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Abstract: Precision agriculture relies heavily on crop selection to improve sustainability and increase productivity. The increasing problems 
of soil erosion, climate change, and water shortages have made it crucial to optimize crop selection through cutting-edge methods to increase 
farm yields and enhance resource efficiency. This research attempts to develop machine learning (ML) models, such as logistic regression (LR), 
Gaussian Naive Bayes (GNB), support vector classifier (SVC), K-nearest neighbors  (KNN) classifier, decision tree (DT) classifier, extra tree 
(ET) classifier, random forest (RF) classifier, and bagging classifier, to optimize crop selection for precision agricultural systems. A large dataset 
comprising information on crop recommendations, weather patterns, and soil characteristics was used in this research. The data is preprocessed 
using the interquartile range (IQR) method to remove outliers and ensure that all features contribute equally to the model. Linear discriminant 
analysis (LDA) is used to extract the important features for feature extraction. The RF classifier was determined to be the most effective method 
for raising the precision of crop selection forecasts. This framework is designed to provide actionable insights for selecting optimal crops based on 
environmental conditions and resource availability. The suggested model is a valuable tool for crop selection optimization in precision agriculture, 
as preliminary results show that it outperforms traditional ML models in terms of F1-score, precision, accuracy, and recall at 99.88% (all measures). 
According to the research, modern ML algorithms can revolutionize agricultural practices and provide a sustainable solution to increase crop 
output while reducing resource wastage.
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1. Introduction
Several agricultural techniques were used to cultivate crops. 

Around the world, traditional farming is mainly practiced. In this, 
methods suggested by experienced farmers are used. These methods are 
labor intensive and time consuming because they are not precise enough. 
The use of new methods and technologies  to improve agricultural 
activities is referred to as agricultural revolution [1]. Agricultural 
activities can help farmers better utilize resources, increase crop yields, 
and improve soil quality. Agriculture is the most important sector and 
the foundation of the economies for most countries in the world [2]. 
To enhance productivity and efficiency in resource utilization, the 
agricultural industry is increasingly making use of crop simulations and 
decision-making technologies. Artificial intelligence (AI) can transform 
the agricultural industry by leveraging modern technologies to predict 
agricultural productivity [3]. Farmers can improve yields by utilizing AI 
technologies to monitor commodity prices, manage soil and minerals, 
identify plant diseases, control pests and weeds, estimate crop yields, 
select crop varieties, and provide real-time information about agro-
product marketing [4]. Precision agriculture can increase productivity, 
reduce soil deterioration, improve water efficiency, minimize the use of 

chemicals in cultivation, and promote the use of contemporary farming 
techniques to reduce costs, improve quality, and increase quantity of 
crop production [5]. By providing farmers with accurate agricultural 
yield forecasts for the following year through proper planning for 
optimal crop growth, issues in crop production may be mitigated. 
Accurate forecasting of crop yields is now essential for farmers to make 
wise decisions. Figure 1 shows the challenges of crop selection in ML 
techniques.  

To determine how much crops can be grown in a given area, several 
factors need to be considered, including crop management techniques, 
weather, and soil type. A reliable forecast helps estimate crops, which 
the government can use to formulate short-term and long-term policies 
aimed at reducing food shortages and import-export strategies centered 
on the agricultural industry [6]. Farmers can use crop yield estimates to 
increase production under favorable conditions and reduce production 
losses under unfavorable ones. Optimistic crop production forecasts are 
influenced by many different factors, including market pricing, weather, 
pesticides, fertilizers, along with farmers’ actions and procedures [7]. 
Agricultural yield can be estimated by combining climate, area-wise 
production, rainfall, and statistical data on yields from previous years. 
Evaluation of the effects of agro-climatic conditions on the production 
of winter plant varieties, mainly grains, is the main challenge in the 
moderate temperature zone [8]. Figure 1 shows the most important 
challenges for using machine learning (ML) in the selection of crops. 
It shows elements such as diverse soil conditions, unreliable weather 
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patterns, access to water, and compatibility of crops. These elements 
pose difficulties in making accurate predictions  and require strong 
preprocessing, feature selection, and model tuning to ensure reasonable 
and sustainable agricultural decision-making.

Crop growth is influenced by three important factors: season, 
soil, and water. Soil with high nutrient content and high water-holding 
capacity helps crops thrive. However, the season-related weather can 
significantly alter crop output expectations at any time [9]. Farmers 
find it challenging to determine how to achieve  greater adaptability 
and sustainability due to large climate variability. Agriculture needs 
to produce more with fewer inputs, according to cutting-edge farming 
methods and contemporary technologies. Thus, estimating crop yield 
is essential to determine food security problems [10]. This research 
aims to optimize crop selection for precision agricultural systems and 
develop ML models, which include Gaussian Naive Bayes (GNB), 
logistic regression (LR), K-nearest neighbors (KNN), decision tree 
(DT) classifier, extra tree (ET) classifier, random forest (RF) classifier, 
support vector classifier (SVC), and bagging classifier.

1.1. Contribution of this research
1) To create and use a large dataset that contains vital details on crop 

recommendations, weather trends, and soil properties, allowing for 
accurate analysis to maximize crop selection in precision agriculture. 

2) The interquartile range (IQR) approach can be used to preprocess 
data, eliminate outliers, ensure that all characteristics contribute 
effectively to ML models, and enhance model performance. 

3) The model may focus on the most crucial factors influencing crop 
selection by using linear discriminant analysis (LDA) to identify the 
most pertinent features. 

4) A range of ML models, including LR, DT, bagging, and RF classifiers, 
are used to implement sophisticated classification approaches. When 

it comes to forecasting the crop with the greatest selection, the RF 
classifier is the most accurate and effective.  

This research is organized as follows: Section 2 presents related 
works on revolutionizing agriculture through smart farming using 
ML techniques. Section 3 outlines the current methods and clearly 
explains the ML techniques using the optimal crop selection  process. 
In Section 4, we demonstrate that the proposed model performs better 
than conventional ML models in terms of prediction accuracy. The 
conclusion is given in Section 5. 

2. Literature Review
In the state of Tamil Nadu, rainfall patterns were the primary 

determinant of crop output. These patterns were used to determine 
various crops according to soil pH, temperature, and levels. The 
research by Lad et al. [11] used  an artificial intelligence (AI) approach 
to assess crop yield. The dependence of the model on regional rainfall 
patterns, which cannot translate well to other regions with distinct 
climates, is a major drawback. Choudhary et al. [12] recommended a 
methodology  that allows for crop selection based on environmental 
and economic considerations to increase agricultural yields and meet 
the country’s growing food needs. To forecast crop yield, the proposed 
model examined variables such as temperature, humidity, rainfall, soil 
nutrients, and soil pH. With the help of the model, farmers can maintain 
soil nutrient levels. The model has limited practical applicability as it 
ignores dynamic market dynamics and real-time field variability.

The investigation offered health computing using persistent 
plants based on ML techniques . Without proper ecological care, plant 
diseases,  slower growth rate, and reduced yields can lead to premature 
harvesting Although several approaches have been created for crop 
analysis, including at an earlier stage, advanced methods must be 
implemented. Advanced techniques for early-stage crop  analysis and 
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 Figure 1
Challenges of crop selection in ML techniques
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ecological care were not used in the study by Kailasam et al. [13].
To overcome these obstacles, Abdel-salam et al. [14] provided 

a unique paradigm for forecasting agricultural yields. To effectively 
improve the prediction accuracy, the framework combined the 
optimized SVR model with a novel hybrid feature selection technique. 
The effectiveness of the proposed framework was tested through several 
experiments. Its drawback was the research focused on a single crop  
and lacked generalization across multiple crop varieties and climatic 
circumstances. 

El-Kenawy et al. [15] stated that the recent advances in deep 
learning  (DL) and ML have provided fresh approaches for efficiently 
and accurately generating predictive models. These findings outline 
how the latest predictive models can encourage sustainable agricultural 
practices and informed decisions about potato production. The ML-
based crop selection model by El-Kenawy et al. was mainly based 
on meteorological and soil factors. However, due to its focus on a 
single crop (potatoes) , the model has limited applicability to many 
agricultural situations. In Rani et al. [16], the RF classifier completed 
the crop selection process, while DL methods were used for weather 
analysis. Using the specified data size, the RF classifier generated the 
model in 5.34 seconds.

The research problem was resolved with the help of a decision 
support system. According to the research by Apat et al. [17],  the AI 
system aids precision agriculture in increasing the general accuracy and 
quality of agricultural harvests. A recommendation system was selected 
as one alternative in this research  because Industry 4.0 recommends 
the use of artificial intelligence (AI) and a family of ML algorithms. 
The drawback was that in real-world situations, where there are wildly 
fluctuating or invisible environmental factors, the effectiveness of the 
system can be reduced.

ML was essential in crop prediction, according to the research 
by Suruliandi et al. [18]. Climate, geography, and soil characteristics 
all affect crop predictions. The prediction process carried out by feature 
selection techniques involved the intrinsic selection of suitable traits 
for the appropriate crop or crops. The major drawback is that crop 
prediction can be affected by the complex relationships between climate 
and soil.

To assess the effects of various feature selection techniques on 
ML models trained to forecast alfalfa production, Whitmire et al. [19] 
analyzed the crop yield for several alfalfa types from several years 
of yield data in Kentucky and Georgia. Even on small datasets with 
few features, it has been shown that ML with feature selection may be 
able to forecast crop yields and that the accuracy of R and R2 reports 
provides an easy way to contrast results across different crops. The 
research focused on a single crop (alfalfa) and its use of regional data 
limits its generalizability to other crops and geographical areas. The 
study by Tufail et al. [20] demonstrated an ML-based crop identification 
system for a tractor-mounted boom sprayer that can spray tobacco crops 
in fields at specific locations. Texture, shape, and color were carefully 
selected from among the distinctive features of tobacco plants, and 
an SVM classifier with a 96% classification accuracy was developed. 
Because the technique is limited to tobacco crops, it may not translate 
well to other crop types or different field environments.

A comprehensive strategy that combines drones, ML, and the 
Internet of things (IoT) to monitor crop health was suggested by Shafi et 
al. [21]. When multiple sensory modalities are combined , heterogeneous 
data with varying temporal fidelity and feature variation are generated. 
Rice production data were essential for crop management and food 
policy. Management and integration of heterogeneous, multisource data 
with uneven temporal resolution is a weakness of the strategy. An ML 
technique using time-series data from MODIS (Moderate Resolution 
Imaging Spectroradiometer) to predict rice crop yield in Taiwan was 
developed by Son et al. [22]. Despite the possible impact of boundary 

effects on modeling findings, the research demonstrated how ML 
systems successfully forecast rice yields in different locales [23].

Renju and Brunda [24] discussed the use of ML using 
environmental factors to enhance accuracy over traditional methods in 
crop yield prediction. They identified that Naïve Bayes (NB) has the 
highest accuracy of 99.39% compared with other conventional methods. 
In the study cited in Phuoc et al. [25] and covered in this review, the 
“SIMPLE” model stands out as an adaptable, open-source substitute 
with few parameters that can be modified for other crop species. Even 
with its benefits, such as its extensibility and ease of use, the model still 
has some drawbacks.

3. Research Methodology
For crop recommendations, this section uses two datasets: 

the crop recommendation dataset and the crop soil dataset. Data are 
preprocessed using the IQR technique  to remove outliers, ensuring 
reliable and accurate inputs for the model. To identify and select 
the most relevant features, the LDA approach is utilized for feature 
extraction. Several advanced ML models, such as LR, GNB, SVC, 
KNN, DT, ET, RF, and bagging classifier, are developed and assessed 
in this study. Figure 2 shows an overview of the proposed process. 

3.1. Dataset
This research focuses on crop selection optimization using two 

significant datasets collected from open source in Kaggle: the crop soil 
dataset and the crop recommendation dataset. These datasets provide 
vital information on crop recommendations, soil properties, and 
environmental conditions, which are used to develop ML models to 
improve crop production estimates and resource efficiency. The dataset 
was split using an 80/20 ratio, where 80% was used for training (with 
stratified 10-fold cross-validation) and 20% kept for final testing. The 
split was stratified according to crop class to preserve class balance 
in both sets. This approach ensures fair evaluation and avoids class 
imbalance bias.

Crop recommendation dataset: Precision farming has recently 
gained popularity. It assists farmers in making well-informed decisions 
on their agricultural approach. Based on a variety of characteristics, 
the data is a dataset that enables users to build a prediction model 
that recommends the ideal crops to cultivate in a particular farm. This 
dataset is created based on information on India’s climate, rainfall, and 
fertilizer. Table 1 below shows the data field attributes.

Crop_soil.csv: Data on different crop and soil types can be found 
in the soil.csv collection. The crop column includes a variety of crops, 
such as rice, maize, chickpeas, and kidney beans, and various fruits such 
as bananas, mangoes, and pomegranates. Other crops include cotton 
and coffee. In the soil column, loamy, clayey, sandy, black, and red soils 
are among the soil types listed appropriate for each crop. By pairing 
the right crops with the appropriate soil types, the information helps 
determine which crops grow well in particular soil types, allowing for 
precision farming to implement optimal crop selection. 

3.2. Data preprocessing using IQR
The preprocessing method to identify and eliminate outliers in 

datasets in crop selection is the IQR method. The group between the 
first and third quartiles (Q1 and Q3, respectively), which represent the 
central 50% of the data, serves as the foundation. The IQR is computed 
in Equation (1) as follows: 

Crop selection determines the lower and upper boundaries for 

(1)
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outliers; see Equations (2) and (3). 

Outliers are defined as data points that are either above or below 
the established lower bound and are typically eliminated from the dataset. 
Because the IQR method works regardless of the data distribution, it is 
reliable for both skewed and normal datasets. Outliers can significantly 
impact performance and are often used in data preprocessing, especially 
in exploratory data analysis as well as in preparing data for ML models. 
Figure 3 shows the outcomes of boxplots in the current classifier. 
The boxplots show the different environmental properties such as 
temperature, humidity, pH, rainfall, N, P, and K. 

3.3. Extract feature using LDA
Raw data is transformed into numerical patterns through feature 

extraction approach, which is useful for data evaluation. LDA uses 
class label information to project data onto a lower-dimensional space, 
maximizing class separability. This not only reduces computational 
complexity but also significantly enhances classification accuracy 
by preserving discriminative features relevant to crop identification. 
It is a component of feature development, a procedure for better 
training predictive models for crop selection. In the process of 
feature regeneration and the continuous evaluation of performance 
of accounting data processing based on identification approaches and 
efficiency enhancements, the predictive system determines the data 
processing based on agricultural features such as crop recommendation 
and soil type. Equation (4) is used to find the linear function that defines 
the vector of motion to minimize the between-class dispersion structure 
and the within-class scattering structures in feature portions.

where variable  is the coefficient vector and 
 is the accounting data processing. Considering 

the linear expression , the LDA approach is used to 
determine the value coefficients. The weight of each initial feature 
is varied to create the updated feature space. The kth finitary of the lth 
collection is represented by each . 

3.4. Optimize crop selection for precision agricultural 
systems using ML techniques

This research attempts to create sophisticated ML models, such as 
LR, GNB, SVC, KNN, DT, ET, RF, and bagging classifier, to optimize 

(2)

(3)

(4)
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Figure 2
Recommended framework

Data Field Attributes Description
N Nitrogen content in soil ratio
P Phosphorus content in soil ratio
K The ratio of potassium in the soil
Temperature degree Celsius
Rainfall in mm
Humidity in %
pH soil value

Table 1
Interpretation of the mean scale for belief, concern, and practice
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crop selection in precision agriculture. By using these ML models, this 
research aims to improve crop selection decisions based on resource 
and environmental aspects, thereby ensuring increased agricultural 
sustainability and production. It was found that the best technique for 
raising the precision of crop selection forecasts was the RF classifier.

3.4.1. Logistic regression (LR)
The universal LR model in statistics is where the LR algorithm 

originates. When modeling the yield (upper and lower) of the agronomy-
based cropping system, the logistics function is calculated in Equation 
(5) as follows:

where P(X) = P (Y = 1|X) is the formal expression for the potential 
of an input (X) (yield from the four distinct cropping systems) class 
(Y = 1 (Highlands)) that is modeled. Table 2 shows the important setup 
parameters for maximizing the effectiveness of LR. Figure 4 shows the 
categorization outcomes for each crop type using LR.

The confusion matrix demonstrates a good diagonal dominance, 
which means overall classification is correct. There are some slight 
misclassifications between crop classes under similar environmental 
conditions. This implies that LR performs well but may be weaker with 
overlapping feature spaces.

3.4.2. Gaussian Naive Bayes (GNB)
In crop selection, the probabilistic ML classification technique 

known as GNB assumes that each class follows a normal distribution. 
The premise is that each parameter can predict an agricultural outcome 
variable through smart farming. The foundation of GNB is the idea that 
an attribute or forecast exists independently of other attributes in the 
dataset, using Equation (6).

(5)
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Hyperparameter Typical Values Used/Tested
Kernel rbf, linear
Regularization C 0.1, 1.0, 10
Gamma scale, auto
Degree (if poly kernel) 3
Probability estimates True, False

Table 2
Hyperparameter settings explored for LR in crop classification

 Figure 3
Outcomes for boxplots in the proposed method 

 Figure 4
Class-wise prediction performance of LR
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The multinomial naïve approach was the most widely used 
technique for document classification problems. Meanwhile, Bernoulli 
Naïve often uses Boolean values in prediction, such as false and true, 
as well as 0 and 1. Moreover, the GNB used continuous value sets 
of information for prediction. The use of GNB offers benefits and 
drawbacks. For instance, compared to alternative techniques such as 
LR with less training data, the performance of GNB improves if the 
forecast is accurate. Although GNB is easy to set up, there is a good 
chance that it will lower the accuracy of the data. As a supervised ML 
method for classification, the NB can determine whether a particular 
feature is present in a class, regardless of whether other traits exist or 
not. Table 3 shows the typical hyperparameters for GNB applied in the 
classification task. Figure 5 shows the class-wise prediction breakdown 
using the GNB model. 

This model assumes feature independence and misclassifies a 
number of crop types. Off-diagonal entries result from misclassification 
between crops with comparable nutritional profiles. It nonetheless 
captures the overall pattern of accurate classification.

3.4.3. Support vector classifier (SVC) 
The SVC is a straightforward technique for classifying crop and 

soil data that creates information in the test set. The model is built using 
data from training and testing, which are collections of data samples 
with multiple properties and one target value for crop selection. The 
identified labels indicate the dependability of the system output in smart 
formations by indicating the desired outcome, verifying the correctness 
of the system, or assisting the system in learning to operate appropriately. 
The goal of the SVC is to optimize the margin by determining the 
optimal separating hyperplane, as indicated in Equations (7)–(9).

where , and g represent the transformer function, 

objective function, and decision function, respectively, and , and 
 are a weight vector, input data vector, bias factor, and slack variable, 

respectively. Table 4 configures the hyperparameters of the SVC for 
multi-class crop prediction. Figure 6 shows the confusion matrix 
reflecting class-level accuracy of the SVC model.

The SVC has few misclassifications and distinct class boundaries. 
Most of the crops are accurately identified, as can be seen from the good 
diagonal alignment of the confusion matrix. A small number of closely 
related crop types exhibit minor faults.

3.4.4. K-nearest neighbors (KNN) classifier
The supervised classification technique KNN classifier can 

classify non-attributes by matching them with relevant attributes in the 
crop selection class. Because the likelihood of errors in a straightforward 
classification rule is constrained by the Bayes error rate in smart farming, 
the Bayes decision rule for minimum probability of error is superior for 
creating the most significant item in pattern recognition. This model 
consists of a pair of formulas that calculate the distance between each 
variable in the dataset. Additionally, it uses a different distance metric to 
normalize the distance. Table 5 shows the KNN configuration variables 
used during model training. In Figure 7, the performance of the KNN 
classifier is evaluated using the class-level confusion matrix.

Manhattan distance. Compared with other equations, Equation 
(10) makes it simpler to compute the distance.

(6) (7)

(8)

(9)
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Hyperparameter Typical Values Used/Tested
Max depth None, 10, 20
Min samples split 2, 5, 10
Min samples 1, 2, 5
Splitter best, random

Table 4
Key SVC parameter settings tested for classification efficiency

Hyperparameter Typical Values Used/Tested
Variance smoothing 1e-9 (default)
Prior probabilities None
Fit prior True, False
Distribution type Gaussian
Assumes independence Yes (default behavior)

Table 3
Parameters used for modeling with GNB classifier

 Figure 5
True and predicted classifications using GNB

 Figure 6
SVC model classification across crops
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Euclidean distance in standard geometry is the distance between 
two points; see Equation (11).

Minkowski distance, as with the Euclidean distance, in this case, 
requires an n value , where x and y represent 
the x and y coordinates of the point on the y plane.

The KNN provides stable classification for strongly separated 
classes of crops but demonstrates some interference among close classes 
in the feature space. Its behavior is dependent on the distance metric 
and local data structure. Misclassifications occur mainly between crops 
that share overlapping environmental characteristics.

3.4.5. Decision tree (DT) classifier 
In supervised ML, the DT is flowchart-like structure and is 

usually used for categorization and prediction. In general, DT comes in 
two forms, continuous and categorical, depending on the type of target 
feature. A perfect split can be achieved by comparing the root node 
of the DT with other properties or features in the dataset. If the tree is 
perfectly split, then outcomes of a certain class are on one side and for 
the opposite class are on the other side. This process splits each node 
until a perfect split is achieved, forming the leaf node of the tree. The 
choice of attributes is the true obstacle in building a DT. The Gini Index 
and Information Gain are two strategies that can be used to achieve 
splitting, as shown in Equation (12). 

where S denotes the current state, W represents the selected attribute, 
and positive and negative outcomes and indicated o+ and o−.  

Table 6 shows the important hyperparameters of the DT in crop 
classification. Figure 8 shows the detailed crop classification accuracy 
using the DT.

The confusion matrix shows almost perfect separation among 
classes, with high diagonal values and few off-diagonal errors. The 
model cleanly separates crop classes through hierarchical clustering of 
features, with minimal confusion in boundary cases.

3.4.6. Extra tree (ET) classifier 
For challenges in crop selection classification, an ensemble ML 

algorithm, known as the ET classifier, makes use of the DT. While the 
ET classifier has important differences, it shares commonalities with 
RF. Unlike an RF, which builds individual trees using bootstrapped 
portions of the training data, the ET classifier builds each tree using the 
full training dataset. Although both methods incorporate randomization 
during the tree-building process, the ET classifier uses random 
thresholds at each split point. At each node, however, the RF takes into 
account a random selection of attributes, as shown in the following 
Equations (13) and (14). 

where  is the number of distinct classes or labels and  represents 
the percentage of rows that have output label i; see Equations (6) and 
(7). 

(10)

(11)

(12)

(13)

(14)
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Hyperparameter Typical Values Used/Tested
Penalty L2
Solver liblinear, lbfgs
Regularization strength C 0.1, 1.0, 10
Max iterations 100, 500, 1000
Dual formulation False, True

Table 5
Hyperparameters for KNN used to classify crop types based 

on proximity

 Figure 7
Classification output of the KNN algorithm

Hyperparameter Typical Values Used/Tested
Max depth None, 10, 20
Minimum samples 2, 5, 10
Samples leaf 1, 2, 5
Splitter best, random

Table 6
DT settings tuned to improve prediction accuracy

 Figure 8
DT predictions versus actual crop classes
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Hyperparameter tuning was done to maximize the performance of 
the ET classifier model, with particular attention paid to the number of 
trees, minimum leaf, split sample sizes, splitting criteria, and bootstrap 
sampling. Table 7 and Figure 9 show the analysis of classification 
accuracy per class using the ET algorithm.

The ET can cause a minor instability because of the excessive 
randomness in the tree building process. The confusion matrix 
shows that there are some random misclassifications between a few 
classes. Although majority of predictions are correct, some crops are 
misclassified because of feature noise.

3.4.7. Random forest (RF) classifier 
Using the RF framework, the ensemble method called RF was 

created for classification and regression. It predicts the average of 
multiple independent base models. Using multiple learning algorithms 
to improve the predictive performance in regression and classification 
is known as the ensemble method. RF uses bagging (Bootstrap 
Aggregation) as one of its ensemble methods. To lower the variance of a 
DT, bagging can be used. The RF model and the DT model have similar 
categorization structures. This method was implemented because 
a random subset of the training data is used to create each DT. The 
information, entropy, and data gain DTs were as expected. 

Entropy

where  denotes a genuine and favorable value of the information,  
is a fictitious and negative information value,  represents 
an amount found in the information, and  is the predicted 
information value derived from the data  and , as shown in 
Equations (15) and (16).

Information gain

where F(B) represents the entropy value that serves as the root of the 
DT and  represents the integer of the information obtained 
from a characteristic or attribute, as shown in Equation (17). 

he selection of data used for subgroups and training tasks is 
random. Autonomous DT is necessary for the randomization of the RF 
approach. The predicted information, entropy, and data gain equation, 
or the decision tree (CART), must first be created so to employ the 
RF technique. There are two types of random values in data: true and 
false. One metric used in RFs is the Gini Impurity. The Gini Impurity 
equations for the initial and subsequent layers of the RF model are 
shown in Equations (18) and (19). 

The ability of RF to handle missing information values while 
preserving the correctness of the missing data is an advantage. By 
combining random and multiple learning techniques, RF enhances the 
accuracy and performance of the DT method. Table 8 shows that the 
RF hyperparameters are tuned to achieve excellent recall and accuracy. 
Figure 10 shows the detailed confusion matrix, showcasing the robust 
classification performance of RF.

The excellent class-wise performance of RF is demonstrated by 
the strong concentration along the diagonal of the confusion matrix. 
There is very little misunderstanding in the precise distinction of all 
crop classifications. The ensemble method of the model guarantees 
reliable and consistent predictions for a range of feature inputs.

3.4.8. Bagging classifier 
Bagging, sometimes referred to as bootstrap aggregation, is 

used with DT and greatly improves model stability by increasing 
accuracy and reducing variance to get rid of over-fitting. To choose 
the most accurate prediction for crop selection, bagging in ensemble 
ML aggregates multiple weak models, specializing in different regions 
of the feature space. A distinct model is practiced using each data 
group. The corresponding X is used to query each model, and all of 

(15)

(16)

(17)

(18)

(19)
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Hyperparameter Typical Values Used/Tested
Amount of trees 100, 200
Max structures sqrt, log2
Min models split 2, 5
Criterion gini, entropy
Bootstrap False (default), True

Table 7
Key hyperparameters tested in the ET model for crop classification

Hyperparameter Typical Values Used/Tested
Number of estimators 100, 200, 300
Max features sqrt, log2
Min samples 2, 5
Bootstrap True

Table 8
Typical settings for the RF classifier in crop selection tasks

 Figure 9
Decision graph of actual crop classifications versus tree 

projections
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the results are gathered. To create the Y for the ensemble, the mean of 
the outputs from particular models is calculated. Assume K samples 
for bootstrap of dimension A. , , 

, . However, considering  based on the k-th 
bootstrapping sample, the virtually isolated K amount can be adapted 

. Table 9 displays detailed information about the 
hyperparameter adjustment of the DT-based bagging classifier. Figure 11 
shows the results of the ensemble classification of the bagging model.

The bagging classifier also exhibits strong diagonal dominance 
in the confusion matrix. Misclassifications are negligible and occur 
in few overlapping crop classes. The ensemble method enhances 
generalization and diminishes prediction variance.

4. Result and Discussion
This section explains the experimental setup, the performance 

of the existing and proposed methods, the comparative analysis, and, 
finally, the discussion.

4.1. Experimental setup
To improve the efficiency and accuracy of accounting data 

processing based on intelligent financial software requires a variety of 
hardware and software. The entire model training and testing procedure 
is developed using the Python ML framework, and Table 10 lists the 
experimental setting. 

4.2. Comparative evaluation 
Figure 12 shows a histogram for several crop indicators. Each 

histogram shows the distribution of the corresponding variable 
throughout the dataset. The probability density function, represented 
by the curves combined on the histograms, shows the general trend and 
distribution pattern of a variable.

Figure 12 shows the average values of several crop indicators. 
The average phosphorus (P) values of several crops showed a significant 
degree of variation. The highest P level is found in fruits such as apples 
and grapes, while the lowest is found in oranges and coconuts. Jute, 
mung bean, and rice are among the crops in the mid-range level. The 
following image, Figure 13, shows a preprocessed dataset  with fewer 
outliers, indicating that the data preprocessing has improved. Figure 14 
shows the outcomes of the boxplots in the proposed method

Correlation matrix: Figure 15 shows the correlation matrix of 
features in the proposed method. The relationship between numerical 
features is shown in this heatmap. Weaker correlations are shown in 
blue, and stronger connections are shown in darker red.

Figure 16 shows the outcomes for soil types and possible crops. 
This matrix shows the compatibility  of various soil types with different 
crops. A “1” indicates the presence of a certain crop in a certain soil 
type. While some soil types, such as loamy and black soil, are suitable 
for growing a variety of crops, other soil types are less suitable. Figure 
16 shows precision agricultural recommendations  with the help of 
diverse soil-crop relationships.

The effectiveness of traditional ML methods is being compared 
with LR, GNB, SVC, KNN, DT classifier, ET classifier, RF classifier, and 
bagging classifier to optimize crop selection for precision agricultural 
system models. Figure 17 illustrates those that are commonly used in 
these described evaluations, such as accuracy, recall, precision, and F1-
score.

Accuracy and precision: A popular statistic for the crop selection 
categorization task is accuracy. It assesses the proportion of precise 
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 Figure 11
Outcomes visualized through the confusion matrix of the bagging 

model

 Figure 10
High-accuracy predictions by the RF model

Hyperparameter Typical Values Used/Tested
Base estimator DT
Number of estimators 50, 100
Max models 0.5, 1.0
Bootstrap True, False
Bootstrap features False, True

Table 9
Parameters applied in the bagging ensemble model for 

robust classification

Environment Frequency 
GPU NVIDIA Quadro RTX 3000
Operating system (OS) Windows 11
Memory 16 GB
CPU Intel Xeon Silver (4214R@2.40GHzz)
Python version 3.8

Table 10
Development tool
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 Figure 12
Outcomes of the crop indicators (N, P, K, temperature, humidity, pH, and rainfall)

 Figure 13
Comparison of the mean values of P, K, temperature, humidity, pH, rainfall, and N for different crop plants
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forecasts in each prediction category of the model. A performance 
indicator called precision determines the ratio of accurate positive 
predictions to every negative prediction made by the model. It assesses 
the accuracy of positive predictions by computing Equations (20) and 
(21), which determine the percentage of expected positive values. 
Table 11 shows the results of accuracy and precision of the classifier.  

Note: TN means true negative, FN means false negative, TP 
means true positive, and FP means false positive.

Figure 18 shows a comparison of the performance  of different 
ML classifiers in terms of accuracy for crop selection. With the highest 
scores (both at 99.88%), RF had the best predictive power. Bagging 
and DT both performed well. GNB and ET showed somewhat lower 
precision, indicating somewhat less dependable predictions, but SVC 
and KNN had strong results.(20)

(21)
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 Figure 15
Correlation matrix of features in the proposed method

 Figure 14
Outcomes for boxplots in the proposed method

 Figure 16
Outcomes of the soil types and possible crops
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Figure 19 shows a comparison of the precision of each classifier. 
With 99.88% precision, the RF classifier outperforms other methods. 
These results show the exceptional performance of RF.

The bar charts show the performance of different classification 
algorithms. The RF classifier had the highest performance (99.88%), 
closely followed by the bagging classifier and DT Classifier with 
99.64%. GNB had the worst performance at 96.67%. In general, 
ensemble models such as RF and bagging performed much better 
than basic models such as LR and NB, indicating their suitability for 
predictive classification tasks.

The above graph representation shows the precision levels of 
the classifiers. RF leads with 99.88%, closely followed by bagging 
(99.53%) and DT (99.53%). SVC (98.69%) and KNN (98.30%) exhibit 
good performance. LR (97.13%) and GNB (97.58%) perform well, 

although ET has the lowest precision level (96.12%), indicating low 
confidence in its positive predictions (Table 12).

Recall and F1-score: This metric measures the proportion of 
instances in a given positive class that were accurately categorized by 
crop selection prediction. Equations (22) and (23) demonstrate how 
the F1-score can be used to evaluate the predictive ability for crop 
selection by calculating the harmonic mean for accuracy and recall. 
The numerical results of the recall and F1-score of the classifiers are 
shown in Table 12.   

All models perform well, as shown in the table, but RF has the 
greatest recall and F1-score (99.88%), showing exceptional accuracy in 
crop class identification. Although ET and GNB exhibit comparatively 
lower results, both DT and bagging show good performance. This 
demonstrates the reliability and success rate of RF for crop classification 
in precision farming. Figure 20 shows the performance evaluation of 
recall.

RF had the greatest F1-score and recall of 99.88% among the 
evaluated models. With respective recall rates of 99.76% and 99.40%  
and F1-scores of 99.52% (Figure 21). These best-performing models 
exhibit outstanding classification capabilities. Although SVC and 
KNN also have competitive scores, ET and GNB fall slightly behind, 
reflecting reduced resilience in coping with intricate crop classification.

10-fold cross-validation: This technique divides the data into ten 
equal sets (folds) and is a powerful model testing technique. Each run 
uses nine folds for training and one fold for testing. This process is 

(22)

(23)
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Methods Accuracy (%) Precision (%)
LR 97.02 97.13
GNB 96.67 97.58
SVC 98.57 98.69
KNN 98.10 98.30
DT 99.64 99.53
ET 97.50 96.12
RF 99.88 99.88
Bagging 99.64 99.53

Table 11
Outcomes of accuracy and precision of classifiers

Methods Recall (%) F1-score (%)
LR 97.02 97.01
GNB 96.67 96.57
SVC 98.57 98.69
KNN 98.10 98.08
DT 99.64 99.52
ET 96.55 95.32
RF 99.88 99.88
Bagging 99.76 99.40

Table 12
Numerical outcomes of the recall and F1-score of the classifiers

 Figure 17
Outcomes of the accuracy of the proposed method

 Figure 18
Accuracy performance of different ML classifiers

 Figure 19
Precision of the different ML classifiers



Journal of Computational and Cognitive Engineering Vol. 4  Iss. 4  2025

repeated ten times to ensure that each dataset is used once for testing 
and once for training. Table 13 provides a more accurate measure of 
model performance, where the results are averaged. This study confirms 
the consistency of the RF classifier across all assessment metrics.

The table shows the 10-fold cross-validation performance of the 
RF classifier, which consistently shows high performance in all folds. 
Accuracy, precision, recall, and F1-score values are all above 99.7% 

for each fold, indicating the robustness and stability of the model. The 
average value of all four measures is 99.88%, implying outstanding 
classification reliability and generalizability. The high consistency 
indicates that the model is suitable for reliable and efficient crop 
selection under precision agriculture operations.

4.3. Comparison phase 
In the comparison phase, the performance of several ML models is 

evaluated to ascertain whether they are appropriate for crop prediction. 
The RF model consistently exhibits higher accuracy and dependability 
across assessment measures compared to all other methods. 

Accuracy: The term measures the ratio of correct crop predictions 
by the model to the total predictions. The aim of the study is to maximize 
crop selection  through ML optimization, with high accuracy showing 
consistent classification based on environmental and soil characteristics. 
It shows the efficiency of the model in precision agriculture decision-
making. Table 14 shows the comparison of prediction accuracy and fit 
of the crop yield estimation model.

The table shows a comparison of the crop forecast accuracy of 
various ML classifiers. The suggested RF model achieves the highest 
accuracy (98.80%), indicating superior performance. Bagging, DT, and 
SVC perform well, while existing research techniques, such as KNN and 
LR, reflect relatively low accuracy, indicating achieved improvements 
by the proposed model.

Mean absolute error (MAE): This metric calculates the mean 
magnitude differences between model-predicted and actual crop yield 
values. It helps determine how well the model forecasts approximate 
actual crop conditions and aids in precise crop selection.

R²: The term determines the extent to which the input variables 
predict crop yield variability. The greater the value of R², the better 
the predictive power of the model and the objective of data-based 
crop optimization. Table 15 shows that RF is the most accurate model 
compared to other models based on MAE and R² assessments.

The MAE and R² for various regression models are used in 
crop forecasting. The new RF model has the best performance  with 
the lowest MAE and highest R², indicating high prediction accuracy 
and excellent model fit. Traditional models and the existing research 
report more errors, reflecting the superiority of the new approach in 
yield prediction .

4.4. Discussion
This research demonstrates how well-suited sophisticated ML 

models are for precision agricultural crop selection optimization. 
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Fold
Accuracy 

(%)
Precision 

(%)
Recall 
(%)

F1-Score 
(%)

Fold 1 99.76 99.70 99.78 99.74
Fold 2 99.88 99.85 99.87 99.86
Fold 3 99.92 99.90 99.93 99.91
Fold 4 99.84 99.80 99.85 99.82
Fold 5 99.88 99.89 99.88 99.88
Fold 6 99.80 99.76 99.79 99.77
Fold 7 99.90 99.91 99.89 99.90
Fold 8 99.87 99.88 99.86 99.87
Fold 9 99.85 99.83 99.84 99.83
Fold 10 99.89 99.90 99.88 99.89
Average 99.88 99.88 99.88 99.88

Table 13
10-fold cross validation across the metrics

 Figure 20
Performance evaluation of recall of the different ML classifiers

 Figure 21
Outcomes of the F1-score

Methods Accuracy (%)
KNN [23] 97.72
LR [23] 94.69
GNB 97.20
SVC 97.90
KNN 97.60
DT 97.95
ET 97.10
RF 98.80
Bagging 97.98

Table 14
Evaluation of classifier accuracy across models used 

in crop selection
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The research by Tufail et al. [20] is dedicated solely to predicting 
alfalfa yield based on data from Georgia and Kentucky, restricting the 
generalizability of the findings to other crops and locations. Similarly, 
the study by Shafi et al. [21] introduces a crop/weed detection system 
based entirely on ML tailored for tobacco crops, relying on visual 
characteristics such as texture, shape, and color. The research by Patil 
et al. [23] deals with one type of crop  and is based on regional data, 
which will not work well in different climates and different soils, thus 
limiting its generalizability to other types of agricultural settings. 
Moreover, the lack of multi-crop testing and restricted feature variability 
diminish its suitability in wider crop selection applications. The current 
research comparison results clearly show that the RF model proposed 
here is better than any classifier with respect to accuracy, MAE, and R². 
It has the maximum classification accuracy and minimum prediction 
error, proving it is robust. It gives more accurate and consistent results 
for crop selection and yield prediction compared to current methods.

5. Conclusion
The research focuses on applying sophisticated ML models to 

optimize crop selection for precision agriculture. Because of concerns 
such as soil erosion, climate change, and water scarcity, crop selection 
has become essential to sustainable farming. The research creates an 
ML model to optimize crop selection  by assessing several classifiers, 
such as LR, GNB, SVC, KNN, DT, ET, RF, and bagging. With 
preprocessing techniques such as IQR to eliminate outliers and LDA for 
feature extraction, the dataset includes crop suggestions, meteorological 
information, and soil properties. The RF classifier performed better 
than the others, achieving 99.88% accuracy, 99.88% precision, 99.88% 
recall, and 99.88% F1-score. In precision agriculture, the results show 
how contemporary ML models can improve crop selection, optimize 
resource utilization, and increase output. High computing costs and 
the time required to train efficient ML models, especially with huge 
datasets, are among the drawbacks of the research. The intricacy of 
the model can also make it difficult to implement in environments 
with limited resources. Future research should focus on utilizing AI-
driven systems to investigate further sustainable agricultural options, 
enhance model efficiency, and integrate real-time data for dynamic crop 
suggestions.
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