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Abstract: This study aims to systematically evaluate and compare various deep learning models in terms of accuracy, efficiency, and interpretability
for fake news detection. Leveraging recent advancements in pretrained models (e.g., BERT, RoBERTa) and lightweight frameworks (e.g.,
TextCNN), we implemented and optimized multiple detection models. Comparative analysis was conducted on a dataset containing approximately
40,000 news texts. Results revealed that BERT Large significantly outperformed other models, achieving an accuracy of 99.33%, attributed to its
extensive semantic understanding capabilities. Conversely, TextCNN, despite its simpler architecture, achieved competitive accuracy (98.77%),
demonstrating substantial practical value for resource-limited environments. Interpretability analysis via attention visualization highlighted distinct
cognitive strategies of pretrained models when classifying real versus fake news. While the study addresses critical technical challenges in fake news
detection, limitations related to potential dataset biases and domain specificity were acknowledged, suggesting opportunities for future research on
multimodal and cross-domain adaptations. This research contributes substantially by providing practical benchmarks and interpretability insights,

significantly enhancing real-world fake news detection systems, thus aiding platforms in combating misinformation effectively.
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1. Introduction

With the rapid development of social media and online
information platforms, the mode and efficiency of news dissemination
have undergone profound changes, allowing users around the world to
receive and share massive amounts of information from various sources
for the first time. However, while this information ecosystem facilitates
the public’s access to information, it also provides an unprecedented
environment for the growth and dissemination of fake news [1]. Fake
news often employs exaggerated language, evokes strong emotions, or
presents misleading multimedia content to capture attention and clicks,
thereby compromising the public’s ability to form accurate judgments
about facts and potentially undermining political opinion, economic
decision-making, and social stability [2].

The decentralized communication mechanism of social media
platforms has reconstructed the information ecological pattern. According
to statistics, Twitter adds approximately 500 million tweets per day, of
which about 15% involve news-like content. Meanwhile, the average
detection lag time for fake news is more than 20 h [3]. This time lag
leads to an exponential increase in the reach of false information; for
example, during the 2020 U.S. election, retweets of false political news
were 70% higher than those of real news [4]. More grimly, breakthroughs
in generative Al technologies (e.g., GPT-4, DALL-E 3) have brought
the marginal cost of faking multimodal content close to zero, and MIT
experiments have confirmed that the accuracy of human recognition
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of Al-generated fake news is only 48.7% [5]. In this context, building
automatic detection systems with strong generalization capabilities has
become a core topic in the field of cybersecurity.

In the face of the social harm caused by the spread of fake news,
both academia and industry have invested considerable effort in developing
automatic detection and identification mechanisms. Effective fake news
detection systems can help platforms identify and flag suspicious content
promptly, reducing the scope and impact of misinformation. At the same
time, such technologies can also improve the public's media literacy,
cultivate critical thinking, and enhance the ability to recognize online
information [6].

At the technical level, fake news detection involves cutting-edge
technologies in multiple fields, such as natural language processing,
machine learning, and social network analysis. Its research progress
not only promotes the development of these fields but also provides
new ideas for solving the universal problem of information authenticity
verification [7]. In particular, research comparing the computational
efficiency and performance balance of different detection models can
provide an important reference for practical deployment scenarios and
address the detection needs in resource-constrained environments [8].

The following major challenges are currently facing the field of
fake news detection:

Model generalization and robustness: The expression of fake
news is constantly evolving, and existing models often exhibit insufficient
generalization ability when encountering new domains or types of fake
content [9].

Data scarcity and category imbalance: High-quality labeled data
is challenging to obtain, and there is often an imbalance in the amount of
real and fake news, which affects the effectiveness of model training [10].
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Multimodal fusion: In reality, fake news is often accompanied
by multimedia content, such as pictures and videos, and it is difficult to
comprehensively capture the information characteristics solely by relying
on a single modal analysis [11].

Computational efficiency and deployment cost: While large-scale
pre-training models exhibit superior performance, their vast number of
parameters and high computational requirements limit their practical
application in resource-constrained environments [12].

To address the above challenges, this study proposes a systematic
framework for comparing and optimizing fake news detection methods,
with the following main innovations and contributions:

Multimodel comparison and performance boundary exploration:
This study systematically implements and compares five typical models
(BERT Large, RoBERTa, TextCNN, BERT + XGBoost and logistic
regression) from simple to complex on the same dataset, establishes the
performance benchmarks and upper bounds for the fake news detection
task, and provides empirical evidence for model selection.

Analysis of the trade-off between computational efficiency
and detection accuracy: By recording and analyzing in detail the
relationship between the training time, the number of parameters, and
the detection accuracy of each model, this study reveals the optimal
balance between resource efficiency and performance of the TextCNN
model, and provides an optimization strategy for practical deployment
scenarios.

Optimization of BERT large model parameters: In this study,
the key hyperparameters (learning rate, batch size, classification
threshold, etc.) are systematically optimized for the BERT Large model,
so that it achieves an accuracy of 99.10% and a high macro-averaged
F1-score on the test set, which significantly improves the detection
performance.

Decoupling method of feature extraction and classification:
The hybrid BERT + XGBoost model implemented in this study provides
an efficient and practical solution for resource-constrained scenarios,
significantly reducing computational requirements while maintaining
reasonable performance by combining deep feature extraction with
traditional classifiers.

Category imbalance problem-solving strategy: Through
threshold optimization techniques, this study effectively addresses the
common category imbalance problem in false news detection, enabling
each model to achieve a more balanced performance across the two
categories and thereby improving the overall detection effect.

Previous studies on fake news detection, while valuable, have faced
significant limitations, particularly in their inability to simultaneously
address critical dimensions such as accuracy, computational efficiency,
and model interpretability. Most research has either concentrated on the
superior accuracy provided by complex pretrained models or highlighted
computationally efficient yet less powerful lightweight models, thereby
overlooking the critical balance required among these dimensions.
Consequently, a comprehensive evaluation that integrates these factors
remains scarce, resulting in fragmented insights and limited practical
applicability. To address this notable gap, this study proposes a systematic,
multi-dimensional evaluation approach utilizing both pretrained models
(e.g., BERT, RoBERTa) and lightweight architectures (e.g., TextCNN).
By concurrently examining accuracy, efficiency, and interpretability, this
research aims to provide a holistic understanding of fake news detection
models, offering robust benchmarks and guiding principles for real-world
implementation and future methodological advancements.

2. Literature Review

Fake news detection, as an interdisciplinary research topic, has
attracted widespread attention in recent years. In this section, we will
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systematically review the existing research methods and their progress,
from traditional machine learning methods to deep learning techniques
to the latest pre-trained language models and hybrid architectures, and
explore the characteristics and limitations of each type of methods.

2.1. Fake news detection based on traditional machine
learning

Early fake news detection methods mainly used traditional
machine learning models to classify text features by manually
extracting them. For example, Altunbey Ozbay and Alatas [13]
compared 23 supervised learning algorithms, including Support Vector
Machine (SVM) and Decision Tree, for social media data by extracting
features such as a word frequency matrix. The results showed that the
Decision Tree achieved optimal performance. Overall, such traditional
methods can recognize fake news to a certain extent, but they are highly
dependent on manual feature engineering and cannot capture deep
semantic information [14].

2.2. Application of deep learning in fake news detec-
tion

With the development of deep learning, researchers have begun to
utilize models such as Text Convolutional Neural Networks (TextCNN)
and Recurrent Neural Networks (e.g., Bidirectional Long Short-Term
Memory Networks, BiLSTM) to learn text features for fake news
detection automatically. Deep neural networks can learn contextual
semantic features from data and typically achieve higher accuracy
rates compared to traditional methods [15]. For example, Ouassil
et al. [15] constructed a hybrid model that combines convolutional and
bidirectional LSTMs, and fused pre-trained word vectors to achieve
significant improvements in classification accuracy and precision
compared to traditional machine learning algorithms.

2.3. Application of pre-trained language models in
fake news detection

In recent years, pre-trained language models have demonstrated
impressive results in detecting fake news. Large pre-trained models,
such as BERT, RoBERTa, XLNet, etc., can be fine-tuned to provide
deep semantic understanding for the detection task, which dramatically
improves the classification performance [16]. The FakeBERT model
proposed by Kaliyar et al. [16] combines BERT with a convolutional
network and achieves an accuracy of 98.9% on the fake news dataset,
significantly outperforming previous models. In addition, specialized
pre-trained models designed for detecting neural network-generated
news have emerged, such as Grover. Grover, a generative Transformer-
based model studied by Gagiano et al. [17], has been shown to
outperform baselines such as GPT-2 and regular BERT in automatically
distinguishing between machine-generated fake news and authentic
news.

2.4. Mixed modeling and integrated learning

To further improve detection, researchers have explored hybrid
models and integrated learning methods. For example, Essa et al.
[18] proposed a hybrid architecture that incorporates BERT with
LightGBM, exhibiting better performance than a single model. These
studies combine semantic vectors extracted from pre-trained BERT
models with gradient-boosting decision trees to achieve a “BERT +
XGBoost”-style fusion classification, leveraging the complementary
advantages of deep semantic features and traditional models [18]. In
addition, Zhou and Zafarani [7] found that hybrid models combining
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deep feature extraction with traditional classifiers can achieve balanced
performance in resource-constrained environments by comprehensively
evaluating multiple integration approaches. These hybrid and integrated
approaches achieved state-of-the-art performance in the fake news
detection task by synthesizing the strengths of different models.

2.5. Current challenges and research motivations

Despite the significant progress of existing methods, there are
still some shortcomings in the field of fake news detection that require
further research [ 14]. First, different studies often use their own datasets
and evaluation metrics, lacking unified benchmarks and systematic
comparisons, which makes it challenging to compare the effectiveness
of various methods [8] directly. Second, although large pre-trained
models have high accuracy, the computational resource overhead
is huge, and the inference speed and deployment efficiency of the
models become bottlenecks in practical applications [19]. Again, the
distribution of dataset categories in real scenarios is usually unbalanced
(e.g., there is far more real news than fake news), and this category
imbalance leads to a model bias toward the majority category, which
weakens the recognition of fake news in the minority category [20].
Finally, different models are more sensitive to hyperparameter settings,
and the current systematic research on hyperparameter tuning is still
relatively insufficient, which also affects the further improvement of
model performance to some extent [21]. In the future, more in-depth
research is needed on the unification of evaluation standards, model
efficiency improvement, data imbalance treatment, and parameter
optimization, among other areas, to further enhance the practicality and
robustness of the fake news detection system.

3. Research Methodology

In this study, three categories of five different models are used
in the fake news detection task, including a pre-trained language
model based on Transformer, a recurrent neural network model, and
a traditional machine learning model. First, we constructed a dataset
comprising approximately 40,000 news texts derived from the publicly
available dataset on Hugging Face [22], and divided it into a training set
(approximately 32,500 texts) and a testing set (approximately 7,800,000
texts). Before model training, we performed preprocessing operations
on the text data, e.g., standardizing the text length to 128 words
(truncating excessively long texts and padding excessively short ones),
and chose appropriate text representations according to the model type.
For example, for the BERT-based model, we utilized its own WordPiece
splitter to split the text into subword sequences. In contrast, for the
BiLSTM and logistic regression models, we constructed a vocabulary
list of approximately 140,000 words and converted the text into word
frequency vectors or word embedding sequences, respectively.

3.1. BERT large model fine-tuning

BERT  (Bidirectional — Encoder  Representations  from
Transformers) is a deep bi-directional Transformer language model
proposed by Devlin et al. [12]. It is pre-trained on a large-scale corpus
to obtain rich semantics by combining the two tasks of language
modeling and next-sentence prediction. The adopted Transformer
structure efficiently models global dependencies within sequences
through a multi-head self-attention mechanism, thereby avoiding the
limitations of traditional recurrent or convolutional neural networks
[23]. The BERT Large Uncased model (HuggingFace implementation)
was chosen for this study. The model architecture comprises a 24-layer
Transformer encoder, 1024-dimensional hidden units, and 16 attention
heads, totaling approximately 335 million parameters (335,143,938).

BERT Large, with its powerful feature representation capability, is can
effectively recognize semantic and contextual information in fake news.

In the fine-tuning phase, we add a fully connected classification
layer on top of the BERT pre-trained model and optimize the whole
model for end-to-end training using the training set data. We used the
BERT tokenizer as the disambiguator and set the maximum sequence
length to 128. For the training parameters, AdamW was chosen as the
optimizer; the learning rate was set to le-5, the batch size to 16, and
the total number of training rounds to 6, with early stopping at round 5
as the model had reached its optimal performance. Model training was
done on Tesla V100-SXM2 (32 GB) hardware. The model was tested
and achieved an accuracy and macro F1 value of 0.9933 on the test set,
indicating excellent performance on the fake news detection task. Table 1
details the complete parameter configuration of the BERT Large model.

3.2. TextCNN (FakeNews-CNN)

To further capture the sequential features of text, this study
employs FakeNews-CNN, a text categorization model based on
convolutional neural networks. The model is based on the TextCNN
architecture proposed by Kim [24], which captures n-gram features in the
text through multi-scale convolutional kernels to extract key semantic
information from short texts efficiently. Our implementation utilizes
three different sizes of convolutional kernels (3, 4, and 5), each with
128 filters, to capture text patterns of varying lengths simultaneously.

The TextCNN model has a vocabulary size of 138,087, a fixed
sequence length of 128, and an embedding dimension of 100. After the
convolutional layer, we extract the most salient features using a global
maximum pooling strategy and introduce a dropout rate of 0.5 to prevent
overfitting. The model’s output layer utilizes a Dense layer with a Sigmoid
activation function, resulting in a total of 13,963,069 parameters. For
optimization, we use the Adam optimizer, with a learning rate of 0.001,
a batch size of 16, and a binary cross-entropy loss function.

The training process was conducted under the TensorFlow 2.9
framework, utilizing NVIDIA Tesla V100-SXM2 32 GB GPUs as the
training hardware. We set the maximum number of training rounds to 5,
while using an early stopping strategy (patience value of 2 to reach the best
performance in round 3). The dataset is divided into a training set (29,222
samples), a validation set (3247 samples), and a test set (8118 samples).
With an optimal threshold of 0.43, the model achieved an accuracy of
0.9877 and a macro F1 score of 0.9866 on the test set, demonstrating

Table 1
Fine-tuning configuration of BERT Large model

Parameter Setting

Model Name BERT Large Uncased (HuggingFace)

Architecture 24 Transformer layers, 1024 hidden units,
16 heads

Parameters 335,143,938 (~335 M)

Tokenizer BertTokenizer

Max Sequence Length 128

Optimizer AdamW (Ir = le-5)

Batch Size 16

Epochs 6 (EarlyStopped at epoch 5)

Hardware Tesla V100-SXM2 (32 GB)

Test Accuracy 0.9933

Macro F1-Score 0.9933
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excellent capabilities in detecting fake news. Table 2 presents the complete
parameter configuration details of the FakeNews-CNN model.

3.3. BERT base fine-tuning

In this study, we conducted fine-tuning experiments on the BERT
Base and RoBERTa models to evaluate the performance of different
pre-trained Transformer architectures in the task of detecting fake news.
Both models used the same training parameters and data partitioning,
so the following discussion will use BERT Base as a representative
example. The RoBERTa model differs only in the source of its pre-
trained weights and underlying encoding structure, with all other
settings remaining consistent.

We used the BERT Base Uncased and RoBERTa Base models, both
of which include a 12-layer Transformer encoder, 768-dimensional hidden
units, and 12 attention heads, with approximately 102 million parameters.
The main differences between the two models are as follows: BERT uses
the WordPiece tokenizer and the “[CLS] Text [SEP]” input format, while
RoBERTa uses the BPE tokenizer and the “<s> Text </s>" input format.

During training, the Adam optimizer was used with a learning
rate of le-5, a batch size of 16, and a maximum of 4 training epochs.
Early stopping (with a patience value of 1) was enabled to prevent
overfitting. The dropout rate was set to 0.1, and the loss function was
sparse classification cross-entropy. Training was performed using a
NVIDIA Tesla V100-SXM2 32 GB GPU in the TensorFlow 2.9 framework.

We evaluated the model on 29,222 training samples, 3247 validation
samples, and 8118 test samples. Under the default threshold of 0.53, the
BERT Base model achieved a test accuracy of 0.9808 and a macro F1
score of 0.9807. The RoBERTa Base model achieved an accuracy of
0.9812 and a macro F1 score of 0.9810 under the same conditions, with

a ROC AUC 0f 0.9980, showing slightly better performance. Further, by
adjusting the threshold to 0.60, the RoOBERTa model’s accuracy improved
t0 0.9832, and its macro F1 score reached 0.9831, demonstrating stronger
fake news detection capabilities. Table 3 lists the detailed configuration
information for both models.

3.4. BERT(CLS) + XGBoost hybrid model

In this study, a hybrid feature extraction and classification
method is employed, where the pre-trained BERT model is first
utilized to extract the deep context-embedded features of the text,
and then XGBoost is applied for classification. Jane [25] pointed
out in a performance evaluation study of BERT, XGBoost, and the
hybrid model that the hybrid model combines the deep semantic
representation capability of the BERT model and the efficient decision
tree classification performance of the XGBoost model, effectively
improving classification accuracy and computational efficiency.

Table 3
Configuration of BERT base and RoBERTa base models
Parameter BERT Base RoBERTa Base
Model Name BERT Base RoBERTa Base
Uncased
Architecture 12-layer 12-layer

Transformer, 768
hidden units, 12
attention heads

~125 million

Transformer, 768
hidden units, 12
attention heads

Total Parameters ~110 million

Tokenizer BertTokenizer RobertaTokenizer
(HuggingFace) (HuggingFace)
Max Sequence Length 128 128

Input Format [CLS] Text [SEP] <s> Text </s>

Pre-trained Source Roberta-base- Roberta-base

Table 2
Model configuration of TextCNN (FakeNews-CNN)
Parameter Setting
Model Name FakeNews-CNN (TextCNN-based)
Vocabulary Size 138,087
Sequence Length 128
Embedding Dimension 100
Convolution Kernels [3, 4, 5] (128 filters each)
Pooling Strategy Global Max Pooling
Dropout Rate 0.5
Output Layer Dense (1), Sigmoid activation
Total Parameters 13,963,069
Optimizer Adam
Learning Rate 0.001
Batch Size 16
Max Epochs 5 (EarlyStopping at epoch 3, patience =
2)
Loss Function Binary Crossentropy

Framework & Version
Training Hardware

Train/Validation/Test
Size
Test Accuracy™

Macro F1-Score*

TensorFlow 2.9
NVIDIA Tesla V100-SXM2 32 GB GPU
29,222/3247/8118

0.9877 (with best threshold = 0.43)
0.9876

uncased
Optimizer Adam Adam
Learning Rate le-5 le-5
Batch Size 16 16
Max Epochs 4 (early stopped at 4 (completed all

epoch 2) epochs)
Early Stopping Patience = 1 Same as left

(based on validation
loss)

Loss Function

Sparse categorical
cross-entropy

Sparse categorical
cross-entropy

Dropout Rate 0.1 0.1
Framework & Version TensorFlow 2.9 TensorFlow 2.9
Training Hardware NVIDIA Tesla NVIDIA Tesla
V100-SXM2 32 V100-SXM2 32 GB
GB GPU GPU
Train/Val/Test Size 29,222/3247/8118 29,222/3247/8118
Test Accuracy* 0.9808 0.9812
(threshold = 0.53) (threshold = 0.53);
0.9832

Macro F1-Score*

0.9807

(threshold = 0.60)

0.9810 (default);
0.9831 (optimized)
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In our implementation, BERT Base Uncased is utilized as a feature
extractor (using TFBertModel and freezing all layers) to extract the CLS
token embeddings from the news text, resulting in a 768-dimensional
vector representation. The sequence length is set to 128, and the text is
processed using the BertTokenizer from the HuggingFace Transformers
library. Approximately 110 million parameters of the BERT model are
frozen during the feature extraction process and are used solely as feature
extractors.

For the classification task, we employ the XGBoost classifier,
explicitly using the Gradient Boosted Decision Tree (GBDT) algorithm.
The key hyperparameters include the following: the number of estimators
(n_estimators) is set to 200, the maximum tree depth (max_depth) is 6,
the learning rate (learning_rate) is 0.01, the sample subsampling rate
(subsample) is 0.8, and the feature column sampling rate (colsample
bytree) is 1.0. Due to the XGBoost API limitation, the early stopping
strategy cannot be realized. The feature extraction batch size was set to
16, and the model was trained on NVIDIA Tesla V100-SXM2 32 GB
GPUs using the TensorFlow 2.9 and XGBoost 3.0.0 frameworks.

The time efficiency of the entire processing flow is excellent: the
feature extraction phase took 361.07 s, while XGBoost training took only
29.32 s. As with the previous model, we used 29,222 training samples,
3247 validation samples, and 8118 test samples. With an optimization
threshold of 0.55, this hybrid model achieves a test accuracy of 0.9261
and a macro F1 score of 0.9258. Through feature importance analysis,
we found that the three most influential features are #720 (importance
0.0659), #512 (importance 0.0510), and #414 (importance 0.0226).

Table 4
Configuration of BERT + XGBoost hybrid model (fake news
detection task)

Parameter
Model Name

Feature Extractor

Setting
BERT + XGBoost Hybrid

BERT Base Uncased (TFBertModel,
frozen layers)

Table 4 presents the complete parameter configuration details of the
BERT + XGBoost hybrid model.

3.5. Logistic regression (word frequency features)

As a baseline model of traditional machine learning methods, this
study first employs the logistic regression algorithm for text authenticity
classification. During the experimental process, we constructed a large-
scale vocabulary list with approximately tens of thousands of dimensions
based on the training corpus. We extracted the TF (Term Frequency) and
TF-IDF (Term Frequency-Inverse Document Frequency) feature vectors
of each news text as input representations, respectively. To alleviate
the overfitting problem that may result from the high-dimensional
feature space, we implement appropriate dimensionality reduction on
the feature vectors and introduce L2 regularization terms to constrain
the model complexity. The logistic regression model quantitatively
evaluates the degree of contribution of each word to the authenticity of
the text by learning a set of linear weighting coefficients and then maps
the weighted sum to the predicted probability in the interval [0,1] with
the help of a sigmoid activation function and finally makes a binary
classification decision with a discriminant threshold of 0.5. This method
has the advantages of high computational efficiency and strong model
interpretability. Still, at the same time, it has the inherent limitation
of limited expressive ability, i.e., it can only capture simple linear
relationships between words and tags, and it is difficult to effectively
model the structured information and deep semantic features of text as
deep learning models do. Nevertheless, it has been demonstrated that
combining logistic regression with optimized feature representations
can still achieve a satisfactory level of performance in specific text
classification tasks [26]. Table 5 presents the parameter configuration
details and evaluation results of the logistic regression model.

3.6. Cross-validation

To robustly evaluate the generalization ability of the proposed
BERT Large model and address potential issues such as overfitting,
dataset leakage, and data homogeneity bias, we adopted a rigorous
stratified 5-fold cross-validation method. Specifically, we first divided

Feature Type CLS Token Embedding
(768-dimensional)

Sequence Length 128

BERT Parameters ~110 million (frozen during training)

Tokenizer BertTokenizer (HuggingFace

Transformers)
Classifier XGBoost Classifier
XGBoost Algorithm Gradient Boosting Decision Trees
(GBDT)
Key Hyperparameters n_estimators = 200, max_depth = 6,

Early Stopping
Batch Size
Framework & Version

Training Hardware

Feature Extraction Time
XGBoost Training Time
Train/Val/Test Size

Test Accuracy*

Macro F1-Score*

learning_rate = 0.01, subsample = 0.8,
colsample bytree = 1.0

Not available due to API limitation
16 (for feature extraction)
TensorFlow 2.9 + XGBoost 3.0.0

NVIDIA Tesla V100-SXM2 32 GB
GPU

361.07 s
29.32s
29,222/3247/8118
0.9261 (optimized threshold = 0.55)
0.9258

Table 5
Logistic regression model parameter configuration (fake news
detection task)
Parameter Configuration
Model Name Logistic Regression (TF-IDF Features)

Feature Extractor
Input Text
Regularization Type
Max Iterations
Framework & Version
Train/Test Split
Random Seed

Test Accuracy
Macro F1 Score
Weighted F1 Score
Class 0 Precision
Class 0 Recall
Class 1 Precision
Class 1 Recall

TfidfVectorizer
Title + Body Concatenation
L2 (Default)
1000
scikit-learn
32,469/8118
42
86.46%
86.37%
86.46%
85.37%
85.16%
87.39%
87.57%
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the dataset (40,587 samples) into a training-validation set (80%) and an
independent test set (20%) through stratified sampling. During cross-
validation, each fold maintained consistent category distribution, and
information leakage was prevented through model re-initialization.
Training used the same hyperparameters (learning rate 1 x 10~°, batch
size 16), and early stopping (patience value = 1) was employed to
monitor validation accuracy and prevent overfitting.

4. Results

4.1. Experimental setting and data set description

All experiments in this study were conducted in an environment
equipped with NVIDIA Tesla V100-SXM2 32 GB GPUs and
implemented using TensorFlow and PyTorch frameworks. To ensure
the reproducibility of the results, we have released the complete source
code, pre-processed data, and other content. The dataset comprises
approximately 40,587 news texts, including both real and fake news,
with headlines and body text as input features. These texts were divided
into a training set (32,469) and a test set (8118) after an 80%/20% split.

4.2. Comparison of model performance

We comprehensively compare the performance of the above five
models in the fake news detection task using the following evaluation
metrics: Accuracy, Precision, Recall, and the macro-averaged F1 score
(Fl-score). The performance metrics of each model are shown in
Table 6.

From the results in the table, it is evident that the BERT Large
fine-tuning model performs best, achieving accuracy and F1 score of
approximately 99.3%, which is significantly better than the other models.
Its precision and recall also reach about 99.3%, reflecting excellent
classification ability and generalization performance.

Figure 1 shows the confusion matrix of the BERT Large model, and
it can be visualized that the model performs very well on both positive and
negative categories, with 99.2% True Negative and 99.4% True Positive.

4.3. Training process and optimization strategy analy-
sis of BERT Large model

The exceptional performance of the BERT Large model mainly
stems from its massive parameter scale (approximately 340 million
parameters) and deep Transformer architecture, which enable it to
capture rich linguistic patterns and semantic information during pre-
training. Figures 2 and 3 display the model's accuracy and loss trends
during training.

As shown in Figure 2, the training accuracy (solid blue line)
increased rapidly in the first two epochs, rising from an initial ~95.5%

Table 6
Performance comparison of different models on fake news
detection task

Model Accuracy Weighted
No. Model (%) F1-score (%)
1 BERT Large (Fine-tuned) 99.33 99.33

2 TextCNN 98.77 98.76

3 RoBERTa (Fine-tuned) 98.00 98.00

4 BERT (CLS) + XGBoost 92.31 92.26

5 Logistic Regression (TF 86.46 86.46

features)
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Figure 1
Confusion matrix of BERT Large model
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to 98.9%. Although the growth rate slowed afterward, the accuracy
continued to improve steadily, eventually surpassing 99.9% by the 5th
epoch. The validation accuracy (dashed green line) started at ~98.9% in
the first epoch, peaked at approximately 99.3% by the 3rd epoch, and
then stabilized, indicating that the model had nearly reached its optimal
generalization performance at this stage.

Figure 3 shows the loss curves, where the training loss (solid red
line) consistently decreases from an initial value of 0.10 to near zero. In
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contrast, the validation loss (dashed orange line) reaches its lowest point
at the 3rd epoch before slightly increasing, suggesting mild overfitting
in later training stages. However, given the stable validation accuracy,
this slight overfitting had a negligible impact on model performance.

4.3.1. Hyperparameter optimization analysis for BERT Large model

To achieve optimal performance, we conducted detailed
hyperparameter tuning for the BERT Large model. Through multiple
rounds of experiments, we identified the following optimal configuration:
the batch size of 16, the learning rate of le-5, and six training epochs.
Additionally, we implemented these optimization strategies:

Learning rate warmup and decay: A linear warmup was applied
for the first 10% of training steps, followed by a linear decay, which
helps stabilize the model during initial training and avoids local optima.

Gradient clipping: A maximum gradient norm of 1.0 was set to
prevent gradient explosion effectively.

Weight decay regularization: A weight decay parameter of 0.01
was applied to mitigate overfitting.

Early stopping: With patience set to 2, training was stopped when
validation loss showed no improvement for two consecutive epochs.
Table 7 presents the impact of various hyperparameter settings on the
performance of the BERT Large model.

Figure 4 visualizes the impact of two key hyperparameters, learning
rate and batch size, on the model performance. It can be observed that
the combination of a learning rate of 1e-5 and a batch size of 16 yields
the best performance in this task.

4.3.2. Decision threshold optimization analysis

By default, the binary classification model uses a decision threshold
of 0.5. We fine-tuned the threshold for the BERT Large model, exploring
the range from 0.40 to 0.60. As shown in Table 8, when the threshold was
adjusted to 0.53, the model's accuracy on the test set improved slightly
from 99.32% to 99.33%.

Figure 5 illustrates the curve of the impact of the decision threshold
on the various performance metrics of the model. From the figure, it can
be observed that as the threshold value increases from 0.40 to 0.60, the
precision rate shows an increasing trend, while the recall rate gradually
decreases, which is in line with the typical trade-off relationship between
precision rate and recall rate. At a threshold value of 0.53, the precision rate
and F1 score reach their optimum, indicating that the model has achieved
the best balance between positive and negative category predictions at
this point.

Table 7
The impact of hyperparameters on BERT Large model
performance
Validation Training time/
Hyperparameter Value accuracy (%) epoch
Learning Rate le-4 98.9 780 s
le-5 99.3 804 s
le-6 98.7 805's
Batch Size 8 98.8 1135 s
16 99.3 804 s
32 99.0 625 s
Epochs 99.1 2412 s (total)
6 99.3 4824 s (total)
10 99.3 8040 s (total)
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Table 8
Effect of decision threshold on BERT performance
Accuracy  Precision F1-score
Threshold (%) (%) Recall (%) (%)
0.40 99.32 99.30 99.32 99.32
0.45 99.32 99.31 99.32 99.32
0.50 99.32 99.32 99.32 99.32
0.53 99.33 99.33 99.33 99.33
0.55 99.31 99.34 99.30 99.31
0.60 99.28 99.37 99.26 99.28
Figure 5
Performance metrics vs. decision threshold for BERT Large model
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4.3.3. Cross-validation result analysis

The results of the stratified 5-fold cross-validation are summarized
in Table 9. The model demonstrated high and consistent performance
across all folds, with an average accuracy of 99.16% (+0.09%), an
average Fl-score of 99.16% (£0.09%), and an average ROC-AUC of
99.97% (£0.01%). Additionally, an independent test set evaluation yielded
an accuracy of 99.22%, affirming the robustness and reliability of our
BERT Large model.

4.4. Model interpretability analysis

To gain a deeper understanding of the decision-making mechanism
of the BERT Large model in fake news detection, this study employs
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Table 9

Performance of BERT Large on stratified 5-fold cross-validation

Accura- Precision Recall F1-score ROC-
Fold cy (%) (%) (%) (%) AUC (%)
1 99.03 99.03 99.03 99.03 99.97
2 99.29 99.29 99.29 99.29 99.98
3 99.08 99.08 99.08 99.08 99.98
4 99.20 99.20 99.20 99.20 99.98
5 99.18 99.18 99.18 99.18 99.96
Mean 99.16 99.16 99.16 99.16 99.97
*SD)  (+0.09) (+0.09)  (+0.09) (+0.09) (+0.01)

the attention visualization technique to analyze the model's internal
representation systematically. This interpretive analysis not only helps
to reveal the "black box" characteristics of the deep learning model but
also provides a theoretical basis for improving the performance and
credibility of the model.

4.4.1. Attention visualization methods

In this study, we visualize the multi-level attentional distribution of
one real news item and one fake news item, both of which were correctly
classified by the model in the test set. We focus on the interaction between
[CLS] tokens and other lexical elements in the text at the last level of the
model's self-attention mechanism, as the representation of [CLS] tokens
directly determine the final classification results. Specifically, we employ
three complementary visualizations:

Multi-head attention heatmap: Independently displaying the
weight distribution of 16 attention heads, revealing the specialized
division of labor among different attention heads in information
extraction;

Average attention heatmap: aggregates the weight distribution
of all attention heads and highlights word elements with weight >0.01
in red boxes for quantitative comparison;

Attention word clouds: linearly mapping average weights with
word metafonts to quickly present model attention focus.

Figure 6 illustrates the comparison of attention distribution between
real news and fake news, highlighting the significant difference in
weight allocation between the two. It can be observed that the attention
distribution of real news is more balanced, while fake news shows
extreme concentration.

4.4.2. Analysis of differences in semantic features

1) The real news attention model

The model is characterized by "multi-point synergy" in real
news. As shown in Figure 7, the attention weights are distributed
over multiple semantic key points, indicating that the model evaluates
multiple factual clues to determine the truthfulness of the news. By
systematically analyzing these attention distributions, we summarize
the following semantic features that receive significant attention, as
shown in Table 10.

This distribution of attention shows that the model spreads its
attention over multiple verifiable factual markers, forming a discriminative
mechanism that corroborates each other. Particularly noteworthy is that
the authoritative source marker receives the highest attentional weight,
suggesting that the model has learned to use authoritative sources as an
indicator of truthfulness.

Figure 8 further visualizes the attention distribution of real news
in the form of word clouds, in which the prominence of word elements
such as “reuters”, “votes”, and “madrid” verifies that the model pays
high attention to authoritative sources and specific event descriptions.

2) Fake news attention model

In contrast to real news, the fake news samples exhibit the
characteristic of “single-point over-concentration”. As shown in

Figure 6
Real vs. fake news attention distribution comparison
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Figure 7
Average attention distribution—real news-real news—correct
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Table 10

Attention-based semantic feature analysis of real news samples

Typical high-weight Average
Semantic category lexical units weight
Authoritative information reuters 0.19
source
Geographical location madrid, catalonia, "(" 0.10-0.14
marker
Event description votes, referendum 0.05-0.06
Syntactic marker ", " 0.04-0.10

Figure 8
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Figure 9, attention is mainly focused on a few lexical elements,
especially [CLS] tags. Analyzing this unique pattern of attention
distribution, we summarize the main focuses of attention in fake news
as shown in Table 11.

Table 11
Attention-based semantic feature analysis of fake news samples
Feature Typical tokens Weight
[CLS] Extreme concentration [CLS] 0.36
Emotional/Exaggerated markers wow,"!" 0.02
Vague professional terms attorney, major 0.02
Controversial figures trump, fired <0.01

This significant difference suggests that the [CLS] marker itself
receives an unusually high attentional weight in the fake news sample,
a phenomenon that may reflect the model’s “information deficit” in the
absence of reliable factual markers. At the same time, the model tends
to focus on emotional and hyperbolic markers as potential signals of
false content.

The word cloud visualization in Figure 10 visualizes the attention
focus of fake news, where the extreme prominence of [CLS] markers and
the secondary attention of word elements such as “wow” and “trump”
further validate the results of our analysis.

4.4.3. Multi-pronged synergistic mechanisms

The 16 attention heads of the BERT Large model exhibit a clear
specialized division of labor, forming a distributed cognitive structure.
By analyzing Figures 11 and 12 in detail, we found that.

Header 6 and Header 2: specifically capture authoritative
information sources, and the attention weights of "reuters" are as high
as 0.44 and 0.41, respectively, indicating that the model has taken the
reliability of the information sources as an important indicator for judging
authenticity.

Head 1: Focusing on geolocation information in real news
scenarios, the attentional weights of “madrid”, “spain,” and “reuters”
are 0.32, 0.13, and 0.17, respectively, to form contextual associations
with geographic entities;

Head 12: Exhibits multifocusing characteristics, focusing on both
the topic content word “votes” (0.12) and the information source "reuters"
(0.29), and constructing topic-source associations for validation;

Head 8: Attentional weight of 0.13 for the classification marker
"[CLS]" in the fake news scenario, indicating that this head is directly
involved in the final classification decision;

Heads 1, 5, and 15: The word “attorney” shows the same attentional
weight (0.07) in fake news, showing a particular sensitivity to legal terms.

Notably, the maximum attention weight triggered by real news
(0.44) is significantly higher than that of fake news (0.13), implying that
the model has a more deterministic attentional pattern for real content.
This multi-head synergistic mechanism enables the model to assess the
authenticity of the text from multiple semantic and pragmatic dimensions
at the same time, realizing a complex judgment process similar to that of

Figure 10
Attention word cloud—fake news—fake news—correct prediction
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Figure 11
BERT Large attention distribution -real news (predicted: real)
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human experts. The specialized division of labor among different heads
enhances the model’s robustness, enabling it to maintain high accuracy
despite insufficient factual cues or strong emotional noise.

Our findings provide an interpretable perspective on Transformer-
based news veracity assessment, revealing how attentional mechanisms
can distinguish between true and false content by developing specialized
attention patterns that are highly consistent with journalistic verification
principles.

Figure 13 presents a comprehensive comparison of the attention
distribution between real news and fake news, highlighting the key
difference between the two models: real news is characterized by a
“multi-point synergistic”” mechanism, whereas fake news is characterized
by a “single-point over-concentration.” This comparison provides visual
evidence for the decision-making mechanism of the model.

These visualization results offer more profound insight into the
model's decision-making process. Specifically, BERT Large assigns higher
attention weights to credibility-indicative elements such as named entities
(e.g., "Reuters") and geospatial markers (e.g., "Madrid"), suggesting that
the model prioritizes factual and contextual cues. In contrast, fake news
samples tend to trigger more centralized attention patterns—especially
over the [CLS] token or emotionally charged words—implying the
model's reliance on superficial cues when clear factual markers are absent.
This behavior underscores the model's ability to differentiate between
semantically rich versus shallow content structures, which aligns with
its high performance in classification accuracy.
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4.4.4. Quantitative assessment of attention-based interpretability

To complement the visual attention map presented earlier, we
conducted a quantitative analysis using four metrics widely adopted
in explainable NLP research (AOPC, Sufficiency, Comprehensiveness,
Attention Entropy & Sparsity).

AOPC is a key metric for evaluating the quality of feature
importance explanations, assessing the effectiveness of explanations by
calculating the area of performance degradation as important features are
progressively removed. As shown in Figure 14, we conducted a statistical
analysis of the AOPC score distributions for real and fake news, and
further employed the Sufficiency and Comprehensiveness metrics to
assess the fidelity of attention explanations.

The experimental results show that the AOPC scores of real
news are significantly higher than those of fake news (p < 0.0001),
with medians of 0.25 and 0.065, respectively. This difference indicates
that the model forms a more concentrated and meaningful attention
pattern when processing real news, while the attention distribution
of fake news is relatively dispersed, with weaker ability to locate
key information. A high AOPC score indicates that the model can
accurately identify the text fragments that are most important for
classification decisions.

Sufficiency metric: Measures whether using only features
identified as important is sufficient to maintain the model's predictive
performance. Experimental results show that fake news performs
significantly better than real news on the sufficiency metric (0.91 vs.
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Figure 12
BERT attention distribution—fake news (predicted: fake)
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Attention distribution comparison between real and fake news samples (Head 3)
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0.36), indicating that fake news detection often relies on a few key
linguistic features or patterns.

Comprehensiveness metric: Assesses the extent to which model
performance declines after removing important features. Real news
performs better on this metric (0.63 vs. 0.045), indicating that real news
processes information more comprehensively and requires consideration
of a broader range of text features.
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To further understand the characteristics of attention distribution,
we also calculated the attention entropy and sparsity metrics. As shown
in Figure 15, the attention entropy distributions of real and fake news,
as well as the relationship between attention sparsity and AOPC scores,
are illustrated.

It can be observed that there are significant differences in the
attention entropy distributions of real news and fake news. The attention
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Figure 14
Attention-based interpretability metrics analysis
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Attention entropy and sparsity analysis
Attention Entropy Distribution Sparsity vs AOPC
0.40 A
mmw Real News [ )
Fake News
0.35
4
0.30 A . I Real
0.25
31 4 ) 153
> S N
p=) o >
3 9 0.20 1 =
=1 (&) 17
@ 2 =
] 8 z
21 < 0.15 °
J °
0.10 Fake
11 °
0.05 -
°
0.00 o
0-—== T T T T T T T T T T
1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 0.5 0.6 0.7 0.8 0.9 1.0

Attention Entropy

entropy of real news is primarily concentrated in the 2.75-3.0 range, while
the distribution of fake news is relatively more dispersed, with a peak
in the 3.0-3.25 range. Higher attention entropy indicates that the model
distributes attention more evenly when processing fake news, making it
difficult to form a clear focus.

From the relationship between attention sparsity and AOPC scores,
it can be observed that real news (blue dots) is primarily distributed in the
high sparsity, high AOPC region, indicating that the model can effectively
focus on key information. Fake news (red dots) exhibits low sparsity and
low AOPC characteristics, with a more dispersed attention distribution.

Based on the above quantitative analysis results, we can draw the
following conclusions:

Differentiated attention patterns: Real news and fake news exhibit
significant differences in attention distribution, providing quantitative
support for the model's interpretability.

Asymmetry in explanation quality: Real news detection achieves
higher AOPC scores and comprehensiveness, indicating that the model
can form more reliable and comprehensive explanations when processing
real news.

Differences in feature-dependent strategies: Fake news detection
tends to rely on a few key features (high sufficiency), while real news

614

Attention Sparsity

detection requires more comprehensive information integration (high
comprehensiveness).

Attention focusing capability: The positive correlation between
high sparsity and high AOPC confirms the effectiveness of the model's
attention mechanism, particularly in the task of detecting real news.

These quantitative evaluation results not only validate the
effectiveness of our model's attention mechanism but also provide
quantitative evidence for understanding the fundamental differences
between real news and fake news in terms of linguistic features.

4.4.5. Limitations and prospects

Although attentional visualization provides important insights for
model decision-making, there are still some limitations:

Attention # causation: high weight does not necessarily
represent a deterministic feature and needs to be cross-validated with a
combination of gradients, probe networks, and other methods;

Granularity limitation: the current analysis focuses on the lexical
meta-level and does not yet fully capture inter-sentence and paragraph-
level semantic relationships;

Domain adaptation: The above attention model is mainly based
on political news samples, and migration to domains such as finance and
health still requires systematic evaluation.
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Future research can be deepened in three aspects: (1) fusing multi-
dimensional interpretation means such as gradient accumulation and
integrated probes; (2) designing interpretability-driven distillation and
fine-tuning strategies; and (3) constructing a hybrid detection framework
that combines expert knowledge and attention analysis to enhance model
transparency and practicality.

In summary, explain ability analysis conducted through attention
visualization indicates that BERT-Large prioritizes specific keywords
related to source credibility. Attentional visualization provides transparent
evidence of BERT Large's decision-making process in fake news detection,
laying the methodological foundation for the development of a more
trustworthy and auditable Al system.

4.5. Comprehensive performance comparison of mul-
tiple models

To visualize the performance of each model on different
performance metrics, Figure 16 presents a comprehensive comparison
of the five models on six key metrics in the form of a radar chart.

It is visible in the radar chart:

1) The BERT Large model (green line) demonstrates its superior
classification ability by leading across the board in all four
classification performance metrics: accuracy, precision, recall and
F1 score, forming the outermost polygon. However, in terms of
training speed and inference speed, the performance is relatively
weak due to the large number of parameters.

The TextCNN model (red line) is second only to BERT Large in
classification performance, with an accuracy of 98.7%. However, its

2)

Figure 16
Model performance comparison

Accuracy
00%

Inference Speed Precision

most significant advantage lies in the training and inference speed,
especially since its inference speed is outstanding, attributed to its
concise convolutional network structure and parallel computing
capability.

The BERT/RoBERTa model (blue line) performs well overall, with
balanced indicators and an accuracy of 98.0%. Its performance
is slightly lower than that of BERT Large, but higher than other
models, reflecting the strong ability of the basic pre-trained model.
The BERT(CLS) + XGBoost model (yellow line) performs next
best, with an accuracy of about 92.3%. While this feature extraction
and traditional machine learning approach has some advantages in
inference speed, the classification performance is significantly lower
than that of the end-to-end deep learning approach.

The logistic regression model (purple line) exhibits the weakest
performance across all classification metrics, with an accuracy of
approximately 86.5%. Despite its fast training and inference speed,
the simple word frequency features are challenging to capture the
complex semantic and contextual information in the text, leading to
its limited performance on the fake news detection task.

3)

4)

5)

4.5.1. Error analysis and case studies

To gain a deeper understanding of the strengths and weaknesses
of each model, we conducted an error analysis of BERT Large and
logistic regression, the two models with the most significant performance
differences, by randomly selecting 10 samples from the test set where
the two judgments were inconsistent. Table 12 shows some of the results
of the case studies.

Based on the error analysis, we classified model errors into four
categories: hyperbolic description misclassification, sentiment bias
misclassification, factual inconsistency misclassification, and linguistic
complexity misclassification. Figure 17 shows the distribution of each
model on these error types.

As shown in Figure 17:

1) The BERT Large model exhibits a lower misclassification rate across
all error types, particularly in cases of high linguistic complexity,
with a misclassification rate of only 5%, which is significantly lower
than that of other models. This indicates that the Large pre-trained
model has stronger language comprehension ability and can parse
complex linguistic expressions correctly.

2) The TextCNN model performs better in factual inconsistency and
Training Speed Recall linguistic complexity misclassification but has a relatively high
misclassification rate of 25% when dealing with sentiment-biased
cases. This may be because CNN focuses more on local features and
F1-Score has a limited understanding of sentiment transitions within a given
M BERT Large WM BERT+XGBoost Cont?)ft' L .
BBERT B Logistic Regression 3) Traditional models (e.g., logistic regression) perform poorly across
B TextCNN all error types, particularly in sentiment bias misclassification, where
Table 12
Model error case analysis examples
BERT
True Large pre- Logistic regression
News text excerpt label diction prediction Analysis
“Study claims global warming Fake (0) Fake (0) Real (1) Logistic regression focuses on keywords “study”, “global
will cause sea levels to rise 10 warming” while ignoring exaggerated values
m...”
“Antarctic ice cap suddenly melts  Fake (0) Fake (0) Real (1) Logistic regression cannot understand the unreasonable
significantly within 24 hours...” relationship between “24 hours” and “significant melt-
ing?’
“NASA’s latest detection shows Real (1) Real (1) Fake (0) Logistic regression may consider the combination of

liquid water exists on Mars...”

“Mars” and “liquid water” as indicators of fake news
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Figure 17
Error distribution analysis across models
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the error rate reaches as high as 90%, indicating that it is challenging
to comprehend the nuances and transitions in sentiment expression.

4.5.2. Computing resources and performance balance analysis

Considering the limitation of computational resources in practical
application scenarios, we have comparatively analyzed the resource
consumption and performance of each model, as shown in Table 13.

To visualize the trade-off between the model's accuracy and
resource consumption, we constructed the efficiency analysis graph
shown in Figure 18. The horizontal axis of the graph represents the
resource consumption index, which combines the number of parameters,
training time, and memory occupation, and the vertical axis represents
the accuracy rate.

As shown in Figure 18:

1) The TextCNN model is positioned near the efficiency frontier,
representing the optimal balance between accuracy and resource
consumption. With 98.7% accuracy and very low resource
consumption, the model offers significant advantages in real-world
deployments.

2) Although the BERT Large model achieves the highest accuracy rate,
it also consumes the largest amount of resources. It is best suited for
scenarios that require extremely high accuracy rates and substantial
resources.

3) Although the logistic regression model has the lowest resource
consumption, its accuracy rate lags significantly behind and
is not suitable for application scenarios with high accuracy
requirements.

Table 13
Model computational resources and performance comparison

Inference
Training speed
Parame- time (/1000 Memory
Model ters (total) items) Accuracy usage
BERT 340 M 4824 s 118 s 99.3% 52GB
Large
TextCNN 1476 M 130's 1s 98.7% 0.3 GB
BERT/ 110 M 1005 s 87s 98.0% 1.8 GB
RoBERTa
BERT(- - ~500's 2s 92.3% 1.5GB
CLS) +
XGBoost
Logistic <10K ~10s <ls 86.5% 0.1 GB
Regression
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Figure 18
Model efficiency analysis: accuracy vs. resource consumption
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4) The BERT/RoBERTa and BERT + XGBoost models are below the
efficiency frontier, indicating that they have room for improvement
in resource utilization efficiency.

In addition, we evaluated computational costs and found that
TextCNN, with its smaller architecture, achieved significantly faster
inference speeds compared to BERT Large (0.06 ms per input vs. 10.32
ms, a 172-fold improvement in speed). BERT Large achieved the highest
accuracy (99.33%), while TextCNN demonstrated highly competitive
performance (98.60%), with significantly reduced computational
requirements, making it more suitable for resource-constrained
environments or real-time applications.

5. Discussion

This study systematically evaluates and compares deep learning
models for fake news detection, with a particular focus on the balance
between accuracy, efficiency, and interpretability. The BERT Large
model emerged as the most accurate, achieving an impressive 99.33%
accuracy due to its extensive parameterization and powerful semantic
representation capabilities. These results significantly surpass
traditional models, such as logistic regression (86.46%), and hybrid
approaches, like BERT + XGBoost (92.31%). The TextCNN model,
despite its simpler architecture and fewer parameters, demonstrated a
competitive accuracy of 98.77%, highlighting its utility in resource-
constrained environments and validating findings from previous
research that emphasized the practicality of lightweight CNN-based
models [15, 24].

Contextualizing these findings within the existing literature,
our results align with prior studies emphasizing the superior semantic
comprehension of transformer-based models (e.g., BERT and RoBERTa)
compared to shallow machine learning approaches [16, 18]. The robust
performance of BERT Large corroborates the established effectiveness
of fine-tuning large-scale pre-trained models for domain-specific tasks,
particularly in fake news detection [17, 23]. The TextCNN results
also confirm the value of capturing local textual features efficiently,
reinforcing conclusions drawn from previous literature on convolutional
architectures [24].

Despite significant advances demonstrated here, several limitations
must be acknowledged. The dataset's potential bias, primarily focused
on political news, may limit its generalizability across other domains,
such as health or finance. Additionally, despite employing advanced
threshold optimization techniques, imbalances in news categories remain a
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challenge. Future studies may explore cross-domain adaptation strategies
and develop hybrid architectures that incorporate multimodal data to
enhance robustness against diverse and multimodal fake news content
[11]. For example, these findings could inform the development of
improved filtering algorithms for social media platforms or help create
fact-checking tools.

The implications of this study are substantial for both academia
and industry. Practically, platforms handling vast amounts of user-
generated content can significantly benefit from deploying BERT Large
when computational resources permit. Conversely, environments with
constrained computational capabilities, such as mobile or edge computing
scenarios, can effectively utilize TextCNN to achieve near-state-of-the-
art performance with minimal resource requirements. Furthermore,
the interpretability analysis through attention visualization provides
crucial insights into model decision-making, increasing transparency and
trustworthiness in critical application scenarios, thus addressing ethical
concerns prevalent in Al deployments.

The findings of this study have direct implications for real-world
systems, particularly in the design of automated content moderation
tools, misinformation flagging systems, and Al-assisted fact-checking
platforms. For example, platforms like Twitter/X or Facebook could
integrate models like BERT Large for high-accuracy offline verification
pipelines. At the same time, TextCNN could be deployed in real-time
detection modules on mobile or edge devices due to its computational
efficiency. Furthermore, attention-based interpretability could be
embedded into transparency dashboards to help moderators and end-users
understand why content is flagged, enhancing trust and accountability
in Al-driven decision systems.

Recent developments in generative Al present compelling
opportunities for enhancing the security and privacy of mobile
crowdsensing (SPPMCS) systems through the generation of synthetic
data, thereby mitigating risks related to data leakage and malicious
attacks. Yang et al. [27] investigate this integration by identifying core
challenges, proposing targeted solutions, and introducing a generative
Al-based framework for data protection, supported by simulation-based
validation. Complementing this work, Yang et al. [28] explore the
application of attention mechanisms within mobile crowdsensing (MCS),
demonstrating their effectiveness in optimizing task allocation, privacy
safeguards, and data transmission. Their attention-driven framework
significantly improves network performance in large-scale MCS
environments and outlines key directions for future research. Collectively,
these studies highlight the transformative potential of advanced Al
methods—such as generative and attention-based models—for building
secure, interpretable, and high-performance systems, offering relevant
parallels to the optimization and interpretability strategies employed in
our fake news detection framework.

This research engages deeply with ongoing concerns about
algorithmic opacity and public accountability. Building on the framework
proposed by Torabi Asr and Taboada [29], who emphasize the importance
of both automated detection and public education, we argue for the
development of interactive, Al-driven media literacy tools that simulate
fake news detection using models such as BERT. These tools can enhance
user trust and foster critical thinking by revealing the linguistic cues and
decision processes that Al systems rely on to flag deceptive content.
Embedding such tools in school curricula, public libraries, or even within
social media platforms could cultivate cognitive resilience and empower
individuals in the face of increasingly sophisticated misinformation
campaigns.

Reflecting on the initial research objectives presented in the
Introduction, this study successfully addressed key technical challenges
identified, including model generalization, computational efficiency, and
interpretability. Our comparative analysis framework and systematic

optimization strategies provided practical solutions and benchmarks that
are useful for further research.

While this study focuses primarily on fake news in the political
domain, the proposed models—particularly BERT Large and TextCNN—
are inherently domain-agnostic due to their underlying language modeling
capabilities. This allows for their extension to other domains such as
health, finance, and science misinformation. To support future real-
world deployment, we plan to conduct cross-domain evaluations using
datasets from diverse fields. This line of investigation will help assess
model robustness, adaptivity, and generalizability across heterogeneous
content environments.

In conclusion, this research substantiates the superior capability of
transformer-based pre-trained models in detecting fake news, particularly
highlighting the trade-off between model complexity and operational
efficiency. TextCNN provides a viable alternative in efficiency-sensitive
contexts. Future research directions include enhancing multimodal
integration, exploring adversarial robustness, and refining interpretability
techniques, thereby moving towards the development of comprehensive
and practical fake news detection solutions that are adaptable across
various operational contexts.

6. Conclusion

This study demonstrates the substantial effectiveness of deep
learning models, particularly BERT Large and TextCNN, in accurately
detecting fake news, achieving remarkable accuracy rates of 99.33% and
98.77%, respectively. By systematically comparing various pretrained
and lightweight models, the research fills a significant gap in evaluating
the trade-offs between accuracy, efficiency, and interpretability while
also introducing a comprehensive framework for hyperparameter
optimization and interpretability analysis. Nonetheless, the research
acknowledges limitations related to potential dataset biases, primarily
centered on political news, which may affect generalizability. These
limitations, however, present valuable avenues for future investigations,
including multimodal content integration and cross-domain adaptability.
Ultimately, this research provides a robust methodological foundation
for developing more accurate and transparent fake news detection
systems, thereby significantly enhancing public trust and informed
decision-making in information-intensive environments, such as social
media platforms and news dissemination services.

Recommendations

The finding revealed that the lack of training for both teachers
and students was the main factor that prevented them from using
educational technology tools in teaching and learning Ecology.
Therefore, training on educational technology for both teachers and
students is recommended. Since educational technology tools have
arisen excitement and curiosity amongst students, they recommended
other module tutors to use educational technology tools as well.
Educational technology tools integrated in the module will be further
replicated by student’s teacher during teaching practice or as a full
fledge teacher. Therefore, tutors were recommended to use variety of
educational technology tools in learning, teaching and an assessment.
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