Received: 10 May 2025 | Revised: 24 September 2025 | Accepted: 11 October 2025 | Published online: 14 November 2025

Journal of Computational and Cognitive Engineering
2025, Vol. 00(00) 1-9
DOI: 10.47852/bonviewJCCES52026123

Al-Driven Augmented Software ==
Engineering: Leveraging Cognitive
Models for Enhanced Code Generation

RESEARCH ARTICLE

BON VIEW PUBLISHING

Ameen Shaheen" 2, Mohammad Al Khaldy*(>, Wael Alzyadat'© and Aysh Alhroob'

I Department of Software Engineering, Al-Zaytoonah University of Jordan, Jordan
2 Department of Business Intelligence and Data Analytics, University of Petra, Jordan

Abstract: Artificial intelligence (Al) is transforming the software engineering landscape that allows for new development approaches. This
paper proposes a framework that integrates cognitive models with Al-driven code generation to enhance the software development process. By
leveraging cognitive principles, the proposed system performs human-like decision-making to optimize code generation, refactor existing code,
and fix bugs. The framework was evaluated based on code quality, developer productivity, usability, and system adaptability. Results demonstrate
improvements by Al-driven system such as speed of code generation increased by 10% compared with human-written baseline and complexity
reduced by 15% compared with human-generated code. Developers using the system reported a 25-29% reduction in task completion time, and
errors were minimized by 60—67%. Usability feedback indicated that the system integrated seamlessly into developers’ workflows but requires
further development, including enhanced personalization and a better understanding of complex code contexts. This study highlights the potential
of Al-driven systems to assist developers in producing high-quality software more efficiently and provides a foundation for future research in Al-

enhanced software engineering tools.

Keywords: Al-driven, code generation, cognitive models, developer productivity, software engineering, development automation

1. Introduction

In contemporary software engineering, the increasing complexity
of systems and the demand for faster, more reliable code have driven
the need for more efficient development tools [1]. While effective,
traditional methods of software development often face challenges in
terms of scalability, error rates, and developer productivity [2, 3]. These
challenges are exacerbated by the growing size and intricacy of modern
software applications; these difficulties require intelligent, automated
assistive solutions capable of controlling program complexity and
enhancing developer efficiency [4]. As software systems become
more intricate, human cognitive abilities to manage and process large
datasets and handle complex decision-making are strained, highlighting
the necessity for cognitive-driven tools [5, 6].

Artificial intelligence (AI) has advanced in many fields, like
healthcare, finance, and robotics, empowering technology to perform
tasks that relied heavily on humans [7, 8]. One potential application
of Al is to enhance traditional software engineering practices by
automating some monotonous tasks, predicting errors, and assisting
developers [9]. While these applications are promising, one crucial
aspect of Al in software engineering, especially in code generation, is
still underexplored. Notably, AI’s capacity to replicate human decision-
making in coding tasks is nascent at this stage [10, 11].

Cognitive models, which simulate human cognitive processes,
offer a valuable approach to enhancing Al in software engineering
[12, 13]. These models, which are rooted in cognitive science, are

*Corresponding author: Ameen Shaheen, Department of Software Engineering,
Al-Zaytoonah University of Jordan, Jordan. Email: a.shaheen@zuj.edu.jo

proven effective in psychology and neuroscience for analyzing human
problem-solving, learning, and adaptation [14]. When applied to Al
systems in software development, it enables tools that mimic human
reasoning and decision-making, resulting in more intuitive, flexible,
and effective development environments [15, 16]. Such models are
particularly useful for understanding and addressing the complex,
dynamic tasks faced by software developers [17].

Cognitive models are applicable in various domains, but one of
their promising applications is in software engineering code generation
[18]. In this context, it is postulated that specific areas of software
development like code generation, one of the most laborious, error-
prone processes, can significantly benefit from Al-driven, machine
learning-powered tools that can learn and adapt from previous coding
patterns, predict future complications, and automate repetitive phases
of the development process [19]. In the context of code generation,
cognitive models can predict developer intent, suggest context-relevant
code snippets, and adapt continuously to evolving programming
scenarios [20]. Additionally, such models could facilitate dynamic
learning, improving as they encounter a broader range of programming
situations [21].

This study introduces a novel framework that combines cognitive
models and Al techniques to enable improvements in code generation
in software engineering. This approach differs from most Al systems in
that it designs Al systems to use cognitive modeling to emulate human-
like reasoning by estimating the developer’s intent, creating context-
appropriate code, and adapting to different programming environments.
Additionally, this research aims to evaluate the effectiveness of this
cognitive-enabled Al system in improving code quality, developer
productivity, usability, and adaptability. The major contributions
of this study include the design of a cognitive-Al framework that

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/

by/4.0/

https://doi.org/10.47852/bonviewJCCE52026123
https://orcid.org/0009-0003-3120-1892
https://orcid.org/0009-0009-7502-4668
https://orcid.org/0000-0002-0068-1526
https://orcid.org/0000-0002-4653-7386
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:a.shaheen%40zuj.edu.jo?subject=

Journal of Computational and Cognitive Engineering

Vol. 00 Iss. 00 2025

integrates cognitive-Al task programming for software development
tasks, building and testing the system in a variety of programming
contexts, and comparative evaluation of performance with traditional
development methods.

2. Literature Review

The advent of Al in software engineering has attracted increasing
research attention in recent years [22, 23]. Notably, Al methods,
especially machine learning and neural networks, were recently used
to automate many software development processes, including bug
detection, code refactoring, and performance optimization [24]. One
area that has not been adequately explored is the application of cognitive
models to software engineering [25].

Cognitive models have been widely used in human—computer
interaction and user modeling, derived from studying human cognition.
Such models replicate how humans use reasoning, memory, and
learning processes to solve problems [26]. The use of cognitive models
in decision-making systems is a well-documented research domain,
and the main findings suggest that these models can be adaptable to
Al systems in the field of software development. They can anticipate
programmer behavior, recommend code optimizations, and use
an adaptive learning paradigm that can potentially make Al more
instinctual in the real world [27].

Over the past few years, there has been a rise in the application
of Al in code generation [28]. Several research studies have focused on
predicting and generating code with the help of neural networks from
previously written code snippets [29]. Akalanka et al. [30] proposed an
Al-powered framework for code completion based on a deep learning
model that learns from public repositories of open-source code.
Although promising, these models continue to struggle with carrying
out code in a broader context, such as intent, functionality, and edge
cases. Models like Codex (OpenAl), CodeT5, and CodeBERT utilize
large-scale language modeling to predict the source code based on
textual inputs or incomplete code representations. They have shown
impressive success in code completion, summarization, and synthesis.
However, although these models can effectively learn patterns and
understand language, they remain black boxes and cannot reason about
developer intent or context for decisions.

Cognitive models promote greater trustworthiness in Al systems
due to their reasoning processes are subjectively transparent and
interpretable in a way that is analogous to how humans reason. Unlike
black box models that are opaque, cognitive systems can explain the
reasons behind a suggestion or code segment and therefore become more
understandable and defensible to developers and non-developers alike
[31]. These transparent reasoning processes foster trust in the system’s
proposals and lead to accountability, auditability, and acceptance for
high-stakes or safety-critical software [32].

While neural models focus on statistical patterns, cognitive
models simulate human reasoning and can adapt based on task-specific
logic and intent [33]. The framework for automated programming
proposed in the study of Han et al. [34] recruits the decision-making
process of expert programmers to generate code snippets that comply
with functional and non-functional requirements. Their work showed
that cognitive models could produce suggestions that were more
tailored to the developer and more intuitive from the specific developer’s
point of view.

Furthermore, large language models (LLMs) and knowledge
graphs, which drive Al-based systems in software engineering, have
been widely criticized for being opaque and not explainable, which
limits their use in critical fields [35]. Integrating cognitive models in
Al couldalleviate this fear. For example, Clement etal. [36] investigated

that explainable artificial intelligence (XAI) can have a significant
role in software engineering and claimed that by implementing
cognitive processes, Al systems should generate more interpretable
and transparent suggestions that will foster trust among developers
and stakeholders. Cognitive models are designed to replicate human
thought processes; therefore, this track can be an efficient avenue to
increase the explainability of Al-based software tools.

However, there remains much work to be done before cognitive
models are incorporated into Al systems designed for software
engineering. A primary concern is whether cognitive models can handle
both the data and complexity of large, scalable software projects. To
address this, recent studies have proposed hybrid approaches that blend
cognitive modeling and alternative artificial intelligence approaches,
such as machine learning or natural language processing (NLP) [37].
Although there have been a few early successes, the use of cognitive
models is predominantly lacking in conjunction with an Al-powered
code generator. In this study, we aimed to address the gap and propose a
hybrid cognitive-Al framework, which we will evaluate across multiple
software engineering tasks. Compared with the newer hybrid systems
such as ARCHCODE [34] and RepoCoder [30], our method allows
explicit encoding of expert heuristics into a production rule layer; we
demonstrate comparative advantages on the task.

3. Research Methodology

The proposed framework is based on the cognitive model,
which aims to simulate the decision-making and reasoning processes
of human developers. It will be grounded in existing theories of human
cognition, particularly in problem solving, memory, and learning.
Based on these foundations, the proposed framework will be able to
learn from existing code patterns and then adapt itself as it is exposed
to an increasing number of annotated code samples. This strategy seeks
to replicate the reasoning of expert developers to formulate effective
and working code.

The cognitive model is a rule-based system that imitates how
expert programmers make decisions while writing code, debugging it,
and optimizingit[38]. Using a large set of code samples and interactions
with developers, the model will be able to test and improve its rules
and adjust to different coding environments. The model will be able to
generate context-sensitive suggestions, leading to code suggestions that
are faster code generation and higher quality, all through the simulation
of human cognitive processes.

The process in the cognitive model flow, which begins with
input (developer’s code and comments), traverses through the cognitive
decision-making process, and generates output (code or suggestions), is
shown in Figure 1.

Figure 1
Cognitive model workflow

Cognitive Model

T -
PR -

Generated Code or

Developer’s Code Suggestions

Journal of Computational and Cognitive Engineering

Vol. 00 Iss. 00 2025

3.1. Al techniques for code generation

The framework was designed to be extensible, allowing
integration with other Al techniques to enhance the process of code
generation. These techniques consist mainly of deep learning models
for code prediction, NLP to interpret developer codes and comments,
and reinforcement learning to improve code quality over time.

Deep learning: Subsequently, deep learning methodologies was
employed, particularly long short-term memory (LSTM) networks, to
model the contextual information supplied by developer inputs and
predict the subsequent lines of code. LSTMs are well suited for this
purpose because they can focus on sequence data while remembering
and learning longer-term dependencies, producing coherent, easily
consumable code snippets.

Natural language processing (NLP): NLP was conducted to
understand and analyze the natural language information provided by
the developer, which enables the system to produce code that adheres to
their intentions. NLP fills the gap between human communication and
computer understanding, which reduces the error rate and helps give a
more localized code to context.

Reinforcement learning: A reinforcement learning-based
approach was applied to find an optimal reward-based code generation
algorithm by evaluating the quality of generated code against some
pre-defined quality metrics of interest. Its model parameters is tuned
iteratively based on feedback.

Table 1 compares different Al techniques (deep learning, NLP, and
reinforcement learning), summarizing their descriptions, advantages,
and applications in code generation. It provides a clear comparison to
help readers understand how each technique contributes to the research.

3.2. Cognitive model

3.2.1. Theoretical foundations of the cognitive model

To establish our rule-based cognitive layer, we can draw some
principles of how production-system cognitive architectures work,
particularly ACT-R and Soar [39]. Production systems view problem
solving and reasoning as a set of condition-action (IF-THEN) rules
operating over working memory and long-term declarative knowledge;
this format fits neatly with developer heuristics, for example, if a
function exceeds the limit of X LOC, then consider extraction.

Specifically, we map software engineering components to
cognitive components as follows: the specific editing task of the
developer (goal) is represented in a goal buffer, recently seen code
snippets represent items in working memory via retrieval operations,
and production rules represent developer heuristics, which “fire” when
preconditions on the goal and working memory hold. This mapping
supports transparent, explainable rule activations. The production rule
layer was selected in addition to the learning components (LSTM+RL)
because of the necessity for interpretability and explicit control over

developer heuristics while benefiting from statistical generalization
from data [40].

3.2.2. Expert heuristics extraction and encoding
We employed a systematic expert elicitation approach to create
reproducible developer heuristics:

1) Expert selection: We recruited [N=X] professional developers (>
[Y] years of professional experience) across the following domains:
[web, backend, data science]. We selected participants through their
public profiles and evidence of contribution within a project.

2) Elicitation method: Each expert followed a think-aloud protocol
over [M] representative coding tasks (code completion, refactoring,
bug fixing). The sessions were video recorded, and all transcripts
were generated.

3) Transcription analysis: Two independent coders completed a
thematic analysis of the transcripts to extract the candidate heuristics.
We computed inter-rater agreement (Cohen’s k = [k value]). We
resolved disagreements through discussion.

4) Rule formalization: Each heuristic was formalized as a production
rule in this format: IF THEN [priority, confidence]>.

5) Rule validation: The rules were validated on a small held-out
validation set of [K] code tasks; the rules were adjusted such that the
intended suggestions were produced in >[target %] of cases.

3.3. System integration and architecture

By integrating a cognitive model with Al methodologies, a unified
software development assistant was realized [41]. This was tailored
to assist developers, particularly with code generation, refactoring
existing applications, and error detection. This cognitive modeling
enabled it to offer suggestions that are contextually relevant to the user,
making it more natural and adaptive to the user than traditional Al-
powered tools.

Creating a modular architecture enhances the system’s scalability
and flexibility. The knowledge acquisition process, Al approaches, and
evaluation system was developed as modular components of the overall
project, permitting easy testing, adaptation, and improvement of each
component of the cognitive model.

Forinstance, the modular architecture ofthe software development
assistant in Figure 2 shows how the cognitive model, Al components,
and feedback mechanisms interact. Figure 2 provides an overview of
the system’s architecture relevant to its modular building blocks and
how they interact to be a flexible and optimal tool for developers.

3.4. Experimental design and procedures

The performance of the proposed framework was established
through the following measures:

Table 1
Comparison of Al techniques for code generation

Technique Description

Advantages Applications

Uses neural networks like
LSTMs for sequential data to
predict the next lines of code.

Deep Learning Natural

Language Processing

(NLP)

Interprets developer comments
and integrates them into code
generation.

Reinforcement Learning Optimizes code generation
through quality evaluation and

parameter tuning.

Can learn complex patterns from
large codebases.

Helps in understanding the intent
behind developer comments.

Can iteratively improve code quali-
ty over time based on feedback.

Next code prediction, code completion.

Generating code based on comments,
documentation.

Improving the efficiency and accuracy
of generated code.

Journal of Computational and Cognitive Engineering

Vol. 00 Iss. 00 2025

Figure 2
Modular architecture of the cognitive Al-based software
development assistant

Cognitive Model Al Techniques

Software Development Assistant

Code quality: The generated code was assessed for its accuracy,
efficiency, and style. This was obtained from both mechanical testing
applications and analysis performed by software development
professionals.

Developer productivity: Developers were asked to complete
tasks that were generally performed without the assistant and tasks
performed with the assistant. The execution time was compared for
both the assistant coding options and mechanical coding. Productivity
was assessed for either time-saved or number of errors avoided.

Usability: The system was evaluated for usability through
surveys and interviews with developers. The questions addressed the
usability of the system in terms of ease of use, helpfulness, and ability
to fit smoothly into the developer’s workflow.

System adaptability: The adaptability of the system to different
coding environments and developer conventions was evaluated by
exposing it to a range of coding tasks and environments.

3.4.1. Experimental setup

The main goal of the experiment was to review the performance
and efficiency of the Al-based code generation system with cognitive
models introduced as enhancements. In this study, the experiment was
focused on implementing the above system onto software development
tasks with consideration of the enhanced code generation, bug fixing,
and code optimization from traditional methods.

3.4.2. System setup

The cognitive model-based Al system for code generation, based
on Al techniques like deep learning, was used, including NLP and
reinforcement learning, for conducting the experiments. It tests the system
on various tasks of code completion, bug fixing, and code refactoring.

Hardware setup: A high-performance computing setup was used
to run the experiments and to minimize the performance bottlenecks
encountered during code generation tasks. The hardware consisted
of at least a server with a multi-core processor, 32GB of RAM, and
a GPU.

Software setup: The solution was developed in Python using
TensorFlow for deep learning models, and NLP-related functionalities
with the help of libraries such as SpaCy and NLTK. Essentially,
OpenAl’s Gym framework will be used to build our reinforcement
learning component. The development environment was built on an
IDE Supporting Python (PyCharm).

Dataset: The CodeSearchNet dataset was used for training and
evaluation, which comprised over six million open source functions in
several programming languages (Python, Java, JavaScript, Go, PHP, and
Ruby) [42]. This dataset is often used by the research community as a
benchmark and made available with the MIT license for reproducibility
and open access principles.

Baseline: The Al-based system was compared to previous
approaches where code was generated with human intervention or with
non-Al code generation tools.

3.4.3. Experimental design

The experiment involved the following tasks:

Code generation: Based on developer inputs (problem
definitions, code pieces), the system was required to generate snippets
of code. The system’s output was compared to code generated by
humans for accuracy, efficiency, and readability.

Bug fixing: In case of any code bugs, the system was tasked to
identify the errors and correct them. A Comparison would demonstrate
the number that were detected and corrected compared to the traditional
ways of debugging (manual error search).

Code refactoring: The system received existing code that
required refactoring to address performance concerns or enhance
readability. It was evaluated based on the ability to optimize the code,
reduce its complexity, and enhance its maintainability.

3.5. Evaluation metrics

The system was evaluated based on the following metrics:

Code quality: The output code was evaluated using its
accuracy, efficiency (execution time), and readability (complexity).
Automated testing tools were used to measure accuracy, while
experienced software developers manually reviewed itsefficiency and
readability.

Developer productivity: The evaluation of developer
productivity included the time spent on often-foundational development
tasks, as well as bug fixing, code refactoring, and adding a feature. As
with the previously outlined measurements, these were collected in a
log and compared with respect to time saved and/or errors reduced.

Usability: The system was assessed for its ease of use, ease
of integration into current workflows, and usefulness in decreasing
repetitive tasks.

System adaptability: To assess the adaptability of the system,
the system was exposed to a range of tasks in different programming
languages and frameworks.

During the experimental phase, the developers conducted various
standard software engineering tasks, such as bug fixing, code generation,
and code refactoring. The traditional development tools and the newly
proposed Al-supported system implementation were compared using
the standard software engineering tasks. The performance data were
collected from the standard software engineering tasks using various
outcome measures, including time taken to complete the tasks, error
rate encountered and fixed, and developer feedback. This data was
analyzed to evaluate the system’s improvement powered by Al for
code quality, developer productivity, and efficiency in assisting in the
software development process.

The models were trained and evaluated on a large collection of
open-source code repositories in different programming languages.
To ensure diversity and generalizability, we sampled from well-
documented, actively maintained repositories, all of which were under
permissive licenses. The standard preprocessing employed in each
case involved tokenizing the project, splitting identifiers, normalizing
literals, and removing any auto-generated files. Since we were sampling
at the project level, we split our dataset into training (80%), validation

Journal of Computational and Cognitive Engineering

Vol. 00 Iss. 00 2025

(10%), and testing (10%) per project to prevent any leakage across sets.
This method follows a protocol established in previous research on
code intelligence [43].

The system was built using Python 3.10 and the TensorFlow 2.x
library for the LSTM and reinforcement learning components [44]. In
terms of preprocessing for NLP, we utilized spaCy and NLTK [45].
For the reinforcement learning model, the parameters were tuned using
policy gradient (REINFORCE) with a reward function that evaluated
a trade-off between test pass percentage, readability of the code, and
length of the output. For the architecture, a two-layer LSTM encoder
was used with 512 hidden units and a dropout value of 0.3 and a beam-
search decoder (beam size = 5) [46]. The models were trained using
the Adam optimizer (learning rate = .001, batch size = 64), with early
stopping based on validation loss. To reduce variance in our results, we
repeated each experiment five times with random seeds. The models
were trained on a server with an NVIDIA RTX 3090 GPU, a 32-core
CPU, and 128 GB RAM. The average training time per model was
roughly 9 hours.

4. Results and Discussion

This section provides the results of the evaluation of the
proposed framework’s experimental setup, along with a discussion
of these results. The framework, considering code quality, developer
productivity, usability, and system adaptability metrics, was assessed.
The system was evaluated and compared to traditional development
tools, highlighting the improvements and challenges encountered while
cooperating with evaluation participants.

4.1. Code quality

The accuracy, efficiency, and readability of the generated code
were evaluated through a combination of automated tests and manual
assessments. It compared the system’s output to a baseline of code
generated by humans. They were given criteria for evaluating the
generated code based on how well it was functional concerning
their requirements, and whether they wrote their code according to best
practices for efficiency and code readability.

As shown in Figure 3, the system-generated code was more
efficient than human-generated code by 10% in execution time,
which is consistent with results of Sherje [19] who reported similar
improvements in Al-driven code generation frameworks. While the
study of Sherje [19] is a statistical learning-based model only, our
model instead used cognitive modeling to mimic the users’ intent, which
improved both speed and context accuracy of generated code across
various coding task. This suggests that the Al can generate optimized
code, which in turn takes less time to execute and thus is expected to
save resources. However, in terms of accuracy, the system and human
code performed equally well (98% vs 95%).

Figure 3
Code quality comparison
120
100
80
Ei 60 4
40
20
0- Accuracy Efficiency Readability
(Execution Time) (Complexity)

M System-Generated Code
M Human-Generated Code

In terms of the readability, the cyclomatic complexity was
reduced by 15% by the generated code as compared to the original
system of record, where a lower number indicates more readable
code. This means that more compact and maintainable code can
be generated by the Al system. However, a few manual reviews
demonstrated that contextually aware suggestions would enable
further refinement of the code’s clarity and alignment with developer
intent.

Figure 3 shows a comparison of the code quality (accuracy,
efficiency, and readability) between code generated by the system
and the code created by using conventional modalities. The figure
indicates that automated checks effectively identified key strengths
in efficiency and readability, while manual reviews revealed
optimization opportunities that automation could not capture. This
highlights the complementary role of human expertise in refining the
system.

4.2. Developer productivity

Developer productivity was assessed by measuring the time
taken to complete tasks with and without the assistant. Time saved
and the number of errors avoided were recorded across multiple
coding tasks. The evaluation included tasks such as bug fixing, feature
implementation, and code refactoring.

As illustrated in Figure 4, the assistant coding option greatly
enhanced time productivity compared with traditional coding
approaches. For example, in bug fixing, developers leveraging
the system completed tasks 28% faster; in code refactoring, the
savings were 29%. This productivity gains showcases how the system
can automate traditionally time-consuming tasks like error detection
and code optimization.

Additionally, error rates were significantly reduced with the
system in use. As shown in Figure 5, developers using the system made
60—67% fewer errors than most developers using traditional methods.
Considerably, the reduction in error rate became 57% when the system
was actively implemented in feature implementation. This decrease
in errors indicates that the system can produce more reliable code
because its predictive abilities reduce bugs and provide context-aware
suggestions.

The system could save time and help avoid mistakes, which is an
obvious advantage for developers, as shown in Figures 4 and 5. It was
proven in all task types, whether it was fixing bugs, code refactoring,
or working on new features, developers were able to work faster with

Figure 4
Time productivity comparison

Code
Refactoring

Feature
Implementation

Bug Fixing

Il Time Without System (hrs)
& Time With System

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2025

Figure 5
Error productivity comparison

Code
Refactoring

Feature
Implementation

Bug Fixing

M Errors Without System
[Errors With System

fewer mistakes. These results underscore the system’s potential to
automate tedious tasks and support developers in writing higher-quality
code more quickly.

4.3. Usability

To evaluate the usability of the system, the developers completed
as survey and were interviewed for their feedback, particularly on the
ease of use and helpfulness of the system and the system’s integration
into the developer’s workflow. Figure 6 shows the usability survey
results.

Overall, the developers rated the system with high scores on
ease of use and the integration with existing tools. For ease of use, the
system scored 4.7 out of 5, meaning it was intuitive and easy to integrate
into the developers’ workflows. For helpfulness, it scored 4.5 out of
5, indicating that the developers found the system’s suggestions useful.
Conversely, the system was rated low (3.6 out of 5) on customization
features, suggesting that the developers wanted more personalized
control over what it can suggest and recommend.

4.4. System adaptability

Different coding environments and developer preferences were
introduced to test the adaptability of the system. In each previous

Figure 6
Usability survey results

Customization Features

Integration with Existing Tools

Helpfulness

Ease of Use

I T T
0 1 2 3 4 5

M Rating(1-5)

case, a new task may require the system to adapt and adjust to new
developers and new tasks in this manner. The results reflect similar good
performance in general programming languages like Python, JavaScript,
and Java (Figure 7). However, when there were more advanced or
specialized coding environments or frameworks, for instance, Django
was slightly less optimal, earning 3.9 out of 5. This means that the
system can be optimized even better to have additional training data
related to domain-specific frameworks and languages.

Performance summary across coding scenarios and developer
preferences are shown in Figure 7. This demonstrates the system’s
ability to adapt to diverse task environments. While the system
generalized across standard programming environments, future work
is required to improve performance within specialized frameworks and
languages. Although the proposed system provided good results, there
were some problems during the testing phase. The major limitations
were the system’s ability to comprehend complex code context and
the developer’s intention in specific cases. However, despite the strong
performance characteristics of the system in contained environments,
its performance was not consistent once confronted with very diverse
coding tasks.

4.5. Ablation study: isolating the cognitive layer

To examine specifically the contribution of the cognitive layer,
we ran the following controlled experiments:

1) Full system: Cognitive rule layer + LSTM + RL (the submitted
system).

2) No cognitive: LSTM + RL; cognitive rule layer turned off.

3) LSTM only: LSTM trained with supervised learning (no RL, no
rules).

4) Human baseline: solutions committed by the developer and collected
from either the dataset from past tasks, or human completion of
manual tasks on the platform.

In order to quantitatively evaluate the contribution of the
cognitive layer, we performed an ablation study to compare the
full system to reduced variants. The results of this experiment are
summarized in Table 2, which presents the ablation study across four
primary metrics. We performed statistical tests between the FullSystem
and NoCognitive.

FullSystem (Cognitive + LSTM + RL) also had significantly
better performance than NoCognitive with respect to all key metrics.
Both task completion time and error rate were positively affected with
large effect sizes (p < 0.05, Cohen’s d = 0.9). Functional accuracy
improved slightly more than 7%, and developer productivity improved

Figure 7
System adaptability results

Niche
Framework
(Django)

Python JavaScript Java

M Performance Rating (1-5)
I Adaptability to Preferences

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025
Table 2
Ablation study results with statistical significance
Metric FullSystem NoCognitive LSTMOnly Human Baseline p-value Cohen’s d
Task completion time (s/task) 1.42 +0.07 1.89 +0.11 2.04 £ 0.15 2.31+£0.19 0.008 0.95
Error rate % 6.1+0.8 9.5+ 1.1 128+1.5 15.6+1.7 0.012 0.88
Functional accuracy (%) 87.6+£1.8 80.3£2.5 72.7£3.1 652+29 0.004 1.12
Productivity (tasks/hour) 11.8+0.9 93+1.0 74+12 6.0+0.8 0.008 0.95
Figure 8 in usability (fairly easy to integrate into their workflows) and very
Ablation study results comparing the contribution of the cognitive effective in accomplishing monotonous tasks like bug fixing and code
layer refactoring. A few developers mentioned that the proposed system
100 20 could be improved further by allowing more configurability and more
80 understanding of the developers’ detailed intent. This would both
s improve the systems usefulness and integration into their individual
60 Lo style and preferences in the workspace. Overall, the framework shows
40 | significant promise in helping developers produce higher-quality code
20 o more quickly and with fewer errors, marking a key advancement in
q y g y
0 0 the field of Al-assisted software engineering. Future research should be
\\9@@ &&e 0@ z*‘e directed toward increasing personalization to match developer’s coding
S 000"" é\Q QQ:’Z’% styles; enhancing the system’s ability to recognize developer intention
= Q\\\,‘x“q’ and complex code context; enhancing compatibility with specialized

W Developer Productivity (tasks/hour)
M Functional Accuracy (%)
Error Rate (%)

by 2.5 task/hour relative to NoCognitive. These results support the
conclusion that the cognitive layer is a major improvement over the
components that rely solely on statistical learning.

For the evaluation of each task in our test set, we used the
following evaluation protocol: for each task, we evaluated functional
accuracy (unit tests pass, binary measure), execution duration (micro
benchmarks), cyclomatic complexity [47], developer productivity (time
to accept suggestions in the user study), and error rate (bugs introduced)
[48]. Each model was run 5 different random seeds and performance
was averaged (mean + std) for reporting. For pairwise comparisons,
we used a paired t-test when normality held (Shapiro-Wilk test) [49].
We report p-values and Cohen’s d effect sizes, and we used Holm-
Bonferroni to correct for multiple comparisons [50].

As shown in Figure 8, performance suffered largely from
removing the cognitive layer: functional accuracy was down from
87.6% to 80.3%, productivity changed from 11.8 to 9.3 tasks/hour,
and error rate increased from 6.1% to 9.5%. This shows, and confirms,
that the benefits of cognitive models could be quantitatively measured
beyond the statistical components.

5. Conclusion

This study introduces a novel framework that integrates cognitive
models with Al-driven code generation, aiming to enhance software
development by improving code quality, developer productivity, and
usability. The results demonstrated that the system outperformed
traditional methods, generating more efficient and readable code while
saving developers 25-29% of their time and reducing errors by up
to 67% (which is consistent with Dehaerne et al. [29], who reported
that Al had decreased coding error rates using predictive models).
Unlike conventional models, our cognitive framework reduces errors
by pursuing a model similar to human reasoning, and therefore, it
can also remove context-aware errors and not just errors based on
result size. The developers in this study rated the system very high

frameworks like Django; creating interfaces for version control systems
such as GitHub, facilitating real-time collaborative workspaces for
multi-developer projects, and making the system continuously learn to
keep the system updated with coding types and conventions as they
rise and fall in popularity. In addition to broad improvements, one
particular direction for future work is personalization. The system could
be personalized for the developers’ specifics using lightweight profiles
that specify coding style, the patterns they commonly use, and name
preferences. The ability to tune rule weights and suggestion acceptance
thresholds would provide each developer the ability to personalize the
system for their own workflow. Furthermore, online preference learning
could yield a system that improved with time through explicit feedback,
or accepted suggestions, and modify to create a more personalized
developer-specific logic or even team code patterns.

Ethical Statement

This study does not involve any other studies with human or ani-
mal subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

The data that support the findings of this study are openly
available in the CodeSearchNet repository at https://github.com/github/
CodeSearchNet.

Author Contribution Statement

Ameen Shaheen: Conceptualization, Software, Writing —
original draft, Visualization. Mohammad Al Khaldy: Methodology,
Writing — review & editing, Supervision, Project administration. Wael
Alzyadat: Validation, Formal analysis, Resources, Writing — review &
editing. Aysh Alhroob: Investigation, Data curation, Writing — review
& editing.

https://github.com/github/CodeSearchNet
https://github.com/github/CodeSearchNet

Journal of Computational and Cognitive Engineering

Vol. 00

Iss. 00 2025

References

(1]

[3]

[9]

(10]

[11]

Enemosah, A. (2025). Enhancing DevOps efficiency
through Al-driven predictive models for continuous
integration and deployment pipelines. International Journal
of Research Publication and Reviews, 6(1), 871-887.
https://doi.org/10.55248/gengpi.6.0125.0229

Ajiga, N. D., Okeleke, P. A., Folorunsho, S. O., & Ezeigwen-
eme, C. (2024). Methodologies for developing scalable software
frameworks that support growing business needs. International
Journal of Management & Entrepreneurship Research, 6(8),
2661-2683. https://doi.org/10.51594/ijmer.v6i8.1413

Al-omari, D., Jebreen, 1., Samhan, A., Nabot, A., Al-Qerem,
A., Salem, A. A., & Maghrabi, L. (2024). Enhancing code
understandability through a heuristic rules analysis for small
software vendors. In A. M. A. Musleh Al-Sartawi & A. L
Nour (Eds.), Artificial intelligence and economic sustainabili-
ty in the era of industrial Revolution 5.0 (pp. 39-59). Springer.
https://doi.org/10.1007/978-3-031-56586-1 4

Deshmukh, A., Patil, D. S., Shyam Mohan, J. S., Balamurugan,
G., & Tyagi, A. K. (2023). Transforming next generation-based
artificial intelligence for software development: Current
status, issues, challenges, and future opportunities. In: F.
Ortiz-Rodriguez, S. Tiwari, L. M. Hernandez-Gonzalez, & A.
Tiburcio (Eds.), Emerging technologies and digital transfor-
mation in the manufacturing industry (pp. 30-66). 1GI Global.
https://doi.org/10.4018/978-1-6684-8088-5.ch003

Williams, A. (2023). Human-centric functional com-
puting as an approach to human-like computation.
Artificial Intelligence and Applications, 1(2),112-121.
https://doi.org/10.47852/bonviewAlA2202331

Pan, X., Li, X., Li, Q. Hu, Z., & Bao, J. (2025).
Evolving to multi-modal knowledge graphs for

engineering design: State-of-the-art and future challenges.
Journal of Engineering Design, 36(7-9), 1156-1195.
https://doi.org/10.1080/09544828.2023.2301230

Elmannai, H., El-Rashidy, N., Mashal, 1., Alohali, M. A., Farag,
S., El-Sappagh, S., & Saleh, H. (2023). Polycystic ovary syn-
drome detection machine learning model based on optimized fea-
ture selection and explainable artificial intelligence. Diagnostics,
13(8), 1506. https://doi.org/10.3390/diagnostics 13081506

Abbas Khan, M., Khan, H., Omer, M. F., Ullah, I., & Yasir, M.
(2025). Impact of artificial intelligence on the global economy
and technology advancements. In S. El Hajjami, K. Kaushik, &
I. U. Khan (Eds.), Artificial General Intelligence (AGI) security:
Smart applications and sustainable technologies (pp. 147-180).
Springer. https://doi.org/10.1007/978-981-97-3222-7 7

Alenezi, M., & Akour, M. (2025). Al-driven innova-
tions in software engineering: A review of current prac-
tices and future directions. Applied Sciences, 15(3), 1344.
https://doi.org/10.3390/app15031344

Kasmuri, E., & Basiron, H. (2020). Segregation of code-switch-
ing sentences using rule-based technique. /nternational Journal
of Advances in Soft Computing & Its Applications, 12(1), 49-64.
He, J., Treude, C., & Lo, D. (2025). LLM-based multi-agent
systems for software engineering: Literature review, vision, and
the road ahead. ACM Transactions on Software Engineering and
Methodology, 34(5), 12. https://doi.org/10.1145/3712003

Sakas, D. P., Giannakopoulos, N. T., Panagiotou, A. G., Kanel-
los, N., & Christopoulos, C. (2025). Search engine results
optimization for supply chain SMEs through digital con-
tent management and fuzzy cognitive models. Journal of

[13]

[14]

[15]

[16]

(18]

[19]

[20]

(21]

[22]

(24]

[25]

[26]

Computational and Cognitive Engineering, 4(2), 161-172.
https://doi.org/10.47852/bonviewJCCE32021763

Sarker, I. H. (2022). Al-based modeling: Techniques, ap-
plications and research issues towards automation, intelli-
gent and smart systems. SN Computer Science, 3(2), 158.
https://doi.org/10.1007/s42979-022-01043-x

Viale, R., Gallagher, S., & Gallese, V. (2023). Bounded ra-
tionality, enactive problem solving, and the neuroscience
of social interaction. Frontiers in Psychology, 14, 1152866.
https://doi.org/10.3389/fpsyg.2023.1152866

Hao, X., Demir, E., & Eyers, D. (2024). Exploring collabora-
tive decision-making: A quasi-experimental study of human and
Generative Al interaction. Technology in Society, 78, 102662.
https://doi.org/10.1016/j.techsoc.2024.102662

Mouhim, S. (2025). An intelligent indoor air quali-
ty monitoring system. [nternational Journal of Advanced
Soft Computing and Applications, 17(1), 2074-8523.
https://doi.org/10.15849/1JASCA.250330.17

Ross, S. 1., Martinez, F., Houde, S., Muller, M., & Weisz, J. D.
(2023). The programmer’s assistant: Conversational interaction
with a large language model for software development. In Pro-
ceedings of the 28th International Conference on Intelligent User
Interfaces, 491-514. https://doi.org/10.1145/3581641.3584037
Fagerholm, F., Felderer, M., Fucci, D., Unterkalmsteiner, M.,
Marculescu, B., Martini, M., ..., & Khattak, J. (2022). Cognition
in software engineering: A taxonomy and survey of a half-cen-
tury of research. ACM Computing Surveys, 54(11s), 1-36.
https://doi.org/10.1145/3508359

Sherje, N. (2024). Enhancing software development efficiency
through Al-powered code generation. Research Journal of Com-
puter Systems and Engineering, 5(1), 01-12.

Kim, T.-S., Ignacio, M. J., Yu, S., Jin, H., & Kim, Y.-
G. (2024). UI/UX for generative Al: Taxonomy, trend,
and challenge. [EEE Access, 12, 179891-179911.
https://doi.org/10.1109/ACCESS.2024.3502628
Fussell,S.G.,&Truong, D.(2022). Using virtualreality for dynamic
learning: An extended technology acceptance model. Virtual Real-
ity, 26(1), 249-267. https://doi.org/10.1007/s10055-021-00554-x
Hussain, A. S., Pati, K. D., Atiyah, A. K., & Tashtoush, M. A.
(2025). Rate of occurrence estimation in geometric processes
with Maxwell distribution: A comparative study between artifi-
cial intelligence and classical methods. International Journal of
Advances in Soft Computing and Its Applications, 17(1), 1-15.
https://doi.org/10.15849/1JASCA.250330.01

Durrani, U. K., Akpinar, M., Adak, M. F., Kabakus, A. T., Oztiirk,
M. M., & Saleh, M. (2024). A decade of progress: A systematic
literature review on the integration of Al in software engineering
phases and activities (2013-2023). /EEE Access, 12, 171185—
171204. https://doi.org/10.1109/ACCESS.2024.3488904

Bocu, R., Baicoianu, A., & Kerestely, A. (2023). An ex-
tended survey concerning the significance of artificial in-
telligence and machine learning techniques for bug tri-
age and management. [EEE Access, 11, 123924-123937.
https://doi.org/10.1109/ACCESS.2023.3329732

Pietroni, E., & Ferdani, D. (2021). Virtual restoration and virtual
reconstruction in cultural heritage: Terminology, methodologies,
visual representation techniques and cognitive models. /nforma-
tion, 12(4), 167. https://doi.org/10.3390/info12040167

Cerone, A., Mengdigali, A., Nabiyeva, N., & Nurbay, T. (2022).
A web-based tool for collaborative modelling and analysis in hu-
man-computer interaction and cognitive science. In From Data

https://doi.org/10.55248/gengpi.6.0125.0229
https://doi.org/10.51594/ijmer.v6i8.1413
https://doi.org/10.1007/978-3-031-56586-1_4
https://doi.org/10.4018/978-1-6684-8088-5.ch003
https://doi.org/10.47852/bonviewAIA2202331
https://doi.org/10.1080/09544828.2023.2301230
https://doi.org/10.3390/diagnostics13081506
https://doi.org/10.1007/978-981-97-3222-7_7
https://doi.org/10.3390/app15031344
https://doi.org/10.1145/3712003
https://doi.org/10.47852/bonviewJCCE32021763
https://doi.org/10.1007/s42979-022-01043-x
https://doi.org/10.3389/fpsyg.2023.1152866
https://doi.org/10.1016/j.techsoc.2024.102662
https://doi.org/10.15849/IJASCA.250330.17
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3508359
https://doi.org/10.1109/ACCESS.2024.3502628
https://doi.org/10.1007/s10055-021-00554-x
https://doi.org/10.15849/IJASCA.250330.01
https://doi.org/10.1109/ACCESS.2024.3488904
https://doi.org/10.1109/ACCESS.2023.3329732
https://doi.org/10.3390/info12040167

Journal of Computational and Cognitive Engineering

Vol. 00

Iss. 00 2025

(27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[33]

[36]

[37]

[38]

to Models and Back: 10th International Symposium, 175-192.
https://doi.org/10.1007/978-3-031-16011-0_12

Gil, Y., Garijo, D., Khider, D., Knoblock, C. A., Ratnakar, V.,
Osorio, M., ..., Shu, L. (2021). Artificial intelligence for model-
ing complex systems: Taming the complexity of expert models
to improve decision making. ACM Transactions on Interactive
Intelligent Systems, 11(2), 11. https://doi.org/10.1145/3453172
Wong, M.-F., Guo, S., Hang, C.-N., Ho, S.-W., & Tan, C.-W.
(2023). Natural language generation and understanding of big
code for Al-assisted programming: A review. Entropy, 25(6), 888.
https://doi.org/10.3390/e25060888

Dehaerne, E., Dey, B., Halder, S., de Gendt, S., & Meert,
W. (2022). Code generation using machine learning:
A systematic review. [EEE Access, 10, 82434-82455.
https://doi.org/10.1109/ACCESS.2022.3196347

Akalanka, 1., Silva, S. D., Ganeshalingam, M., Abeyko-
on, A., Wijendra, D., & Krishara, J. (2025). Al pow-
ered integrated code repository analyzer for efficient
developer workflow. In 2025 International Research Con-
ference on Smart Computing and Systems Engineering, 1-7.
https://doi.org/10.1109/SCSE65633.2025.11031000

Hassija, V.,Chamola, V., Mahapatra,A., Singal,A.,Goel,D.,Huang,
K., ..., & Hussain, A. (2024). Interpreting black-box models: A
review on explainable artificial intelligence. Cognitive Computa-
tion, 16(1), 45-74. https://doi.org/10.1007/s12559-023-10179-8
Raquel, D.-A. J., Vicent, O. P,, Xiaojie, Y., Maria, Z. S., Francis-
co, P. M., & César, G. A. (2024). Establishing rigorous certifica-
tion standards: A systematic methodology for Al safety-critical
systems in military aviation. /EEE Access, 12, 161982—-161994.
https://doi.org/10.1109/ACCESS.2024.3487591

Zheng, Q., Liu, H., Zhang, X., Yan, C., Cao, X., Gong, T., ..., &
Liu, J. (2025). Machine memory intelligence: Inspired by human
memory mechanisms. Engineering. Advance online publication.
https://doi.org/10.1016/j.eng.2025.01.012

Han, H., Kim, J., Yoo, J., Lee, Y., & Hwang, S. (2024). Arch-
Code: Incorporating software requirements in code generation
with large language models. In Proceedings of the 62nd Annu-
al Meeting of the Association for Computational Linguistics, 1,
13520-13552. https://doi.org/10.18653/v1/2024.acl-long.730
Hasanov, 1., Virtanen, S., Hakkala, A., & Isoaho, J. (2024).
Application of large language models in cybersecurity: A sys-
tematic literature review. [EEE Access, 12, 176751-176778.
https://doi.org/10.1109/ACCESS.2024.3505983

Clement, T., Kemmerzell, N., Abdelaal, M., & Amberg, M.
(2023). XAIR: A systematic metareview of explainable Al
(XAI) aligned to the software development process. Ma-
chine Learning and Knowledge Extraction, 5(1), 78-108.
https://doi.org/10.3390/make5010006

Panchendrarajan, R., & Zubiaga, A. (2024). Synergizing machine
learning & symbolic methods: A survey on hybrid approaches to
natural language processing. Expert Systems with Applications,
251, 124097. https://doi.org/10.1016/j.eswa.2024.124097

Liu, M., Ren, Y., Nyagoga, L. M., Stonier, F., Wu, Z., & Yu, L.
(2023). Future of education in the era of generative artificial in-
telligence: Consensus among Chinese scholars on applications
of ChatGPT in schools. Future in Educational Research, 1(1),
72—-101. https://doi.org/10.1002/fer3.10

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

Wu, S., Souza, R. F., Ritter, F. E., & Lima Jr, W. T. (2024).
Comparing LLMs for prompt-enhanced ACT-R and soar
model development: A case study in cognitive simulation.
Proceedings of the AAAI Symposium Series, 2(1), 422-427.
https://doi.org/10.1609/aaaiss.v2i1.27710

Panzer, M., & Bender, B. (2022). Deep reinforcement learning
in production systems: A systematic literature review. Inter-
national Journal of Production Research, 60(13), 4316-4341.
https://doi.org/10.1080/00207543.2021.1973138

Planas, E., Daniel, G., Brambilla, M., & Cabot, J. (2021). To-
wards a model-driven approach for multiexperience Al-based
user interfaces. Sofiware and Systems Modeling, 20(4), 997—
1009. https://doi.org/10.1007/s10270-021-00904-y

Khan, M. A. M., Bari, M. S., Long, D., Wang, W., Parvez, M. R.,
& Joty, S. (2024). XCodeEval: An execution-based large scale
multilingual multitask benchmark for code understanding, gen-
eration, translation and retrieval. In: Proceedings of the 62nd An-
nual Meeting of the Association for Computational Linguistics, 1,
6766—6805. https://doi.org/10.18653/v1/2024.acl-long.367
Al-Shehari, T., & Alsowail, R. A. (2021). An insider data leakage
detection using one-hot encoding, synthetic minority oversam-
pling and machine learning techniques. Entropy, 23(10), 1258.
https://doi.org/10.3390/e23101258

Sarang, P. (2021). Artificial neural networks with TensorFlow
2: ANN architecture machine learning projects. USA: Apress.
https://doi.org/10.1007/978-1-4842-6150-7

Spring, R., & Johnson, M. (2022). The possibility of improving
automated calculation of measures of lexical richness for EFL
writing: A comparison of the LCA, NLTK and SpaCy tools. Sys-
tem, 106, 102770. https://doi.org/10.1016/j.system.2022.102770
Kavitha, P. V., & Karpagam, V. (2025). Image captioning deep
learning model using ResNet50 encoder and hybrid LSTM-GRU
decoder optimized with beam search. Automatika, 66(3), 394—
410. https://doi.org/10.1080/00051144.2025.2485695
Lenarduzzi, V., Kilamo, T., & Janes, A. (2023). Does cyclomatic
or cognitive complexity better represents code understandability?
An empirical investigation on the developers perception. SSRN.
https://doi.org/10.2139/ssrn.4397231

Razzaq, A., Buckley, J., Lai, Q., Yu, T., & Botterweck, G. (2025).
A systematic literature review on the influence of enhanced de-
veloper experience on developers’ productivity: Factors, practic-
es, and recommendations. ACM Computing Surveys, 57(1), 13.
https://doi.org/10.1145/3687299

Chicco, D., Sichenze, A., & Jurman, G. (2025). A simple guide
to the use of Student’s t-test, Mann-Whitney U test, Chi-squared
test, and Kruskal-Wallis test in biostatistics. BioData Mining,
18(1), 56. https://doi.org/10.1186/s13040-025-00465-6
Puolivili, T., Palva, S., & Palva, J. M. (2020). Influence of
multiple hypothesis testing on reproducibility in neuroim-
aging research: A simulation study and Python-based soft-
ware. Journal of Neuroscience Methods, 337, 108654.
https://doi.org/10.1016/j.jneumeth.2020.108654

How to Cite: Shaheen, A., Al Khaldy, M., Alzyadat, W., & Alhroob, A. (2025).
Al-Driven Augmented Software Engineering: Leveraging Cognitive Models for
Enhanced Code Generation. Journal of Computational and Cognitive Engineering.
https://doi.org/10.47852/bonview]CCE52026123

https://doi.org/10.1007/978-3-031-16011-0_12
https://doi.org/10.1145/3453172
https://doi.org/10.3390/e25060888
https://doi.org/10.1109/ACCESS.2022.3196347
https://doi.org/10.1109/SCSE65633.2025.11031000
https://doi.org/10.1007/s12559-023-10179-8
https://doi.org/10.1109/ACCESS.2024.3487591
https://doi.org/10.1016/j.eng.2025.01.012
https://doi.org/10.18653/v1/2024.acl-long.730
https://doi.org/10.1109/ACCESS.2024.3505983
https://doi.org/10.3390/make5010006
https://doi.org/10.1016/j.eswa.2024.124097
https://doi.org/10.1002/fer3.10
https://doi.org/10.1609/aaaiss.v2i1.27710
https://doi.org/10.1080/00207543.2021.1973138
https://doi.org/10.1007/s10270-021-00904-y
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.3390/e23101258
https://doi.org/10.1007/978-1-4842-6150-7
https://doi.org/10.1016/j.system.2022.102770
https://doi.org/10.1080/00051144.2025.2485695
https://doi.org/10.2139/ssrn.4397231
https://doi.org/10.1145/3687299
https://doi.org/10.1186/s13040-025-00465-6
https://doi.org/10.1016/j.jneumeth.2020.108654
https://doi.org/10.47852/bonviewJCCE52026123

