponen- swaps, shows consistent formal complexity proof
mutation tial performance across easy to
hard puzzles
8 [26] Hybrid genetic ~1-3 s per puzzle; O(n?) Combines GA and firefly =~ No formal complexity
algorithm + firefly theoretical worst case mating to avoid local opti-  analysis; tuned mainly
mating is exponential (O(n!)) ma, consistent performance for 9 x 9 nodes
across easy, medium, and
hard puzzles
9 [30] Hybrid ML + O(n?) + O(c) O(n?) Digit recognition + CSP Robust against user
constraint solving enforcement errors in visual input
10 [46] Local search GA O(g'n?) O(p'n?) Columnwise fitness + elite  Fast convergence;
(LSGA) learning requires tuning for
hardness scaling
11 [23] Hybrid classi- ~Minutes execution  O(n?) First NISQ-based Sudoku  NISQ noise limits
cal-quantum algo- time solver; shows proof-of- scalability; needs circuit
rithm (NISQ-based)  Exponential concept quantum speedup  optimization
theoretical potential
12 [21] Deep learning (CNN  ~1.4 s per image O(n?) Combined CNN and OCR  Accuracy depends
+ OCR pipeline) Theoretical: O(n?) to identify digits and solve on image clarity; no
puzzles end-to-end learning from solution
logic
13 [39] Functional + Esterel  O(n log n) O(m?) Threaded symbolic logic Concurrent model
hybrid solver simulation complexity; not widely
scalable
14 [40] Human-labeled data- O(n) O(n?) App-based user data with ~ Not predictive; depends
set construction time/success metrics on human gameplay
15 [45] ACO vs. backtrack-  ACO: ~5-8 s, Back- O(n?) ACO outperforms on hard  Dependent on
ing comparison tracking: ~1-2 s; puzzles; backtracking is pheromone tuning;
ACO worst-case faster on easy ones tested only on 9 x 9
<O(n!) grids
16 [44] Graph-label count on Computation time O(m?) Quantified number of valid No solving algorithm;
Sudoku constraint grows with labeling labelings, linked to graph ~ focuses on enumeration
graph complexity; <5 s per symmetry and constraint
instance density
17 [47] Entropy-guided evo- O(g-n?) O(pn?) Fitness-based entropy Dependent on good

lutionary search

minimization

initial entropy estimates
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Table 1
(continued)
Complexity
SI. No. Reference =~ Method/algorithm Time Space Key findings Limitations
18 [37] Suguru ZKP protocol O(n) O(n) ZKP using card-based Not solver-focused; used
(physical) encoding for secure proofing only
19 [38] Sudoku ZKP via O(n) O(n) Card-based verification Not applicable for auto-
cards without extractability mated systems
20 [36] Lightweight cipher ~ O(n) O(n) Permutation-based secure  Optimized only for
inspired by Sudoku encryption low-resource devices
21 [27] 3D Sudoku dual Oo(n®) Oo(n®) 3D backtracking and elimi- Memory intensive; com-
solver nation strategy plex for large 3D grids
22 [32] BFS, DFS, and BFS ~1.55 s, DFS DFS outperformed BFS Focused on medium-dif-
human-solving com- ~0.55 s per puzzle. in speed; DFS and human  ficulty puzzles; human
parisons paths aligned better than strategy patterns were
BFS in most cases anecdotal
23 [28] Worst-case: O(n!) O(n?) (grid size O(n?) Glial-cell design reduced ~ No formal complexity
storage) spikes by 88% and compu- provided; platform-spe-
tation by 92%; well-suited cific validation
for real-time Sudoku
solving
24 [48] Puzzle benchmarking O(n?) O(n?) Black-box comparison Not Sudoku-specific
framework across puzzle solvers optimization
25 [35] Exact CSP encoding  Solves many puzzles O(n?) Efficient generation of Exponential time as clue
for strategy-solv- within 1 min; slows strategy-solvable grids, count drops; focused on
ability sharply with <20 framework adapts to vari-  clue generation, not full
clues ous solving techniques solver
26 [43] Tactical pattern flexi- < 0.1 s per puzzle on O(n?) Shows that adaptive tactic ~ Conducted on logic-only
bility analysis average switching boosts solver solvers, not full CSP
performance across varying pipelines
difficulty levels
27 [42] Algorithmic diffi- O(b"d) O(b-d) BFS and A* search Needs platform-specific
culty assessment via behavior predict human calibration
search challenge
28 [33] Graph coloring <2 s per puzzle ~0O(n?) Models Sudoku as graph Heuristic may fail
heuristics coloring; solves full puz-  on hardest instances;
zles efficiently scaling beyond 9 x 9
untested
29 [41] AR + real-time 2 s per puzzle O(n?) Combines OCR and solver Accuracy drops with
OCR + embedded (mobile app) in AR; helpful visual feed- poor lighting; plat-
constraint solver back on mobile devices form-limited
30 [46] Elite learning genetic O(g'n?) O(p'n?) Combines matrix encod- Needs balancing be-
algorithm ing and elite population tween exploration and
memory exploitation
3.2. Relationship to NP-complete problems This is a constraint extension problem: we wish to

Solving a Sudoku puzzle involves calculating a complete
assignment for the variables under several interacting constraints.
Although a check for the validity of a completed grid can be done with
a polynomial number of steps, whether a valid completion exists for a
partially completed grid is a much more difficult class of NP-complete
problem.

Definition 3.2 (Sudoku Solving as a Decision Problem): Given
a partial function 04 : A CV — X, where X' = {1,2,...,9}, define the
problem:

Given G = (¥, D, C) and 64, does there exist § : V — X such that
as shown in Equation (9)

V(vs,v5) € C,0(v;)andd(vi) = 0.4(vy), Yor € A? 9)

extend 04 to a full assignment that satisfies all binary inequality
constraints.

Lemma 3.2 (NP-Completeness of Sudoku Solving): Let
I gy4oku denote the decision problem stated above. Then, as described
in Equation (10):

I sygory € NP — Complete. (10)

Proof:

1. Membership in NP: Given a total assignment , we can check all
constraints in C in time proportional to the number of edges in the
constraint graph for standard 9 x 9 grids because each variable has
~20 peers, as described in Equation (11):
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Toerify = O(|C|) = O(n?). (11)

Formally, verification checks in polynomial time as shown in
Equation (12):

Y(vi,vj) € C,0(v;) # 0(vi) (12)
and Equation (13) will be
Vg € A, 0(vy) = 0A(vg). (13)

2. NP-Hardness: Yato and Seta [5] constructed a polynomial-time
reduction as shown in (14)

Latin Square Completion <, IIgyoky- (14)

The Latin square completion problem (LSCP) is defined
over an n X n grid, where each row and column must contain each
symbol exactly once, with some entries pre-filled. This can be seen
as a simplified version of Sudoku without box constraints. Let
IIrs € NP — Complete. The reduction transforms an LS instance
Vi, D, Cyp, into a Sudoku instance G = (¥, D, C) by:

— Preserving row and column constraints
— Adding 3 x 3 box constraints via auxiliary variables and
constraints.

This mapping preserves solution satisfiability: 0y, is valid < 0
satisfies all constraints in G.

Thus, as described in Equation (15),

HLS Sp HSudoku = HSudoku € NP - Hard (15)

Because Ilgygopy € NP and is NP — Hard = I sydokw € NP—
Complete

Remark 3.2 (Complexity Gap between Verification and Solving):
Let us define two functions:

— VERIFY: X8 — {TRUE, FALSE}, where verification checks
all Cin O(n?).

— SOLVE: SV, D,C) — Z¥ U {0}, which must explore the
search space |%|'"*!, where V, = V\A. Thus, as described in Equation
(16):

Toerify = O(nZ),Tsolve = Q(QlVQ‘). (16)

This exponential time lower bound for solving accounts for why
backtracking strategies and heuristic solvers tend to fail on difficult
puzzles and encourages symbolic difficulty estimation methods that run
within O(n) or O(n2) time without exhaustive assignment enumeration.

3.3. Motivation for symbolic analysis

Solving a Sudoku puzzle, as depicted within the prior section,
is NP-complete; however, checking a completed solution runs within
polynomial time. This asymmetry indicates that a model that can
predict difficulty without necessarily involving actual solving would
be theoretically sound and computationally beneficial. Let represent a
partially filled Sudoku instance. Define as a set of unassigned variables.
Traditional solving strategies such as backtracking or heuristic search
must explore a subset of the solution space , where . Even with forward
checking, constraint propagation, or intelligent variable ordering,
the worst-case time remains exponential in . To avoid this, symbolic

estimation is our proposed solution: a method of estimating difficulty
not from full assignment but from structural properties of G that can be
derived in polynomial time.

Definition 3.3 (Symbolic Difficulty Estimation Framework):
Let ©: g — R* be a function mapping a Sudoku instance G € g to a
tuple of symbolic metrics as shown in Equation (17):

@(G) = (MI(G)7M2(G)75MI€(G)) (17)

Bach metric M;(G) is a deterministic function computable
in polynomial time and is designed to approximate a latent function
(G) € R, which represents puzzle difficulty. Here, ® is called the
symbolic transformation function, and D is the ground-truth solver-
based or human-perceived difficulty.

Proposition 3.1 (Complexity Feasibility of Symbolic
Analysis): Let ©(G) be composed of metric functions that operate only
on the domain D, variable set V, and constraint structure C. Then, O(G)
can be computed in O(n?) time for any standard 9 x 9 Sudoku instance.

Proof: Each symbolic metric depends on one or more of the
following operations:

— Local constraint analysis: bounded to a set of ~20 peers per
variable,

— Row, column, and box scans: O(n),

— Pairwise or groupwise connectivity in G¢ = (V, C) : O(n?).

The total work across all 81 variables is still in 0(712), without
recursive guessing, stochastic iterations, or enumeration of the domain.
Because problem size is fixed (i.e., n = 9), the process is deterministic
and polynomially bounded.

Lemma 3.3 (Separation of Solving vs. Symbolic Estimation
Complexity): Let Tyope(G) = 2(b%), where b is the branching factor
and g is the number of decision points. Let Tsympoiic(G) = O(n?). Then,
as shown in Equation (18):

3G € g such that Tsoe(G) > Tsymbotic(G) (18)

Proof: Suppose a puzzle has |Ve| > 50 with a known minimum
clue configuration. Regardless of pruning, the solver has to delve
into subtrees with branching factor 2-3 on each level, soon reaching
hundreds of thousands of nodes. Conversely, symbolic estimation
makes use of only fixed data, unfilled cells, constraint topology, and
domain values and proceeds by fixed iterations per cell. Symbolic
evaluation thus decisively trumps solving on efficiency for hard cases.

Remark 3.3 (Significance of Symbolic Pre-solving Metrics):
Symbolic analysis is a domain-independent method of measuring
structural puzzle difficulty without resorting to the outcomes of
solving them. It is scalable, reproducible, and light on computation.
Additionally, it offers a link between human-based logical reasoning
and formal constraint complexity

4. Proposed Mathematical Metrics

We present a symbolic difficulty estimation method grounded on
four deterministic measures defined over the structural properties of a
Sudoku puzzle instance. These measures each capture a different aspect
of constraint-based or logical complexity that is evaluated without a
partial or full solution of the grid. These measures are polynomial-
time computable and make it possible to estimate the difficulty using
only the static structural properties of the CSP representation G = (V]
D, C). Let V. CV be a set of unassigned variables (empty cells) of a
given puzzle G. These measures are presented as symbolic mappings as
shown in Equation (19):
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My, : G — Reg, for k=1,2,3,4. (19)

We now formally define and analyze each metric.

4.1. Constraint density metric (CDM)

We define the CDM so that it measures how intertwined an
unassigned cell is within a Sudoku puzzle’s structure. It is based on the
number of blank neighboring cells that put constraints on the variable at
hand through row, column, and box constraints.

As deductive clarity is directly influenced by constraint
saturation, the CDM is a reliable symbolic representation of puzzle
hardness without execution of actual solutions. Let G = (V, D, C)
be a Sudoku puzzle as a CSP, and let Ve CV be a set of variables
corresponding to blank cells. Let f be an indicator function 8: V—{0,1},
such that §(v;;) =1 if v;; € V. and 6(v; ;) = 0 otherwise. Let B, be
the 3 x 3 box containing the variable v; ;, where the box indices are
given by r = L%J ,8= {%J and the box itself is defined as a set of
all variables vgp such that3r + 1 <a<3r+3and3s+1<b<3s+3.

Definition 4.1 (Constraint Density for a Single Cell): For each
v;; € Ve, the constraint density is defined as shown in Equation (20):

9 9
CDM (vi ;) = 3 p=16(vip) + DJa=10(vy,)
P#j qF#i

9
+ 3 (@heBr. 8(vay).
(a,0)#(1,9)

(20)

This operation adds up the count of empty peer cells that belong
to the same row, column, and box of v;;, not counting the variable
itself. The overall density of the constraints over the grid is derived
by summing up the individual CDM scores for the unfilled variables
across the grid.

Definition 4.2 (Global Constraint Density Score): Let M;(G)
denote the global constraint density of the puzzle. Then, as described
in Equation (21)

Ml(G) = Zvi,jEVe CDM('U,‘J). (21)

This metric provides a scalar representation that reflects the
extent of constraint interdependencies of unassigned variables within
the grid. The theoretically expected performance of CDM aligns with
common-sense puzzle complexity. A variable with the majority of its
peers being filled provides CDM(v;;) =0, which reflects maximum
constraint exposure and minimum ambiguity. Conversely, a variable
with a large number of its peers being unfilled produces large CDM
scores, which indicates a neighborhood area with strong uncertainty
and logical entwinement.

Proposition 4.1 (Semantic Interpretation of CDM): Let
CDM(v; ;) = 0. Subsequently, all constraint-related neighbors of v; ; are
allocated, and the domain with which the variable is associated may
be reduced entirely by validation. Otherwise, if CDM(v; ;) > 20, then
the cell belongs to a highly unconstrained region, and inference could
require auxiliary deductive steps or guessing.

From a computational perspective, the metric has bounded
polynomial complexity even for the worst-case scenario. This is
important for its application to pre-solution analysis.

Lemma 4.1 (Computational Complexity of CDM): For a
standard 9 x 9 Sudoku puzzle, the function M;(G) can be computed in
time complexity O(n?), where n =9.

Proof: The proof proceeds by noting that for each v;; € V, the
CDM function requires checking 8 other variables in the same row, 8
in the column, and 8 in the same box, with some overlaps depending

on location. Because no more than 20 distinct peers are checked for
each unfilled cell and |Ve| < 81, the total number of operations remains
bounded by O(20 - 81) = O(n?), completing the proof.

Remark 4.1 (Role of CDM in Symbolic Estimation): CDM
is based on neither solution nor partial assignments and, accordingly,
evades backtracking, recursion, or solution state simulation overheads.
As a topological, symbolic estimator of hardness, it is rooted in the
static grid configuration. Combined with other structural measures,
CDM distinguishes between different hardness levels with minimal
computation effort.

4.2. Logical inference depth (LID)

Although CDM measures static constraint tightness, it neither
assesses the deductive reachability of a solution when using human-
style reasoning nor quantifies how far propagation can go without
guessing. In an attempt to fill the intermediary gap, LID is proposed.
This measures how far propagation can go without guessing and
represents the number of deterministically executable consecutive
logical steps of inference that propagation can make. It is based on
procedural rules such as naked singles, hidden pairs, locked candidates,
and simple elimination, which are techniques that are commonly used
by human solvers and lightweight CSP solvers. Let G = (V, D, C) be
an underfilled Sudoku puzzle, and let IT be a set of propagable rules
being used when analyzing it. Let a step of a step-by-step deductive
inference be a deterministic step when it reduces the domain of some
v € V, to a singleton using rules from IT without using backtracking or
probabilistic guessing.

Definition 4.3 (Inference Path and Logical Depth): Let o;
denote a sequence of logical deductions (an inference path) initiated
from the initial state G under a consistent application of rules from /7.
Let di € Z_ denote the number of steps in the i inference path until no
further progress is possible without branching. Then, the LID of the
puzzle is defined as in Equation (22):

My(G) = + X7 ds 22)
where n is the number of individual inference simulations run,
normally started with different priority orders on variable selection or
application of rules. This indicator is an average-case measurement
of the depth of constraint propagation before failure of strictly logical
progress. When II is completely exhaustive over typical human
methods, a higher M»(G) indicates a higher logical solvability, whereas
decreasing values indicate that branching or guessing is on the verge of
being needed.

Proposition 4.2 (LID Reflects Pre-guessing Deductive
Depth): Let M5(G) = 0. Then, no logical rule in /7 is applicable from
the initial state, implying maximum ambiguity. Let Mz(G) =k for
k > 0. Then, the puzzle permits k levels of forward logical deduction
without branching. This proposition links the LID score directly to the
procedural tractability of the puzzle.

Lemma 4.2 (Complexity of LID Evaluation): Let /7 include
bounded-time logical rules (e.g., naked singles and hidden pairs),
each operating on domain reductions in time O(n). Let the maximum
simulation depth per path be d  , and let n be the number of paths
evaluated. Then, the LID metric M(G) can be computed in time
complexity O(n-d,  -n*), which simplifies to O(»*) for bounded d _and
constant grid size n =9. '

Both the simulation process and the constraint propagation and
recursive domain reduction step operate on each affected variable
within a cell’s peer group. As there are at most 20 elements within each
peer group and there is an 81 bound on the number of unfilled variables,
the logical deduction step is carried out in manageable, nested loops,
which establish the lemma.
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Proof: Let us consider the evaluation of Ms(G), which involves
simulating n independent paths of logical inference, each of which is
a sequence of constraint propagation steps according to the rule set
I1. At each inference step, each variable v € V, whose domain D(v) is
deterministically reduced to a singleton by one or a sequence of rules
from II is selected. When a single cell v;; € V. is being evaluated,
the time for applying a simple rule such as naked single is because
it involves checking the union of the assigned values among the 20
peers of v, - More complicated rules such as hidden pairs take time for
scanning combinations of domain values within the same peers that are
still bounded by O(n), considering that the size of the domain is at most
9 and the size of the peer set is constant. Accordingly, for each variable,
a complete pass at rule applications is possible within O(n) time.

In the deductive step, the algorithm considers all unfilled
variables, at most 81 on a typical Sudoku grid. Thus, a single deductive
layer takes O(n-n) = O(n?) time. If we denote the average number of
deduction layers before halting as d, , then the cost for one complete
inference path is O(d, -n*). When n such paths are simulated, usually
by perturbing initial rule priority or candidate ordering, the overall
complexity is shown in Equation (23):

TLID = O(n - daz -nz) = O(n - daz -n3). (23)

For standard Sudoku where n =9 and d _is empirically seen to
be bounded usually between 10 and 50 for typical challenging problem
instances, the total computation is still tractable and is not exponentially
time-consuming. Thus, the LID metric M»(G) is computable in
polynomial time with respect to grid size n and inference depth d, ,
completing the proof.

Remark 4.2 (Symbolic Nature and Cognitive Relevance of
LID): In contrast with CDM, which measures neighborhood density,
LID provides insight into the procedural complexity of the puzzle
solution by rule-based logic. It is both algorithmically symbolic and
cognitively consistent with human reasoning. When applied, low CDM
and high LID for a puzzle reflect the sparsity but not the opacity of
the structure, and high CDM and low LID reflect the density but not
the sparsity of the configuration. This complementarity highlights the
necessity to combine both topological and procedural measures within
symbolic estimation schemes.

4.3. Guessing complexity (GC)

Although CDM and LID establish symbolic approximations of
static constraint binding and forward deduction depth, they estimate
neither the magnitude of the ambiguity present within a Sudoku puzzle
nor the degree of non-determinist city present within it. The GC metric
is proposed to encompass this hidden ambiguity by formulating the
minimum number of choice points or guesses that completely resolve
the grid as a depth-first traversal of the solution space. Approximating
the intrinsic branching factor for the search tree of the puzzle, it is a
structural surrogate for the puzzle’s non-deterministic burden of logic.
Let G = (¥, D, C) be a Sudoku instance, and let 7(G) be a backtracking
or depth-first expansion-based rooted search tree with each node
designating an assignment of a value to a variable €. At each branching
point, a non-deterministic choice is made among multiple feasible
values in D(v), excluding options ruled out by constraint propagation.

Definition 4.4 (GC Metric): Let ©(G) denote a set of all solution
paths in 7(G), each terminating in a consistent and complete assignment
of all variables. Then, the GC is defined as in Equation(24):

M;(G) =

in depth(6). 24
,1in, dep (6) (24)

Here, depth(f) is used here to indicate the number of guess-
based (non-deterministic) choices made on the solution path 0 after
excluding deterministic constraint propagation steps. This measures the
minimum number of guesses that are unavoidable to arrive at a solution.
Practically, M,(G)=0 for those puzzles that only require solution by
strict application of rules of logic, with higher measures corresponding
to a greater use of branching and backtracking.

Proposition 4.3 (Relation to Puzzle Hardness): Let M,(G)=k.
Then, the minimum decision tree to solve the puzzle has a length of
at least 2% with at least solution branches at its worst, with binary
branching at each point of guessing. M, thus has a symbolic bound on
the exponentiality of the solution process.

Lemma 4.3 (Computational Evaluation of GC): Assume that
constraint propagation at each node of the tree takes O(n*) time. Then,
the GC M,(G) can be evaluated via depth-limited backtracking in time
O(b*-n?), where b is the average branching factor (domain size) and k =
M(G).

Proof: To compute M,(G), a backtracking algorithm is started
from the root node of the search tree and is depth-limited. At each
stage, the algorithm chooses the next unassigned variable v € V, and
tries all values in D(v) that are consistent with the constraints. Forward
constraint propagation is then performed after each assignment to
remove the infeasible values for downstream variables, and it takes at
most time at each node because of the updates for peer sets.

Let k denote the depth of the shallowest successful solution
path (i.e., the minimal number of guesses needed to find a complete
assignment). The number of nodes searched within a depth-limited
tree of depth at most k with branching factor b is O(b*). At each node,
propagation of constraints and legality checks take time, which is
polynomial. Thus, the overall time for the computation of is defined
in Equation (25):

TGC = O(b* - n?). (25)

Because k is minimal on all solution paths by definition and
b < 9 (limited by size of domain), this provides a manageable, but
not necessarily trivial, computation for small k. On typical Sudoku
instances, the maximum of k is seen to be no higher than 5-6 for well-
constructed puzzles, keeping TGC from exploding exponentially. This
demonstrates the lemma.

Remark 4.3 (Interpretation and Symbolic Strength of GC):
The GC metric, while being a function of procedural solution behavior,
is symbolic because it is not attempting to compute a complete solution
but estimates the depth of logical search. Being aligned with traditional
complexity theory, especially NP-completeness and enumeration
of exponential search space, adds substantial theoretic credibility
to it. Although CDM or LID measures local density or progress of a
solution procedure, GC puts into mathematical terms the depth of the
embedded logical ambiguity within the grid and measures at which
point deterministic logic fails.

4.4. Constraint graph tightness (CGT)

In addition to local constraint density, logical deduction depth, and
GC, it is crucial to comprehend the long-range structural entwinement
of variables within a Sudoku grid. We suggest the CGT indicator as a
symbolic topological indicator quantifying the average extent of inter-
variable constraints within a puzzle instance. The metric is built by
representing the puzzle as a graph, with each node being a variable
and each edge encoding a direct binary constraint, by row, column, or
box rules, between variable pairings. Given a Sudoku instance G = (V]
D, C) with variable set V = {v; ;|1 <1,j <9}, let its constraint graph
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be G¢ = (V,E) with an edge (vqp,vcqa) € E whenever pair (Va,bs Ved)
shares a row, column, or box and thus is within constraint set C.

Definition 4.5 (CGT): Let deg(v) denote the degree of a node
v €V in the constraint graph G¢, defined as the number of other
variables to which it is directly constrained. The CGT My(G) is defined
as the average degree across all nodes as shown in Equation (26):

My(G) = 7 ey deg(v) = 57 (26)

It measures the average number of constraints that each variable
is part of, thus quantifying the overall structural interconnectedness
within the grid. Because each variable is influenced by all other
variables across its row, column, and 3 x 3 box, the highest possible
degree for a node is 20 (not counting self-loops), which makes CGT
bounded and interpretable.

Proposition 4.4 (CGT as a Symbolic Structural Entanglement
Indicator): Let M4(G) be the CGT of grid G. Then, higher values
of My would imply higher average variable entanglement, which
tends to increase the constraint propagation load and combinatorial
interdependencies alike. Conversely, a low CGT would ensure a
sparsely constrained puzzle arrangement, normally seen at the initial
stages of generation or with minimalist clue grids.

Lemma 4.4 (Complexity of CGT Evaluation): Let the graph
Gc¢ = (V,E) be constructed by checking binary constraints for all
unordered pairs (v;,v;) € V x V. Then, the CGT M4(G) can be
computed in time O(r?) for a standard Sudoku grid of size 9 x 9.

Proof: There are |V| = 81 variables in a standard Sudoku grid.
For each variable v; j, its peer set consists of all variables that share
the same row, column, or 3 x 3 box up to 20 unique neighbors per
cell. The graph G¢ can be constructed by iterating through eachv € V
and collecting its direct constraint connections, which takes at most
operations. Once the graph is built, the average degree is obtained
directly by summing degrees or using the edge count as shown in
Equation (27):

My(G) = %(by the handshaking lemma).

27

Because the construction and averaging both run in O(n?), the
metric is efficiently computable. This completes the proof.

Remark 4.4 (Analytical Role of CGT in Symbolic Difficulty
Estimation): In contrast to CDM, which is local, or LID and GC,
which mimic procedural steps, CGT illustrates the global distribution
of constraints throughout the complete puzzle form. It allows for
an insight into the distribution of the constraint network and the
tightness with which the variables are bound to each other. A grid
with a highly consistent CGT value indicates that almost any variable
has a strong effect on a large number of other variables, enhancing
the risk of cascaded failure during solving attempts and hindering
local resolution paths. CGT thus supplements the other measures
by measuring structural entanglement from a graph-theoretical
perspective *p < 0.05.

5. Experimental Setup and System Architecture

This section describes the experimental and architectural design
for assessing the symbolic metric-based model suggested for the
classification of Sudoku difficulties. The design encompasses data
sources, preprocessing rules, computing tools, and a professionally
documented flow diagram that is applicable to symbolic computing and
Al-based diagnosis systems.

5.1. Dataset and preprocessing

Three carefully designed Sudoku puzzle classes, namely, easy,
medium, and hard, were chosen to present graduated levels of difficulty.
These classes were determined using proven hardness measures
discussed by Yato and Seta [5] to ensure that they were consistent with
the body of computer science complexity literature.

The easy puzzle class comprises those with 30 or more pre-
provided clues, which makes the grid almost complete and logically
unambiguous. The medium puzzle class includes puzzles with 18 to
30 pre-filled cells, featuring moderate constraint density and higher
ambiguity. The hard puzzle class is defined by 17 or fewer clues,
resulting in highly under-constrained grids with significantly greater
deductive complexity.

Each puzzle is represented as a 9 x 9 matrix of integers, where
digits ranging from 1 to 9 indicate pre-filled cells and zeros (0) represent
blank cells to be solved. This matrix serves as the input to the symbolic
estimation algorithm, which treats each blank cell as a variable within
a CSP framework.

The CSP representation applies the standard Sudoku constraints:
each row, column, and 3 x 3 subgrid must contain unique values from
the domain {1, 2, ..., 9}. Preprocessing is initiated by transforming each
Sudoku puzzle into its corresponding CSP grid form. This is done by
identifying all blank variables and assigning each a domain comprising
the values from 1 to 9.

For every blank cell, a peer set representing variables that share
the same row, column, or subgrid with up to 20 constraints possible for
each cell is generated. In a subsequent performance-optimization step,
redundant constraint pairs are removed to reduce overhead. Finally,
symbolic measures such as constraint density, graph tightness, and
deductive depth are computed and normalized to ensure consistency
across the three puzzle classes (easy, medium, and hard).

We added the large-scale benchmark dataset from the Kaggle
public repository “Sudoku Puzzles 1 Million” (CCO licensed), in
addition to the custom-built easy, medium, and hard puzzle sets. The
benchmark was used to assess the scalability and generalizability of the
symbolic metrics in the presence of conditions that are characteristics
of real-world puzzles. The dataset consists of one million diverse puzzle
instances and the corresponding solutions, which were preprocessed to
conform to the same pipeline of CSP-based symbolic encoding. The
puzzle grids were provided by themselves. Solutions were removed
to preserve the solver-independent property of the framework. With
the extension, we guaranteed the stability of the symbolic model in
the presence of differential structural conditions and demonstrated the
capability of the model to work autonomously without solver input or
statistical calibration.

5.2. Hardware and software configuration

We implemented and executed the proposed symbolic difficulty
estimation algorithm on a standardized computing platform to
ensure reproducibility, computational efficiency, and scalability. All
computations were performed on a machine equipped with an Intel
Core i7 processor (2.6 GHz) and 16 GB DDR4 RAM. The operating
system used was Microsoft Windows 10, chosen for its stability,
broad compatibility, and reliable memory management—particularly
beneficial when handling symbolic logic operations. The primary
development environment was R version 4.3.1, incorporating a suite
of native and third-party libraries to support initial constraint modeling,
graph object construction, and performance metric evaluation. The key
packages utilized included the following:
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* igraph: for constraint graph generation and manipulation,

* reshape2: for managing multi-dimensional data,

» ggplot2: for generating visual representations of symbolic metric
distributions.

The symbolic computation of the four core measures—CDM,
LID, GC, and CGT—was implemented and verified using RStudio
version 2023.03.1. Symbolic implementation was developed to operate
entirely without statistical inference, machine learning, or third-
party solvers, aside from those available within R. This ensured full
compatibility with deterministic, logic-based computation models in
accordance with the principles of computational complexity theory.

5.3. Performance evaluation metrics

Puzzle difficulty is estimated by the framework using four
symbolic measures: CDM, LID, GC, and CGT.

CDM quantifies the number of constraints on each remaining
variable by evaluating local constraint interactions.

1) LID estimates the maximum deduction depth achievable without
requiring guessing.

2) GC computes the minimum number of non-deterministic choices
necessary to identify a valid solution path.

3) CGT reflects the degree of constraint entanglement across the puzzle
by calculating the average node degree in the constraint graph.

Each measure is computed independently in polynomial time
and collectively serves as a distinct input to a rule-based classifier that
assigns the puzzle to easy, medium, or hard categories. The execution
time and memory usage of each metric were also tracked. Execution
time was recorded in milliseconds using internal timers, and memory
usage (in kilobytes) was profiled at the system level during the
standalone execution of each computation module.

Table 2 provides an overview of the four symbolic measures
alongside their respective computational properties. These empirical
results confirm the computability of the framework and its suitability for
symbolic puzzle classification without the use of statistical estimation
or external solvers.

5.4. System flow diagram

Figure 1 shows the overall system architecture, from the input
acquisition of a Sudoku puzzle to four symbolic metric modules
CDM, LID, GC, and CGT to a metric integration layer and rule-based
classification engine. The output is provided as labeled puzzle grids
for the easy, medium, and hard levels. The design focuses on modular
autonomy, symbolic explainability, and deterministic choice-making,
with attention to the precise classification of hard puzzles to accomplish
the framework’s primary goal.

5.5. System architecture overview

The new framework combines four symbolic modules, namely,
CDM, LID, GC, and CGT, in a deterministic pipeline system. They
each run separately, with foundations based on CSP theory, and do not
solve nor engage with data-driven inference. CDM calculates localized
constraint saturations using unassigned peers for rows, columns, and
boxes and outputs topological density that is applied within the local
constraint layer. LID mimics rule-based logical deductions such as
naked singles and hidden pairs for approximating maximum depth
without guessing, which symbolizes procedural solvability within the
reasoning layer.

The GC metric estimates the minimum number of non-
deterministic choices using bounded-depth symbolic backtracking,
implemented at the ambiguity estimation layer to quantify logical
uncertainty. The CGT module constructs a constraint graph and
computes the average node degree to observe structural entanglement
at the topological layer, capturing global constraint connectivity.

Figure 1
Symbolic difficulty prediction pipeline
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Table 2
Summary of symbolic metrics and evaluation parameters

Metric Description Output type Time complexity Memory (KB) Runtime (ms)

CDM Constraint density per cell Integer (0-20+) O(n?) ~160 ~12

LID Deduction depth before guessing Float (0-20) O(n*-k) ~220 ~28

GC Minimum required guesses Integer (0-9) 025 ~190 ~34

CGT Avg. constraint graph degree Float (20-60) O(n?) ~175 ~16
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Each symbolic module outputs a scalar value, which is
normalized at the metric integration layer to form a composite metric
vector as shown in Equation (28)

0(G) = <CDM/, LID1, GCICGT/>. (28)

This vector is processed by the rule-based classification engine,
which applies empirically defined thresholds (e.g., CDM > 45, GC > 6,
and LID < 6) to classify the puzzle as easy, medium, or hard.

Figure 2 illustrates this horizontally stacked modular pipeline,
which begins with the input layer and CSP-based symbolic modeling,
proceeds through parallel computation of the four symbolic metrics
(CDM, LID, GC, and CGT), and culminates in the metric integration
layer. The final classification decision is rendered by the rule-based
classification engine. Additionally, a parallel performance tracking
layer monitors runtime and memory consumption independently,
without affecting the pipeline’s overall polynomial time complexity
of O(n?). This modular symbolic framework ensures deterministic
categorization, with improved precision particularly in classifying hard
puzzle instances. It avoids the need for solvers or heuristic methods
and guarantees reproducibility, scalability, and compliance with formal
computational complexity theory.

5.6. Benchmark dataset integration and validation

To increase the empirical range of the symbolic set of measures
for more than manually selected instances, a systematic test was
conducted with a standardized Kaggle Sudoku test set of one million
distinct puzzles. Categorized according to clue count, they were batched
for processing with the symbolic metric suites. For each of the puzzles’
CDM, LID, GC, and CGT measures, logs were generated and compiled
for statistical distribution analyses. Distributions showed distinguishable
symbolic signatures for distinctly inferred difficulty levels. At this large
scale, this validation again assured that the structure of the symbolic
metrics is not sensitive to diverse input populations, thus validating its
reliability without reliance on hand-designed instances. This further set
up the framework for deployment at scalable levels within automated
puzzle scoring pipelines and embedded tutoring tools.

6. Results and Discussion

This section provides the empirical outcomes from symbolic
metric calculations on a range of Sudoku puzzles. The performance of

Figure 2
Layered system architecture of the symbolic Sudoku difficulty pre-
diction framework
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each symbolic module CDM, LID, GC, and CGT were compared across
several puzzles with different levels of difficulty (easy, medium, and
hard). The assessment was made with respect to both symbolic behavior
and algorithmic efficiency, corroborated using runtime and memory
consumption monitoring.

6.1. Comparative evaluation

The symbolic framework was tested for its computational
efficiency in comparison with conventional solution methods. As
illustrated in Figure 3, the symbolic framework exhibits polynomial
time complexity O(n) with respect to the number of open variables.
This is in stark contrast to the exponential growth observed in brute-
force and SAT-based approaches. Importantly, each performance
measurement was conducted without completing the puzzle,
thereby avoiding the additional overhead associated with full
backtracking or constraint propagation chains. This reinforces the
symbolic framework’s capability to deliver efficient and scalable
performance while remaining consistent with theoretical constraints
of computational complexity.

Table 3 illustrates a comparison of time and space complexities
of some of the existing methods for Sudoku puzzle difficulty estimation.
It clearly demonstrates the benefit of the proposed symbolic approach
with a time complexity and a space complexity of O(n). It is thus well
suited for use where real-time responses are required and for large-scale
puzzle assessment.

These outcomes prove CSP-based symbolic modeling to
be lightweight, representing a computation-efficient alternative to
computation-intensive solving methods such as constraint propagation,
SAT solving, and brute-force search. Memory usage is also linear as
shown in Figure 4, which is a guarantee of low overhead and feasibility
of the symbolic model for use within embedded or low-resource
settings. A side-by-side complexity comparison is shown in Figure 5,
which demonstrates the relative performance of the symbolic method
versus backtracking, rule-based, and constraint programming solvers.
The proposed symbolic approach exhibits minimal computational
overhead, offering a streamlined alternative to traditional solving
techniques. The symbolic metrics are detailed in Table 4, where their
individual contributions toward accurate puzzle classification are
outlined. When employed collectively, these metrics form a composite
symbolic signature capable of predicting puzzle difficulty levels with
high accuracy and low computational cost.

Figure 3
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Table 3
Time and space complexity comparison of difficulty estimation methods
Method Time complexity Space complexity Reason
Rule-based Difficulty estimation o(1) o(1) Counts clues only, no logic inference
Heuristic search (backtracking) O(n?) or O(2") O(n) or O(n?) Explores multiple search paths, exponential in worst case
Constraint graph estimation O(n?) O(n?) Analyzes global constraints between variables
Our proposed symbolic framework O(n) O(n) Predicts difficulty pre-solution using symbolic metrics

Further analysis on how these metrics behave across easy,
medium, and hard puzzle classes is presented in subsequent sections,
highlighting their granular effectiveness under varying constraint
densities and logical ambiguity.

To probe for the generalization of the efficiency of the symbolic
method, we examined its time and space characteristics for a wide
subset of puzzles randomly selected from the Kaggle benchmark set
(“1 million Sudoku games”; CCO licensed).

The trends that we saw on a single puzzle were repeatedly
reflected throughout the benchmark set. Runtime growth maintained
a linear behavior as O(n) predicted and a proportional memory
increase with the count of unsolved variables, as shown in Figure 6
and Figure 7. Both of these reflect the previous theoretical discussion

Figure 4
Space complexity of symbolic estimation model O(n)
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Figure 5
Comparison of time and space complexities across solver types
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Table 4
Explanation of symbolic metrics used in the proposed framework

Metric Full form Purpose

CDM Constraint density Quantifies local constraint
metric saturation per variable
LID Logical inference Measures how far logical
depth deduction proceeds before
guessing
GC Guessing complexity —Estimates branching steps
or non-deterministic moves
required
CGT Constraint graph Captures global interdependency
tightness among unfilled cells

and validate the scalability of the developed framework for batch-
mode or real-time applications without any change in computational
characteristics.

6.2. Metric behavior across puzzle difficulty levels

To evaluate the discriminative potential of the proposed symbolic
measures, six representative Sudoku puzzles spanning three difficulty
classes, namely, easy, medium, and hard, were analyzed. For each
puzzle, the four core measures (CDM, LID, GC, and CGT) were
computed and visualized (see earlier figures).

Figure 8 illustrates symbolic measure outputs for a representative
hard puzzle, where the CDM exceeded 700 and the CGT reached 13,

Figure 6
Symbolic metric variation across puzzle difficulty
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Figure 7
Runtime scalability of symbolic framework O(n)
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highlighting the presence of high structural entanglement and tight
global constraints. A multi-class comparison is given in Figure 9,
demonstrating how easy, medium, and hard puzzles differ symbolically.
CDM and CGT increase with difficulty whereas LID decreases as
expected based on theory. Further evidence is provided by Figure 10,
which illustrates symbolic metric variation across different puzzles.
Difficult puzzles always have higher GC and CDM compared to easy
puzzles, confirming the classifier’s structural sensitivity.

Clear patterns emerged, correlating with the intrinsic structural
complexity of each difficulty class. CDM values exhibited a consistent
increase with increasing difficulty:

1) Easy puzzles, due to their higher pre-fill rates, demonstrated lower
constraint density (e.g., CDM ~ 40-45).

2) In contrast, hard puzzles displayed CDM values exceeding 100,
reflecting denser but underdetermined variable interactions.

LID, which estimates how far logical deduction may proceed
before requiring guesswork, was observed to be inversely related to
puzzle hardness. Easy puzzles exhibited higher inference depths (LID
~ 12-18), indicating longer sequences of pure logical deductions. In
contrast, hard puzzles showed lower LID values (= 5-7), reflecting early
breakdowns in deduction and earlier reliance on guessing strategies.

The GC, representing the estimated number of non-deterministic
choices, increased sharply with puzzle difficulty. Easy puzzles yielded

Figure 8
Symbolic metric scores (CDM, CGT, GC, and LID) for a classified
hard puzzle
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Distribution of symbolic metrics across three puzzle classes (easy,
medium, and hard)
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Figure 10

Symbolic metric trends (CDM, GC, CGT, and LID) by puzzle ID
and difficulty class
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GC values = 2-3, whereas hard puzzles were in the range GC = 8-10,
consistent with greater branching in the solution search space. CGT,
indicating average variable connectivity in the constraint graph,
also showed discriminative capacity. Hard puzzles exhibited tighter
constraint graphs (CGT > 20), reflecting dense, entangled variable
interactions. By contrast, easy puzzles displayed looser topologies
(CGT < 10), facilitating more isolated and tractable substructures.

Table 5 summarizes the observed ranges of each symbolic metric
across difficulty classes. These findings confirm that the symbolic
metrics are not only individually diagnostic but also collectively
effective in categorizing puzzle difficulty. Moreover, their deterministic
nature ensures repeatability and transparency, distinguishing them from
probabilistic or data-driven solvers, which often lack such theoretical
guarantees.

The symbolic metrics were profiled on a representative subset of
six puzzles (easy and hard classes) from the Kaggle dataset.

The metric behavior exactly reflected previous single-case
analyses: CDM grew with clue sparsity, LID dropped with ambiguity,
GC surged with an increase in branching complexity, and CGT reflected
more tight topological entanglements for more difficult puzzles, as
depicted in Figures 11-13. Such scale consistencies reinforce the
empirical validity of the metric definitions and prove the generalizability
of the symbolic framework across datasets.

13
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6.3. Comparison with existing solvers

The proposed symbolic technique was compared with several
established Sudoku-solving methods to highlight its computational
advantages and semantic clarity in estimating puzzle difficulty.
These comparative methods include classical rule-based algorithms,
backtracking and brute-force solvers, constraint programming (CP)
approaches, SAT/SMT-based encodings, and neuro-symbolic hybrid
models.

Unlike these methods that either solve the puzzle directly or
depend on machine learning-based estimation, the symbolic technique
infers difficulty based purely on the structural properties of the puzzle,
without engaging in the solving process, as illustrated in Figure 5.

Table 5
Metric ranges across puzzle difficulty classes

Difficulty CDM Range LID Range GC Range CGT Range

Easy 40-50 12-18 2-3 8-10

Medium 60-100 8-12 3-5 12-18

Hard 100-150+ 5-7 6-10 20-30
Figure 11

Aggregated symbolic metric averages (CDM, CGT, GC, and LID)
across difficulty classes
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Figure 13
Aggregated symbolic metric averages (CDM, CGT, GC, and LID)
across difficulty classes
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1) Rule-based solvers, although fast and explainable, typically rely
on clue counts or elementary logical rules. They are insufficient in
capturing nuanced complexity, particularly for medium and hard
puzzles.

2) Backtracking and brute-force algorithms explore the entire solution

space, offering accuracy at the cost of high computational expense.

This renders them unsuitable for real-time or online classification

tasks.

Constraint programming and SAT solvers provide high accuracy

through formal constraint modeling but require solution attempts

or partial propagation, which significantly increases runtime and

3

~

memory usage.

The symbolic framework, by contrast, avoids the solving path
entirely, focusing on symbolic abstraction and deterministic evaluation,
which enables it to operate with lower overhead, enhanced scalability,
and theoretical transparency. Neuro-symbolic models, which integrate
deep learning with symbolic reasoning, have demonstrated strong
performance in classification tasks, but they come with notable
limitations. These models are highly dependent on large training
datasets, are computationally expensive, and often suffer from a
lack of transparency. Their internal representations are difficult to
audit or reproduce, making them unsuitable for applications where
interpretability and symbolic reasoning are required.

In contrast, the proposed symbolic method classifies Sudoku
puzzle difficulty using a deterministic metric evaluation, specifically
through CDM, LID, GC, and CGT applied directly to the unsolved
puzzle. This eliminates the need for solving the puzzle or relying on pre-
trained models. The symbolic method thus allows for pre-classification
of puzzles without any learning phase or data-dependent calibration.

As shown in Table 6, the symbolic framework offers the
following:

1) High computational speed,
2) Scalability,
3) Strong interpretability.

These attributes make it highly suitable for both resource-
constrained embedded devices and large-scale puzzle evaluation
systems. This comparative assessment further validates the symbolic
framework as a theoretically grounded, computationally efficient, and
transparent alternative to solver-based and statistical classification
models.
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When compared with solver-based difficulty predictions for a
wide subset of puzzles from the 1 million Kaggle dataset, the difficulty
labels generated by the symbolic classifier were more than 90%
consistent for both hard and easy labels. Such results, as illustrated in
Figure 14, demonstrate the strong correlation between puzzle difficulty
levels and the computed constraint metrics, thereby validating the
effectiveness of the proposed CSP-based framework.

6.4. Interpretability and symbolic transparency

One of the strongest assets of the proposed symbolic framework
is its inherent structural transparency and interpretability. In contrast
to machine learning models that rely on hidden layers, statistical
weights, or opaque optimization processes, the symbolic approach
yields deterministic outputs that are fully traceable to logical and
mathematical operations applied to the input puzzle. All four symbolic
metrics, namely, CDM, LID, GC, and CGT, are rooted in formally
defined constructs, ensuring reproducibility, analytical traceability, and
justification of difficulty labels.

Interpretability extends to the classification logic, which is
explicitly rule-based and boundary-driven. For example, a puzzle
with high CDM and CGT but low LID is systematically assigned to
the “hard” class based on predefined symbolic thresholds. This level
of clarity is notably absent in many solver-based and learning-based
methods, where internal decision-making often relies on statistical
approximations or emergent behaviors from iterative optimization.
Moreover, the symbolic framework is entirely independent of
training data. It does not use labeled examples, pre-learned heuristics,
or probabilistic calibration. This makes it immune to overfitting,
domain bias, and dataset shift issues that typically compromise the
generalizability of hybrid or neural models. As a result, the same
symbolic reasoning logic can be applied to unseen puzzle types without
degradation in performance or interpretability.

This model clarity is also advantageous for general research
applications, including formal verification, cognitive modeling, and
human-centered puzzle generation. By quantifying difficulty in terms
of logical deduction effort and constraint entanglement, the framework
mirrors how human solvers perceive puzzle complexity. It is therefore
well positioned for use in educational software, game engines, and
embedded Al reasoning modules.

For assessing the scalability and consistency of the proposed
symbolic approach, a comparability analysis was performed for single-
puzzle vs. large-scale executions over the Kaggle Sudoku dataset
tabulated in Table 7.

7. Conclusion

This research introduces a deterministic and symbolic framework
for estimating the difficulty of Sudoku puzzles using four novel

Vol. 00 Iss. 00 2025
Figure 14
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complexity measures: CDM, LID, GC, and CGT. The framework
enables the classification of puzzle difficulty levels easy, medium, and
hard without solving the puzzle.

Quantitative evaluations on benchmark Sudoku instances
revealed clear symbolic thresholds:

— CDM > 100 for hard puzzles,
- LID<7,

— GCupto 10, and

— CGT > 20 on average.

These metrics were computed with polynomial time complexity,
with module runtimes ranging from 12 ms (CDM) to 34 ms (GC) and
memory usage remaining under 250 KB.

Compared to rule-based, backtracking, and constraint
programming approaches, the proposed symbolic method demonstrated
higher classification interpretability and efficiency, scoring:

— 4/5 in speed,
— 5/5 in accuracy, and
— 5/5 in scalability.

The symbolic paradigm offers a substantial scope for extension
into problem domains where difficulty estimation is required, but a
complete solution is computationally intractable. Promising future
directions include the following:

— Hybrid symbolic-ML architectures combining symbolic measures
with lightweight classifiers for enhanced explainability.

Table 6
Feature-based comparison of Sudoku difficulty estimation approaches

Solving required

Interpretability Speed score (1 = slow;

Difficulty estimation Scalability score

Method type (1 =yes; 0 =no) score (1-5) 5 = fast) accuracy (1-5) a-5
Rule-based 0 5 5 2 5
Backtracking 1 1 1 3 2
Constraint programming 1 3 3 4 3
SAT/SMT solvers 1 2 3 4 2
Neuro-symbolic solvers 1 2 2 4 2
Proposed symbolic model 0 5 4 5 5
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Table 7
Comparative analysis: single puzzle vs. Kaggle dataset

Aspect

Single puzzle case study

Kaggle dataset evaluation

Evaluation scale

Metric stability
and GC

Classification accuracy
classification

Scalability observed Symbolic estimation in <40 ms

Symbolic separation by difficulty

categories via metric values
Backtracking/propagation usage Not required
Framework dependence

Memory efficiency Negligible (<200 KB)

One manually selected Sudoku puzzle
High consistency across CDM, CGT, LID,

Matched solver label with deterministic

Clear distinction between easy and hard

Solver-independent symbolic logic

Subset to full scale of the 1 million Kaggle puzzles

Consistent symbolic metric trends across solver-labeled
classes

>90% agreement with solver-based labels (easy and
hard classes)

Polynomial runtime maintained (O(n)); <250 KB
memory footprint

Stable metric class separation across thousands of
samples

Avoided across all samples
Consistent performance under varying puzzle structures

Peak usage remains under 250 KB across all batches

— Generalization to larger puzzle grids (e.g., 16 x 16 Sudoku).

— Inversion to other NP-complete puzzles, for example, Kakuro,
KenKen, and Nonograms, is possible with common uses of
constraint satisfaction structures and symbolic rule-based
formulations. Other characteristics of those puzzles include
grid-based variables, propagation rules derived from logic, and
structural ambiguity, thus being tractable for a symbolic metric
analysis using constraint density, inference depth, and graph
entanglement.

— Beyond puzzle-solving, symbolic interpretability supports
research in cognitive science, puzzle design automation, and
educational software aimed at modeling human reasoning effort.
The deterministic, solver-independent architecture proposed
in this study offers a reproducible foundation for advancing
symbolic Al and complexity-theoretic applications in constraint-
based domains.

Overall, our proposed scheme refrains from solver runtime
dependence, backtracking heuristics, or probabilistic models of
convergence, thereby differing from constraint programming and
learning-based estimator approaches. Its exclusively symbolic
construction further leads to an increase in interpretability,
reproducibility, and algorithmic transparency. Such characteristics
qualify it as a strong substitute for puzzle hardness prediction in
constraint satisfaction problems where path solutions are not available
or too costly to evaluate computationally.
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