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Abstract: Autism spectrum disorder (ASD) is a complicated neurodevelopmental disorder. There is no definitive or easily interpretable medical 
test that aids in the early diagnosis of ASD, which leads to delays in its detection. In this study, we compared deep learning and traditional feature 
extraction methods used to detect ASD using retinal fundus images. The authors implemented convolutional neural networks (CNNs) such as 
ResNet50, EfficientNet, and vision transformers (ViTs), apart from the hybrid CNN + ViT  model, for automated feature extraction. In addition, 
classic methods such as the gray level co-occurrence matrix for texture analysis, Frangi filters for measuring vessel density, and cup-to-disc ratio 
estimation were used to extract clinically relevant retinal features. To evaluate the discriminative power of the features obtained by each technique, 
classification models such as support vector machines, random forest, and XGBoost were implemented. Among the models used, hybrid CNN + 
ViT obtained the highest accuracy, which suggests that combining spatial and contextual retinal information enhances the detection of ASD. This 
study examined various feature extraction approaches in detail and elucidated the advantages of deep-learning-based approaches to enhance ASD 
diagnosis using retinal images. The results contribute to ongoing research on AI-supported ASD detection and provide crucial insights into the 
selection of optimal feature representation methods for future clinical applications.
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1. Introduction
An early and quick diagnosis would ensure effective and efficient 

treatment and intervention for autism spectrum disorder (ASD), 
a neurodevelopmental disorder presenting with deficits in social, 
communication, and behavioral skills. ASD is a brain condition, but 
it might represent other bodily considerations. Research suggests that 
there may be subtle alterations in the retina attributable to ASD. As a 
part of the central nervous system, the retina mirrors brain changes [1]. 
Some studies found that the retinal nerve fiber layer (RNFL) is thinner 
in ASD persons, mainly around the optic nerve [2, 3]. This thinning 
may be accompanied by some changes in the optic disc, such as an 
increased cup-to-disc ratio (CDR) [4]. Retinal blood vessels might 
appear decreased or unusually twisted, indicating either impediments 
in blood flow or inflammation [5]. Anatomical variances in the macular 
and foveal areas may also interfere with vision and sensory processing 
in ASD [6]. Fundus images are extremely easy and noninvasive to 
produce and show these signs. Furthermore, using deep learning 
models, these images can be searched for both small and great features 
to make an initial identification of ASD.

Recent studies suggest that retinal fundus images can provide 
biomarkers associated with ASD [7], especially regarding vascular 
structure differences, optic disc morphology, and macular changes. It 
becomes difficult to extract useful information from these images due 
to differences between individuals, image quality issues, and other 
complexities of retinal structure and image formation. Traditional 

methods are based on handcrafted feature extraction techniques, which 
include texture analysis [gray level co-occurrence matrix (GLCM)], 
blood vessel segmentation (Frangi filters), and optic disc measurements 
(CDR).

These approaches typically suffer from subjectivity and limited 
generalizability across different datasets. In contrast, to eliminate such 
challenges, deep learning has opened up avenues for extracting rich 
hierarchies of visual representation from retinal images. Thus, deep-
learning approaches such as convolutional neural networks (CNNs) and 
vision transformers (ViTs) [8] can learn relevant patterns themselves 
without being pretasked to hand-engineered features.

Pan et al. [9], Tummala et al. [10], and Takahashi et al. [11] used 
state-of-the-art deep learning models such as ResNet50, EfficientNet, 
and ViT, along with a hybrid CNN + ViT method, for local and global 
feature extraction. Higher classification accuracy  and lower error rates 
can be achieved by manual feature selection. This study aims to compare 
deep learning and traditional feature extraction methodologies for ASD 
detection using retinal fundus images. The authors will determine the 
effects of hybrid feature extraction (CNN + ViT) on classification and 
evaluate the performances of support vector machines (SVMs), random 
forest (RF), and XGBoost as classifiers [12]. In addition, an analysis 
using Grad-CAM [13] would help us determine the important features 
contributing toward diagnosing ASD. This comparative research will 
determine the best possible feature representation for the detection of 
ASD and establish a solid foundation for future research. The novelty of 
this study is (i) a hybrid combination of CNN features and transformer 
to exploit both local and global cues, (ii) the use of handcrafted retinal 
biomarkers, and (iii) attention-based fusion and ranking methods 
tailored to autism detection.

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/	
by/4.0/).
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The main contributions of this study are the following:

1)  This study proposes a hybrid approach that combines traditional 
handcrafted features with deep learning features from retinal fundus 
images for improved ASD detection.

2)  Several deep learning models such as ResNet50, EfficientNetB0, 
ViT, and hybrid CNN+ViT are used in extracting different rich 
features from the images.

3)  RF has been employed to apply feature fusion and ranking strategy 
for the selection of the most relevant features used for classification.

4)  The final classification uses ensemble models such as XGBoost, RF, 
and DNN to effectively differentiate those manifesting autism from 
others.

The remainder of this paper is organized as follows. In Section 2, 
a review of the state-of-the-art approaches applied to ASD detection 
using retinal imaging and deep-learning-based feature extraction 
techniques is provided. The challenges and considerations in deploying 
deep learning models for ASD classification, especially with respect 
to retinal fundus analysis, are also discussed. In Section 3, we present 
our proposed methodology, the dataset used in the experiment, feature 
extraction techniques, feature ranking, and model classification. 
Section 4 outlines the experimental setup, implementation details, and 
performance evaluation in comparison with traditional methods. Section 
5 presents and discusses the findings, their implications, and suggestions 
for improvement, as well as some future directions of the work on the 
detection of ASD using retinal imaging and deep learning techniques.

2. Literature Review
The WHO (ICD-10), CDC, and APA (DSM-5) define ASD 

based on social and behavioral characteristics. Individuals with 
ASD are frequently characterized by social interaction difficulties, 
limited communication skills, and representations of repetitive 
behavior. Despite advances in computer vision and AI, the diagnosis 
of ASD remains challenging because of its various symptoms and the 
indeterminate medical tests used for its detection.

More recently, retinal imaging has been investigated as a potential 
biomarker for the detection of ASD using deep learning models to 
analyze vascular structures, optic disc shapes, and changes in the macula 
associated with the condition. Traditional methods such as handcrafted 
feature extraction with GLCM, Frangi filters, and CDR have been 
used extensively but have no scalability and generalizability across 
populations. Deep-learning-based approaches, on the contrary, afford 
significant leaps in feature extraction and classification accuracy and 
hold promise for better and more effective noninvasive detection of ASD.

Recent research has demonstrated the potential of deep-learning-
based automated screening tools for ASD detection. Kim et al. [7] 
developed deep ensemble models to screen ASD individuals using 
retinal fundus photographs, achieving an AUROC of 1.00, indicating 
the effectiveness of deep learning for ASD classification. Lai et al. [14] 
introduced a machine learning approach for ASD risk assessment using 
fundus images, with an AUROC of 0.974, reinforcing the noninvasive 
potential of retinal-image-based ASD detection. In addition, their model 
addresses the constraints of previously documented techniques [15–18]. 
The role of CNN-based segmentation techniques in retinal fundus imaging 
is proposed by John and Singh [19], concluding that deep learning 
significantly improves classification accuracy over conventional feature 
extraction methods. This aligns with the findings of authors [20–25] who 
applied deep learning for detecting retinal abnormalities (such as exudates, 
hemorrhages, and microaneurysms) and achieved superior sensitivity and 
specificity compared to traditional image processing methods.

A major limitation of CNNs in medical imaging is their 
inability to capture global contextual relationships. To address this, 

hybrid CNN+ViT models have been introduced. A hybrid CNN+ViT 
approach for retinal disease classification is proposed by Rajatha and 
Ashoka [26], where CNNs extract texture features and ViTs focus on 
spatial structure and shape variations. Their model demonstrated a 
weighted accuracy of 94%, suggesting that combining CNN and ViT 
architectures can enhance ASD classification performance. In a related 
study, Dutta et al. [27] and Ranjana and Muthukkumar [28] proposed a 
lightweight transformer-based ASD classification model that leverages 
self-attention mechanisms to capture subtle visual differences in retinal 
images. Their approach achieved 91% accuracy, further supporting the 
efficacy of transformer-based architectures for ASD screening.

Minissi et al. [29] and John and Santhanalakshmi [30] proposed 
the fusion of human knowledge and machine learning for ASD severity 
assessment. Their method distinguished three affective states (positive, 
neutral, and negative) using a two-stage deep learning approach. The 
first stage analyzed negative speech patterns (shouting and screaming) 
using log-Mel spectrograms, and the second stage classified positive 
and neutral emotions via facial expression analysis.

This study highlighted the importance of integrating multimodal 
data for ASD detection, with an overall model performance of 72% 
accuracy. Kulkarni and Amudha [31] proposed a multimodal fusion 
framework integrating eye-tracking data and retinal imaging, achieving 
a 95% classification accuracy. Their study emphasized the importance of 
combining different data sources to improve ASD diagnostic reliability.

Several studies have emphasized multimodal approaches that 
combine retinal imaging, eye-tracking data, and behavioral patterns for 
ASD classification. Fernandez-Lanvin et al. [32] proposed an automated 
behavioral cue-based ASD screening method for children aged 18–24 
months, demonstrating that behavioral tracking can significantly enhance 
early ASD detection. Nag et al. [33] and Nguyen et al. [34] combined 
eye gaze tracking and emotion recognition to differentiate ASD and 
neurotypical controls, reinforcing the importance of affective states in 
ASD classification. A comprehensive literature review by Leung et al. 
[35] further explored emotion recognition in ASD children. Their review 
concluded that multimodal deep learning methods, such as combining 
facial expressions, speech analysis, and retinal imaging, outperform 
single-modality approaches in ASD detection. In addition, Atlam et al. 
[36] cautioned against the over-reliance on machine learning models, 
noting that some prior studies failed to replicate their results on larger 
datasets, emphasizing the need for clinically validated AI models. More 
recently, Tamuly et al. [37] and Huynh and Deshpande [38] investigated 
the role of generative adversarial networks (GANs) in augmenting 
ASD datasets to address class imbalance issues, improving overall 
model generalization and robustness. Despite these advancements, ASD 
diagnosis through deep-learning-based retinal imaging faces multiple 
challenges. A key issue is the heterogeneity of ASD symptoms, which 
makes it difficult to develop a universal deep learning model.

In addition, variability in retinal image quality and dataset 
diversity can affect model performance. Some studies have struggled 
with model generalizability, where models trained on one population 
fail to perform well on another. Another challenge is the lack of large-
scale, publicly available ASD retinal datasets, limiting opportunities for 
model validation and benchmarking. To address these issues, our work 
proposes a hybrid CNN+ViT deep learning framework that effectively 
combines local feature extraction and global context modeling for ASD 
classification. We integrate a multimodal fusion approach, leveraging 
retinal imaging along with behavioral and gaze-tracking data to enhance 
predictive performance. In addition, we employ data augmentation 
techniques using GANs to mitigate class imbalance issues and improve 
model robustness. By addressing these limitations, our proposed method 
aims to contribute toward a more scalable, generalizable, and clinically 
relevant ASD detection framework. Figure 1 presents the timeline of 
deep learning advancements in ASD detection (2020–2024).
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Recent studies have shown the effectiveness of AI in healthcare 
domains beyond imaging, such as privacy-aware mobile sensing 
[39] and AI-driven epidemic management [40]. These advancements 
support the growing applicability of AI in solving complex, sensitive 
problems such as motivating our exploration of deep and handcrafted 
feature fusion for autism detection using retinal fundus images.

3. Methods

3.1. Dataset description
The model was trained and tested on a dataset comprising 

3336 normal retinal fundus images, which include both right and left 
eye scans. Normal retinal fundus images were additionally obtained 
from Kaggle from the dataset entitled “1000 Fundus Images with 39 
Categories” [41]. These images were captured using a fundus camera 
under varying illumination conditions, ensuring a diverse representation 
of retinal structures as shown in Figure 2. A subset of 53 retinal fundus 

images was extracted from the Kaggle “1000 Fundus Images” dataset, 
including both autistic and nonautistic individuals, based on identifiable 
metadata or annotations. The description of the labeled annotations is 
described in Table 1.

3.2. Preprocessing
Preprocessing plays an important role in retinal fundus image 

analysis, ensuring that images are standardized and optimized for 
feature extraction and classification. Figure 3(a)–(e) illustrates various 
preprocessing techniques applied to retinal images to improve their 
quality, consistency, and robustness. The original image captured using 
a fundus camera often contains noise, variations in illumination, and 
differences in scale, making it essential to preprocess before analysis. 
Resizing and normalization [42] are performed to standardize the image 
dimensions (e.g., 224 × 224 or 512 × 512) and scale pixel values to 
a uniform range ([0,1] or [−1,1]), allowing deep learning models to 
process them consistently. Horizontal flipping is applied to improve the 
generalization of the model and to augment data and helps the model 
recognize symmetrical variations in retinal structures. Vertical flipping, 
in the same way, adds orientation variation that helps the model become 
robust against various frontal positional changes and other changes in 
these fundus images.

Further, rotation by 90° ensures that the model is trained on 
images with different orientations, accounting for variations caused 
by patient positioning and camera angles. These preprocessing steps 
collectively help in removing unwanted variations, enhance dataset 
diversity, and prevent overfitting in deep learning models. In addition, 

3

Dataset Source
Image 
count

ASD image 
count

Non-ASD 
image count

Left 
eye

Right 
eye

Kaggle-1000
Fundus images

3336 25 28 18 35

Table 1
 Dataset description and class distribution

 Figure 1
Timeline of deep learning advancements in ASD detection 

Figure 2
(a) Retinal fundus image with (b) annotation labeling

 Figure 3
Preprocessing steps: (a) original image, (b) resized and 

normalized, (c) flipped horizontally, (d) flipped vertically, and 
(e) rotated 90°
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more advanced preprocessing methods, such as contrast-limited 
adaptive histogram equalization (CLAHE), Gaussian blurring, and 
background subtraction [43], can be incorporated to further refine 
image quality and highlight key anatomical structures in the retina. By 
applying these techniques, the reliability and efficiency of deep learning 
models and traditional machine learning approaches for retinal image 
analysis can be significantly improved.

3.3. Feature extraction methods
Feature extraction plays a crucial role in retinal fundus image 

analysis, facilitating the identification of key patterns for classification. 
Authors have utilized CNN-based models [44–46] to learn hierarchical 
spatial features, ViT-based models to capture global retinal structures, 
and hybrid CNN+ViT models [47] to integrate both local and global 
feature representations. In addition, classic feature extraction 
procedures have been debated for the last couple of decades, including 
GLCM, Frangi filters, and CDR. Classification accuracy is increased 
by studying vascular density, texture, and the shape of the optic disc.

To further improve detection performance, authors employ two 
primary methods for feature extraction: traditional feature extraction 
and deep-learning-based feature extraction. The objective is to identify 
the most discriminative features using both approaches, fuse them, 
and determine the most relevant and precise features for detecting 
autism. Traditional methods provide handcrafted, interpretable features 

that offer clinical significance, and deep-learning-based approaches 
automatically learn complex patterns from fundus images. By combining 
these two techniques, the goal is to enhance feature robustness, improve 
classification accuracy, and refine the feature selection process to ensure 
a more reliable and effective autism detection framework. The proposed 
architecture flow is shown in Figure 4. Various pretrained architectures, 
including ResNet50, EfficientNetB0, ViT, and a hybrid CNN + ViT 
model, had their final pooling or embedding layers from which the deep 
features were extracted. These capture both hierarchical spatial and 
long-range contextual information.

Several regularization strategies were employed to mitigate 
the overfitting that results from merging several characteristics from 
both deep learning and classic methods. The first step was to rank and 
retain only the most significant features using RF. Second, an attention 
mechanism helped in removing noisy or less useful features during 
fusion. Third, to appropriately test the model across various data splits, 
we employed fivefold stratified cross-validation.

3.3.1. Traditional feature extraction
In this study, we selected vascular features such as vessel 

density, tortuosity, fractal dimension, arteriovenous ratio, CDR, foveal 
avascular zone area, FAZ circularity, and GLCM-based texture features 
such as contrast, correlation, energy, and homogeneity [48], which may 
correlate with altered cerebral microcirculation in ASD. These feature 
extraction processes are based on a combination of image processing 

4

 Figure 4
Proposed architecture flow
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and vessel segmentation, with the necessary techniques for texture 
analysis that thoroughly represent retinal structures.

Hessian-based vessel enhancement techniques and Frangi 
filtering were used to extract vessel-related features such as tortuosity 
and vessel density. Fractal dimension was calculated using box 
counting to obtain a value that represents the level of complexity in 
vascular structures. Intensity thresholding, along with morphological 
operations, was applied to arterial and venous segmentation to derive 
the AVR, and Gaussian blurring, along with adaptive thresholding, was 
applied to segment the optic disc and cup during CDR measurement. 
Contour detection enabled the measurement of FAZ area and circularity. 
Texture features based on GLCM such as contrast, correlation, energy, 
and homogeneity were extracted to quantify the structural changes 
in the retinal images. Although other features such as bifurcation 
angles and fractal dimensions existed, they were excluded due to 
poor reproducibility in datasets or redundancy with selected metrics. 
The obtained features were structured into a CSV file, as shown in 
Figure 5, which can be used for the next stages of analysis for their 
further integration into machine learning models for autism detection. 
Table 2 presents comprehensive information regarding the important 
retinal features, their relevance to analysis, and their relevance to ASD 
detection.

3.3.2. Deep-learning-based feature extraction
Feature extraction from retinal fundus image analysis serves 

an important purpose in the detection of structural alterations that 
may be correlated with neurodevelopmental disorders such as autism. 
Classic techniques involve manual computation of handcrafted feature 
extraction techniques using statistical formulas. Furthermore, these 

techniques rely on predefined rules and are not capable of extracting 
deeper hierarchical relationships between retinal structures, which may 
result in loss of relevant information.

In contrast, deep-learning-based feature extraction is driven by 
powerful models such as CNNs, ViTs, and hybrid CNN+ViT models 
that automatically learn hierarchical representations from raw images. 
CNN-based models such as EfficientNetB0 and DenseNet121 extract 
features at multiple levels [49], capturing low-level structures such as 
edges, textures in shallow layers and high-level anatomical patterns 
such as blood vessels, optic discs, and FAZ regions in deeper layers.

CNN feature extraction follows a hierarchical approach computed 
as follows:

where X is the input image and 
 FCNN is a 1280-dimensional feature vector.
ViT and Swin transformers use self-attention mechanisms to 

extract global retinal structures, capturing features such as FAZ shape, 
vessel connectivity, optic disc boundaries, and spatial dependencies in 
fundus images. 

Self-attention in transformers is computed as follows:

where Q, V, and K are the query, value, and value matrices and dk is the 
feature dimension.

(1)

(2)

5

 Figure 5
Feature extraction output (sample data)

Feature Biological significance Relevance to ASD detection
Vessel density Measures the proportion of blood vessels in the retina and 

reflects microvascular health
Altered vessel density may reflect abnormal neurovascular 
development or perfusion deficits linked to ASD [1]

Tortuosity Quantifies the curvature and twisting of blood vessels Increased tortuosity may relate to neurodevelopmental 
differences [2]

Fractal dimension Evaluates the complexity of vessel branching Lower fractal dimension indicates reduced vascular com-
plexity in ASD [3]

AVR Ratio of arteriolar to venular diameters indicating 
vascular balance

Abnormal AVR suggests impaired vascular regulation in 
ASD [4]

CDR Compares optic cup size to optic disc size Changes in CDR reflect optic nerve head differences in 
ASD [5]

FAZ area Measures the size of the central retinal zone without 
vessels

Larger FAZ areas may reflect altered retinal development 
in ASD [6]

FAZ circularity Assesses shape regularity of the FAZ region Irregular FAZ shapes indicate atypical neuro visual 
patterns [6]

GLCM contrast Quantifies intensity variation in texture Irregular RNFL textures may increase contrast [7]
GLCM correlation Assesses similarity of neighboring pixel intensities Lower correlation may suggest structural irregularities [7]
GLCM energy Measures texture uniformity Reduced energy can reflect inconsistent tissue structure [7]
GLCM homogeneity Measures smoothness or uniformity of textures Low homogeneity signals neural fiber disruption [7]

Table 2
Key retinal features, definitions, metrics, and equations
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The extracted 768-dimensional feature vector is calculated as 
follows:

By combining both functionalities of local feature extraction from 
CNNs and global contextual understanding with ViT models, hybrid 
CNN+ViT models embrace representation learning with enhanced 
capabilities, as shown in Equation (4).

These models generate high-dimensional feature embeddings 
that are more discriminative and robust, capturing intricate retinal 
variations essential for autism classification.

Compared to traditional methods, deep learning offers a scalable, 
robust, and more accurate approach, allowing for better generalization 

across different datasets while reducing the need for manual intervention 
in feature engineering. The hybrid CNN + ViT architecture is shown 
in Figure 6. The CNN model extracted 1,279 features, the transformer 
model extracted 767 features, and the hybrid CNN+ViT model extracted 
2,047 features, as shown in Figures 7–9, highlighting its enhanced ability 
to capture richer representations. Figure 10 illustrates the mean feature 
variance across different deep learning models, showing that the hybrid 
CNN+ViT model exhibits the highest variance, indicating richer feature 
representation for ASD detection. An ablation study was conducted to 
compare the mean feature variance across CNN, transformer, and the 
proposed hybrid CNN + ViT models, as summarized in Table 3.

3.4. Feature ranking
Feature ranking is a crucial step in selecting the most 

discriminative features for classification. In this process, authors analyze 
feature importance scores from three different deep-learning-based 

(3)

(4)

6

 Figure 6
Hybrid CNN + ViT architecture

 Figure 7
Sample output of CNN feature extraction
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feature extraction techniques, namely, CNN (EfficientNet/DenseNet), 
transformer (ViT/Swin transformer), and hybrid CNN + ViT, as shown 
in Figure 11(a)–(c). The goal is to determine which features contribute 
the most to autism classification and filter out irrelevant or redundant 
features, leading to a more efficient and accurate model. Although 
deep-learning-based feature extraction produces high-dimensional 
representations, not all features contribute equally to classification. 
Sometimes features bring redundancy or noise, resulting in increased 
computation complexity and even overfitting.

RF-based feature ranking is a good method for measuring the 
importance of each respective feature with respect to whether or how 
much it reduced impurity in decision trees. It thus leads to improved 
interpretability of the model, better classification accuracy, and 
enhanced computational efficiency by keeping only relevant features.

For the RF algorithm, for example, Alam et al. [50] decided 
regarding the importance of features based on the reduction in their 
impurity in several decision trees. In this manner, the importance of 
feature f_t is defined as follows:

where I represents the total number of decision trees. Entropy and the 
Gini index are the measures adopted for quantifying impurity reduction. 
A lower value of impurity provides better separation of features. Features 
with scores higher than a predefined importance threshold are retained, 
and only these features and the influential ones contribute to autism 
classification. This approach optimizes feature selection, enhances 
model generalization, and improves the overall performance of deep-
learning-based classification systems. The feature ranking diagrams 
for CNN (EfficientNet/DenseNet), transformer (ViT/Swin), and hybrid 
CNN + ViT, as shown in Figure 11, illustrate the distribution of feature 
importance scores (Y-axis) across different extracted feature indices 
(X-axis). CNN primarily captures local textures and vessel structures, 
transformer emphasizes global spatial dependencies and vessel 
connectivity, and hybrid CNN + ViT integrates both representations, 
highlighting the most discriminative features essential for autism 
classification.

3.5. Feature selection
After performing feature ranking using RF, the ranked features 

serve as input to classification models for autism detection. The 
classification process aims to predict whether a given retinal fundus 
image corresponds to an autistic or nonautistic individual. To achieve 
this, three machine learning classifiers, namely, XGBoost [51, 52], 
RF, and deep neural network (DNN/MLP) [53], are employed. These 
classifiers are trained using the most important features identified during 
ranking, ensuring that only the most discriminative features contribute 
to the final decision-making process.

To begin, feature selection is applied to retain only the 
most relevant features. A threshold is defined, and features with 
importance scores exceeding the mean feature importance are selected. 
Mathematically, this can be expressed as follows:

,

where I(fi)I(f_i)I(fi) represents the importance score of features. The 
selected feature set is then divided into a training set (80%) and a 

(5)

(6)

7

Model
Fusion 

strategy Classifier

Mean 
feature 

variance Observations
CNN No Random 

forest
0.63 Lower spatial 

encoding, lacks 
global context

ViT No Random 
forest

0.68 Improved global 
context via 
self-attention

Hybrid 
CNN + ViT

Attention 
based 
fusion

Random 
forest

0.75 Combines local and 
global cues, highest 
variance

Table 3
Ablation study across CNN, ViT, and hybrid CNN + ViT

 Figure 8
Sample output of transformer feature extraction

 Figure 9
Sample output of hybrid CNN+ViT feature fusion

 Figure 10
Mean feature variance across different deep learning models for 

ASD detection
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testing set (20%), ensuring a proper balance between model learning 
and evaluation.

For classification, three different models are trained. XGBoost, a 
gradient-boosting-based decision tree model, constructs decision trees 
sequentially, where each tree learns from the mistakes of the previous 
trees. The model’s prediction function is defined as follows:

α

where  represents weak learners and α  is the weight assigned to 
each tree. At each step, XGBoost minimizes the loss function:

where  are the true and predicted labels and  represents the 
regularization term.

An RF classifier is one of the ensemble learning techniques that 
develop several decision trees based on various training data subsets 
and use averaging to make the final prediction:

,

where  is the probability output from tree t. Feature selection in 
RF is performed using the Gini impurity criterion:

where G(N) measures node impurity and  represents the proportion 
of samples in class iii. The higher the impurity reduction is, the more 
significant is the feature.

In the end, we are using multilayer perceptron. The network 
formed consists of an input layer, multiple hidden layers with ReLU 
activations, and a softmax output layer for output classification. The 
network between the input layer, hidden layers with ReLU activation 
function, and output layer with softmax function is an FNN called MLP 
or deep neural network. The forward propagation function is given by 
the following:

where  and  are weight matrices,  and  are biases, and σ 
represents the activation function. The binary cross-entropy loss function 
is utilized to optimize the network, as shown below in Equation (12).

where  is the ground truth label and  is the predicted probability. 
Table 4 shows a comparison of feature selection results for three 
models: XGBoost, RF, and DNN/MLP. It includes the total number of 
input features, the number of features retained after ranking, and their 
average importance scores. XGBoost retained 412 out of 1280 features 
and had the highest average importance score of 0.505, showing that 
it was best at picking useful features for autism classification. These 
results support the idea that removing less important features improves 
model performance and helps in avoiding overfitting.

3.6. Cross-validation
To fairly test the proposed model for autism classification using 

retinal fundus images, we used a fivefold cross-validation method, as 
shown in Figure 12. This helps in preventing overfitting and checks 
how well the model works on different parts of the data. The dataset, 
which includes both autistic and nonautistic images, was split into five 
equal parts. In each round, four parts were used for training and one 
for testing. We combined deep features from CNN, transformer, and 
hybrid CNN + ViT with handcrafted features such as AVR, CDR, vessel 
density, and tortuosity, ranked them, and used the top features to train 
an RF classifier. The test data in each fold were not seen during training. 
This process was repeated five times so that each part was tested once. 
We made sure that each fold had a balanced number of autistic and 
nonautistic samples. In the end, the final accuracy was the average of all 
five test results. This method proves the stability and reliability of our 
model across different data splits.

(7)

(8)

(9)

(10)

(11)

(12)

8

Model
No. of 

features
Selected features 
(after ranking)

Feature 
importance score

 XGBoost 1280 412 0.505
Random forest 768 289 0.488
DNN/MLP 2048 610 0.498

Table 4
Feature selection and importance across different models (bold 

font indicates the best result)

 Figure 11
Feature ranking: (a) CNN, (b) transformer, and  

(c) hybrid CNN+ViT
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3.7. ASD detection
After applying feature selection and training the classification 

models, the final step in the ASD detection pipeline involves predicting 
whether a given retinal fundus image corresponds to an autistic (ASD) 
or nonautistic (Non-ASD) individual [54]. The trained models generate 
probability scores that indicate the likelihood of an individual having 
ASD. 

Table 5 presents the classification results for sample retinal fundus 
images, along with their predicted labels and associated probability 
scores. The classification process assigns a probability score P(ASD) to 
each test image, where higher probability scores (close to 1.0) indicate 
a higher likelihood of ASD.

Lower probability scores (close to 0.0) indicate a higher likelihood 
of non-ASD. Three machine learning models, namely, XGBoost, RF, 
and DNN (MLP), were evaluated based on classification performance, 
with DNN (MLP) achieving the highest accuracy, as shown in the 
comparison shown in Figure 13.

4. Results

4.1. Implementation details
The performance of a model is significantly influenced by 

hyperparameter selection during training. Thus, choosing the right 
hyperparameters is crucial for achieving optimal classification accuracy. 
In addition, the training strategy used plays a key role in determining the 
effectiveness of the models. In this study, different deep learning models 
(CNN, transformer, and hybrid CNN+ViT) were implemented with 

carefully selected hyperparameters to achieve the best performance. 
The training process for all models followed a standard pipeline, except 
for certain optimizations applied to specific architectures. The training 
set-up is shown in Table 6.

4.2. Grad-CAM retinal classification
Grad-CAM Visualization [55] of Retinal Features in ASD and 

Non-ASD Individuals. The image on the left represents the original 
retinal scan, and the right image is the Grad-CAM heatmap overlay 
highlighting key ASD-related retinal regions (Figure 14). The optic disc 
and macula exhibit stronger activations in the ASD case, suggesting 
a potential biomarker for ASD detection. The blue and red zones 
indicate highly activated regions that contribute significantly to ASD 
classification. Compared to non-ASD cases, these differences highlight 
potential vascular and structural abnormalities in ASD individuals.

Figure 14(a) and (b) represents the activation map for autistic 
(987_right.jpeg) and nonautistic (84_right.jpeg) retinal images. In both 
cases, the left side displays the Grad-CAM overlays with bounding 
boxes highlighting the most activated retinal regions contributing 
to classification. The autistic case in Figure 15(a) exhibits stronger 
activation in the optic disc and macular regions, with widespread 
intensity variations indicating key feature importance. In contrast, the 
nonautistic case in Figure 15(b) shows a more localized and distinct 
activation pattern. The right side of the figure presents the pixel 
intensity distribution histograms, where the autistic image demonstrates 
a broader distribution, suggesting increased variability in activation 
intensity, whereas the nonautistic image has more defined peaks, 
indicating a different pattern of feature significance in retinal imaging 
for ASD classification.
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 Figure 12
Data formation based on k-fold cross-validation (k = 5)

 Figure 13
Comparative results of different models for classification 

performance

Retinal fundus 
image Predicted class

Probability 
[P(ASD)] Classification

987_right.jpeg ASD 0.92 Autistic
84_right.jpeg Non-ASD 0.12 Nonautistic
9_left.jpeg ASD 0.87 Autistic
875_right.jpeg Non-ASD 0.08 Nonautistic

Table 5
Sample classification output (bold font indicates the best results)

Parameter Configuration
Hardware NVIDIA Tesla V100 GPU (32 GB VRAM)
Framework TensorFlow 2.8 & PyTorch 1.11
Batch size 32
Epoch count 100
Loss function Binary cross-entropy
Optimizer Adam with weight decay
Learning rate 
scheduling

Cosine annealing for reducing learning rate 
over time

Table 6
Hyperparameter and training configuration
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4.3. Comparison of traditional and deep learning 
techniques

The graph compares traditional feature extraction and deep-
learning-based feature extraction for retinal image analysis, as shown 
in Figure 16. Deep learning techniques show superior performance 
across key features, including vessel density, fractal dimension, and 
FAZ area, indicating enhanced sensitivity to intricate retinal structures. 
The higher values in AVR and CDR suggest improved capability in 
distinguishing between ASD and non-ASD cases. In addition, deep 
learning achieves better texture contrast (GLCM), demonstrating 
stronger feature discrimination [56]. Overall, the results highlight 
that deep-learning-based feature extraction provides richer and more 
informative representations, making it more effective for retinal image 
analysis and ASD classification.

In deep-learning-based feature selection, a confusion matrix 
serves as a crucial tool for evaluating model performance by visually 
analyzing the selection and ranking of important features [57]. It helps 
in understanding how well different models extract relevant features 
and their impact on classification tasks. Similarly, a confusion matrix 
was utilized to compare feature selection across models, as depicted in 
Figure 17. In the presented confusion matrix, total extracted features 
are displayed diagonally in dark blue, and the selected features 
after ranking are in light blue. The CNN-based model (EfficientNet/

DenseNet) extracted 1280 features, with 412 being selected as most 
important. Similarly, the transformer model (ViT/Swin) extracted 768 
features, with 289 ranked higher, and the hybrid CNN+ViT model 
extracted 2048 features, selecting 610 as crucial. These results highlight 
how each model prioritizes features, with the hybrid CNN+ViT 
approach identifying a larger set of significant features, demonstrating 
its robustness in feature selection.

5. Discussion
Our study emphasizes the value of using retinal fundus images 

for ASD detection and feature extraction. The results indicate that 
deep-learning-based feature extraction provides superior performance 
compared to traditional methods, particularly in analyzing vascular 
structures, CDR, and FAZ area, which aligns with previous research 
on retinal imaging biomarkers for ASD detection. However, further 
improvements are necessary to enhance model robustness and accuracy.

One primary concern is the quality and consistency of the 
dataset. Although we incorporated multiple retinal images, variations 
in image resolution, lighting conditions, and noise levels may affect 
extracted features. In addition, the lack of standardized ASD-specific 
retinal datasets poses a limitation, making generalization challenging. 
Studies have emphasized the importance of high-quality medical 
datasets, particularly in self-supervised learning, where models learn 
meaningful features without explicit labels [7]. Future research should 
focus on curating large, high-resolution ASD-specific retinal datasets to 
improve generalizability. Another key factor is the annotation process 
for ASD classification. Although we employed a predefined labeling 
system, biases may arise due to variability in expert assessments. Unlike 
behavior-based assessments for ASD, retinal imaging depends on 
inferred biomarkers, which may vary across individuals. A multiexpert 
consensus approach or consensus-based label aggregation, as explored 
in recent studies, can improve the annotation process and enhance 
classification accuracy [17].

Regarding feature extraction, our study demonstrated that hybrid 
CNN+ViT models effectively capture both spatial and contextual retinal 
features. However, the feature fusion process can be refined further by 
integrating attention mechanisms to prioritize significant regions while 
reducing redundant information. Recent advances in Fourier-based 
position encoding for transformers have shown promise in improving 
feature extraction performance in ViT models [8]. Incorporating Fourier-
based encoding can enhance our model’s ability to extract intricate 
retinal structures. Another enhancement involves data augmentation 
techniques using GANs. Because ASD-specific retinal datasets are 
limited, employing WGAN-based architectures [58] can generate 
high-quality synthetic images to augment training data, improving 
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 Figure 14
Comparison of Grad-CAM activation maps for autistic and 
nonautistic retinal images: (a) autistic (987_right.jpeg) and  

(b) nonautistic (84_right.jpeg)

 Figure 16
Traditional and deep-learning-based feature extraction 

comparison

 Figure 15
Grad-CAM analysis and pixel intensity distribution for autistic 
and nonautistic retinal images: (a) autistic and (b) nonautistic



Journal of Computational and Cognitive Engineering Vol. 00  Iss. 00  2025

model robustness. However, current GAN models primarily rely on 
convolutional layers. Integrating transformer-based architectures into 
GANs can further refine data augmentation and feature learning.

In conclusion, although our study demonstrates the potential 
of deep learning for ASD detection using retinal imaging, several 
challenges remain. Future research should focus on improving dataset 
quality, refining labeling methodologies, enhancing feature extraction 
techniques, and adopting advanced position encoding strategies. 
Addressing these limitations will lead to more accurate, interpretable, 
and clinically relevant models for ASD detection and will affect level 
evaluation. Table 7 shows the comparative study of the proposed 
method with other models.

6. Conclusion and Future Scope
This study explored the effectiveness of deep-learning-based 

feature extraction compared to traditional handcrafted features for 
ASD detection using retinal fundus images. Our analysis demonstrated 
that deep learning models, particularly CNN-based architectures 
(EfficientNet and DenseNet), vision transformers (ViT and Swin), 
and hybrid CNN+ViT models, significantly outperform traditional 
feature extraction methods such as GLCM texture analysis, Frangi-
filter-based vessel density estimation, and CDR measurement. Among 
these approaches, the hybrid CNN+ViT model achieved the highest 
classification accuracy, indicating the benefits of combining spatial 
and contextual feature extraction techniques for ASD classification. 
Although deep-learning-based approaches showed superior 

performance, several challenges remain, including dataset limitations, 
variability in image quality, and the need for more explainable AI models 
in ASD detection. Furthermore, reliance on expert-driven annotations 
raises concerns regarding potential labeling biases, emphasizing the 
necessity of multiexpert consensus in future ASD research. This study 
provides a foundation for integrating deep learning models into retinal-
image-based ASD screening systems, offering a noninvasive diagnostic 
approach that can complement traditional neurodevelopmental 
assessments. However, additional research is needed to enhance model 
robustness, interpretability, and clinical applicability before such 
techniques can be adopted in real-world ASD diagnostics.

Future research on ASD detection using retinal imaging 
should focus on expanding ASD-specific datasets, incorporating self-
supervised and semisupervised learning to improve feature extraction 
with minimal labeled data. In addition, integrating multimodal 
approaches, such as combining retinal imaging with eye-tracking data, 
behavioral patterns, and neuroimaging, can improve classification 
accuracy. Further, incorporating Fourier-based position encoding in 
transformer models can refine feature representation.
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 Figure 17
Confusion matrix of the proposed method
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Table 7
Performance comparison of the proposed hybrid CNN+ViT model with state-of-the-art models
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