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Abstract: Precision agriculture relies heavily on crop selection to improve sustainability and increase productivity. The increasing problems
of soil erosion, climate change, and water shortages have made it crucial to optimize crop selection through cutting-edge methods to increase
farm yields and enhance resource efficiency. This research attempts to develop machine learning (ML) models, such as logistic regression (LR),
Gaussian Naive Bayes (GNB), support vector classifier (SVC), K-nearest neighbors (KNN) classifier, decision tree (DT) classifier, extra tree
(ET) classifier, random forest (RF) classifier, and bagging classifier, to optimize crop selection for precision agricultural systems. A large dataset
comprising information on crop recommendations, weather patterns, and soil characteristics was used in this research. The data is preprocessed
using the interquartile range (IQR) method to remove outliers and ensure that all features contribute equally to the model. Linear discriminant
analysis (LDA) is used to extract the important features for feature extraction. The RF classifier was determined to be the most effective method
for raising the precision of crop selection forecasts. This framework is designed to provide actionable insights for selecting optimal crops based on
environmental conditions and resource availability. The suggested model is a valuable tool for crop selection optimization in precision agriculture,
as preliminary results show that it outperforms traditional ML models in terms of F1-score, precision, accuracy, and recall at 99.88% (all measures).
According to the research, modern ML algorithms can revolutionize agricultural practices and provide a sustainable solution to increase crop

output while reducing resource wastage.
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1. Introduction

Several agricultural techniques were used to cultivate crops.
Around the world, traditional farming is mainly practiced. In this,
methods suggested by experienced farmers are used. These methods are
labor intensive and time consuming because they are not precise enough.
The use of new methods and technologies to improve agricultural
activities is referred to as agricultural revolution [1]. Agricultural
activities can help farmers better utilize resources, increase crop yields,
and improve soil quality. Agriculture is the most important sector and
the foundation of the economies for most countries in the world [2].
To enhance productivity and efficiency in resource utilization, the
agricultural industry is increasingly making use of crop simulations and
decision-making technologies. Artificial intelligence (AI) can transform
the agricultural industry by leveraging modern technologies to predict
agricultural productivity [3]. Farmers can improve yields by utilizing Al
technologies to monitor commodity prices, manage soil and minerals,
identify plant diseases, control pests and weeds, estimate crop yields,
select crop varieties, and provide real-time information about agro-
product marketing [4]. Precision agriculture can increase productivity,
reduce soil deterioration, improve water efficiency, minimize the use of
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chemicals in cultivation, and promote the use of contemporary farming
techniques to reduce costs, improve quality, and increase quantity of
crop production [5]. By providing farmers with accurate agricultural
yield forecasts for the following year through proper planning for
optimal crop growth, issues in crop production may be mitigated.
Accurate forecasting of crop yields is now essential for farmers to make
wise decisions. Figure 1 shows the challenges of crop selection in ML
techniques.

To determine how much crops can be grown in a given area, several
factors need to be considered, including crop management techniques,
weather, and soil type. A reliable forecast helps estimate crops, which
the government can use to formulate short-term and long-term policies
aimed at reducing food shortages and import-export strategies centered
on the agricultural industry [6]. Farmers can use crop yield estimates to
increase production under favorable conditions and reduce production
losses under unfavorable ones. Optimistic crop production forecasts are
influenced by many different factors, including market pricing, weather,
pesticides, fertilizers, along with farmers’ actions and procedures [7].
Agricultural yield can be estimated by combining climate, area-wise
production, rainfall, and statistical data on yields from previous years.
Evaluation of the effects of agro-climatic conditions on the production
of winter plant varieties, mainly grains, is the main challenge in the
moderate temperature zone [8]. Figure 1 shows the most important
challenges for using machine learning (ML) in the selection of crops.
It shows elements such as diverse soil conditions, unreliable weather
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Figure 1
Challenges of crop selection in ML techniques
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patterns, access to water, and compatibility of crops. These elements
pose difficulties in making accurate predictions and require strong
preprocessing, feature selection, and model tuning to ensure reasonable
and sustainable agricultural decision-making.

Crop growth is influenced by three important factors: season,
soil, and water. Soil with high nutrient content and high water-holding
capacity helps crops thrive. However, the season-related weather can
significantly alter crop output expectations at any time [9]. Farmers
find it challenging to determine how to achieve greater adaptability
and sustainability due to large climate variability. Agriculture needs
to produce more with fewer inputs, according to cutting-edge farming
methods and contemporary technologies. Thus, estimating crop yield
is essential to determine food security problems [10]. This research
aims to optimize crop selection for precision agricultural systems and
develop ML models, which include Gaussian Naive Bayes (GNB),
logistic regression (LR), K-nearest neighbors (KNN), decision tree
(DT) classifier, extra tree (ET) classifier, random forest (RF) classifier,
support vector classifier (SVC), and bagging classifier.

1.1. Contribution of this research

1) To create and use a large dataset that contains vital details on crop
recommendations, weather trends, and soil properties, allowing for
accurate analysis to maximize crop selection in precision agriculture.

2) The interquartile range (IQR) approach can be used to preprocess
data, eliminate outliers, ensure that all characteristics contribute
effectively to ML models, and enhance model performance.

3) The model may focus on the most crucial factors influencing crop
selection by using linear discriminant analysis (LDA) to identify the
most pertinent features.

4) Arange of ML models, including LR, DT, bagging, and RF classifiers,
are used to implement sophisticated classification approaches. When
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it comes to forecasting the crop with the greatest selection, the RF
classifier is the most accurate and effective.

This research is organized as follows: Section 2 presents related
works on revolutionizing agriculture through smart farming using
ML techniques. Section 3 outlines the current methods and clearly
explains the ML techniques using the optimal crop selection process.
In Section 4, we demonstrate that the proposed model performs better
than conventional ML models in terms of prediction accuracy. The
conclusion is given in Section 5.

2. Literature Review

In the state of Tamil Nadu, rainfall patterns were the primary
determinant of crop output. These patterns were used to determine
various crops according to soil pH, temperature, and levels. The
research by Lad et al. [11] used an artificial intelligence (Al) approach
to assess crop yield. The dependence of the model on regional rainfall
patterns, which cannot translate well to other regions with distinct
climates, is a major drawback. Choudhary et al. [12] recommended a
methodology that allows for crop selection based on environmental
and economic considerations to increase agricultural yields and meet
the country’s growing food needs. To forecast crop yield, the proposed
model examined variables such as temperature, humidity, rainfall, soil
nutrients, and soil pH. With the help of the model, farmers can maintain
soil nutrient levels. The model has limited practical applicability as it
ignores dynamic market dynamics and real-time field variability.

The investigation offered health computing using persistent
plants based on ML techniques . Without proper ecological care, plant
diseases, slower growth rate, and reduced yields can lead to premature
harvesting Although several approaches have been created for crop
analysis, including at an earlier stage, advanced methods must be
implemented. Advanced techniques for early-stage crop analysis and
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ecological care were not used in the study by Kailasam et al. [13].

To overcome these obstacles, Abdel-salam et al. [14] provided
a unique paradigm for forecasting agricultural yields. To effectively
improve the prediction accuracy, the framework combined the
optimized SVR model with a novel hybrid feature selection technique.
The effectiveness of the proposed framework was tested through several
experiments. Its drawback was the research focused on a single crop
and lacked generalization across multiple crop varieties and climatic
circumstances.

El-Kenawy et al. [15] stated that the recent advances in deep
learning (DL) and ML have provided fresh approaches for efficiently
and accurately generating predictive models. These findings outline
how the latest predictive models can encourage sustainable agricultural
practices and informed decisions about potato production. The ML-
based crop selection model by El-Kenawy et al. was mainly based
on meteorological and soil factors. However, due to its focus on a
single crop (potatoes) , the model has limited applicability to many
agricultural situations. In Rani et al. [16], the RF classifier completed
the crop selection process, while DL methods were used for weather
analysis. Using the specified data size, the RF classifier generated the
model in 5.34 seconds.

The research problem was resolved with the help of a decision
support system. According to the research by Apat et al. [17], the Al
system aids precision agriculture in increasing the general accuracy and
quality of agricultural harvests. A recommendation system was selected
as one alternative in this research because Industry 4.0 recommends
the use of artificial intelligence (Al) and a family of ML algorithms.
The drawback was that in real-world situations, where there are wildly
fluctuating or invisible environmental factors, the effectiveness of the
system can be reduced.

ML was essential in crop prediction, according to the research
by Suruliandi et al. [18]. Climate, geography, and soil characteristics
all affect crop predictions. The prediction process carried out by feature
selection techniques involved the intrinsic selection of suitable traits
for the appropriate crop or crops. The major drawback is that crop
prediction can be affected by the complex relationships between climate
and soil.

To assess the effects of various feature selection techniques on
ML models trained to forecast alfalfa production, Whitmire et al. [19]
analyzed the crop yield for several alfalfa types from several years
of yield data in Kentucky and Georgia. Even on small datasets with
few features, it has been shown that ML with feature selection may be
able to forecast crop yields and that the accuracy of R and R? reports
provides an easy way to contrast results across different crops. The
research focused on a single crop (alfalfa) and its use of regional data
limits its generalizability to other crops and geographical areas. The
study by Tufail et al. [20] demonstrated an ML-based crop identification
system for a tractor-mounted boom sprayer that can spray tobacco crops
in fields at specific locations. Texture, shape, and color were carefully
selected from among the distinctive features of tobacco plants, and
an SVM classifier with a 96% classification accuracy was developed.
Because the technique is limited to tobacco crops, it may not translate
well to other crop types or different field environments.

A comprehensive strategy that combines drones, ML, and the
Internet of things (IoT) to monitor crop health was suggested by Shafi et
al. [21]. When multiple sensory modalities are combined , heterogeneous
data with varying temporal fidelity and feature variation are generated.
Rice production data were essential for crop management and food
policy. Management and integration of heterogeneous, multisource data
with uneven temporal resolution is a weakness of the strategy. An ML
technique using time-series data from MODIS (Moderate Resolution
Imaging Spectroradiometer) to predict rice crop yield in Taiwan was
developed by Son et al. [22]. Despite the possible impact of boundary
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effects on modeling findings, the research demonstrated how ML
systems successfully forecast rice yields in different locales [23].

Renju and Brunda [24] discussed the use of ML using
environmental factors to enhance accuracy over traditional methods in
crop yield prediction. They identified that Naive Bayes (NB) has the
highest accuracy of 99.39% compared with other conventional methods.
In the study cited in Phuoc et al. [25] and covered in this review, the
“SIMPLE” model stands out as an adaptable, open-source substitute
with few parameters that can be modified for other crop species. Even
with its benefits, such as its extensibility and ease of use, the model still
has some drawbacks.

3. Research Methodology

For crop recommendations, this section uses two datasets:
the crop recommendation dataset and the crop soil dataset. Data are
preprocessed using the IQR technique to remove outliers, ensuring
reliable and accurate inputs for the model. To identify and select
the most relevant features, the LDA approach is utilized for feature
extraction. Several advanced ML models, such as LR, GNB, SVC,
KNN, DT, ET, RF, and bagging classifier, are developed and assessed
in this study. Figure 2 shows an overview of the proposed process.

3.1. Dataset

This research focuses on crop selection optimization using two
significant datasets collected from open source in Kaggle: the crop soil
dataset and the crop recommendation dataset. These datasets provide
vital information on crop recommendations, soil properties, and
environmental conditions, which are used to develop ML models to
improve crop production estimates and resource efficiency. The dataset
was split using an 80/20 ratio, where 80% was used for training (with
stratified 10-fold cross-validation) and 20% kept for final testing. The
split was stratified according to crop class to preserve class balance
in both sets. This approach ensures fair evaluation and avoids class
imbalance bias.

Crop recommendation dataset: Precision farming has recently
gained popularity. It assists farmers in making well-informed decisions
on their agricultural approach. Based on a variety of characteristics,
the data is a dataset that enables users to build a prediction model
that recommends the ideal crops to cultivate in a particular farm. This
dataset is created based on information on India’s climate, rainfall, and
fertilizer. Table 1 below shows the data field attributes.

Crop_soil.csv: Data on different crop and soil types can be found
in the soil.csv collection. The crop column includes a variety of crops,
such as rice, maize, chickpeas, and kidney beans, and various fruits such
as bananas, mangoes, and pomegranates. Other crops include cotton
and coffee. In the soil column, loamy, clayey, sandy, black, and red soils
are among the soil types listed appropriate for each crop. By pairing
the right crops with the appropriate soil types, the information helps
determine which crops grow well in particular soil types, allowing for
precision farming to implement optimal crop selection.

3.2. Data preprocessing using IQR

The preprocessing method to identify and eliminate outliers in
datasets in crop selection is the IQR method. The group between the
first and third quartiles (Q1 and Q3, respectively), which represent the
central 50% of the data, serves as the foundation. The /QOR is computed
in Equation (1) as follows:

IQR=Q3-Q1 (1

Crop selection determines the lower and upper boundaries for
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Table 1 3.3. Extract feature using LDA

Interpretation of the mean scale for belief, concern, and practice
Data Field Attributes

Description

N Nitrogen content in soil ratio

P Phosphorus content in soil ratio
K The ratio of potassium in the soil
Temperature degree Celsius

Rainfall in mm

Humidity in %

pH soil value

outliers; see Equations (2) and (3).

Lower Bound = Q1 — 1.5 x IQR )

Upper Bound = Q3 + 1.5 x IQR 3)

Outliers are defined as data points that are either above or below
the established lower bound and are typically eliminated from the dataset.
Because the IQR method works regardless of the data distribution, it is
reliable for both skewed and normal datasets. Outliers can significantly
impact performance and are often used in data preprocessing, especially
in exploratory data analysis as well as in preparing data for ML models.
Figure 3 shows the outcomes of boxplots in the current classifier.
The boxplots show the different environmental properties such as
temperature, humidity, pH, rainfall, N, P, and K.

Raw data is transformed into numerical patterns through feature
extraction approach, which is useful for data evaluation. LDA uses
class label information to project data onto a lower-dimensional space,
maximizing class separability. This not only reduces computational
complexity but also significantly enhances classification accuracy
by preserving discriminative features relevant to crop identification.
It is a component of feature development, a procedure for better
training predictive models for crop selection. In the process of
feature regeneration and the continuous evaluation of performance
of accounting data processing based on identification approaches and
efficiency enhancements, the predictive system determines the data
processing based on agricultural features such as crop recommendation
and soil type. Equation (4) is used to find the linear function that defines
the vector of motion to minimize the between-class dispersion structure
and the within-class scattering structures in feature portions.

Z=AW, +Ay+ Wy, +A;+ W, ++Ag + W, 4
where variable A® = [{A;,A,,...,Ag}] is the coefficient vector and
W) = [Wy,, Wy, ..., Wy, ] is the accounting data processing. Considering
the linear expression Aj,As,...,Ar, the LDA approach is used to
determine the value coefficients. The weight of each initial feature
is varied to create the updated feature space. The k" finitary of the /*
collection is represented by each Wj.

3.4. Optimize crop selection for precision agricultural
systems using ML techniques

This research attempts to create sophisticated ML models, such as
LR, GNB, SVC, KNN, DT, ET, RF, and bagging classifier, to optimize
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Figure 3
Outcomes for boxplots in the proposed method
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crop selection in precision agriculture. By using these ML models, this Table 2

research aims to improve crop selection decisions based on resource
and environmental aspects, thereby ensuring increased agricultural
sustainability and production. It was found that the best technique for
raising the precision of crop selection forecasts was the RF classifier.

3.4.1. Logistic regression (LR)

The universal LR model in statistics is where the LR algorithm
originates. When modeling the yield (upper and lower) of the agronomy-
based cropping system, the logistics function is calculated in Equation
(5) as follows:

1
1+e*(ﬂ0+ﬂlxl+ﬂ2X2+, . +BnXn)

PY=1%)= ®)
where P(X) = P (Y = 1|X) is the formal expression for the potential
of an input (X) (yield from the four distinct cropping systems) class
(Y =1 (Highlands)) that is modeled. Table 2 shows the important setup
parameters for maximizing the effectiveness of LR. Figure 4 shows the
categorization outcomes for each crop type using LR.

The confusion matrix demonstrates a good diagonal dominance,
which means overall classification is correct. There are some slight
misclassifications between crop classes under similar environmental
conditions. This implies that LR performs well but may be weaker with
overlapping feature spaces.

3.4.2. Gaussian Naive Bayes (GNB)

In crop selection, the probabilistic ML classification technique
known as GNB assumes that each class follows a normal distribution.
The premise is that each parameter can predict an agricultural outcome
variable through smart farming. The foundation of GNB is the idea that
an attribute or forecast exists independently of other attributes in the
dataset, using Equation (6).
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Hyperparameter settings explored for LR in crop classification

Hyperparameter

Typical Values Used/Tested

Kernel

Regularization C
Gamma

Degree (if poly kernel)

Probability estimates

rbf, linear
0.1, 1.0, 10
scale, auto

3

True, False

Figure 4

Class-wise prediction performance of LR
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O(A|B)(0|B
O(B|4) = 24708 6)

The multinomial naive approach was the most widely used
technique for document classification problems. Meanwhile, Bernoulli
Naive often uses Boolean values in prediction, such as false and true,
as well as 0 and 1. Moreover, the GNB used continuous value sets
of information for prediction. The use of GNB offers benefits and
drawbacks. For instance, compared to alternative techniques such as
LR with less training data, the performance of GNB improves if the
forecast is accurate. Although GNB is easy to set up, there is a good
chance that it will lower the accuracy of the data. As a supervised ML
method for classification, the NB can determine whether a particular
feature is present in a class, regardless of whether other traits exist or
not. Table 3 shows the typical hyperparameters for GNB applied in the
classification task. Figure 5 shows the class-wise prediction breakdown
using the GNB model.

This model assumes feature independence and misclassifies a
number of crop types. Off-diagonal entries result from misclassification
between crops with comparable nutritional profiles. It nonetheless
captures the overall pattern of accurate classification.

3.4.3. Support vector classifier (SVC)

The SVC is a straightforward technique for classifying crop and
soil data that creates information in the test set. The model is built using
data from training and testing, which are collections of data samples
with multiple properties and one target value for crop selection. The
identified labels indicate the dependability of the system output in smart
formations by indicating the desired outcome, verifying the correctness
of'the system, or assisting the system in learning to operate appropriately.
The goal of the SVC is to optimize the margin by determining the
optimal separating hyperplane, as indicated in Equations (7)—(9).

Table 3
Parameters used for modeling with GNB classifier

Hyperparameter Typical Values Used/Tested
Variance smoothing le-9 (default)
Prior probabilities None
Fit prior True, False
Distribution type Gaussian
Assumes independence Yes (default behavior)
Figure 5

True and predicted classifications using GNB
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objective function, and decision function, respectively, and z°, z, a, and
Emarca weight vector, input data vector, bias factor, and slack variable,
respectively. Table 4 configures the hyperparameters of the SVC for
multi-class crop prediction. Figure 6 shows the confusion matrix
reflecting class-level accuracy of the SVC model.

The SVC has few misclassifications and distinct class boundaries.
Most of the crops are accurately identified, as can be seen from the good
diagonal alignment of the confusion matrix. A small number of closely
related crop types exhibit minor faults.

3.4.4. K-nearest neighbors (KNN) classifier

The supervised classification technique KNN classifier can
classify non-attributes by matching them with relevant attributes in the
crop selection class. Because the likelihood of errors in a straightforward
classification rule is constrained by the Bayes error rate in smart farming,
the Bayes decision rule for minimum probability of error is superior for
creating the most significant item in pattern recognition. This model
consists of a pair of formulas that calculate the distance between each
variable in the dataset. Additionally, it uses a different distance metric to
normalize the distance. Table 5 shows the KNN configuration variables
used during model training. In Figure 7, the performance of the KNN
classifier is evaluated using the class-level confusion matrix.

Manhattan distance. Compared with other equations, Equation
(10) makes it simpler to compute the distance.

Table 4
Key SVC parameter settings tested for classification efficiency

Hyperparameter Typical Values Used/Tested
Max depth None, 10, 20

Min samples split 2,5,10

Min samples 1,2,5

Splitter best, random

Figure 6
SVC model classification across crops
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Table 5
Hyperparameters for KNN used to classify crop types based
on proximity

Hyperparameter Typical Values Used/Tested
Penalty L2

Solver liblinear, 1bfgs

Regularization strength C 0.1, 1.0, 10

Max iterations 100, 500, 1000

Dual formulation False, True

Figure 7
Classification output of the KNN algorithm
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lya — y1| + |z2 — 21| (10)
Euclidean distance in standard geometry is the distance between
two points; see Equation (11).

1
(2= + @2 - 21)) (n

Minkowski distance, as with the Euclidean distance, in this case,
requires an n value ((ys —y1)? + (22 — zl)p)l/", where x and y represent
the x and y coordinates of the point on the y plane.

The KNN provides stable classification for strongly separated
classes of crops but demonstrates some interference among close classes
in the feature space. Its behavior is dependent on the distance metric
and local data structure. Misclassifications occur mainly between crops
that share overlapping environmental characteristics.

3.4.5. Decision tree (DT) classifier

In supervised ML, the DT is flowchart-like structure and is
usually used for categorization and prediction. In general, DT comes in
two forms, continuous and categorical, depending on the type of target
feature. A perfect split can be achieved by comparing the root node
of the DT with other properties or features in the dataset. If the tree is
perfectly split, then outcomes of a certain class are on one side and for
the opposite class are on the other side. This process splits each node
until a perfect split is achieved, forming the leaf node of the tree. The
choice of attributes is the true obstacle in building a DT. The Gini Index
and Information Gain are two strategies that can be used to achieve
splitting, as shown in Equation (12).
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InformationGain(S, W) = Entropy(S) — Entropy(S, W).

Gini indez =1— ) (0) A2=1—[(o+) A2+ (0—) A 2] (12)

where S denotes the current state, ¥ represents the selected attribute,
and positive and negative outcomes and indicated o+ and o—.

Table 6 shows the important hyperparameters of the DT in crop
classification. Figure 8 shows the detailed crop classification accuracy
using the DT.

The confusion matrix shows almost perfect separation among
classes, with high diagonal values and few off-diagonal errors. The
model cleanly separates crop classes through hierarchical clustering of
features, with minimal confusion in boundary cases.

3.4.6. Extra tree (ET) classifier

For challenges in crop selection classification, an ensemble ML
algorithm, known as the ET classifier, makes use of the DT. While the
ET classifier has important differences, it shares commonalities with
RF. Unlike an RF, which builds individual trees using bootstrapped
portions of the training data, the ET classifier builds each tree using the
full training dataset. Although both methods incorporate randomization
during the tree-building process, the ET classifier uses random
thresholds at each split point. At each node, however, the RF takes into
account a random selection of attributes, as shown in the following
Equations (13) and (14).

Gini Impurity = Zil e1(le;) (13)

Entropy = Zf:l e1log(e;) (14)

where log(e;) is the number of distinct classes or labels and e; represents
the percentage of rows that have output label i; see Equations (6) and

).

Table 6
DT settings tuned to improve prediction accuracy

Hyperparameter Typical Values Used/Tested
Max depth None, 10, 20
Minimum samples 2,5, 10

Samples leaf 1,2,5

Splitter best, random

Figure 8

DT predictions versus actual crop classes
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Hyperparameter tuning was done to maximize the performance of
the ET classifier model, with particular attention paid to the number of
trees, minimum leaf, split sample sizes, splitting criteria, and bootstrap
sampling. Table 7 and Figure 9 show the analysis of classification
accuracy per class using the ET algorithm.

The ET can cause a minor instability because of the excessive
randomness in the tree building process. The confusion matrix
shows that there are some random misclassifications between a few
classes. Although majority of predictions are correct, some crops are
misclassified because of feature noise.

3.4.7. Random forest (RF) classifier

Using the RF framework, the ensemble method called RF was
created for classification and regression. It predicts the average of
multiple independent base models. Using multiple learning algorithms
to improve the predictive performance in regression and classification
is known as the ensemble method. RF uses bagging (Bootstrap
Aggregation) as one of its ensemble methods. To lower the variance of a
DT, bagging can be used. The RF model and the DT model have similar
categorization structures. This method was implemented because
a random subset of the training data is used to create each DT. The
information, entropy, and data gain DTs were as expected.

Infop(C) =321, ‘\ccwlj‘
Info(C) = J(oj,m;) = 5 2-loga (%)

mj mj
o0j+m; l0g2 ( oj+m; )

x Info(C;)

(15)

Table 7
Key hyperparameters tested in the ET model for crop classification

Hyperparameter Typical Values Used/Tested
Amount of trees 100, 200

Max structures sqrt, log2

Min models split 2,5

Criterion gini, entropy
Bootstrap False (default), True
Figure 9
Decision graph of actual crop classifications versus tree
projections
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Bl(oj+m;)
= 0]_:_7””]‘](31(0] + m])) T+
Bw(oj+m;)

0j+m; J

(16)
(w(oj +m;))

where 0; denotes a genuine and favorable value of the information, m;
is a fictitious and negative information value, J(0; + m;) represents
an amount found in the information, and Info(C) is the predicted
information value derived from the data 0; and m;, as shown in
Equations (15) and (16).

Information gain

Gain(B) = Info(C) — Infog(C) (17)

where F(B) represents the entropy value that serves as the root of the
DT and Bl(0; 4+ m;) represents the integer of the information obtained
from a characteristic or attribute, as shown in Equation (17).

he selection of data used for subgroups and training tasks is
random. Autonomous DT is necessary for the randomization of the RF
approach. The predicted information, entropy, and data gain equation,
or the decision tree (CART), must first be created so to employ the
RF technique. There are two types of random values in data: true and
false. One metric used in RFs is the Gini Impurity. The Gini Impurity
equations for the initial and subsequent layers of the RF model are
shown in Equations (18) and (19).

I 2
Ju(m)=1-375_,(0)) (18)
Jsectmd layer = T:Zj':; *Jleft node + TZ:ith *Jright node (19)

The ability of RF to handle missing information values while
preserving the correctness of the missing data is an advantage. By
combining random and multiple learning techniques, RF enhances the
accuracy and performance of the DT method. Table 8 shows that the
RF hyperparameters are tuned to achieve excellent recall and accuracy.
Figure 10 shows the detailed confusion matrix, showcasing the robust
classification performance of RF.

The excellent class-wise performance of RF is demonstrated by
the strong concentration along the diagonal of the confusion matrix.
There is very little misunderstanding in the precise distinction of all
crop classifications. The ensemble method of the model guarantees
reliable and consistent predictions for a range of feature inputs.

3.4.8. Bagging classifier

Bagging, sometimes referred to as bootstrap aggregation, is
used with DT and greatly improves model stability by increasing
accuracy and reducing variance to get rid of over-fitting. To choose
the most accurate prediction for crop selection, bagging in ensemble
ML aggregates multiple weak models, specializing in different regions
of the feature space. A distinct model is practiced using each data
group. The corresponding X is used to query each model, and all of

Table 8
Typical settings for the RF classifier in crop selection tasks
Typical Values Used/Tested
100, 200, 300

Hyperparameter

Number of estimators

Max features sqrt, log2
Min samples 2,5
Bootstrap True
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Figure 10
High-accuracy predictions by the RF model
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the results are gathered. To create the Y for the ensemble, the mean of
the outputs from particular models is calculated. Assume K samples
for bootstrap of dimension A. {Y{',Y;!,..., Y}, {Y2 Y} ..., Y2},
Y E YK YK} However, considering Y, = a based on the k-th
bootstrapping sample, the virtually isolated K amount can be adapted
X1(.),...,Xkg(.). Table 9 displays detailed information about the
hyperparameter adjustment of the DT-based bagging classifier. Figure 11
shows the results of the ensemble classification of the bagging model.

Table 9
Parameters applied in the bagging ensemble model for
robust classification

Hyperparameter Typical Values Used/Tested
Base estimator DT
Number of estimators 50, 100
Max models 0.5,1.0
Bootstrap True, False
Bootstrap features False, True
Figure 11
Outcomes visualized through the confusion matrix of the bagging
model
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The bagging classifier also exhibits strong diagonal dominance
in the confusion matrix. Misclassifications are negligible and occur
in few overlapping crop classes. The ensemble method enhances
generalization and diminishes prediction variance.

4. Result and Discussion

This section explains the experimental setup, the performance
of the existing and proposed methods, the comparative analysis, and,
finally, the discussion.

4.1. Experimental setup

To improve the efficiency and accuracy of accounting data
processing based on intelligent financial software requires a variety of
hardware and software. The entire model training and testing procedure
is developed using the Python ML framework, and Table 10 lists the
experimental setting.

4.2. Comparative evaluation

Figure 12 shows a histogram for several crop indicators. Each
histogram shows the distribution of the corresponding variable
throughout the dataset. The probability density function, represented
by the curves combined on the histograms, shows the general trend and
distribution pattern of a variable.

Figure 12 shows the average values of several crop indicators.
The average phosphorus (P) values of several crops showed a significant
degree of variation. The highest P level is found in fruits such as apples
and grapes, while the lowest is found in oranges and coconuts. Jute,
mung bean, and rice are among the crops in the mid-range level. The
following image, Figure 13, shows a preprocessed dataset with fewer
outliers, indicating that the data preprocessing has improved. Figure 14
shows the outcomes of the boxplots in the proposed method

Correlation matrix: Figure 15 shows the correlation matrix of
features in the proposed method. The relationship between numerical
features is shown in this heatmap. Weaker correlations are shown in
blue, and stronger connections are shown in darker red.

Figure 16 shows the outcomes for soil types and possible crops.
This matrix shows the compatibility of various soil types with different
crops. A “1” indicates the presence of a certain crop in a certain soil
type. While some soil types, such as loamy and black soil, are suitable
for growing a variety of crops, other soil types are less suitable. Figure
16 shows precision agricultural recommendations with the help of
diverse soil-crop relationships.

The effectiveness of traditional ML methods is being compared
with LR, GNB, SVC, KNN, DT classifier, ET classifier, RF classifier, and
bagging classifier to optimize crop selection for precision agricultural
system models. Figure 17 illustrates those that are commonly used in
these described evaluations, such as accuracy, recall, precision, and F1-
score.

Accuracy and precision: A popular statistic for the crop selection
categorization task is accuracy. It assesses the proportion of precise

Table 10

Development tool
Environment Frequency
GPU NVIDIA Quadro RTX 3000
Operating system (OS) Windows 11
Memory 16 GB
CPU Intel Xeon Silver (4214R@2.40GHzz)
Python version 3.8
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Figure 12

Outcomes of the crop indicators (N, P, K, temperature, humidity, pH, and rainfall)
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Figure 14
Outcomes for boxplots in the proposed method
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forecasts in each prediction category of the model. A performance

indicator called precision determines the ratio of accurate positive
predictions to every negative prediction made by the model. It assesses
the accuracy of positive predictions by computing Equations (20) and
(21), which determine the percentage of expected positive values.
Table 11 shows the results of accuracy and precision of the classifier.

TP+TN

Accuracy = 7prp TN TN

556

(20)

Note: TN means true negative, FN means false negative, TP
means true positive, and FP means false positive.

Figure 18 shows a comparison of the performance of different
ML classifiers in terms of accuracy for crop selection. With the highest
scores (both at 99.88%), RF had the best predictive power. Bagging
and DT both performed well. GNB and ET showed somewhat lower
precision, indicating somewhat less dependable predictions, but SVC
and KNN had strong results.
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Figure 17 Figure 19
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Table 11
Outcomes of accuracy and precision of classifiers Table 12

Methods Accuracy (%) Precision (%)
LR 97.02 97.13
GNB 96.67 97.58
SvC 98.57 98.69
KNN 98.10 98.30
DT 99.64 99.53
ET 97.50 96.12
RF 99.88 99.88
Bagging 99.64 99.53
Figure 18
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Figure 19 shows a comparison of the precision of each classifier.
With 99.88% precision, the RF classifier outperforms other methods.
These results show the exceptional performance of RF.

The bar charts show the performance of different classification
algorithms. The RF classifier had the highest performance (99.88%),
closely followed by the bagging classifier and DT Classifier with
99.64%. GNB had the worst performance at 96.67%. In general,
ensemble models such as RF and bagging performed much better
than basic models such as LR and NB, indicating their suitability for
predictive classification tasks.

The above graph representation shows the precision levels of
the classifiers. RF leads with 99.88%, closely followed by bagging
(99.53%) and DT (99.53%). SVC (98.69%) and KNN (98.30%) exhibit
good performance. LR (97.13%) and GNB (97.58%) perform well,

Numerical outcomes of the recall and F1-score of the classifiers

Methods Recall (%) F1-score (%)
LR 97.02 97.01
GNB 96.67 96.57
SvVC 98.57 98.69
KNN 98.10 98.08
DT 99.64 99.52
ET 96.55 95.32
RF 99.88 99.88
Bagging 99.76 99.40

although ET has the lowest precision level (96.12%), indicating low
confidence in its positive predictions (Table 12).

Recall and F1-score: This metric measures the proportion of
instances in a given positive class that were accurately categorized by
crop selection prediction. Equations (22) and (23) demonstrate how
the Fl-score can be used to evaluate the predictive ability for crop
selection by calculating the harmonic mean for accuracy and recall.
The numerical results of the recall and F1-score of the classifiers are
shown in Table 12.

_ TP
Recall = 7ppx (22)
__ 2xPrecisionxRecall
F1 — score = Precision+Recall (23)

All models perform well, as shown in the table, but RF has the
greatest recall and F1-score (99.88%), showing exceptional accuracy in
crop class identification. Although ET and GNB exhibit comparatively
lower results, both DT and bagging show good performance. This
demonstrates the reliability and success rate of RF for crop classification
in precision farming. Figure 20 shows the performance evaluation of
recall.

RF had the greatest Fl-score and recall of 99.88% among the
evaluated models. With respective recall rates of 99.76% and 99.40%
and Fl-scores of 99.52% (Figure 21). These best-performing models
exhibit outstanding classification capabilities. Although SVC and
KNN also have competitive scores, ET and GNB fall slightly behind,
reflecting reduced resilience in coping with intricate crop classification.

10-fold cross-validation: This technique divides the data into ten
equal sets (folds) and is a powerful model testing technique. Each run
uses nine folds for training and one fold for testing. This process is
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Figure 20
Performance evaluation of recall of the different ML classifiers
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Figure 21
Outcomes of the F1-score
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repeated ten times to ensure that each dataset is used once for testing
and once for training. Table 13 provides a more accurate measure of
model performance, where the results are averaged. This study confirms
the consistency of the RF classifier across all assessment metrics.

The table shows the 10-fold cross-validation performance of the
RF classifier, which consistently shows high performance in all folds.
Accuracy, precision, recall, and Fl-score values are all above 99.7%

Table 13
10-fold cross validation across the metrics
Accuracy Precision  Recall ~ F1-Score
Fold (%) (%) (%) (o)
Fold 1 99.76 99.70 99.78 99.74
Fold 2 99.88 99.85 99.87 99.86
Fold 3 99.92 99.90 99.93 99.91
Fold 4 99.84 99.80 99.85 99.82
Fold 5 99.88 99.89 99.88 99.88
Fold 6 99.80 99.76 99.79 99.77
Fold 7 99.90 99.91 99.89 99.90
Fold 8 99.87 99.88 99.86 99.87
Fold 9 99.85 99.83 99.84 99.83
Fold 10 99.89 99.90 99.88 99.89
Average 99.88 99.88 99.88 99.88

for each fold, indicating the robustness and stability of the model. The
average value of all four measures is 99.88%, implying outstanding
classification reliability and generalizability. The high consistency
indicates that the model is suitable for reliable and efficient crop
selection under precision agriculture operations.

4.3. Comparison phase

In the comparison phase, the performance of several ML models is
evaluated to ascertain whether they are appropriate for crop prediction.
The RF model consistently exhibits higher accuracy and dependability
across assessment measures compared to all other methods.

Accuracy: The term measures the ratio of correct crop predictions
by the model to the total predictions. The aim of the study is to maximize
crop selection through ML optimization, with high accuracy showing
consistent classification based on environmental and soil characteristics.
It shows the efficiency of the model in precision agriculture decision-
making. Table 14 shows the comparison of prediction accuracy and fit
of the crop yield estimation model.

The table shows a comparison of the crop forecast accuracy of
various ML classifiers. The suggested RF model achieves the highest
accuracy (98.80%), indicating superior performance. Bagging, DT, and
SVC perform well, while existing research techniques, such as KNN and
LR, reflect relatively low accuracy, indicating achieved improvements
by the proposed model.

Mean absolute error (MAE): This metric calculates the mean
magnitude differences between model-predicted and actual crop yield
values. It helps determine how well the model forecasts approximate
actual crop conditions and aids in precise crop selection.

R?: The term determines the extent to which the input variables
predict crop yield variability. The greater the value of R the better
the predictive power of the model and the objective of data-based
crop optimization. Table 15 shows that RF is the most accurate model
compared to other models based on MAE and R? assessments.

The MAE and R? for various regression models are used in
crop forecasting. The new RF model has the best performance with
the lowest MAE and highest R?, indicating high prediction accuracy
and excellent model fit. Traditional models and the existing research
report more errors, reflecting the superiority of the new approach in
yield prediction .

4.4. Discussion

This research demonstrates how well-suited sophisticated ML
models are for precision agricultural crop selection optimization.

Table 14
Evaluation of classifier accuracy across models used
in crop selection

Methods Accuracy (%)
KNN [23] 97.72
LR [23] 94.69
GNB 97.20
SvC 97.90
KNN 97.60
DT 97.95
ET 97.10
RF 98.80
Bagging 97.98
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Table 15
Comparison of prediction error and fit by model
for estimating crop yield

Methods MAE R?

Linear Regression [23] 1.08 0.92
RF Regressor [23] 0.64 0.96
GNB 0.61 0.89
SvC 0.60 0.93
KNN 0.59 0.94
DT 0.58 0.95
ET 1.57 0.92
RF 0.52 0.97
Bagging 0.55 0.96

The research by Tufail et al. [20] is dedicated solely to predicting
alfalfa yield based on data from Georgia and Kentucky, restricting the
generalizability of the findings to other crops and locations. Similarly,
the study by Shafi et al. [21] introduces a crop/weed detection system
based entirely on ML tailored for tobacco crops, relying on visual
characteristics such as texture, shape, and color. The research by Patil
et al. [23] deals with one type of crop and is based on regional data,
which will not work well in different climates and different soils, thus
limiting its generalizability to other types of agricultural settings.
Moreover, the lack of multi-crop testing and restricted feature variability
diminish its suitability in wider crop selection applications. The current
research comparison results clearly show that the RF model proposed
here is better than any classifier with respect to accuracy, MAE, and R
It has the maximum classification accuracy and minimum prediction
error, proving it is robust. It gives more accurate and consistent results
for crop selection and yield prediction compared to current methods.

5. Conclusion

The research focuses on applying sophisticated ML models to
optimize crop selection for precision agriculture. Because of concerns
such as soil erosion, climate change, and water scarcity, crop selection
has become essential to sustainable farming. The research creates an
ML model to optimize crop selection by assessing several classifiers,
such as LR, GNB, SVC, KNN, DT, ET, RF, and bagging. With
preprocessing techniques such as IQR to eliminate outliers and LDA for
feature extraction, the dataset includes crop suggestions, meteorological
information, and soil properties. The RF classifier performed better
than the others, achieving 99.88% accuracy, 99.88% precision, 99.88%
recall, and 99.88% F1-score. In precision agriculture, the results show
how contemporary ML models can improve crop selection, optimize
resource utilization, and increase output. High computing costs and
the time required to train efficient ML models, especially with huge
datasets, are among the drawbacks of the research. The intricacy of
the model can also make it difficult to implement in environments
with limited resources. Future research should focus on utilizing Al-
driven systems to investigate further sustainable agricultural options,
enhance model efficiency, and integrate real-time data for dynamic crop
suggestions.
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