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Abstract: This paper provides a logic-based method for the categorization of the puzzle difficulty levels of Sudoku using deterministic measures of 
computational complexity. Shifting from heuristic, statistical, or machine-based paradigms, the method presents four symbolic measures: constraint 
density metric (CDM), logical inference depth (LID), guessing complexity (GC), and constraint graph tightness (CGT). These are derived from the 
Constraint Satisfaction Problem theory and implemented using R programming without the application of data-driven inference. The new method 
assesses puzzle complexity based on pre-solving properties yielding consistent outputs that align with theoretical NP-completeness measures. 
Difficulty levels are grounded on strict numerical criteria, e.g., CDM over 700, LID 14 or higher, GC over 6, and CGT approaching 30, indicative of 
increased structural complexity. The method is compared with rule-based, backtracking, and solver-based methods using benchmarks and shown 
to run with linear time and space complexity O(n) compared with traditional methods with time and space complexity O(n²) or exponential growth 
O(2ⁿ). The method presents a reproducible, scalable method for analytically assessing puzzles and provides a formal, non-heuristic method for 
evaluating complexity within combinatorial logic systems.
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1. Introduction
The computational classification of Sudoku puzzle hardness 

provides a fascinating point of overlap for discrete mathematics, 
artificial intelligence, and computer science theory. Sudoku, which may 
appear to be simple at first glance, is based on constraint satisfaction 
principles that reveal a rich landscape of structural and algorithmic 
complexity. A diverse series of methodologies has evolved over the 
last two decades to assess puzzle hardness, ranging from metaheuristic 
methods [1] and rule-based methods [2] to evolutionary computation 
[3] and zero-knowledge proof schemes [4]. These models are usually 
dependent on solution paths, heuristics of behavior, or massive dataset 
trawling for deriving estimates of hardness.

The classification of Sudoku within the realm of NP-complete 
challenges [5] serves to endorse intrinsic computation hardness 
residing within its solution, particularly when solved without third-
party inference or solver bias. These subsequent attempts have tried 
decreasing the complexity of it using FPGA-based solvers [6], SAT-
based encodings within Sudoku formulas [7], and AI-aided methods 
such as memristive neural networks [8] and photonic spike-based 
techniques [9]. Although efficient within performance terms, they 
are still based on the implementation of the solution process, which 
produces dependencies on machine-based guessing, backtracking, or 
probabilistic convergence.

Recent work has also discussed psychological modeling [10] 
and hardness indicators based on entropy [11], commonly resorting to 
human gameplay traces to qualify puzzles as “easy,” “moderate,” or 
“hard.” Although pedagogically and entertainingly helpful, they lack the 
formal and theoretic clarity required for reproducibility and consistent 
benchmarking across unsolved instances. Another line of research, 
e.g., by McGuire et al. [12], has shown the computational insolvability 
of even minimal Sudoku puzzles, and less obviously, the exponential 
growth of solution space under partial constraints. Attempts at encoding 
hardness as a function of initial clues’ number [13] or block symmetries 
[14] have illustrated that such surface metrics are insufficient to 
account for the combinatorial entanglements present at a deeper puzzle 
structure. A major research gap thus remains for creating a mechanism 
to predict puzzle hardness without puzzle solution, simulation runs, or 
statistical calibration.

In response to this challenge, this work takes a symbolic 
approach based on reasoning and theory of computation. By flipping 
the focus from “how long a puzzle takes to solve” to “how densely 
it is logically constrained,” a new deterministic and theoretically 
sound complexity estimation pathway is proposed for Sudoku puzzle 
prediction of difficulty level without resorting to data-driven, statistical, 
or machine learning-based methods. The main goal of this work is to 
establish mathematical formulations for constraint satisfaction and 
computational complexity theory-based prediction of puzzle difficulty 
levels without using data-driven, statistical, or machine learning-based 
methods for that purpose.

To that end, the current work puts forth a new symbolic framework 
introducing four new logical measures, namely, constraint density metric 
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(CDM), logical inference depth (LID), guessing complexity (GC), and 
constraint graph tightness (CGT), each of which encodes different 
computational properties of a puzzle’s logical complexity. These 
measures are precisely defined and implemented using deterministic 
functions of R constraints. The proposed symbolic framework runs on 
the structural features of the puzzle before solution, without resorting 
to any trial-and-error, supervised learning, or statistical calibration 
stepwise requirement.

This symbolic-only method is tested on a sample of typical 
puzzles with diverse difficulty levels and compared with other methods 
for evaluation, including heuristic-based predictors and solver-included 
classifiers. Early metric scores derived on classified puzzle sets indicate 
a strong correlation of metric intensity levels with defined measures of 
puzzle hardness, e.g., CDM > 700, LID ≥ 14, GC ≥ 6, and CGT ≈ 30. 
Additionally, the proposed model has O(n) time and space complexity 
compared to conventional solving algorithms with O(n²) or O(2ⁿ) 
complexity growth, especially with backtracking or quantum-based 
formulation.

By refraining from statistical inference, behavioral modeling, 
and machine learning, the present study presents a unique reproducible 
system for the prediction of puzzle hardness based on symbolic 
measures from the Constraint Satisfaction Problem (CSP) theory 
and theory of computation. This technology connects the dots from 
the theoretically formulated NP-complete problem to the actual, 
deterministic evaluation of a puzzle and forms a foundation for further 
research toward symbolic logic systems and toward classifying a puzzle 
on the basis of its syntactic form.

This work has the following main contributions:

1)  It creates a deterministic, symbolic complexity estimation model 
that does not require the use of solver-based heuristics, statistical 
inference, or training data.

2)  It detects and quantifies four new symbolic measures, namely, 
CDM, LID, GC, and CGT, from the syntactic and structural features 
of Sudoku problems.

3)  It indicates that the measures in question, tried on 1 million puzzles, 
all consistently suggest difficulty classes with no solution execution.

4)  It has linear runtime and submegabyte memory usage for the 
symbolic system, making the system scalably deployable on 
unsolved puzzle spaces, learning environments, and symbolic-AI 
applications.

2. Literature Review
Many studies have explored Sudoku as a benchmark for 

combinatorial optimization and constraint satisfaction. Initial research 
attempts made use of mathematical models based on linear and integer 
programs. Recent demonstration of Sudoku constraint validation has 
been performed on neuromorphic hardware by Pignari et al. [15], with 
efficient evaluation in real time using spiking architectures, as well as 
based on binary integer linear programming by formulation of odd/even 
variants by Yu et al. [16]. Ates and Cavdur [17] promoted hybrid puzzle 
generation with hybrid mathematical programming and integration with 
heuristics. Béjar et al. [18] verified that Sudoku is NP-complete even 
with structured patterns of clue elimination, confirming its theoretical 
status even when not necessarily solved with heuristics. Bailey et al. 
[19] illustrated connections with Sudoku, Gerechte designs, and affine 
spaces, deepening its combinatorial and algebraic representation. 
Metaheuristics for Sudoku were analyzed by Notice et al. [20], who 
used algorithm selection for four solvers from a local-search base and 
showed that methods that are specific to instances are superior to general 
methods with regard to success and speed measures albeit typically with 
exponential behavior reflective of O(n!) search. Outside of symbolic 

representations, heuristic and metaheuristic methods have become even 
more prominent. Vamsi et al. [21] constructed an automated puzzle 
solver with CNN-based digit extraction and grid reconstruction for 
solving Sudoku. Kim and Eor [22] used multi-armed bandit selection 
of genetic algorithm for improving adaptivity of selection in Sudoku, 
and Pal et al. [23] presented a hybrid classical-quantum solver on the 
noisy intermediate scale of devices. Jana et al. [24] suggested using 
neighborhood-based mutation in genetic algorithms to solve Sudoku 
with faster convergence along with guaranteed performance regardless 
of puzzle hardness. Chatzinikolaou et al. [25] utilized irregular learning 
cellular automata to simulate adaptive human reasoning, and a hybrid 
evolutionary solver based on genetic and firefly mating methods [26] 
exhibited efficient convergence with respect to the level of difficulty. 
Jana et al. [27] resolved higher complexity within 3D Sudoku with dual 
solver configurations and elimination methods.

Tao et al. [28] demonstrated an implementation of a Sudoku 
solution using blended glial-cell SNN with faster and sparser 
inference without traditional rule-based reasoning. Explainability 
and solver transparency have also been investigated. Björnsson et 
al. [29] quantified mental efforts within solver responses to match 
human judgment with difficulty classification. Mulamba et al. [30] 
introduced a hybrid image-to-constraint solver integrating visual 
recognition with constraint reasoning for addressing human error and 
digit misclassification. Chang et al. [31] critically analyzed SATNet’s 
capacity for visual puzzle-based logic inference and exposed its failure 
without symbolic grounding. Diah et al. [32] compared breadth-first 
search (BFS), depth-first search (DFS), and human solution strategies 
on 9  ×  9 Sudoku problems and concluded that although DFS was 
generally faster overall, solution paths best mimicked human reasoning 
more frequently than BFS. Hardware applications have also contributed 
to the field. Chatzinikolaou et al. [8] introduced a memristor-based 
oscillator circuit with emphasis on parallel computation and low 
power for puzzle solution. Vidyashree et al. [33] described Sudoku 
as a graph-coloring problem and modeled it as an 81-node graph that 
could be solved using coloring heuristics. Cheewaprakobkit et al. [34] 
integrated an explainable rule-based reasoning component in addition 
to a recurrent relational network to make decision-making in solving 
Sudoku transparent and explainable, and Nishikawa and Toda [35] 
proposed an exact CSP-based solver that can generate guaranteed 
solvable clue sets with human reasoning.

Parallels from cryptography and secure computation have drawn 
on Sudoku as inspiration for their work. Masadeh et al. [36] presented a 
lightweight stream cipher based on the combinatorics of Sudoku. Robert 
et al. [37] constructed a physical ZKP protocol for the Suguru puzzle, 
and Sasaki et al. [38] introduced a card-based ZKP for Sudoku that 
protects solution confidentiality without revealing the solution. Serrano 
and Findler [39] illustrated a Sudoku solver for HipHop (interleaving 
JavaScript and Esterel) with functional-concurrent composition for 
implementing symbolic logic. A prominent area of research activity 
across recent years has centered on estimating difficulty. Wang [40] 
constructed a validated dataset with the help of the Cloud Sudoku app, 
collecting human-playing statistics such as solving time and success 
rate. Ananya and Singh [41] created an augmented reality Sudoku 
solver that leverages real-time digit recognition and in-line constraint-
solving to assist users interactively. Valenzuela et al. [42] and Behrens 
et al. [43] reported the utility of solver behavior in terms of perceived 
difficulty, wherein flexible switching of tactics enhances human-solving 
intuition alignment. Maria Jeyaseeli et al. [44] investigated valid graph 
label numbers for Sudoku constraint graphs, providing insight into 
solution space structure and complexity. Hasanah et al. [45] contrasted 
ant colony optimization with the conventional backtracking for Sudoku, 
with ACO doing better for tougher puzzles but backtracking suited for 
simpler puzzles.
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Other research has touched on solver optimization. Wang et al. 
[46] designed a genetic algorithm based on local search using matrix 
encoding and elite learning, and Pathak and Kumar [47] integrated 
uncertainty scores based on entropy with evolutionary methods for 
hard puzzle solving. Lloyd et al. [48] designed a benchmark suite for 
Japanese puzzle games for black-box comparison across solvers and 
games. Lin and Wu [49] designed a new algorithm for minimizing 
search space for minimum-clue Sudoku that outperformed McGuire’s 
exhaustive checker using disjoint minimal unavoidable sets (DMUS). 
Kitsuwan et al. [50] proposed a dynamic load balancer with solver-
specific prediction to minimize computation delay.

Although comprehensive, a principal research gap remains 
unfilled, with most of the difficulty estimation models depending on 
solver traces, machine learning, or game-playing measures, which 
create bias or require exhaustive computation. Few models directly 
operate on the structural description of a Sudoku puzzle to estimate its 
difficulty. Notice et al. [20] and Hasanah et al. [45] depended on solver 
behavior or heuristic adaptation, for instance, whereas Vamsi et al. [21] 
depended on convolutional pipelines that mask logical structure. That 
gap is filled in this work with a formulation of a deterministic symbolic 
system from four constraint-based measures: CDM, LID, GC, and CGT 
[51]. That formulation avoids statistical inference usage and solver-
heuristic dependence, providing a reproducible, Mantere and Koljonen 
[52] symbolically founded system for complexity estimation with 
foundations on constraint satisfaction and computational theory [53].

Table 1 is a comprehensive comparative overview of significant 
schemes of computation adopted in a previous piece of research for 
estimating Sudoku puzzle difficulty and solving it [54]. It summarizes 
the time and space complexity of each algorithm or platform from 
their principal computation steps. We present each entry with 
reference, method used, core algorithmic operation, and corresponding 
computation cost, followed by major findings and limitations from their 
respective empirical evaluation or intrinsic characteristics. The tabular 
analysis demonstrates the richness of the set of methods, ranging 
from symbolic logic, evolutionary heuristics, and neural networks to 
their implementation with accelerators and cryptography analogs, and 
indicates that a majority of incumbent approaches (e.g., metaheuristics 
[7, 8], ML-based solvers [9, 12], and CSP encodings [25]) rely on 
solver-specific performance or tuning with a dependence on data. Our 
new symbolic approach, on the contrary, is solver path- and statistical 
inference-independent, thus forming a standing point for estimating 
the efficiency and scalability of the proposed symbolic metric-based 
scheme of the current work.

3. Theoretical Foundations
Analyzing the structural and logical intricacies of Sudoku 

challenges requires casting them within formal computational 
frameworks. Unlike approaches that concentrate on heuristics or machine 
learning-based methods, the present research builds exclusively on the 
concepts of CSPs and theory of computation, ensuring mathematical 
rigor and reproducibility.

3.1. Sudoku as a CSP
Sudoku puzzle instances are systematically modeled as cases of 

the CSP, which is a fundamental paradigm in artificial intelligence and 
theoretical computer science. This representation forms the foundation 
for studying the intrinsic complexity of Sudoku using formal definitions 
of variables, domains, and constraints without resorting to heuristics or 
solution enumeration.

Let the Sudoku grid be denoted as a finite structure G = (V, D, 
C), where V is a set of variables, D is the domain, and C is a set of 
all binary constraints enforced over variable pairs. This mathematics 

makes possible the deterministic analysis of puzzles of Sudoku without 
appeal to empirical or heuristic approaches.

Definition 3.1 (Sudoku CSP Instance): Let G = (V, D, C) be a 
CSP instance representing a standard 9 × 9 Sudoku puzzle, where:

1.  The variable set is defined as shown in Equation (1)

Here, each variable  corresponds to the grid cell located at 
row i and column j. Thus, .

2.  The domain function D assigns to each variable a set of possible 
values, as shown in Equation (2):

Initially, for blank cells, ; for pre-filled cells,  
 for some .

3.  The constraint set  is a set of unordered variable pairs  
 such that the values of the two variables must be distinct 

under Sudoku rules.

The constraints can be classified formally into three types:
a.  Row constraint as shown in Equation (3):

b.  Column constraint as shown in Equation (4):

c.  Box constraint: Let  denote the 3 × 3 subgrid (box) with box 
indices , where as shown in Equation (5):

As described in Equation (6), then:

Observation 3.1: Each variable  participates in exactly 20 
constraints: 8 within its row and column (excluding itself), and 4 to 6 
within its box, depending on overlaps. Thus, as shown in Equation (7):

This uniform constraint degree leads to a well-connected 
constraint graph , which is central to symbolic difficulty 
analysis.

Remark 3.1 (Domain Reduction in CSP Propagation): During 
constraint propagation (e.g., via arc consistency or singleton checks), 
the domain  may be reduced incrementally as shown in Equation 
(8):

where  is a partial assignment and  is a 
set of variables constrained with ​. This process enables symbolic 
metrics to detect how “constrained” a variable is before solving. Hence, 
domain size evolution under constraints becomes a central indicator of 
difficulty.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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Sl. No. Reference Method/algorithm
Complexity

Key findings LimitationsTime Space
1 [15] Neuromorphic 

validation of CSP 
solutions

88%–96% faster
Est. O(n²)

Data scales 
linearly
Est. O(n)

Real-time validation using 
spiking architectures; high 
spike reduction

Hardware-specific 
performance and limited 
generalization

2 [17] MILP with heuristics O(2ⁿ) O(n²) Integer linear program 
formulation

Solver-dependent; 
efficient only with 
commercial solvers

3 [20] Local-search meta-
heuristics + algo-
rithm selection

Solver-dependent
worst-case: O(n!)

Near-linear
Theoretical 
upper bound: 
O(n²)

Instance-based selection 
improves success rate and 
speed on various puzzle 
instances

High variance; 
scalability issues on 
complex grids

4 [31] SATNet integration O(n²) O(n²) SAT-based symbolic layer 
in DNN

Fails without 
intermediate labels

5 [8] Memristive oscillator 
circuits

Analog parallel Circuit-​ 
dependent

Analog waveform solving 
dynamics

Only validated via 
SPICE simulation

6 [22] GA + multi-armed 
bandit selection

~0.8 s per puzzle
O(g·n!)

O(n²) Adaptive arm selection 
speeds up convergence in 
varied difficulty puzzles

Bandit tuning adds 
hyperparameter 
complexity

7 [24] Genetic algorithm 
+ neighborhood 
mutation

~1–4 s per puzzle; 
worst-case exponen-
tial

O(n²) Enhanced GA avoids poor 
swaps, shows consistent 
performance across easy to 
hard puzzles

Limited to 9 × 9, no 
formal complexity proof

8 [26] Hybrid genetic 
algorithm + firefly 
mating

~1–3 s per puzzle; 
theoretical worst case 
is exponential (O(n!))

O(n²) Combines GA and firefly 
mating to avoid local opti-
ma, consistent performance 
across easy, medium, and 
hard puzzles

No formal complexity 
analysis; tuned mainly 
for 9 × 9 nodes

9 [30] Hybrid ML + 
constraint solving

O(n²) + O(c) O(n²) Digit recognition + CSP 
enforcement

Robust against user 
errors in visual input

10 [46] Local search GA 
(LSGA)

O(g·n²) O(p·n²) Columnwise fitness + elite 
learning

Fast convergence; 
requires tuning for 
hardness scaling

11 [23] Hybrid classi-
cal‑quantum algo-
rithm (NISQ-based)

~Minutes execution 
time
Exponential 
theoretical

O(n²) First NISQ-based Sudoku 
solver; shows proof-of-
concept quantum speedup 
potential

NISQ noise limits 
scalability; needs circuit 
optimization

12 [21] Deep learning (CNN 
+ OCR pipeline)

~1.4 s per image
Theoretical: O(n²)

O(n²) Combined CNN and OCR 
to identify digits and solve 
puzzles end-to-end

Accuracy depends 
on image clarity; no 
learning from solution 
logic

13 [39] Functional + Esterel 
hybrid solver

O(n log n) O(n²) Threaded symbolic logic 
simulation

Concurrent model 
complexity; not widely 
scalable

14 [40] Human-labeled data-
set construction

O(n) O(n²) App-based user data with 
time/success metrics

Not predictive; depends 
on human gameplay

15 [45] ACO vs. backtrack-
ing comparison

ACO: ~5–8 s, Back-
tracking: ~1–2 s; 
ACO worst-case 
< O(n!)

O(n²) ACO outperforms on hard 
puzzles; backtracking is 
faster on easy ones

Dependent on 
pheromone tuning; 
tested only on 9 × 9 
grids

16 [44] Graph-label count on 
Sudoku constraint 
graph

Computation time 
grows with labeling 
complexity; ≤ 5 s per 
instance

O(n²) Quantified number of valid 
labelings, linked to graph 
symmetry and constraint 
density

No solving algorithm; 
focuses on enumeration

17 [47] Entropy-guided evo-
lutionary search

O(g·n²) O(p·n²) Fitness-based entropy 
minimization

Dependent on good 
initial entropy estimates

Table 1
Time and space complexity of related works
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3.2. Relationship to NP-complete problems
Solving a Sudoku puzzle involves calculating a complete 

assignment for the variables under several interacting constraints. 
Although a check for the validity of a completed grid can be done with 
a polynomial number of steps, whether a valid completion exists for a 
partially completed grid is a much more difficult class of NP-complete 
problem.

Definition 3.2 (Sudoku Solving as a Decision Problem): Given 
a partial function , where , define the 
problem:

Given G = (V, D, C) and , does there exist  such that 
as shown in Equation (9)

This is a constraint extension problem: we wish to 
extend ​  to a full assignment that satisfies all binary inequality 
constraints.

Lemma 3.2 (NP-Completeness of Sudoku Solving): Let 
 denote the decision problem stated above. Then, as described 

in Equation (10):

Proof:

1. Membership in NP: Given a total assignment , we can check all 
constraints in C in time proportional to the number of edges in the 
constraint graph for standard 9 × 9 grids because each variable has 
~20 peers, as described in Equation (11):(9)

(10)

5

Sl. No. Reference Method/algorithm
Complexity

Key findings LimitationsTime Space
18 [37] Suguru ZKP protocol 

(physical)
O(n) O(n) ZKP using card-based 

encoding
Not solver-focused; used 
for secure proofing only

19 [38] Sudoku ZKP via 
cards

O(n) O(n) Card-based verification 
without extractability

Not applicable for auto-
mated systems

20 [36] Lightweight cipher 
inspired by Sudoku

O(n) O(n) Permutation-based secure 
encryption

Optimized only for 
low-resource devices

21 [27] 3D Sudoku dual 
solver

O(n³) O(n³) 3D backtracking and elimi-
nation strategy

Memory intensive; com-
plex for large 3D grids

22 [32] BFS, DFS, and 
human-solving com-
parisons

BFS ~1.55 s, DFS 
~0.55 s per puzzle.

DFS outperformed BFS 
in speed; DFS and human 
paths aligned better than 
BFS in most cases

Focused on medium-dif-
ficulty puzzles; human 
strategy patterns were 
anecdotal

23 [28] Worst-case: O(n!) O(n²) (grid size 
storage)

O(n²) Glial-cell design reduced 
spikes by 88% and compu-
tation by 92%; well-suited 
for real-time Sudoku 
solving

No formal complexity 
provided; platform-spe-
cific validation

24 [48] Puzzle benchmarking 
framework

O(n²) O(n²) Black-box comparison 
across puzzle solvers

Not Sudoku-specific 
optimization

25 [35] Exact CSP encoding 
for strategy-solv-
ability

Solves many puzzles 
within 1 min; slows 
sharply with ≤ 20 
clues

O(n²) Efficient generation of 
strategy-solvable grids, 
framework adapts to vari-
ous solving techniques

Exponential time as clue 
count drops; focused on 
clue generation, not full 
solver

26 [43] Tactical pattern flexi-
bility analysis

< 0.1 s per puzzle on 
average

O(n²) Shows that adaptive tactic 
switching boosts solver 
performance across varying 
difficulty levels

Conducted on logic-only 
solvers, not full CSP 
pipelines

27 [42] Algorithmic diffi-
culty assessment via 
search

O(b^d) O(b·d) BFS and A* search 
behavior predict human 
challenge

Needs platform-specific 
calibration

28 [33] Graph coloring 
heuristics

< 2 s per puzzle ~O(n²) Models Sudoku as graph 
coloring; solves full puz-
zles efficiently

Heuristic may fail 
on hardest instances; 
scaling beyond 9 × 9 
untested

29 [41] AR + real-time 
OCR + embedded 
constraint solver

2 s per puzzle 
(mobile app)

O(n²) Combines OCR and solver 
in AR; helpful visual feed-
back on mobile devices

Accuracy drops with 
poor lighting; plat-
form-limited

30 [46] Elite learning genetic 
algorithm

O(g·n²) O(p·n²) Combines matrix encod-
ing and elite population 
memory

Needs balancing be-
tween exploration and 
exploitation

Table 1
(continued)
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Formally, verification checks in polynomial time as shown in 
Equation (12):

and Equation (13) will be

2. NP-Hardness: Yato and Seta [5] constructed a polynomial-time 
reduction as shown in (14)	

The Latin square completion problem (LSCP) is defined 
over an  grid, where each row and column must contain each 
symbol exactly once, with some entries pre-filled. This can be seen 
as a simplified version of Sudoku without box constraints. Let 

. The reduction transforms an LS instance 
 into a Sudoku instance G = (V, D, C) by:

–  Preserving row and column constraints  
–  Adding 3  ×  3 box constraints via auxiliary variables and 

constraints.

This mapping preserves solution satisfiability:  
satisfies all constraints in G.

Thus, as described in Equation (15),

Because  and is  

Remark 3.2 (Complexity Gap between Verification and Solving): 
Let us define two functions:

–  , where verification checks 
all C in . 

–  , which must explore the 
search space , where . Thus, as described in Equation 
(16):

This exponential time lower bound for solving accounts for why 
backtracking strategies and heuristic solvers tend to fail on difficult 
puzzles and encourages symbolic difficulty estimation methods that run 
within O(n) or  time without exhaustive assignment enumeration.

3.3. Motivation for symbolic analysis
Solving a Sudoku puzzle, as depicted within the prior section, 

is NP-complete; however, checking a completed solution runs within 
polynomial time. This asymmetry indicates that a model that can 
predict difficulty without necessarily involving actual solving would 
be theoretically sound and computationally beneficial. Let  represent a 
partially filled Sudoku instance. Define  as a set of unassigned variables. 
Traditional solving strategies such as backtracking or heuristic search 
must explore a subset of the solution space , where . Even with forward 
checking, constraint propagation, or intelligent variable ordering, 
the worst-case time remains exponential in . To avoid this, symbolic 

estimation is our proposed solution: a method of estimating difficulty 
not from full assignment but from structural properties of G that can be 
derived in polynomial time.

Definition 3.3 (Symbolic Difficulty Estimation Framework): 
Let  be a function mapping a Sudoku instance  to a 
tuple of symbolic metrics as shown in Equation (17):

Each metric  is a deterministic function computable 
in polynomial time and is designed to approximate a latent function ​

, which represents puzzle difficulty. Here, Θ is called the 
symbolic transformation function, and D is the ground-truth solver-
based or human-perceived difficulty.

Proposition 3.1 (Complexity Feasibility of Symbolic 
Analysis): Let  be composed of metric functions that operate only 
on the domain D, variable set V, and constraint structure C. Then,  
can be computed in  time for any standard 9 × 9 Sudoku instance.

Proof: Each symbolic metric  depends on one or more of the 
following operations:

–  Local constraint analysis: bounded to a set of ~20 peers per 
variable,

–  Row, column, and box scans: O(n),
–  Pairwise or groupwise connectivity in .

The total work across all 81 variables is still in , without 
recursive guessing, stochastic iterations, or enumeration of the domain. 
Because problem size is fixed (i.e., n = 9), the process is deterministic 
and polynomially bounded.

Lemma 3.3 (Separation of Solving vs. Symbolic Estimation 
Complexity): Let , where b is the branching factor 
and g is the number of decision points. Let . Then, 
as shown in Equation (18):

Proof: Suppose a puzzle has  with a known minimum 
clue configuration. Regardless of pruning, the solver has to delve 
into subtrees with branching factor 2–3 on each level, soon reaching 
hundreds of thousands of nodes. Conversely, symbolic estimation 
makes use of only fixed data, unfilled cells, constraint topology, and 
domain values and proceeds by fixed iterations per cell. Symbolic 
evaluation thus decisively trumps solving on efficiency for hard cases.

Remark 3.3 (Significance of Symbolic Pre-solving Metrics): 
Symbolic analysis is a domain-independent method of measuring 
structural puzzle difficulty without resorting to the outcomes of 
solving them. It is scalable, reproducible, and light on computation. 
Additionally, it offers a link between human-based logical reasoning 
and formal constraint complexity

4. Proposed Mathematical Metrics
We present a symbolic difficulty estimation method grounded on 

four deterministic measures defined over the structural properties of a 
Sudoku puzzle instance. These measures each capture a different aspect 
of constraint-based or logical complexity that is evaluated without a 
partial or full solution of the grid. These measures are polynomial-
time computable and make it possible to estimate the difficulty using 
only the static structural properties of the CSP representation G = (V, 
D, C). Let  be a set of unassigned variables (empty cells) of a 
given puzzle G. These measures are presented as symbolic mappings as 
shown in Equation (19):

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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We now formally define and analyze each metric.

4.1. Constraint density metric (CDM)
We define the CDM so that it measures how intertwined an 

unassigned cell is within a Sudoku puzzle’s structure. It is based on the 
number of blank neighboring cells that put constraints on the variable at 
hand through row, column, and box constraints.

As deductive clarity is directly influenced by constraint 
saturation, the CDM is a reliable symbolic representation of puzzle 
hardness without execution of actual solutions. Let G = (V, D, C) 
be a Sudoku puzzle as a CSP, and let  be a set of variables 
corresponding to blank cells. Let f be an indicator function δ: V→{0,1}, 
such that  if  and  otherwise. Let  be 
the 3 × 3 box containing the variable , where the box indices are 
given by ,  and the box itself is defined as a set of 
all variables  such that 3r + 1 ≤ a ≤ 3r + 3 and 3s + 1 ≤ b ≤ 3s + 3.

Definition 4.1 (Constraint Density for a Single Cell): For each ​
, the constraint density is defined as shown in Equation (20):

This operation adds up the count of empty peer cells that belong 
to the same row, column, and box of , not counting the variable 
itself. The overall density of the constraints over the grid is derived 
by summing up the individual CDM scores for the unfilled variables 
across the grid.

Definition 4.2 (Global Constraint Density Score): Let  
denote the global constraint density of the puzzle. Then, as described 
in Equation (21)

This metric provides a scalar representation that reflects the 
extent of constraint interdependencies of unassigned variables within 
the grid. The theoretically expected performance of CDM aligns with 
common-sense puzzle complexity. A variable with the majority of its 
peers being filled provides , which reflects maximum 
constraint exposure and minimum ambiguity. Conversely, a variable 
with a large number of its peers being unfilled produces large CDM 
scores, which indicates a neighborhood area with strong uncertainty 
and logical entwinement.

Proposition 4.1 (Semantic Interpretation of CDM): Let 
. Subsequently, all constraint-related neighbors of  are 

allocated, and the domain with which the variable is associated may 
be reduced entirely by validation. Otherwise, if , then 
the cell belongs to a highly unconstrained region, and inference could 
require auxiliary deductive steps or guessing.

From a computational perspective, the metric has bounded 
polynomial complexity even for the worst-case scenario. This is 
important for its application to pre-solution analysis.

Lemma 4.1 (Computational Complexity of CDM): For a 
standard 9 × 9 Sudoku puzzle, the function  can be computed in 
time complexity , where n = 9.

Proof: The proof proceeds by noting that for each ​, the 
CDM function requires checking 8 other variables in the same row, 8 
in the column, and 8 in the same box, with some overlaps depending 

on location. Because no more than 20 distinct peers are checked for 
each unfilled cell and , the total number of operations remains 
bounded by , completing the proof.

Remark 4.1 (Role of CDM in Symbolic Estimation): CDM 
is based on neither solution nor partial assignments and, accordingly, 
evades backtracking, recursion, or solution state simulation overheads. 
As a topological, symbolic estimator of hardness, it is rooted in the 
static grid configuration. Combined with other structural measures, 
CDM distinguishes between different hardness levels with minimal 
computation effort.

4.2. Logical inference depth (LID)
Although CDM measures static constraint tightness, it neither 

assesses the deductive reachability of a solution when using human-
style reasoning nor quantifies how far propagation can go without 
guessing. In an attempt to fill the intermediary gap, LID is proposed. 
This measures how far propagation can go without guessing and 
represents the number of deterministically executable consecutive 
logical steps of inference that propagation can make. It is based on 
procedural rules such as naked singles, hidden pairs, locked candidates, 
and simple elimination, which are techniques that are commonly used 
by human solvers and lightweight CSP solvers. Let G = (V, D, C) be 
an underfilled Sudoku puzzle, and let Π be a set of propagable rules 
being used when analyzing it. Let a step of a step-by-step deductive 
inference be a deterministic step when it reduces the domain of some  

 to a singleton using rules from Π without using backtracking or 
probabilistic guessing.

Definition 4.3 (Inference Path and Logical Depth): Let  
denote a sequence of logical deductions (an inference path) initiated 
from the initial state G under a consistent application of rules from Π. 
Let di ∈ Z≥0 denote the number of steps in the ith inference path until no 
further progress is possible without branching. Then, the LID of the 
puzzle is defined as in Equation (22):

where n is the number of individual inference simulations run, 
normally started with different priority orders on variable selection or 
application of rules. This indicator is an average-case measurement 
of the depth of constraint propagation before failure of strictly logical 
progress. When Π is completely exhaustive over typical human 
methods, a higher  indicates a higher logical solvability, whereas 
decreasing values indicate that branching or guessing is on the verge of 
being needed.

Proposition 4.2 (LID Reflects Pre-guessing Deductive 
Depth): Let . Then, no logical rule in Π is applicable from 
the initial state, implying maximum ambiguity. Let  for 

. Then, the puzzle permits k levels of forward logical deduction 
without branching. This proposition links the LID score directly to the 
procedural tractability of the puzzle.

Lemma 4.2 (Complexity of LID Evaluation): Let Π include 
bounded-time logical rules (e.g., naked singles and hidden pairs), 
each operating on domain reductions in time O(n). Let the maximum 
simulation depth per path be dmax​, and let n be the number of paths 
evaluated. Then, the LID metric  can be computed in time 
complexity O(n⋅dmax⋅n2), which simplifies to O(n3) for bounded dmax and 
constant grid size n = 9.

Both the simulation process and the constraint propagation and 
recursive domain reduction step operate on each affected variable 
within a cell’s peer group. As there are at most 20 elements within each 
peer group and there is an 81 bound on the number of unfilled variables, 
the logical deduction step is carried out in manageable, nested loops, 
which establish the lemma.

(19)

(20)

(21)

(22)
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Proof: Let us consider the evaluation of , which involves 
simulating n independent paths of logical inference, each of which is 
a sequence of constraint propagation steps according to the rule set 
Π. At each inference step, each variable ​ whose domain D(v) is 
deterministically reduced to a singleton by one or a sequence of rules 
from Π is selected. When a single cell ​ is being evaluated, 
the time for applying a simple rule such as naked single is  because 
it involves checking the union of the assigned values among the 20 
peers of vi,j. More complicated rules such as hidden pairs take time for 
scanning combinations of domain values within the same peers that are 
still bounded by O(n), considering that the size of the domain is at most 
9 and the size of the peer set is constant. Accordingly, for each variable, 
a complete pass at rule applications is possible within O(n) time.

In the deductive step, the algorithm considers all unfilled 
variables, at most 81 on a typical Sudoku grid. Thus, a single deductive 
layer takes O(n⋅n) = O(n2) time. If we denote the average number of 
deduction layers before halting as ​dmax, then the cost for one complete 
inference path is O(dmax⋅n2). When n such paths are simulated, usually 
by perturbing initial rule priority or candidate ordering, the overall 
complexity is shown in Equation (23):

For standard Sudoku where n = 9 and dmax​ is empirically seen to 
be bounded usually between 10 and 50 for typical challenging problem 
instances, the total computation is still tractable and is not exponentially 
time-consuming. Thus, the LID metric  is computable in 
polynomial time with respect to grid size n and inference depth dmax, 
completing the proof.

Remark 4.2 (Symbolic Nature and Cognitive Relevance of 
LID): In contrast with CDM, which measures neighborhood density, 
LID provides insight into the procedural complexity of the puzzle 
solution by rule-based logic. It is both algorithmically symbolic and 
cognitively consistent with human reasoning. When applied, low CDM 
and high LID for a puzzle reflect the sparsity but not the opacity of 
the structure, and high CDM and low LID reflect the density but not 
the sparsity of the configuration. This complementarity highlights the 
necessity to combine both topological and procedural measures within 
symbolic estimation schemes.

4.3. Guessing complexity (GC)
Although CDM and LID establish symbolic approximations of 

static constraint binding and forward deduction depth, they estimate 
neither the magnitude of the ambiguity present within a Sudoku puzzle 
nor the degree of non-determinist city present within it. The GC metric 
is proposed to encompass this hidden ambiguity by formulating the 
minimum number of choice points or guesses that completely resolve 
the grid as a depth-first traversal of the solution space. Approximating 
the intrinsic branching factor for the search tree of the puzzle, it is a 
structural surrogate for the puzzle’s non-deterministic burden of logic. 
Let G = (V, D, C) be a Sudoku instance, and let T(G) be a backtracking 
or depth-first expansion-based rooted search tree with each node 
designating an assignment of a value to a variable ​∈Ve. At each branching 
point, a non-deterministic choice is made among multiple feasible 
values in D(v), excluding options ruled out by constraint propagation.

Definition 4.4 (GC Metric): Let Θ(G) denote a set of all solution 
paths in T(G), each terminating in a consistent and complete assignment 
of all variables. Then, the GC is defined as in Equation(24):

Here,  is used here to indicate the number of guess-
based (non-deterministic) choices made on the solution path θ after 
excluding deterministic constraint propagation steps. This measures the 
minimum number of guesses that are unavoidable to arrive at a solution. 
Practically, M3(G)=0 for those puzzles that only require solution by 
strict application of rules of logic, with higher measures corresponding 
to a greater use of branching and backtracking.

Proposition 4.3 (Relation to Puzzle Hardness): Let M3(G)=k. 
Then, the minimum decision tree to solve the puzzle has a length of 
at least 2k with at least  solution branches at its worst, with binary 
branching at each point of guessing. M3 thus has a symbolic bound on 
the exponentiality of the solution process.

Lemma 4.3 (Computational Evaluation of GC): Assume that 
constraint propagation at each node of the tree takes O(n2) time. Then, 
the GC M3(G) can be evaluated via depth-limited backtracking in time 
O(bk ⋅n2), where b is the average branching factor (domain size) and k = 
M3(G).

Proof: To compute M3(G), a backtracking algorithm is started 
from the root node of the search tree and is depth-limited. At each 
stage, the algorithm chooses the next unassigned variable  and 
tries all values in D(v) that are consistent with the constraints. Forward 
constraint propagation is then performed after each assignment to 
remove the infeasible values for downstream variables, and it takes at 
most  time at each node because of the updates for peer sets.

Let k denote the depth of the shallowest successful solution 
path (i.e., the minimal number of guesses needed to find a complete 
assignment). The number of nodes searched within a depth-limited 
tree of depth at most k with branching factor b is O(bk). At each node, 
propagation of constraints and legality checks take time, which is 
polynomial. Thus, the overall time for the computation of  is defined 
in Equation (25):

Because k is minimal on all solution paths by definition and 
b ≤ 9 (limited by size of domain), this provides a manageable, but 
not necessarily trivial, computation for small k. On typical Sudoku 
instances, the maximum of k is seen to be no higher than 5–6 for well-
constructed puzzles, keeping TGC from exploding exponentially. This 
demonstrates the lemma.

Remark 4.3 (Interpretation and Symbolic Strength of GC): 
The GC metric, while being a function of procedural solution behavior, 
is symbolic because it is not attempting to compute a complete solution 
but estimates the depth of logical search. Being aligned with traditional 
complexity theory, especially NP-completeness and enumeration 
of exponential search space, adds substantial theoretic credibility 
to it. Although CDM or LID measures local density or progress of a 
solution procedure, GC puts into mathematical terms the depth of the 
embedded logical ambiguity within the grid and measures at which 
point deterministic logic fails.

4.4. Constraint graph tightness (CGT)
In addition to local constraint density, logical deduction depth, and 

GC, it is crucial to comprehend the long-range structural entwinement 
of variables within a Sudoku grid. We suggest the CGT indicator as a 
symbolic topological indicator quantifying the average extent of inter-
variable constraints within a puzzle instance. The metric is built by 
representing the puzzle as a graph, with each node being a variable 
and each edge encoding a direct binary constraint, by row, column, or 
box rules, between variable pairings. Given a Sudoku instance G = (V, 
D, C) with variable set , let its constraint graph 

(23)

(24)

(25)
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be  with an edge  whenever pair  
shares a row, column, or box and thus is within constraint set C.

Definition 4.5 (CGT): Let  denote the degree of a node 
 in the constraint graph , defined as the number of other 

variables to which it is directly constrained. The CGT  is defined 
as the average degree across all nodes as shown in Equation (26):

It measures the average number of constraints that each variable 
is part of, thus quantifying the overall structural interconnectedness 
within the grid. Because each variable is influenced by all other 
variables across its row, column, and 3 × 3 box, the highest possible 
degree for a node is 20 (not counting self-loops), which makes CGT 
bounded and interpretable.

Proposition 4.4 (CGT as a Symbolic Structural Entanglement 
Indicator): Let  be the CGT of grid G. Then, higher values 
of  would imply higher average variable entanglement, which 
tends to increase the constraint propagation load and combinatorial 
interdependencies alike. Conversely, a low CGT would ensure a 
sparsely constrained puzzle arrangement, normally seen at the initial 
stages of generation or with minimalist clue grids.

Lemma 4.4 (Complexity of CGT Evaluation): Let the graph 
 be constructed by checking binary constraints for all 

unordered pairs . Then, the CGT  can be 
computed in time O(n2) for a standard Sudoku grid of size 9 × 9.

Proof: There are  variables in a standard Sudoku grid. 
For each variable​ , its peer set consists of all variables that share 
the same row, column, or 3  ×  3 box up to 20 unique neighbors per 
cell. The graph  can be constructed by iterating through each  
and collecting its direct constraint connections, which takes at most  
operations. Once the graph is built, the average degree is obtained 
directly by summing degrees or using the edge count as shown in 
Equation (27):

Because the construction and averaging both run in O(n2), the 
metric is efficiently computable. This completes the proof. 

Remark 4.4 (Analytical Role of CGT in Symbolic Difficulty 
Estimation): In contrast to CDM, which is local, or LID and GC, 
which mimic procedural steps, CGT illustrates the global distribution 
of constraints throughout the complete puzzle form. It allows for 
an insight into the distribution of the constraint network and the 
tightness with which the variables are bound to each other. A grid 
with a highly consistent CGT value indicates that almost any variable 
has a strong effect on a large number of other variables, enhancing 
the risk of cascaded failure during solving attempts and hindering 
local resolution paths. CGT thus supplements the other measures 
by measuring structural entanglement from a graph-theoretical 
perspective *p < 0.05.

5. Experimental Setup and System Architecture
This section describes the experimental and architectural design 

for assessing the symbolic metric-based model suggested for the 
classification of Sudoku difficulties. The design encompasses data 
sources, preprocessing rules, computing tools, and a professionally 
documented flow diagram that is applicable to symbolic computing and 
AI-based diagnosis systems.

5.1. Dataset and preprocessing
Three carefully designed Sudoku puzzle classes, namely, easy, 

medium, and hard, were chosen to present graduated levels of difficulty. 
These classes were determined using proven hardness measures 
discussed by Yato and Seta [5] to ensure that they were consistent with 
the body of computer science complexity literature.

The easy puzzle class comprises those with 30 or more pre-
provided clues, which makes the grid almost complete and logically 
unambiguous. The medium puzzle class includes puzzles with 18 to 
30 pre-filled cells, featuring moderate constraint density and higher 
ambiguity. The hard puzzle class is defined by 17 or fewer clues, 
resulting in highly under-constrained grids with significantly greater 
deductive complexity.

Each puzzle is represented as a 9 × 9 matrix of integers, where 
digits ranging from 1 to 9 indicate pre-filled cells and zeros (0) represent 
blank cells to be solved. This matrix serves as the input to the symbolic 
estimation algorithm, which treats each blank cell as a variable within 
a CSP framework.

The CSP representation applies the standard Sudoku constraints: 
each row, column, and 3 × 3 subgrid must contain unique values from 
the domain {1, 2, …, 9}. Preprocessing is initiated by transforming each 
Sudoku puzzle into its corresponding CSP grid form. This is done by 
identifying all blank variables and assigning each a domain comprising 
the values from 1 to 9.

For every blank cell, a peer set representing variables that share 
the same row, column, or subgrid with up to 20 constraints possible for 
each cell is generated. In a subsequent performance-optimization step, 
redundant constraint pairs are removed to reduce overhead. Finally, 
symbolic measures such as constraint density, graph tightness, and 
deductive depth are computed and normalized to ensure consistency 
across the three puzzle classes (easy, medium, and hard).

We added the large-scale benchmark dataset from the Kaggle 
public repository “Sudoku Puzzles 1 Million” (CC0 licensed), in 
addition to the custom-built easy, medium, and hard puzzle sets. The 
benchmark was used to assess the scalability and generalizability of the 
symbolic metrics in the presence of conditions that are characteristics 
of real-world puzzles. The dataset consists of one million diverse puzzle 
instances and the corresponding solutions, which were preprocessed to 
conform to the same pipeline of CSP-based symbolic encoding. The 
puzzle grids were provided by themselves. Solutions were removed 
to preserve the solver-independent property of the framework. With 
the extension, we guaranteed the stability of the symbolic model in 
the presence of differential structural conditions and demonstrated the 
capability of the model to work autonomously without solver input or 
statistical calibration.

5.2. Hardware and software configuration
We implemented and executed the proposed symbolic difficulty 

estimation algorithm on a standardized computing platform to 
ensure reproducibility, computational efficiency, and scalability. All 
computations were performed on a machine equipped with an Intel 
Core i7 processor (2.6 GHz) and 16 GB DDR4 RAM. The operating 
system used was Microsoft Windows 10, chosen for its stability, 
broad compatibility, and reliable memory management—particularly 
beneficial when handling symbolic logic operations. The primary 
development environment was R version 4.3.1, incorporating a suite 
of native and third-party libraries to support initial constraint modeling, 
graph object construction, and performance metric evaluation. The key 
packages utilized included the following:

(26)

(27)
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•  igraph: for constraint graph generation and manipulation,
•  reshape2: for managing multi-dimensional data,
•  ggplot2: for generating visual representations of symbolic metric 

distributions.

The symbolic computation of the four core measures—CDM, 
LID, GC, and CGT—was implemented and verified using RStudio 
version 2023.03.1. Symbolic implementation was developed to operate 
entirely without statistical inference, machine learning, or third-
party solvers, aside from those available within R. This ensured full 
compatibility with deterministic, logic-based computation models in 
accordance with the principles of computational complexity theory.

5.3. Performance evaluation metrics
Puzzle difficulty is estimated by the framework using four 

symbolic measures: CDM, LID, GC, and CGT.
CDM quantifies the number of constraints on each remaining 

variable by evaluating local constraint interactions.

1)  LID estimates the maximum deduction depth achievable without 
requiring guessing.

2)  GC computes the minimum number of non-deterministic choices 
necessary to identify a valid solution path.

3)  CGT reflects the degree of constraint entanglement across the puzzle 
by calculating the average node degree in the constraint graph.

Each measure is computed independently in polynomial time 
and collectively serves as a distinct input to a rule-based classifier that 
assigns the puzzle to easy, medium, or hard categories. The execution 
time and memory usage of each metric were also tracked. Execution 
time was recorded in milliseconds using internal timers, and memory 
usage (in kilobytes) was profiled at the system level during the 
standalone execution of each computation module.

Table 2 provides an overview of the four symbolic measures 
alongside their respective computational properties. These empirical 
results confirm the computability of the framework and its suitability for 
symbolic puzzle classification without the use of statistical estimation 
or external solvers.

5.4. System flow diagram
The novelty of the proposed symbolic method resides in its 

modular design, which employs four separately computed metrics for 
classifying Sudoku puzzles without resorting to solving or data-driven 
inference. A given puzzle is processed by parallel symbolic estimation 
modules CDM, LID, GC, and CGT. These modules analyze the different 
structural and logical properties of the puzzle grid. The outputs from 
the four modules are fed into a central metric integration layer after 
separate computation, which combines and normalizes the symbolic 
scores. These scores are then processed by a difficulty classification 
rule-based engine that classifies each puzzle into a preprocessively 
determined difficulty class using calibrated thresholds. The outputs are 
then visualized as marked Sudoku grids expressing easy, medium, and 
hard puzzles.

Figure 1 shows the overall system architecture, from the input 
acquisition of a Sudoku puzzle to four symbolic metric modules 
CDM, LID, GC, and CGT to a metric integration layer and rule-based 
classification engine. The output is provided as labeled puzzle grids 
for the easy, medium, and hard levels. The design focuses on modular 
autonomy, symbolic explainability, and deterministic choice-making, 
with attention to the precise classification of hard puzzles to accomplish 
the framework’s primary goal.

5.5. System architecture overview
The new framework combines four symbolic modules, namely, 

CDM, LID, GC, and CGT, in a deterministic pipeline system. They 
each run separately, with foundations based on CSP theory, and do not 
solve nor engage with data-driven inference. CDM calculates localized 
constraint saturations using unassigned peers for rows, columns, and 
boxes and outputs topological density that is applied within the local 
constraint layer. LID mimics rule-based logical deductions such as 
naked singles and hidden pairs for approximating maximum depth 
without guessing, which symbolizes procedural solvability within the 
reasoning layer.

The GC metric estimates the minimum number of non-
deterministic choices using bounded-depth symbolic backtracking, 
implemented at the ambiguity estimation layer to quantify logical 
uncertainty. The CGT module constructs a constraint graph and 
computes the average node degree to observe structural entanglement 
at the topological layer, capturing global constraint connectivity.

10

Metric Description Output type Time complexity Memory (KB) Runtime (ms)
CDM Constraint density per cell Integer (0–20+) O(n²) ~160 ~12
LID Deduction depth before guessing Float (0–20) O(n²·k) ~220 ~28
GC Minimum required guesses Integer (0–9) O(2ᵏ) ~190 ~34
CGT Avg. constraint graph degree Float (20–60) O(n²) ~175 ~16

Table 2
Summary of symbolic metrics and evaluation parameters

 Figure 1
Symbolic difficulty prediction pipeline
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Each symbolic module outputs a scalar value, which is 
normalized at the metric integration layer to form a composite metric 
vector as shown in Equation (28)

This vector is processed by the rule-based classification engine, 
which applies empirically defined thresholds (e.g., CDM > 45, GC ≥ 6, 
and LID < 6) to classify the puzzle as easy, medium, or hard.

Figure 2 illustrates this horizontally stacked modular pipeline, 
which begins with the input layer and CSP-based symbolic modeling, 
proceeds through parallel computation of the four symbolic metrics 
(CDM, LID, GC, and CGT), and culminates in the metric integration 
layer. The final classification decision is rendered by the rule-based 
classification engine. Additionally, a parallel performance tracking 
layer monitors runtime and memory consumption independently, 
without affecting the pipeline’s overall polynomial time complexity 
of O(n²). This modular symbolic framework ensures deterministic 
categorization, with improved precision particularly in classifying hard 
puzzle instances. It avoids the need for solvers or heuristic methods 
and guarantees reproducibility, scalability, and compliance with formal 
computational complexity theory.

5.6. Benchmark dataset integration and validation
To increase the empirical range of the symbolic set of measures 

for more than manually selected instances, a systematic test was 
conducted with a standardized Kaggle Sudoku test set of one million 
distinct puzzles. Categorized according to clue count, they were batched 
for processing with the symbolic metric suites. For each of the puzzles’ 
CDM, LID, GC, and CGT measures, logs were generated and compiled 
for statistical distribution analyses. Distributions showed distinguishable 
symbolic signatures for distinctly inferred difficulty levels. At this large 
scale, this validation again assured that the structure of the symbolic 
metrics is not sensitive to diverse input populations, thus validating its 
reliability without reliance on hand-designed instances. This further set 
up the framework for deployment at scalable levels within automated 
puzzle scoring pipelines and embedded tutoring tools.

6. Results and Discussion
This section provides the empirical outcomes from symbolic 

metric calculations on a range of Sudoku puzzles. The performance of 

each symbolic module CDM, LID, GC, and CGT were compared across 
several puzzles with different levels of difficulty (easy, medium, and 
hard). The assessment was made with respect to both symbolic behavior 
and algorithmic efficiency, corroborated using runtime and memory 
consumption monitoring.

6.1. Comparative evaluation
The symbolic framework was tested for its computational 

efficiency in comparison with conventional solution methods. As 
illustrated in Figure 3, the symbolic framework exhibits polynomial 
time complexity O(n) with respect to the number of open variables. 
This is in stark contrast to the exponential growth observed in brute-
force and SAT-based approaches. Importantly, each performance 
measurement was conducted without completing the puzzle, 
thereby avoiding the additional overhead associated with full 
backtracking or constraint propagation chains. This reinforces the 
symbolic framework’s capability to deliver efficient and scalable 
performance while remaining consistent with theoretical constraints 
of computational complexity.

Table 3 illustrates a comparison of time and space complexities 
of some of the existing methods for Sudoku puzzle difficulty estimation. 
It clearly demonstrates the benefit of the proposed symbolic approach 
with a time complexity and a space complexity of O(n). It is thus well 
suited for use where real-time responses are required and for large-scale 
puzzle assessment.

These outcomes prove CSP-based symbolic modeling to 
be lightweight, representing a computation-efficient alternative to 
computation-intensive solving methods such as constraint propagation, 
SAT solving, and brute-force search. Memory usage is also linear as 
shown in Figure 4, which is a guarantee of low overhead and feasibility 
of the symbolic model for use within embedded or low-resource 
settings. A side-by-side complexity comparison is shown in Figure 5, 
which demonstrates the relative performance of the symbolic method 
versus backtracking, rule-based, and constraint programming solvers. 
The proposed symbolic approach exhibits minimal computational 
overhead, offering a streamlined alternative to traditional solving 
techniques. The symbolic metrics are detailed in Table 4, where their 
individual contributions toward accurate puzzle classification are 
outlined. When employed collectively, these metrics form a composite 
symbolic signature capable of predicting puzzle difficulty levels with 
high accuracy and low computational cost.

(28)
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Figure 2
Layered system architecture of the symbolic Sudoku difficulty pre-

diction framework

 Figure 3
Time complexity of symbolic estimation model O(n)
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Further analysis on how these metrics behave across easy, 
medium, and hard puzzle classes is presented in subsequent sections, 
highlighting their granular effectiveness under varying constraint 
densities and logical ambiguity.

To probe for the generalization of the efficiency of the symbolic 
method, we examined its time and space characteristics for a wide 
subset of puzzles randomly selected from the Kaggle benchmark set 
(“1 million Sudoku games”; CC0 licensed).

The trends that we saw on a single puzzle were repeatedly 
reflected throughout the benchmark set. Runtime growth maintained 
a linear behavior as O(n) predicted and a proportional memory 
increase with the count of unsolved variables, as shown in Figure 6 
and Figure 7. Both of these reflect the previous theoretical discussion 

and validate the scalability of the developed framework for batch-
mode or real-time applications without any change in computational 
characteristics.

6.2. Metric behavior across puzzle difficulty levels
To evaluate the discriminative potential of the proposed symbolic 

measures, six representative Sudoku puzzles spanning three difficulty 
classes, namely, easy, medium, and hard, were analyzed. For each 
puzzle, the four core measures (CDM, LID, GC, and CGT) were 
computed and visualized (see earlier figures).

Figure 8 illustrates symbolic measure outputs for a representative 
hard puzzle, where the CDM exceeded 700 and the CGT reached 13, 
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Metric Full form Purpose
CDM Constraint density 

metric
Quantifies local constraint 
saturation per variable

LID Logical inference 
depth

Measures how far logical 
deduction proceeds before 
guessing

GC Guessing complexity Estimates branching steps 
or non-deterministic moves 
required

CGT Constraint graph 
tightness

Captures global interdependency 
among unfilled cells

Table 4
Explanation of symbolic metrics used in the proposed framework

Method Time complexity Space complexity Reason
Rule-based Difficulty estimation O(1) O(1) Counts clues only, no logic inference
Heuristic search (backtracking) O(n²) or O(2ⁿ) O(n) or O(n²) Explores multiple search paths, exponential in worst case
Constraint graph estimation O(n²) O(n²) Analyzes global constraints between variables
Our proposed symbolic framework O(n) O(n) Predicts difficulty pre-solution using symbolic metrics

Table 3
Time and space complexity comparison of difficulty estimation methods

 Figure 4
Space complexity of symbolic estimation model O(n)

 Figure 5
Comparison of time and space complexities across solver types

 Figure 6
Symbolic metric variation across puzzle difficulty
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highlighting the presence of high structural entanglement and tight 
global constraints. A multi-class comparison is given in Figure 9, 
demonstrating how easy, medium, and hard puzzles differ symbolically. 
CDM and CGT increase with difficulty whereas LID decreases as 
expected based on theory. Further evidence is provided by Figure 10, 
which illustrates symbolic metric variation across different puzzles. 
Difficult puzzles always have higher GC and CDM compared to easy 
puzzles, confirming the classifier’s structural sensitivity.

Clear patterns emerged, correlating with the intrinsic structural 
complexity of each difficulty class. CDM values exhibited a consistent 
increase with increasing difficulty:

1)  Easy puzzles, due to their higher pre-fill rates, demonstrated lower 
constraint density (e.g., CDM ≈ 40–45).

2)  In contrast, hard puzzles displayed CDM values exceeding 100, 
reflecting denser but underdetermined variable interactions.

LID, which estimates how far logical deduction may proceed 
before requiring guesswork, was observed to be inversely related to 
puzzle hardness. Easy puzzles exhibited higher inference depths (LID 
≈ 12–18), indicating longer sequences of pure logical deductions. In 
contrast, hard puzzles showed lower LID values (≈ 5–7), reflecting early 
breakdowns in deduction and earlier reliance on guessing strategies.

The GC, representing the estimated number of non-deterministic 
choices, increased sharply with puzzle difficulty. Easy puzzles yielded 

GC values ≈ 2–3, whereas hard puzzles were in the range GC = 8–10, 
consistent with greater branching in the solution search space. CGT, 
indicating average variable connectivity in the constraint graph, 
also showed discriminative capacity. Hard puzzles exhibited tighter 
constraint graphs (CGT > 20), reflecting dense, entangled variable 
interactions. By contrast, easy puzzles displayed looser topologies 
(CGT < 10), facilitating more isolated and tractable substructures.

Table 5 summarizes the observed ranges of each symbolic metric 
across difficulty classes. These findings confirm that the symbolic 
metrics are not only individually diagnostic but also collectively 
effective in categorizing puzzle difficulty. Moreover, their deterministic 
nature ensures repeatability and transparency, distinguishing them from 
probabilistic or data-driven solvers, which often lack such theoretical 
guarantees.

The symbolic metrics were profiled on a representative subset of 
six puzzles (easy and hard classes) from the Kaggle dataset.

The metric behavior exactly reflected previous single-case 
analyses: CDM grew with clue sparsity, LID dropped with ambiguity, 
GC surged with an increase in branching complexity, and CGT reflected 
more tight topological entanglements for more difficult puzzles, as 
depicted in Figures 11–13. Such scale consistencies reinforce the 
empirical validity of the metric definitions and prove the generalizability 
of the symbolic framework across datasets.
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 Figure 7
Runtime scalability of symbolic framework O(n)

 Figure 8
Symbolic metric scores (CDM, CGT, GC, and LID) for a classified 

hard puzzle

 Figure 9
Distribution of symbolic metrics across three puzzle classes (easy, 

medium, and hard)

 Figure 10
Symbolic metric trends (CDM, GC, CGT, and LID) by puzzle ID 

and difficulty class
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6.3. Comparison with existing solvers
The proposed symbolic technique was compared with several 

established Sudoku-solving methods to highlight its computational 
advantages and semantic clarity in estimating puzzle difficulty. 
These comparative methods include classical rule-based algorithms, 
backtracking and brute-force solvers, constraint programming (CP) 
approaches, SAT/SMT-based encodings, and neuro-symbolic hybrid 
models.

Unlike these methods that either solve the puzzle directly or 
depend on machine learning-based estimation, the symbolic technique 
infers difficulty based purely on the structural properties of the puzzle, 
without engaging in the solving process, as illustrated in Figure 5.

1)  Rule-based solvers, although fast and explainable, typically rely 
on clue counts or elementary logical rules. They are insufficient in 
capturing nuanced complexity, particularly for medium and hard 
puzzles.

2)  Backtracking and brute-force algorithms explore the entire solution 
space, offering accuracy at the cost of high computational expense. 
This renders them unsuitable for real-time or online classification 
tasks.

3)  Constraint programming and SAT solvers provide high accuracy 
through formal constraint modeling but require solution attempts 
or partial propagation, which significantly increases runtime and 
memory usage.

The symbolic framework, by contrast, avoids the solving path 
entirely, focusing on symbolic abstraction and deterministic evaluation, 
which enables it to operate with lower overhead, enhanced scalability, 
and theoretical transparency. Neuro-symbolic models, which integrate 
deep learning with symbolic reasoning, have demonstrated strong 
performance in classification tasks, but they come with notable 
limitations. These models are highly dependent on large training 
datasets, are computationally expensive, and often suffer from a 
lack of transparency. Their internal representations are difficult to 
audit or reproduce, making them unsuitable for applications where 
interpretability and symbolic reasoning are required.

In contrast, the proposed symbolic method classifies Sudoku 
puzzle difficulty using a deterministic metric evaluation, specifically 
through CDM, LID, GC, and CGT applied directly to the unsolved 
puzzle. This eliminates the need for solving the puzzle or relying on pre-
trained models. The symbolic method thus allows for pre-classification 
of puzzles without any learning phase or data-dependent calibration.

As shown in Table 6, the symbolic framework offers the 
following: 

1)  High computational speed,
2)  Scalability,
3)  Strong interpretability.

These attributes make it highly suitable for both resource-
constrained embedded devices and large-scale puzzle evaluation 
systems. This comparative assessment further validates the symbolic 
framework as a theoretically grounded, computationally efficient, and 
transparent alternative to solver-based and statistical classification 
models.
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 Figure 12
Symbolic metric profile for challenging puzzles

 Figure 11
Aggregated symbolic metric averages (CDM, CGT, GC, and LID) 

across difficulty classes

 Figure 13
Aggregated symbolic metric averages (CDM, CGT, GC, and LID) 

across difficulty classes

Difficulty CDM Range LID Range GC Range CGT Range
Easy 40–50 12–18 2–3 8–10
Medium 60–100 8–12 3–5 12–18
Hard 100–150+ 5–7 6–10 20–30

Table 5
Metric ranges across puzzle difficulty classes
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When compared with solver-based difficulty predictions for a 
wide subset of puzzles from the 1 million Kaggle dataset, the difficulty 
labels generated by the symbolic classifier were more than 90% 
consistent for both hard and easy labels. Such results, as illustrated in 
Figure 14, demonstrate the strong correlation between puzzle difficulty 
levels and the computed constraint metrics, thereby validating the 
effectiveness of the proposed CSP-based framework.

6.4. Interpretability and symbolic transparency
One of the strongest assets of the proposed symbolic framework 

is its inherent structural transparency and interpretability. In contrast 
to machine learning models that rely on hidden layers, statistical 
weights, or opaque optimization processes, the symbolic approach 
yields deterministic outputs that are fully traceable to logical and 
mathematical operations applied to the input puzzle. All four symbolic 
metrics, namely, CDM, LID, GC, and CGT, are rooted in formally 
defined constructs, ensuring reproducibility, analytical traceability, and 
justification of difficulty labels.

Interpretability extends to the classification logic, which is 
explicitly rule-based and boundary-driven. For example, a puzzle 
with high CDM and CGT but low LID is systematically assigned to 
the “hard” class based on predefined symbolic thresholds. This level 
of clarity is notably absent in many solver-based and learning-based 
methods, where internal decision-making often relies on statistical 
approximations or emergent behaviors from iterative optimization. 
Moreover, the symbolic framework is entirely independent of 
training data. It does not use labeled examples, pre-learned heuristics, 
or probabilistic calibration. This makes it immune to overfitting, 
domain bias, and dataset shift issues that typically compromise the 
generalizability of hybrid or neural models. As a result, the same 
symbolic reasoning logic can be applied to unseen puzzle types without 
degradation in performance or interpretability.

This model clarity is also advantageous for general research 
applications, including formal verification, cognitive modeling, and 
human-centered puzzle generation. By quantifying difficulty in terms 
of logical deduction effort and constraint entanglement, the framework 
mirrors how human solvers perceive puzzle complexity. It is therefore 
well positioned for use in educational software, game engines, and 
embedded AI reasoning modules. 

For assessing the scalability and consistency of the proposed 
symbolic approach, a comparability analysis was performed for single-
puzzle vs. large-scale executions over the Kaggle Sudoku dataset 
tabulated in Table 7.

7. Conclusion
This research introduces a deterministic and symbolic framework 

for estimating the difficulty of Sudoku puzzles using four novel 

complexity measures: CDM, LID, GC, and CGT. The framework 
enables the classification of puzzle difficulty levels easy, medium, and 
hard without solving the puzzle.

Quantitative evaluations on benchmark Sudoku instances 
revealed clear symbolic thresholds:

–  CDM > 100 for hard puzzles,
–  LID < 7,
–  GC up to 10, and
–  CGT > 20 on average.

These metrics were computed with polynomial time complexity, 
with module runtimes ranging from 12 ms (CDM) to 34 ms (GC) and 
memory usage remaining under 250 KB.

Compared to rule-based, backtracking, and constraint 
programming approaches, the proposed symbolic method demonstrated 
higher classification interpretability and efficiency, scoring:

–  4/5 in speed,
–  5/5 in accuracy, and
–  5/5 in scalability.

The symbolic paradigm offers a substantial scope for extension 
into problem domains where difficulty estimation is required, but a 
complete solution is computationally intractable. Promising future 
directions include the following:

–  Hybrid symbolic-ML architectures combining symbolic measures 
with lightweight classifiers for enhanced explainability.
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 Figure 14
Classification agreement for symbolic methods

Method type
Solving required 
(1 = yes; 0 = no)

Interpretability 
score (1–5)

Speed score (1 = slow; 
5 = fast)

Difficulty estimation 
accuracy (1–5)

Scalability score 
(1–5)

Rule-based 0 5 5 2 5
Backtracking 1 1 1 3 2
Constraint programming 1 3 3 4 3
SAT/SMT solvers 1 2 3 4 2
Neuro-symbolic solvers 1 2 2 4 2
Proposed symbolic model 0 5 4 5 5

Table 6
Feature-based comparison of Sudoku difficulty estimation approaches
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–  Generalization to larger puzzle grids (e.g., 16 × 16 Sudoku).
–  Inversion to other NP-complete puzzles, for example, Kakuro, 

KenKen, and Nonograms, is possible with common uses of 
constraint satisfaction structures and symbolic rule-based 
formulations. Other characteristics of those puzzles include 
grid-based variables, propagation rules derived from logic, and 
structural ambiguity, thus being tractable for a symbolic metric 
analysis using constraint density, inference depth, and graph 
entanglement.

–  Beyond puzzle-solving, symbolic interpretability supports 
research in cognitive science, puzzle design automation, and 
educational software aimed at modeling human reasoning effort. 
The deterministic, solver-independent architecture proposed 
in this study offers a reproducible foundation for advancing 
symbolic AI and complexity-theoretic applications in constraint-
based domains.

Overall, our proposed scheme refrains from solver runtime 
dependence, backtracking heuristics, or probabilistic models of 
convergence, thereby differing from constraint programming and 
learning-based estimator approaches. Its exclusively symbolic 
construction further leads to an increase in interpretability, 
reproducibility, and algorithmic transparency. Such characteristics 
qualify it as a strong substitute for puzzle hardness prediction in 
constraint satisfaction problems where path solutions are not available 
or too costly to evaluate computationally.
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