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Abstract: Artificial intelligence (AI) is transforming the software engineering landscape that allows for new development approaches. This 
paper proposes a framework that integrates cognitive models with AI-driven code generation to enhance the software development process. By 
leveraging cognitive principles, the proposed system performs human-like decision-making to optimize code generation, refactor existing code, 
and fix bugs. The framework was evaluated based on code quality, developer productivity, usability, and system adaptability. Results demonstrate 
improvements by AI-driven system such as speed of code generation increased by 10% compared with human-written baseline and complexity 
reduced by 15% compared with human-generated code. Developers using the system reported a 25–29% reduction in task completion time, and 
errors were minimized by 60–67%. Usability feedback indicated that the system integrated seamlessly into developers’ workflows but requires 
further development, including enhanced personalization and a better understanding of complex code contexts. This study highlights the potential 
of AI-driven systems to assist developers in producing high-quality software more efficiently and provides a foundation for future research in AI-
enhanced software engineering tools.
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1. Introduction
In contemporary software engineering, the increasing complexity 

of systems and the demand for faster, more reliable code have driven 
the need for more efficient development tools [1]. While effective, 
traditional methods of software development often face challenges in 
terms of scalability, error rates, and developer productivity [2, 3]. These 
challenges are exacerbated by the growing size and intricacy of modern 
software applications; these difficulties require intelligent, automated 
assistive solutions capable of controlling program complexity and 
enhancing developer efficiency [4]. As software systems become 
more intricate, human cognitive abilities to manage and process large 
datasets and handle complex decision-making are strained, highlighting 
the necessity for cognitive-driven tools [5, 6].

Artificial intelligence (AI) has advanced in many fields, like 
healthcare, finance, and robotics, empowering technology to perform 
tasks that relied heavily on humans [7, 8]. One potential application 
of AI is to enhance traditional software engineering practices by 
automating some monotonous tasks, predicting errors, and assisting 
developers [9]. While these applications are promising, one crucial 
aspect of AI in software engineering, especially in code generation, is 
still underexplored. Notably, AI’s capacity to replicate human decision-
making in coding tasks is nascent at this stage [10, 11].

Cognitive models, which simulate human cognitive processes, 
offer a valuable approach to enhancing AI in software engineering 
[12, 13]. These models, which are rooted in cognitive science, are 

proven effective in psychology and neuroscience for analyzing human 
problem-solving, learning, and adaptation [14]. When applied to AI 
systems in software development, it enables tools that mimic human 
reasoning and decision-making, resulting in more intuitive, flexible, 
and effective development environments [15, 16]. Such models are 
particularly useful for understanding and addressing the complex, 
dynamic tasks faced by software developers [17].

Cognitive models are applicable  in various domains, but one of 
their promising applications is in software engineering code generation 
[18]. In this context, it is postulated that specific areas of software 
development like code generation, one of the most laborious, error-
prone processes, can significantly benefit from AI-driven, machine 
learning-powered tools that can learn and adapt from previous coding 
patterns, predict future complications, and automate repetitive phases 
of the development process [19]. In the context of code generation, 
cognitive models can predict developer intent, suggest context-relevant 
code snippets, and adapt continuously to evolving programming 
scenarios [20]. Additionally, such models could facilitate dynamic 
learning, improving as they encounter a broader range of programming 
situations [21].

This study introduces a novel framework that combines cognitive 
models and AI techniques to enable improvements in code generation 
in software engineering. This approach differs from most AI systems in 
that it designs AI systems to use cognitive modeling to emulate human-
like reasoning by estimating the developer’s intent, creating context-
appropriate code, and adapting to different programming environments. 
Additionally, this research aims to evaluate the effectiveness of this 
cognitive-enabled AI system in improving code quality, developer 
productivity, usability, and adaptability. The major contributions 
of this study include the design of a cognitive-AI framework that 
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integrates cognitive-AI task programming for software development 
tasks, building and testing the system in a variety of programming 
contexts, and comparative evaluation of performance with traditional 
development methods.

2. Literature Review
The advent of AI in software engineering has attracted increasing 

research attention in recent years [22, 23]. Notably, AI methods, 
especially machine learning and neural networks, were recently used 
to automate many software development processes, including bug 
detection, code refactoring, and performance optimization [24]. One 
area that has not been adequately explored is the application of cognitive 
models to software engineering [25].

Cognitive models have been widely used in human–computer 
interaction and user modeling, derived from studying human cognition. 
Such models replicate how humans use reasoning, memory, and 
learning  processes to solve problems [26]. The use of cognitive models 
in decision-making  systems is a well-documented research domain, 
and the main findings suggest that these models can be adaptable to 
AI systems in the field of software development. They can anticipate 
programmer behavior, recommend code optimizations, and use 
an  adaptive learning paradigm that can potentially make AI more 
instinctual in the real world [27].

Over the past few years,  there has been a rise in the application 
of AI in code generation [28]. Several research studies have focused on 
predicting and generating code with the help  of neural networks from 
previously written code snippets [29]. Akalanka et al. [30] proposed an 
AI-powered framework for code completion based on a deep learning 
model that learns from public repositories of open-source code. 
Although promising, these models continue to struggle with carrying 
out code in a broader context, such as intent,  functionality, and edge 
cases. Models like Codex (OpenAI), CodeT5, and CodeBERT utilize 
large-scale language modeling to predict the source code based on 
textual inputs or incomplete code representations. They have shown 
impressive success in code completion, summarization, and synthesis. 
However, although these models can effectively learn patterns and 
understand language, they remain black boxes and cannot reason about 
developer intent or context for decisions. 

Cognitive models promote greater trustworthiness in AI systems 
due to their reasoning processes are subjectively transparent and 
interpretable in a way that is analogous to how humans reason. Unlike 
black box models that are opaque, cognitive systems can explain the 
reasons behind a suggestion or code segment and therefore become more 
understandable and defensible to developers and non-developers alike 
[31]. These transparent reasoning processes foster trust in the system’s 
proposals and lead to accountability, auditability, and acceptance for 
high-stakes or safety-critical software [32].

While neural models focus on statistical patterns, cognitive 
models simulate human reasoning and can adapt based on task-specific 
logic and intent [33]. The framework for automated programming 
proposed in the study of Han et al. [34] recruits the decision-making 
process of expert programmers to generate code snippets that comply 
with functional and non-functional requirements. Their work showed 
that cognitive models could  produce suggestions that were more 
tailored to the developer and more intuitive from the specific developer’s 
point of view.

Furthermore,  large language models (LLMs) and knowledge 
graphs, which drive AI-based systems in software engineering, have 
been widely criticized for being opaque and not explainable, which 
limits their use in critical fields [35]. Integrating cognitive models in 
AI  could alleviate this fear. For example, Clement et al. [36] investigated 

that explainable artificial intelligence (XAI) can have a significant 
role in software engineering and claimed that by implementing 
cognitive processes, AI systems should generate more interpretable 
and transparent suggestions that will foster trust among developers 
and stakeholders. Cognitive models are designed to replicate human 
thought processes; therefore, this track can be an efficient avenue to 
increase the explainability of AI-based software tools.

However, there remains much work to be done before cognitive 
models are incorporated into AI systems designed for software 
engineering. A primary concern is whether cognitive models can handle 
both the data and complexity of large, scalable software projects. To 
address this, recent studies have proposed hybrid approaches that blend 
cognitive modeling and alternative artificial intelligence approaches, 
such as machine learning or natural language processing (NLP) [37]. 
Although there have been a few early successes, the use of cognitive 
models is predominantly lacking in conjunction with an AI-powered 
code generator. In this study, we aimed to address the gap and propose a 
hybrid cognitive-AI framework, which we will evaluate across multiple 
software engineering tasks. Compared with the newer hybrid systems 
such as ARCHCODE [34] and RepoCoder [30], our method allows 
explicit encoding of expert heuristics into a production rule layer; we 
demonstrate comparative advantages on the task.

3. Research Methodology
The proposed framework is based on the cognitive model, 

which  aims to simulate the decision-making and reasoning processes 
of human developers. It will be grounded in existing theories of human 
cognition, particularly in problem solving, memory, and learning. 
Based on these foundations, the proposed framework will be able to 
learn from existing code patterns and then adapt  itself as it is exposed 
to an increasing number of annotated code samples. This strategy seeks 
to replicate the reasoning  of expert developers to formulate effective 
and working code.

The cognitive model is a rule-based system that imitates how 
expert programmers make decisions while writing code, debugging it, 
and  optimizing it [38]. Using a large set of code samples and interactions 
with developers, the model will be  able to test and improve its rules 
and adjust to different coding environments. The model will be able to 
generate context-sensitive suggestions, leading to code suggestions that 
are faster code generation and higher quality, all through the simulation 
of human cognitive  processes.

The process in  the cognitive model flow, which begins with 
input (developer’s code and comments), traverses through the cognitive 
decision-making process, and generates output (code or suggestions), is 
shown in Figure 1.
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 Figure 1
Cognitive model workflow
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3.1. AI techniques for code generation
The framework was designed to be extensible, allowing 

integration with other AI techniques to enhance the process of code 
generation. These techniques consist mainly of deep learning models 
for code prediction, NLP to interpret developer codes and comments, 
and reinforcement learning to improve code quality over time.

Deep learning: Subsequently, deep learning methodologies was 
employed, particularly long short-term memory (LSTM) networks, to 
model the contextual information supplied by developer inputs and 
predict the subsequent lines of code. LSTMs are well suited for this 
purpose because they can focus on sequence data while remembering 
and learning longer-term dependencies, producing coherent, easily 
consumable code snippets.

Natural language processing (NLP): NLP was conducted to 
understand and analyze the natural language information provided by 
the developer, which enables the system to produce code that adheres to 
their intentions. NLP fills the gap between human communication and 
computer understanding, which reduces the error rate and helps give a 
more localized code to context. 

Reinforcement learning: A reinforcement learning-based 
approach was applied to find an optimal  reward-based code generation 
algorithm by evaluating the quality of generated code against some 
pre-defined quality metrics of interest. Its model parameters is  tuned 
iteratively based on feedback.

Table 1 compares different AI techniques (deep learning, NLP, and 
reinforcement learning), summarizing their descriptions, advantages, 
and applications in code generation. It provides a clear comparison to 
help readers understand how each technique contributes to the research.

3.2. Cognitive model
3.2.1. Theoretical foundations of the cognitive model

To establish our rule-based cognitive layer, we can draw some 
principles of how production-system cognitive architectures work, 
particularly ACT-R and Soar [39]. Production systems view problem 
solving and reasoning as a set of condition-action (IF-THEN) rules 
operating over working memory and long-term declarative knowledge; 
this format fits neatly with developer heuristics, for example, if a 
function exceeds the limit of X LOC, then consider extraction.

Specifically, we map software engineering components to 
cognitive components as follows: the specific editing task of the 
developer (goal) is represented in a goal buffer, recently seen code 
snippets represent items in working memory via retrieval operations, 
and production rules represent developer heuristics, which “fire” when 
preconditions on the goal and working memory hold. This mapping 
supports transparent, explainable rule activations. The production rule 
layer was selected in addition to the learning components (LSTM+RL) 
because of the necessity for interpretability and explicit control over 

developer heuristics while benefiting from statistical generalization 
from data [40].

3.2.2. Expert heuristics extraction and encoding
We employed a systematic expert elicitation approach to create 

reproducible developer heuristics: 

1)	 Expert selection: We recruited [N=X] professional developers (≥ 
[Y] years of professional experience) across the following domains: 
[web, backend, data science]. We selected participants through their 
public profiles and evidence of contribution within a project. 

2)	 Elicitation method: Each expert followed a think-aloud protocol 
over [M] representative coding tasks (code completion, refactoring, 
bug fixing). The sessions were video recorded, and all transcripts 
were generated. 

3)	 Transcription analysis: Two independent coders completed a 
thematic analysis of the transcripts to extract the candidate heuristics. 
We computed inter-rater agreement (Cohen’s κ = [κ value]). We 
resolved disagreements through discussion. 

4)	 Rule formalization: Each heuristic was formalized as a production 
rule in this format: IF THEN [priority, confidence]>. 

5)	 Rule validation: The rules were validated on a small held-out 
validation set of [K] code tasks; the rules were adjusted such that the 
intended suggestions were produced in >[target %] of cases.

3.3. System integration and architecture
By integrating a cognitive model with AI methodologies, a unified 

software development assistant was realized [41]. This was tailored 
to assist developers, particularly with code generation, refactoring 
existing  applications, and error detection. This cognitive modeling 
enabled it to offer suggestions that are contextually relevant to the user, 
making it more natural and adaptive to the user than traditional AI-
powered tools.

Creating a modular architecture enhances the system’s scalability 
and flexibility. The knowledge  acquisition process, AI approaches, and 
evaluation system was developed as modular components of the overall 
project, permitting easy testing, adaptation, and improvement of each 
component of the cognitive model.

For instance, the modular architecture of the software development 
assistant in Figure 2 shows how the cognitive model, AI components, 
and feedback mechanisms interact. Figure 2 provides an overview of 
the  system’s architecture relevant to its modular building blocks and 
how they interact to be a flexible and optimal tool for developers.

3.4. Experimental design and procedures 
The performance of the proposed framework was established 

through the following measures:

3

Technique Description Advantages Applications 
Deep Learning Natural Uses neural networks like 

LSTMs for sequential data to 
predict the next lines of code.

Can learn complex patterns from 
large codebases.

Next code prediction, code completion.

Language Processing 
(NLP)

Interprets developer comments 
and integrates them into code 
generation.

Helps in understanding the intent 
behind developer comments.

Generating code based on comments, 
documentation.

Reinforcement Learning Optimizes code generation 
through quality evaluation and 
parameter tuning.

Can iteratively improve code quali-
ty over time based on feedback.

Improving the efficiency and accuracy 
of generated code.

Table 1
Comparison of AI techniques for code generation
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Code quality: The generated code was assessed for its accuracy, 
efficiency, and style. This was obtained from both mechanical testing 
applications and analysis performed by software development 
professionals.

Developer productivity: Developers were asked to complete 
tasks that were generally performed without the assistant and tasks 
performed with the assistant. The execution time was compared for 
both the assistant coding options and mechanical coding. Productivity 
was assessed for either time-saved or number of errors avoided.

Usability: The system was evaluated for usability through 
surveys and interviews with developers. The questions addressed the 
usability of the system in terms of ease of use, helpfulness, and ability 
to fit smoothly into the developer’s workflow.

System adaptability: The adaptability of the system to different 
coding environments and developer conventions was evaluated by 
exposing it to a range of coding tasks and environments.

3.4.1. Experimental setup
The main goal of the experiment was to review the performance 

and efficiency of the AI-based code generation system with cognitive 
models introduced as enhancements. In this study, the experiment was 
focused on implementing the above system onto software development 
tasks with consideration of the enhanced code generation, bug fixing, 
and code optimization from traditional methods.

3.4.2. System setup 
The cognitive model-based AI system for code generation, based 

on AI techniques like deep learning, was used, including NLP and 
reinforcement learning, for conducting the experiments. It tests the system 
on various tasks of code completion, bug fixing, and code refactoring.

Hardware setup: A high-performance computing setup was used 
to run the experiments and to minimize the performance bottlenecks 
encountered during code generation tasks. The hardware consisted 
of  at least a server with a multi-core processor, 32GB of RAM, and 
a GPU.

Software setup: The solution was developed in Python using 
TensorFlow for deep learning models, and NLP-related functionalities 
with the help of libraries such as SpaCy and NLTK.  Essentially, 
OpenAI’s Gym framework will be used to build our reinforcement 
learning  component. The development environment was built  on an 
IDE Supporting Python (PyCharm).

Dataset: The CodeSearchNet dataset was used for training and 
evaluation, which comprised over six million open source functions in 
several programming languages (Python, Java, JavaScript, Go, PHP, and 
Ruby) [42]. This dataset is often used by the research community as a 
benchmark and made available with the MIT license for reproducibility 
and open access principles.

Baseline: The AI-based system was compared to previous 
approaches where code was generated with human intervention or with 
non-AI  code generation tools.

3.4.3. Experimental design
The experiment involved the following tasks:
Code generation: Based on developer inputs (problem 

definitions, code pieces), the system was required to generate snippets 
of code. The system’s output was compared to code generated  by 
humans for accuracy, efficiency, and readability.

Bug fixing: In case of any code bugs, the system was tasked to 
identify the errors and correct them. A Comparison would demonstrate 
the number that were detected and corrected compared to the traditional 
ways of debugging (manual error search).

Code refactoring: The system received existing code that 
required refactoring to address performance concerns or enhance 
readability. It was evaluated based on the ability to optimize the code, 
reduce its complexity, and enhance its maintainability.

3.5. Evaluation metrics
The system was evaluated based on the following metrics:
Code quality: The output code was evaluated using its 

accuracy, efficiency (execution time), and readability (complexity). 
Automated testing tools were used to measure accuracy, while 
experienced software developers manually reviewed itsefficiency and 
readability.

Developer productivity: The evaluation of developer 
productivity included the time spent on often-foundational development 
tasks, as well as bug fixing, code refactoring, and adding a feature. As 
with the previously outlined measurements, these were collected in a 
log and compared with respect to time saved and/or errors reduced.

Usability: The system was assessed for its ease of use, ease 
of integration into current workflows, and usefulness in decreasing 
repetitive tasks.

System adaptability: To assess the adaptability of the system, 
the system was exposed to a range of tasks in different programming 
languages and frameworks.

During the experimental phase, the developers conducted various 
standard software engineering tasks, such as bug fixing, code generation, 
and code refactoring. The traditional development tools and the newly 
proposed AI-supported system implementation were compared using 
the standard software engineering tasks. The performance data were 
collected from the standard software engineering tasks using various 
outcome measures, including time taken to complete the tasks, error 
rate encountered and fixed, and developer feedback. This data was 
analyzed to evaluate the system’s improvement powered by AI for 
code quality, developer productivity, and efficiency in assisting in the 
software development process.

The models were trained and evaluated on a large collection of 
open-source code repositories in different programming languages. 
To ensure diversity and generalizability, we sampled from well-
documented, actively maintained repositories, all of which were under 
permissive licenses. The standard preprocessing employed in each 
case involved tokenizing the project, splitting identifiers, normalizing 
literals, and removing any auto-generated files. Since we were sampling 
at the project level, we split our dataset into training (80%), validation 
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Figure 2
Modular architecture of the cognitive AI-based software 

development assistant
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(10%), and testing (10%) per project to prevent any leakage across sets. 
This method follows a protocol established in previous research on 
code intelligence [43].

The system was built using Python 3.10 and the TensorFlow 2.x 
library for the LSTM and reinforcement learning components [44]. In 
terms of preprocessing for NLP, we utilized spaCy and NLTK [45]. 
For the reinforcement learning model, the parameters were tuned using 
policy gradient (REINFORCE) with a reward function that evaluated 
a trade-off between test pass percentage, readability of the code, and 
length of the output. For the architecture, a two-layer LSTM encoder 
was used with 512 hidden units and a dropout value of 0.3 and a beam-
search decoder (beam size = 5) [46]. The models were trained using 
the Adam optimizer (learning rate = .001, batch size = 64), with early 
stopping based on validation loss. To reduce variance in our results, we 
repeated each experiment five times with random seeds. The models 
were trained on a server with an NVIDIA RTX 3090 GPU, a 32-core 
CPU, and 128 GB RAM. The average training time per model was 
roughly 9 hours.

4. Results and Discussion
This section provides the results of the evaluation of the 

proposed framework’s experimental setup, along with  a discussion 
of these results. The framework, considering code  quality, developer 
productivity, usability, and system adaptability metrics, was assessed. 
The system was evaluated and compared  to traditional development 
tools, highlighting the improvements and challenges encountered while 
cooperating with evaluation participants.

4.1. Code quality
The accuracy, efficiency, and readability of the generated code 

were evaluated through a combination of automated tests and  manual 
assessments. It compared the  system’s output to a baseline of code 
generated by humans. They were given criteria for evaluating the 
generated code based on how well it was functional concerning 
their  requirements, and whether they wrote their code according to best 
practices for efficiency and code readability.

As shown in Figure 3, the system-generated code was more 
efficient than human-generated code by 10% in execution time, 
which is consistent with  results of Sherje [19] who reported similar 
improvements in AI-driven code generation frameworks. While the 
study of Sherje [19] is a statistical learning-based model only, our 
model instead used cognitive modeling to mimic the users’ intent, which 
improved both speed and context accuracy of generated code across 
various coding task. This suggests that the AI can generate optimized 
code, which in turn takes less time to execute and thus is expected to 
save resources. However, in terms of accuracy, the system and human 
code performed equally well (98% vs 95%).

In terms of the readability, the cyclomatic complexity was 
reduced by 15% by the generated code as compared to the original 
system of record, where a lower number indicates more readable 
code. This means that more compact and maintainable code can 
be  generated by the AI system. However, a few manual reviews 
demonstrated that contextually aware suggestions would enable 
further refinement of the code’s clarity and alignment with developer 
intent.

Figure 3 shows a comparison of  the code quality (accuracy, 
efficiency, and readability) between code generated by the system 
and the code created by using conventional modalities. The figure 
indicates that automated checks effectively identified key strengths 
in efficiency and readability, while manual reviews revealed 
optimization opportunities that automation could not capture. This 
highlights the complementary role of human expertise in refining the 
system.

4.2. Developer productivity
Developer productivity was assessed by measuring the time 

taken to complete tasks with and without the assistant. Time saved 
and the number of errors avoided were recorded across multiple 
coding tasks. The evaluation included tasks such as bug fixing, feature 
implementation, and code refactoring.

As illustrated in Figure 4, the assistant coding option greatly 
enhanced time productivity compared with traditional coding 
approaches. For example, in bug fixing, developers leveraging 
the system completed tasks 28% faster; in code refactoring, the 
savings  were 29%. This productivity gains showcases how the system 
can automate  traditionally time-consuming tasks like error detection 
and code optimization. 

Additionally, error rates were significantly reduced  with the 
system in use. As shown in Figure 5, developers using the system made 
60–67% fewer errors than most developers  using traditional methods. 
Considerably, the reduction in error rate became 57% when the system 
was actively implemented in  feature implementation. This decrease 
in errors indicates that the system can produce more reliable code 
because its  predictive abilities reduce bugs and provide context-aware 
suggestions.

The system could save time and help avoid mistakes, which is an 
obvious advantage for developers, as shown in Figures 4 and 5. It was 
proven in all task types, whether it was fixing bugs, code refactoring, 
or working on new features, developers were able to work faster with 
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fewer mistakes. These results underscore the system’s potential to 
automate tedious tasks and support developers in writing higher-quality 
code more quickly. 

4.3. Usability
To evaluate the usability of the  system, the developers completed 

as survey and were interviewed for their feedback, particularly on the 
ease of use and helpfulness of the system and the system’s integration 
into the developer’s workflow. Figure 6 shows the usability survey 
results.

Overall, the developers rated the system with high scores  on 
ease of use and the integration with existing tools. For ease of use, the 
system scored 4.7 out of 5, meaning it was intuitive and easy to  integrate 
into the developers’ workflows. For helpfulness, it scored 4.5 out of 
5,  indicating that the developers found the system’s suggestions useful. 
Conversely, the system was rated low (3.6 out of 5) on customization 
features, suggesting that the developers wanted more personalized 
control  over what it can suggest and recommend.

4.4. System adaptability 
Different coding environments and developer preferences were 

introduced  to test the adaptability of the system. In each previous 

case, a new task may require the system to adapt and adjust to new 
developers and new tasks in this manner. The results reflect similar good 
performance in general programming languages like Python, JavaScript, 
and Java (Figure 7). However, when there were more  advanced or 
specialized coding environments or frameworks, for instance, Django 
was slightly less optimal, earning 3.9 out of 5. This means that the 
system can be optimized even better to have additional  training data 
related to domain-specific frameworks and languages.

Performance summary across coding scenarios and developer 
preferences are shown in Figure 7. This demonstrates the system’s 
ability to adapt to diverse task environments. While the system 
generalized across standard programming environments, future work 
is required to improve performance within specialized frameworks and 
languages. Although the proposed system provided good results, there 
were some problems during the  testing phase. The major limitations 
were the system’s ability to comprehend complex code  context and 
the developer’s intention in specific cases. However, despite the strong 
performance characteristics of the system in  contained environments, 
its performance was not consistent once confronted with very diverse 
coding tasks.

4.5. Ablation study: isolating the cognitive layer
To examine specifically the contribution of the cognitive layer, 

we ran the following controlled experiments:

1)  Full system: Cognitive rule layer + LSTM + RL (the submitted 
system). 

2)  No cognitive: LSTM + RL; cognitive rule layer turned off. 
3)  LSTM only: LSTM trained with supervised learning (no RL, no 

rules). 
4)  Human baseline: solutions committed by the developer and collected 

from either the dataset from past tasks, or human completion of 
manual tasks on the platform.

In order to quantitatively evaluate the contribution of the 
cognitive layer, we performed an ablation study to compare the 
full system to reduced variants. The results of this experiment are 
summarized in Table 2, which presents the ablation study across four 
primary metrics. We performed statistical tests between the FullSystem 
and NoCognitive.

FullSystem (Cognitive + LSTM + RL) also had significantly 
better performance than NoCognitive with respect to all key metrics. 
Both task completion time and error rate were positively affected with 
large effect sizes (p < 0.05, Cohen’s d ≈ 0.9). Functional accuracy 
improved slightly more than 7%, and developer productivity improved 
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by 2.5 task/hour relative to NoCognitive. These results support the 
conclusion that the cognitive layer is a major improvement over the 
components that rely solely on statistical learning.

For the evaluation of each task in our test set, we used the 
following evaluation protocol: for each task, we evaluated functional 
accuracy (unit tests pass, binary measure), execution duration (micro 
benchmarks), cyclomatic complexity [47], developer productivity (time 
to accept suggestions in the user study), and error rate (bugs introduced) 
[48]. Each model was run 5 different random seeds and performance 
was averaged (mean ± std) for reporting. For pairwise comparisons, 
we used a paired t-test when normality held (Shapiro-Wilk test) [49]. 
We report p-values and Cohen’s d effect sizes, and we used Holm-
Bonferroni to correct for multiple comparisons [50].

As shown in Figure 8, performance suffered largely from 
removing the cognitive layer: functional accuracy was down from 
87.6% to 80.3%, productivity changed from 11.8 to 9.3 tasks/hour, 
and error rate increased from 6.1% to 9.5%. This shows, and confirms, 
that the benefits of cognitive models could be quantitatively measured 
beyond the statistical components.

5. Conclusion
This study introduces a novel framework that integrates cognitive 

models with AI-driven code generation, aiming to enhance software 
development by improving code quality, developer productivity, and 
usability. The results demonstrated that the system outperformed 
traditional methods, generating more efficient and readable code while 
saving developers 25–29% of their time and reducing errors by up 
to 67% (which is consistent with Dehaerne et al. [29], who reported 
that AI had decreased coding error rates using predictive models). 
Unlike conventional models, our cognitive framework reduces errors 
by pursuing a model similar to human reasoning, and therefore, it 
can also remove context-aware errors and not just errors based on 
result size. The developers in this study rated the system very high 

in usability (fairly easy to integrate into their workflows) and very 
effective in accomplishing monotonous tasks like bug fixing and code 
refactoring. A few developers mentioned that the proposed system 
could be improved further by allowing more configurability and more 
understanding of the developers’ detailed intent. This would both 
improve the systems usefulness and integration into their individual 
style and preferences in the workspace. Overall, the framework shows 
significant promise in helping developers produce higher-quality code 
more quickly and with fewer errors, marking a key advancement in 
the field of AI-assisted software engineering. Future research should be 
directed toward increasing personalization to match developer’s coding 
styles; enhancing the system’s ability to recognize developer intention 
and complex code context; enhancing compatibility with specialized 
frameworks like Django; creating interfaces for version control systems 
such as GitHub, facilitating real-time collaborative workspaces for 
multi-developer projects, and making the system continuously learn to 
keep the system updated with coding types and conventions as they 
rise and fall in popularity. In addition to broad improvements, one 
particular direction for future work is personalization. The system could 
be personalized for the developers’ specifics using lightweight profiles 
that specify coding style, the patterns they commonly use, and name 
preferences. The ability to tune rule weights and suggestion acceptance 
thresholds would provide each developer the ability to personalize the 
system for their own workflow. Furthermore, online preference learning 
could yield a system that improved with time through explicit feedback, 
or accepted suggestions, and modify to create a more personalized 
developer-specific logic or even team code patterns.
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Metric FullSystem NoCognitive LSTMOnly Human Baseline p-value Cohen’s d
Task completion time (s/task) 1.42 ± 0.07 1.89 ± 0.11 2.04 ± 0.15 2.31 ± 0.19 0.008 0.95
Error rate % 6.1 ± 0.8 9.5 ± 1.1 12.8 ± 1.5 15.6 ± 1.7 0.012 0.88
Functional accuracy (%) 87.6 ± 1.8 80.3 ± 2.5 72.7 ± 3.1 65.2 ± 2.9 0.004 1.12
Productivity (tasks/hour) 11.8 ± 0.9 9.3 ± 1.0 7.4 ± 1.2 6.0 ± 0.8 0.008 0.95

Table 2
Ablation study results with statistical significance
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