
Received: 22 April 2025 | Revised: 31 July 2025 | Accepted: 3 September 2025 | Published online: 26 September 2025

RESEARCH ARTICLE Journal of Computational and Cognitive Engineering
2025, Vol. 00(00) 1-7

DOI: 10.47852/bonviewJCCE52025984

AI-Driven Prediction of Greenhouse Gas
Emissions in Livestock Supply Chains: 
Towards a Data-Driven Model for 
Sustainable Agri-food Systems

Baha M. Mohsen1,*   and Mohamad Mohsen2

1 Faculty of Business Management, Emirates Aviation University, United Arab Emirates
2 College of Business, Eastern Michigan University, USA

Abstract: This greenhouse gas (GHG) emissions mainly from enteric fermentation and manure management in livestock are mostly from copious 
methane (CH₄) and some nitrous oxide (N₂O). IPCC (International Panel on Climate Change) Tier 1 and Tier 2 emission prediction methods cannot 
provide details about where the emissions come from and are ineffective for different forms of agriculture. In our research, a machine learning 
model based on national agricultural data forecasts how much CH₄ and N₂O will be emitted from U.S. manure management. The performance 
of Random Forest Regression (RFR), Extreme Gradient Boosting (XGBoost) and Support Vector Regression (SVR) was tested by using RMSE, 
MAE and R² as performance metrics. XGBoost performed better than SVR since its predictive results were better than reaching R² = 0.98. The 
analysis of feature importance found that livestock type, methods of managing manure and population density are the main factors leading to 
emissions. The models resulted in information that communities in various locations could use to improve their sustainability. An adaptable 
decision-making procedure is proposed by the research to assist environmental planning in the agri-food sector and to ensure that intelligent 
agricultural platforms can better manage GHG emissions. More research is needed to improve the model by studying additional aspects from the 
supply chain, covering both its upstream and downstream operations, to obtain a complete analysis of environmental results. Future work should 
aim to incorporate additional stages of the livestock supply chain and adopt explainable AI techniques to improve transparency and support real-
time decision-making.
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1. Introduction
The basic food production network faces rising criticism 

due to the environmental destruction it causes, mainly through 
greenhouse gas (GHG) emissions. Livestock production systems 
generate extensive emissions that position them as key contributors 
among the diverse elements of this sector. According to the Food and 
Agriculture Organization (FAO), livestock activities generate 14.5% 
of all anthropogenic GHG emissions that mostly come from enteric 
fermentation and manure management releases [1, 2]. More recent 
studies such as that of Bilotto et al. [3] explain in more detail how the 
livestock industry has an important impact on global GHG emissions.

Animal agriculture faces rising environmental strains due to 
increasing product demand for meat and dairy, which is driven by 
population growth and changes in dietary preferences in developing 
nations combined with urbanization. Current trends require robust 
systems to monitor and minimize GHG emissions, as well as decision 
tools to aid supply chain sustainability decisions at different levels 
[4]. However, the IPCC (International Panel on Climate Change) Tier 
1 and Tier 2 methodologies, combined with traditional estimation 
methods based on static emission factors, demonstrate limited 
ability for actual site-specific prediction of emissions because 

these approaches generalize across various production settings [5, 
6]. Researchers now think that improved technologies may help 
measure GHG emissions more accurately in livestock farming. For 
example, McNicol et al. [7] suggest that the use of precision livestock 
technology can help control GHG emissions relating to beef. Bista et 
al. [8] further found that predicting GHG emissions in diversified 
semi-arid cropping systems is more accurate when site-specific data 
are used.

Currently, researchers see artificial intelligence (AI) and 
machine learning (ML) as major aids in improving environmental 
science models for farming. Complex, nonlinear relationships within 
different dimensions can be interpreted using these approaches and 
they also provide alternative choices to traditional fixed models that use 
data. Therefore, foreseeing growth in GHG emissions becomes more 
accurate and these tools allow operations to keep improving thanks to 
data learning [9, 10].

Adding AI to emission modeling systems helps achieve 
sustainability aims in both supply chain and logistics systems related to 
emission cuts and practical implementation. Predictive analytics helps 
organizations find where emissions are coming from, design the best 
resource plans, keep track of outcomes, and respond instantly to changes 
in environmental logistics [11, 12]. Furthermore, Ojadi et al. [13] point 
out that relying on big data analytics and AI enables companies to 
constantly check and predict which allows them to improve decision 
making and use less energy.
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The practical implementation of ML technology for predicting 
livestock-generated GHG emissions exists only within restricted 
boundaries. Current applications dealing with agricultural systems 
mostly concentrate on crop systems while utilizing AI to optimize yield 
production and predict risks; however, animal agricultural emission 
sources are neglected. Moreover, modern ML approaches for practical 
decision support lack the integration of operational livestock data with 
manure management practice data from structured frameworks [14, 
15]. Study teams have begun to discuss and investigate these gaps. For 
example, Symeon et al. [16] looked at different ways of dealing with 
manure, like anaerobic digestion and composting and stated how they 
may reduce GHG emissions in livestock farms.

To address the need, the author develops three ML models using 
supervision: Support Vector Regression, Random Forest, and Extreme 
Gradient Boosting (XGBoost). Data from national livestock records 
is used in these models to support manure management. The main 
point is to investigate how reliably these models predict CH₄ and N₂O 
emissions and whether they offer help in achieving sustainability in 
livestock supply chains.

2. Literature Review
Modern agricultural and environmental science fields demonstrate 

how livestock production creates GHG emissions. The livestock sector 
emits 14.5% of human-caused GHG emissions via CH₄ and N₂O 
released from digestive processes and proper waste management of 
domestic animals [1, 2]. The measurement of these emissions needs to 
be precise, as it facilitates better development of mitigation practices 
and helps livestock operations fulfill their climate obligations. The Tier 
1 and Tier 2 emission assessment methods developed by the IPCC prove 
ineffective due to their dependency on set emission factors, as they do 
not account for the varied operational approaches across regions in 
livestock systems [5].

Researchers increasingly study AI and ML techniques to upgrade 
agricultural GHG emission modeling systems due to their capability 
to deliver improved precision, suitability, and prediction strength. 
These techniques have proven effective in handling complex nonlinear 
patterns and uniting diverse datasets between environmental zones and 
operational regions [10, 17]. Random Forest, Gradient Boosting, and 
Support Vector Regression have proven effective in determining agri-
environmental predictions, such as crop yield estimation, irrigation 
scheduling, and nutrient management optimization [9, 18]. New 
research shows that ML can support the prediction of GHGs produced 
by farming. As a case in point, Toumi et al. [19] evaluated various ML 
regression models used for estimating GHG emissions, pointing out 
that the right model should be used, along with testing the importance 
of the features.

There is a lack of research in applying ML methods to monitor 
livestock GHG emissions, particularly regarding CH₄ and N₂O from 
enteric and manure systems. Most research focuses either on crop 
production systems or sustainability factors without making direct 
connections between empirical ML-based emission forecasting [20]. 
Caro et al. [21] introduce basic livestock emission patterns without 
implementing AI-based forecasting methods. Gollnow et al. [14] 
highlight the need for data-driven spatial methods to improve livestock 
emission inventories.

Developing supervised ML models through the integration 
of structured agricultural information about livestock populations, 
breeding methods, feedstuffs, and manure management allows for 
better emission forecasting outcomes [15, 22]. Predictive systems 
provide strategic capabilities for emissions-based logistics planning by 
helping to pinpoint emission centers in particular regions and optimize 

logistics resource deployment in supply chains. Thus, sustainable 
logistics principles advocating environmental stewardship must be 
integrated into operational and infrastructural decision-making [23]. 
In 2025, Toumi et al. [19] performed in-depth research on several ML 
regression algorithms and how they help understand and forecast GHG 
emissions for better sustainability.

AI models are being improved in supply chains through recent 
digital studies. Mohsen [24] explains that thanks to AI, the supply 
chain can forecast more accurately and is able to adapt more easily in 
its strategic decisions. Mohsen [25] explains that digital transformation 
supports flexible and strong logistics activities with the help of big data 
and intelligent automation. According to research, AI can make supply 
networks more efficient environmentally and responsive to customers 
[11, 12].

Even though these developments hold promise, there are still 
several problems. A gap in reliable emission readings from systems 
holds back further scrutiny and stakeholders are hesitant to use the 
models because they are still hard to explain. Model results adapted 
to specific production areas and systems are often needed for most of 
these models, as found by Kamilaris and Prenafeta-Boldú [10] and 
Odegard and van der Voet [26]. In order to meet these challenges, 
experts from both environmental data science and supply chain 
management should join efforts to develop effective solutions that 
apply to both areas. From new studies, it is evident that AI is needed 
to support more sustainable supply chains. The authors, Peeris 
and Baryannis [27], recommend guiding researchers in using AI 
transparently and responsibly to secure sustainable and equal circular 
supply chains. Meena et al. [28] state that AI makes it possible to 
automate activities in production and the supply chain for each of 
circularity’s three principles.

To examine supervised ML models, the present research selects 
Random Forest, XGBoost, and Support Vector Regression, all based 
on well-structured livestock and manure management data. This study 
helps bridge a key understanding gap between AI, environmental 
effectiveness, and sustainability in animal markets.

3. Data Description
This research analyzes structured national statistics that connect 

livestock populations to GHG emissions released through manure 
management systems. 

The livestock population data provides census records for 
animals categorized as dairy cattle, beef cattle, swine, sheep, and 
goats, along with data concerning manure management systems such 
as liquid/slurry, solid storage, and dry lot. Furthermore, the data follows 
national reporting guidelines. This segmentation facilitates the capture 
of operational variability in GHG emissions. These population numbers 
follow the same reporting standards applied by global inventory systems 
maintained by FAO [2] and EPA [6].

Yearly CH₄ and N₂O measurements expressed in CO₂-equivalent 
(CO₂e) are included in the emissions dataset together with standard 
emission factor and global warming potential (GWP) coefficient 
application. The available time frame of both datasets spans from 2012 
to 2021, enabling the analysis of temporal variations and trend analysis. 
Data structures exist at the U.S. state levels through annual measurement 
periods, which create spatial details necessary for supervised learning 
to analyze both statewide patterns and annual change variations.

For the data to be reliable and high-quality, I had to perform 
many preprocessing activities during model development. In 
time series continuous variables, missing values were filled in by 
performing linear interpolation and forward-filling was implemented 
on the categorical proxy variables. Using the IQR approach, any 
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points outside 1.5 times the IQR were singled out by the method, 
instead of just removing them as recommended by Khosravi et al. 
[29] for agri-environmental data.

Utilizing the feature engineering process, the models include 
livestock density metrics and kg CH₄ per head per year emission 
intensity. All numerical features were Z-score standardized to minimize 
the algorithm’s learning bias about their size. To properly categorize the 
systems, they were assigned the one-hot encoding technique.

To conduct training and testing, the last set was divided using 
an 80:20 ratio. The data in this case was divided by using stratified 
sampling to make sure the numbers of livestock match the population. 
A review of the dataset formed the basis for the analysis and selection 
of models presented in the following method section.

4. Methodology
This work predicts the emissions of CH₄ and N₂O from livestock 

manure management by using ML algorithms. Farming research data 
was put together with durable ML algorithms to produce more focused, 
flexible, and understandable estimates of the environment’s emissions. 
The main aim is to develop models that work well in a range of situations 
and times, as they support sensible decisions for the environment in 
agri-food systems.

Before assessing performance, the main steps of the research 
framework are data preprocessing, choosing and crafting useful features 
for engineering, choosing an algorithm, setting its hyperparameters, 
and validating. There are defined methods in place to assess whether 
models adhere to the guidelines in environmental modeling and ML 
applications [9].

Figure 1 shows the conceptual framework that directs every 
step of the ML pipeline this research uses. Start by cleaning your data, 
followed by studying how each algorithm operates, and finishing with 
appraising their explanations. The diagram outlines the breakdown of 
how emissions from livestock manure systems are estimated.

In this study, we considered both the type of data and what we 
knew about the domain. We began by doing a Pearson correlation 
analysis and removed features that were either repeated or had too 

much correlation with each other. The goal of feature selection was 
to choose the best variables by using both the feature rankings of a 
baseline Random Forest model and permutation importance, to prevent 
overfitting.

Environmental and agricultural modeling tasks benefit from the 
use of the following three regression algorithms, which were chosen for 
direct comparison:

1)  RFR uses many decision trees in its learning which allows it to 
lower uncertainty in making predictions by combining their outputs. 
Because of robust overfitting prevention and the way it can model 
nonlinear relationships, the algorithm succeeds when working with 
complex environmental datasets [30].

2)  It uses additive training as it trains boosting trees, giving the 
enhanced XGBoost its high scalability. Because of regularization 
and parallel computing, this model can handle the challenges of 
working with intricate agricultural data [31].

3)  To address nonlinear patterns, Support Vector Regression first 
changes the input features into a high-dimensional form with kernel 
methods. This approach achieves good results in cases where data is 
hard to find or present unevenly [32].

Studies before ours demonstrated that these algorithms give 
the best outcomes in agro-environmental tasks, so we think they are 
appropriate for this research [33, 34].

The model’s performance was measured using RMSE, MAE, 
and R² (coefficient of determination), all of which are explained by 
Equations (1)–(3) in the standard approach to regression metrics. 
Environmental ML experts say that these metrics can be used to gauge a 
model’s accuracy in terms of bias, variance, and how much information 
the model passes on [35]. These ideas are shown in mathematical form 
as follows:

Where:
: actual observed value
: model-predicted value

: mean of the observed values
n: total number of observations

Ten-fold cross-validation helped confirm that the method 
would work well in general. Ten small groups were made from the 
training data, and the model was trained on nine of them to validate 
the remaining group. Grids and cross-validation were applied to find 
the ideal settings for parameters involved in the number of estimators, 
maximum tree depth for RFR and XGBoost, kernel type in SVR, and 
eps value for XGBoost. Since future application in operational systems 
would require these approaches to be efficient, this was considered an 
important factor in the research.

The optimal hyperparameters for each ML model were selected 
using grid search combined with ten-fold cross-validation. The final 
configurations used in the study are as follows:

1)  Random Forest Regression (RFR):
Number of estimators = 300, maximum tree depth = 20, minimum 

samples split = 4, minimum samples leaf = 2, bootstrap = True.

(1)

(2)

(3)
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 Figure 1
Conceptual framework for ML-based livestock GHG emission 
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2)  Extreme Gradient Boosting (XGBoost):
Number of estimators = 250, maximum tree depth = 8, learning 

rate = 0.05, subsample = 0.8, colsample_bytree = 0.8, regularization 
alpha (L1) = 0.1, regularization lambda (L2) = 1.0.

3)  Support Vector Regression (SVR):
Kernel = Radial Basis Function (RBF), C = 100, epsilon = 0.1, 

gamma = ‘scale’.
These hyperparameter settings yielded the highest model 

performance based on the lowest RMSE and MAE and the highest R² 
values across validation folds.

All modeling procedures in this research were written and 
performed on Python version 3.10. The core ML models were generated 
with Scikit-learn and XGBoost libraries. This work was done by using 
Pandas, NumPy, and Matplotlib which are common tools and are 
recommended by current agricultural data science experts.

5. Results and Analysis
This section presents the prediction results of ML models designed 

to estimate CH₄ and N₂O emissions from livestock manure systems. 
The research compares three supervised regression algorithms – RFR, 
XGBoost, and SVR – to determine their effectiveness for emission 
prediction while analyzing feature importance and regional and 
management system variations. This analysis uses the Section 3 pre-
processed dataset to support the model structure defined in Section 4.

5.1. Model performance comparison
Data evaluation was carried out using RMSE, MAE, and R², 

as defined in Equations (1)–(3). Table 1 shows how ensemble-based 
models delivered superior performance compared to SVR according to 
both error measurements and model predictiveness. XGBoost had the 
lowest RMSE and the highest R² while assessing both CH₄ and N₂O 
prediction targets, demonstrating superior prediction capability.

5.2. Feature importance analysis
The trained Random Forest and XGBoost models prompted the 

examination of feature importance rankings, which determined the 
most influential predictors of emissions from livestock operations. 
The primary influential features in the models were livestock type, the 
manure management system, and the livestock population density. The 
duration of animal manure management systems and climatic regions 
contributed to the main predictive factors. The results are consistent 
with previous research on environmental studies, demonstrating how 
stocking density and manure management methods affect emission 
profiles [1, 6].

Table 2 presents the top ten features ranked by importance based 
on the trained XGBoost model. These importance scores reflect the 
average gain in accuracy brought by each feature during the model’s 
training process. The ranking confirms the significant influence of 
livestock type, manure management system, and population density 

on GHG emissions, aligning with prior empirical and theoretical 
expectations.

These insights can guide more effective interventions and policy 
development by identifying the most influential variables affecting 
livestock-based GHG emissions.

5.3. Emission forecasting by region and system type
Spatial variations were analyzed by aggregating predicted CH₄ 

and N₂O emissions at the U.S. state level, with data further categorized 
by manure management system types. The geographic analysis 
shows significant differences between states, with regions containing 
CAFOs and liquid/slurry-based manure systems producing the highest 
emissions. Area populations with high cattle numbers produced higher 
CH₄ emissions, while swine-intensive areas released higher N₂O from 
their anaerobic lagoons. Empirical analysis validates the need to direct 
specific mitigation strategies at particular livestock farming areas and 
management systems based on these predictions.

5.4. Model performance comparison
The model fit assessment included scatterplots that showed 

actual emission values against predicted values of the test dataset. Both 
Random Forest and XGBoost models showed effective agreement with 
observed values when evaluated through the clustering around the 
45-degree reference line, as displayed in Figures 2 and 3. The linear 
distribution of SVR results appeared more widespread when prediction 
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Figure 2
Actual vs. predicted CH₄ emissions using Random Forest and 

XGBoost

Rank Feature Importance score
1 Livestock type 0.223
2 Manure management system type 0.181
3 Livestock population density 0.153
4 Average temperature (regional) 0.102
5 Length of manure storage duration 0.089
6 Annual precipitation 0.076
7 CH₄ intensity (kg/head/year) 0.063
8 Type of manure storage (e.g., lagoon) 0.048
9 Emission factor (standardized) 0.038
10 Climate zone index 0.027

Table 2
Top 10 features ranked by importance (XGBoost model)

Model
RMSE 
(CH₄)

MAE 
(CH₄)

R² 
(CH₄)

RMSE 
(N₂O)

MAE 
(N₂O)

R² 
(N₂O)

RFR 0.1362 0.0416 0.992 0.0442 0.0168 0.9886
XGBoost 0.1907 0.0442 0.9843 0.0335 0.0144 0.9935
SVR 0.408 0.0958 0.9281 0.0706 0.0520 0.9711

Table 1
Model performance comparison for CH₄ and N₂O prediction
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values reached higher emission measurement points. The visual 
diagnostics support the numeric performance metrics, demonstrating 
that tree-based ensemble approaches have the best outcome in this 
application.

5.5. Interpretive insights
Around 23% of the overall contribution can be attributed to 

ensemble ML models which are strong at discovering complicated 
nonlinear patterns in GHG emissions from livestock. Emission reduction 
policies ought to target changes in infrastructure and work methods in 
crowded livestock production areas because these aspects have the 
greatest impact on manure management and livestock numbers. With 
localized forecasts, communities can create detailed plans for being 
sustainable by taking local projects into account.

Studies from earlier research agree that using data and decision-
support tools helps with monitoring the environment for livestock 
farming [10, 14]. This approach hoped to improve learning and lead to 
better agri-food delivery network policies.

6. Discussion
Research demonstrates that using RFR and XGBoost as part of 

ML ensembles is very effective for forecasting GHG emissions caused 
by livestock waste management. Apart from their algorithms, the 
findings reveal that the models might support green methods for making 
decisions in the livestock supply chain.

6.1. Implications for sustainable livestock supply 
chains

Environmental accounting benefits from accurate CH₄ and N₂O 
emissions predictions since it becomes crucial for launching climate-
smart agricultural practices. Stakeholders representing producers, 
regulators, and sustainability officers can direct investments towards 
emission reduction technologies by identifying their hotspots at the 
management system and state level [36, 37]. This method is consistent 
with global efforts by the FAO to develop sustainable livestock systems 
and is grounded in recent scientific recommendations by Gerber et al. 
[1] and Leip et al. [38] as its foundation.

6.2. Potential use in decision support systems
The ability of these ML models to explain and predict outcomes 

enhances their usefulness for decision support systems (DSS). Once these 
models are integrated into digital farm management systems, producers 

can assess the amount of greenhouse gases resulting from different 
farming choices right away. Moreover, these systems help regional 
planners and policymakers develop programs to reduce emissions by 
analyzing predictions. This neatly fits with new agriculture projects that 
encourage digital tools to measure environmental performance [10]. 

6.3. Comparison with previous studies
This research makes two important contributions to prior 

work in the field. Whereas previous studies by Gollnow et al. [14] 
included detailed inventorying of emissions, our method takes a 
different approach that maximizes accuracy in predictions rather than 
reporting each emission inventory. This second benefit is unlike other 
IPCC [6] methods, ML makes it simple to deal with changing data, 
allowing alignment with the call for more flexible approaches in agri-
environmental science.

6.4. Limitations and future extensions
To build a more complete picture of environmental impact, 

future research should extend the modeling framework to encompass 
additional emissions sources beyond manure management. This 
includes upstream factors such as feed production (e.g., fertilizer 
application, deforestation), energy use on farms (e.g., ventilation, 
lighting), and downstream logistics and transportation. Incorporating 
these components would support a comprehensive life-cycle assessment 
(LCA) approach for livestock supply chains.

In addition, model transparency and practical utility could be 
significantly improved through the integration of Explainable AI (XAI) 
tools such as SHAP (SHapley Additive exPlanations) values. These 
methods help visualize and quantify the contribution of each input 
feature to individual predictions, making the results more interpretable 
for farmers, environmental regulators, and system designers.

Finally, to further validate the model’s robustness and real-
world applicability, future work should benchmark it against other ML 
architectures, including artificial neural networks (ANNs), recurrent 
neural networks (RNNs), and time-series models. Complementing this 
with validation using empirical field data from operational farms would 
strengthen confidence in the model's generalizability and encourage its 
integration into digital agriculture platforms.

In addition to the limitations mentioned, future work could 
significantly expand the scope of the current model by integrating 
additional sources of emissions across the livestock supply chain. 
These include emissions from upstream processes such as feed 
production (e.g., fertilizer application, land use change), on-farm 
energy use (e.g., for heating, cooling, or mechanized equipment), and 
downstream logistics and transportation activities. Incorporating these 
dimensions would allow for a more holistic LCA of environmental 
impacts.

Moreover, the predictive framework could be enhanced by 
integrating real-time monitoring technologies such as IoT-based sensors 
for measuring manure composition, temperature, and gas fluxes. 
These tools can provide dynamic, high-frequency data to improve the 
accuracy and responsiveness of the model. Likewise, employing high-
resolution spatial data (e.g., at county or farm plot level) using GIS and 
remote sensing can refine spatial granularity, enabling localized policy 
recommendations and interventions.

Advancing the model in these directions would support a 
next-generation environmental DSS capable of proactive emission 
management in diverse livestock production systems.

As these issues are addressed, the predictive ML framework 
suggested here could turn into a complete environmental monitoring 
system supporting climate mitigation not only in the livestock supply 
chain but also across other sectors.

5

 Figure 3
Actual vs. predicted N₂O emissions using Random Forest and 

XGBoost
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7. Conclusion
This work introduces a model that predicts both CH₄ and N₂O 

emissions from handling livestock manure with 10 years of U.S. state 
data. The two models with the greatest predictive accuracy are ensemble 
techniques RFR and XGBoost, recording R² values of more than 0.98. 
These models helped reveal that the main things affecting emissions are 
the type of livestock, the management system, and population density. 

This study’s most significant achievement is to add interpretable 
ML models to agri-environmental sustainability which helps with 
regional research and decision support. Through creating a flexible and 
highly accurate prediction method, the research fixes problems with 
old approaches that are based either on fixed emission data or wide 
assessments. 

Policies and practices can be shaped using the model outputs 
by finding places with high emissions and by assessing the carbon 
effects of changing strategies. Adding the predictive framework to farm 
management software and environmental DSS platforms supports full 
disclosure, clear provenance, and a positive impact on climate change. 

The scope of the model could be widened in future to study 
additional elements like supply chain feed delivery and effects of freight 
transport on climate change. Consequently, this work supports the effort 
to use AI to promote environmental sustainability in agriculture.

Extending this framework with life-cycle components such as 
feed production and logistics, and integrating tools like SHAP values, 
can further increase the model’s impact and applicability in real-world 
smart agriculture systems.

Ethical Statement
This study does not contain any studies with human or animal 

subjects performed by any of the authors.

Conflicts of Interest 
The authors declare that they have no conflicts of interest to this 

work.

Data Availability Statement 
The data that support the findings of this study are openly avail-

able in USDA at https://agdatacommons.nal.usda.gov/search?item-
Types=3&categories=30761,30746,30689,30821,33323. 

Author Contribution Statement
Baha M. Mohsen: Conceptualization, Methodology, Software, 

Formal analysis, Investigation, Resources, Data curation, Writing – 
original draft, Writing – review & editing, Supervision, Project admin-
istration. Mohamad Mohsen: Methodology, Validation, Resources, 
Data curation, Writing – original draft, Writing – review & editing, 
Visualization.

References
  [1]	 Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., 

Dijkman, J., ..., & Tempio, G. (2013). Tackling climate change 
through livestock: A global assessment of emissions and mitiga-
tion opportunities. Italy: Food and Agriculture Organization of 
the United Nations.  

  [2]	 Food and Agriculture Organization of the United Nations. (2021).  
https://www.fao.org/3/cb8685en/cb8685en.pdf 

  [3]	 Bilotto, F., Christie-Whitehead, K. M., Malcolm, B., Barnes, N., 
Cullen, B., Ayre, M., & Harrison, M. T. (2025). Costs of tran-

sitioning the livestock sector to net-zero emissions under fu-
ture climates. Nature Communications, 16(1), 3810. https://doi.
org/10.1038/s41467-025-59203-5 

  [4]	 Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bo-
dirsky, B. L., Lassaletta, L., ..., & Willett, W. (2018). Options for 
keeping the food system within environmental limits. Nature, 
562(7728), 519–525. https://doi.org/10.1038/s41586-018-0594-0 

  [5]	 Milne, A. E., Glendining, M. J., Bellamy, P., Misselbrook, T., Gil-
hespy, S., Rivas Casado, M., ..., & Whitmore, A. P. (2014). Anal-
ysis of uncertainties in the estimates of nitrous oxide and methane 
emissions in the UK’s greenhouse gas inventory for agriculture. 
Atmospheric Environment, 82, 94–105. https://doi.org/10.1016/j.
atmosenv.2013.10.012     

  [6]	 United States Environmental Protection Agency. (2022). Invento-
ry of U.S. greenhouse gas emissions and sinks. https://www.epa.
gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-
sinks 

  [7]	 McNicol, L. C., Bowen, J. M., Ferguson, H. J., Bell, J., Dewhurst, 
R. J., & Duthie, C.-A. (2024). Adoption of precision livestock 
farming technologies has the potential to mitigate greenhouse gas 
emissions from beef production. Frontiers in Sustainable Food 
Systems, 8, 1414858. https://doi.org/10.3389/fsufs.2024.1414858 

  [8]	 Bista, P., Shakya, S. R., Acharya, P., & Ghimire, R. (2025). 
Evaluating machine learning models for greenhouse gas emis-
sions prediction in diversified semi‐arid cropping systems. Soil 
Science Society of America Journal, 89(2), e70057. https://doi.
org/10.1002/saj2.70057 

  [9]	 Pincheira, M., Vecchio, M., Giaffreda, R., & Kanhere, S. S. 
(2021). Cost-effective IoT devices as trustworthy data sources for 
a blockchain-based water management system in precision agri-
culture. Computers and Electronics in Agriculture, 180, 105889. 
https://doi.org/10.1016/j.compag.2020.105889

[10]	 Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in 
agriculture: A survey. Computers and Electronics in Agriculture, 
147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016 

[11]	 Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., & 
Papadopoulos, T. (2019). Big data and predictive analytics and 
manufacturing performance: Integrating institutional theory, 
resource‐based view and big data culture. British Journal of 
Management, 30(2), 341–361. https://doi.org/10.1111/1467-
8551.12355 

[12]	 Wamba, S. F., Dubey, R., Gunasekaran, A., & Akter, S. (2020). 
The performance effects of big data analytics and supply chain 
ambidexterity: The moderating effect of environmental dyna-
mism. International Journal of Production Economics, 222, 
107498. https://doi.org/10.1016/j.ijpe.2019.09.019 

[13]	 Ojadi, J. O., Odionu, C. S., Onukwulu, E. C., & Owulade, O. 
A. (2024). Big data analytics and AI for optimizing supply chain 
sustainability and reducing greenhouse gas emissions in logistics 
and transportation. International Journal of Multidisciplinary 
Research and Growth Evaluation, 5(1), 1536–1548. https://doi.
org/10.54660/.IJMRGE.2024.5.1.1536-1548  

[14]	 Gollnow, S., Pieper, M., & Leip, A. (2022). A spatially explicit ap-
proach to quantify on-farm GHG emissions in European livestock 
systems. Nature Food, 3(8), 677–686. https://doi.org/10.1038/
s43016-022-00576-4 

[15]	 Zheng, B., Cheng, J., Geng, G., Wang, X., Li, M., Shi, Q., Qi, J., 
Lei, Y., Zhang, Q., &amp; He, K. (2021). Mapping anthropogenic 
emissions in China at 1 km spatial resolution and its application 
in air quality modeling. Science Bulletin, 66(6), 612–620. https://
doi.org/10.1016/j.scib.2020.12.008

[16]	 Symeon, G. K., Akamati, K., Dotas, V., Karatosidi, D., Bizelis, 
I., & Laliotis, G. P. (2025). Manure management as a potential 

6

https://agdatacommons.nal.usda.gov/search?itemTypes=3&categories=30761,30746,30689,30821,33323
https://agdatacommons.nal.usda.gov/search?itemTypes=3&categories=30761,30746,30689,30821,33323
https://www.fao.org/3/cb8685en/cb8685en.pdf
https://doi.org/10.1038/s41467-025-59203-5
https://doi.org/10.1038/s41467-025-59203-5
https://doi.org/10.1038/s41586-018-0594-0
https://doi.org/10.1016/j.atmosenv.2013.10.012
https://doi.org/10.1016/j.atmosenv.2013.10.012
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
https://doi.org/10.3389/fsufs.2024.1414858
https://doi.org/10.1002/saj2.70057
https://doi.org/10.1002/saj2.70057
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1111/1467-8551.12355
https://doi.org/10.1111/1467-8551.12355
https://doi.org/10.1016/j.ijpe.2019.09.019
https://doi.org/10.54660/.IJMRGE.2024.5.1.1536-1548
https://doi.org/10.54660/.IJMRGE.2024.5.1.1536-1548
https://doi.org/10.1038/s43016-022-00576-4
https://doi.org/10.1038/s43016-022-00576-4
https://doi.org/10.1016/j.scib.2020.12.008
https://doi.org/10.1016/j.scib.2020.12.008


Journal of Computational and Cognitive Engineering Vol. 00  Iss. 00  2025

mitigation tool to eliminate greenhouse gas emissions in live-
stock systems. Sustainability, 17(2), 586. https://doi.org/10.3390/
su17020586 

[17]	 Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big 
data in smart farming – A review. Agricultural Systems, 153, 69–
80. https://doi.org/10.1016/j.agsy.2017.01.023 

[18]	 Zhou, J., Zhou, J., Ye, H., Ali, M. L., Chen, P., &amp; Nguyen, 
H. T. (2021). Yield estimation of soybean breeding lines under 
drought stress using UAV-based imagery and convolutional neu-
ral networks. Biosystems Engineering, 204, 90–103. https://doi.
org/10.1016/j.biosystemseng.2021.01.017

[19]	 Toumi, S., Aljadani, A., Toumi, H., Ammouri, B., & Dhiabi, M. 
(2025). AI for climate change: Unveiling pathways to sustainable 
development through greenhouse gas emission predictions. Eur-
asian Economic Review. Advance online publication. https://doi.
org/10.1007/s40822-024-00295-7  

[20]	 Raj, N., Perumal, S., Singla, S., Sharma, G. K., Qamar, S., & 
Chakkaravarthy, A. P. (2022). Computer aided agriculture de-
velopment for crop disease detection by segmentation and clas-
sification using deep learning architectures. Computers and 
Electrical Engineering, 103, 108357. https://doi.org/10.1016/j.
compeleceng.2022.108357

[21]	 Caro, D., Davis, S. J., Bastianoni, S., & Caldeira, K. (2014). 
Global and regional trends in greenhouse gas emissions from 
livestock. Climatic Change, 126(1–2), 203–216. https://doi.
org/10.1007/s10584-014-1197-x 

[22]	 Rose, D. C., & Chilvers, J. (2018). Agriculture 4.0: Broaden-
ing responsible innovation in an era of smart farming. Frontiers 
in Sustainable Food Systems, 2, 87. https://doi.org/10.3389/
fsufs.2018.00087 

[23]	 Mohsen, B. M. (2022). Principles of sustainable logistics. In S. 
Jerold Samuel Chelladurai, S. Mayilswamy, S. Gnanasekaran, 
& R. Thirumalaisamy (Eds.), Logistics engineering (pp. 1–12). 
IntechOpen. https://doi.org/10.5772/intechopen.103018  

[24]	 Mohsen, B. M. (2023). Impact of artificial intelligence on 
supply chain management performance. Journal of Service 
Science and Management, 16(1), 44–58. https://doi.org/10.4236/
jssm.2023.161004 

[25]	 Mohsen, B. M. (2023). Developments of digital technologies re-
lated to supply chain management. Procedia Computer Science, 
220, 788–795. https://doi.org/10.1016/j.procs.2023.03.105 

[26]	 Odegard, I. Y. R., &amp; van der Voet, E. (2014). The future of 
food—Scenarios and the effect on natural resource use in agri-
culture in 2050. Ecological Economics, 97, 51–59. https://doi.
org/10.1016/j.ecolecon.2013.10.005

[27]	 Peeris, M. P., & Baryannis, G. (2025). Artificial intelligence 
for supply chain sustainability: A research roadmap. In 16th 
International Conference on Software, Knowledge, Information 
Management and Applications, 1–6. 

[28]	 Meena, R., Sahoo, S., Malik, A., Kumar, S., & Nguyen, M. 
(2025). Artificial intelligence and circular supply chains: Frame-
work for applications and deployment from the triple bottom line 
model perspective. Annals of Operations Research. Advance on-
line publication. https://doi.org/10.1007/s10479-025-06510-1 

[29]	 Khosravi, A., Nahavandi, S., Creighton, D., &amp; Atiya, A. F. 
(2011). Lower upper bound estimation method for construction 
of neural network-based prediction intervals. IEEE Transactions 
on Neural Networks, 22(3), 337–346. https://doi.org/10.1109/
TNN.2010.2096824

[30]	 Breiman, L. (2001). Random forests. Machine Learning, 45(1), 
5–32. https://doi.org/10.1023/A:1010933404324 

[31]	 Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boost-
ing system. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 
785–794. https://doi.org/10.1145/2939672.2939785 

[32]	 Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector 
regression. Statistics and Computing, 14(3), 199–222. https://doi.
org/10.1023/B:STCO.0000035301.49549.88  

[33]	 Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. 
(2018). Machine learning in agriculture: A review. Sensors, 18(8), 
2674. https://doi.org/10.3390/s18082674 

[34]	 Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., 
Butler, E. E., ..., & Kim, S.-H. (2016). Random forests for global 
and regional crop yield predictions. PLoS ONE, 11(6), e0156571. 
https://doi.org/10.1371/journal.pone.0156571 

[35]	 Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean 
absolute error (MAE) over the root mean square error (RMSE) 
in assessing average model performance. Climate Research, 30, 
79–82. https://doi.org/10.3354/cr030079 

[36]	 Bocean, C. G. (2025). The role of organic farming in reduc-
ing greenhouse gas emissions from agriculture in the European 
Union. Agronomy, 15(1), 198. https://doi.org/10.3390/agrono-
my15010198

[37]	 Olesen, J. E., Rees, R. M., Recous, S., Bleken, M. A., Abalos, D., 
Ahuja, I., ..., & Topp, C. F. E. (2023). Challenges of accounting 
nitrous oxide emissions from agricultural crop residues. Global 
Change Biology, 29(24), 6846–6855. https://doi.org/10.1111/
gcb.16962 

[38]	 Leip, A., Weiss, F., Lesschen, J. P., & Westhoek, H. (2014). The 
nitrogen footprint of food products in the European Union. The 
Journal of Agricultural Science, 152(S1), 20–33. https://doi.
org/10.1017/S0021859613000786 

7

How to Cite: Mohsen, B. M., & Mohsen, M. (2025). AI-Driven Prediction of 
Greenhouse Gas Emissions in Livestock Supply Chains: Towards a Data-Driven Model 
for Sustainable Agri-food Systems. Journal of Computational and Cognitive Engineer-
ing. https://doi.org/10.47852/bonviewJCCE52025984

https://doi.org/10.3390/su17020586
https://doi.org/10.3390/su17020586
https://doi.org/10.1016/j.agsy.2017.01.023
https://doi.org/10.1016/j.biosystemseng.2021.01.017
https://doi.org/10.1016/j.biosystemseng.2021.01.017
https://doi.org/10.1007/s40822-024-00295-7
https://doi.org/10.1007/s40822-024-00295-7
https://doi.org/10.1016/j.compeleceng.2022.108357
https://doi.org/10.1016/j.compeleceng.2022.108357
https://doi.org/10.1007/s10584-014-1197-x
https://doi.org/10.1007/s10584-014-1197-x
https://doi.org/10.3389/fsufs.2018.00087
https://doi.org/10.3389/fsufs.2018.00087
https://doi.org/10.5772/intechopen.103018
https://doi.org/10.4236/jssm.2023.161004
https://doi.org/10.4236/jssm.2023.161004
https://doi.org/10.1016/j.procs.2023.03.105
https://doi.org/10.1016/j.ecolecon.2013.10.005
https://doi.org/10.1016/j.ecolecon.2013.10.005
https://doi.org/10.1007/s10479-025-06510-1
https://doi.org/10.1109/TNN.2010.2096824
https://doi.org/10.1109/TNN.2010.2096824
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.3390/s18082674
https://doi.org/10.1371/journal.pone.0156571
https://doi.org/10.3354/cr030079
https://doi.org/10.3390/agronomy15010198
https://doi.org/10.3390/agronomy15010198
https://doi.org/10.1111/gcb.16962
https://doi.org/10.1111/gcb.16962
https://doi.org/10.1017/S0021859613000786
https://doi.org/10.1017/S0021859613000786
https://doi.org/10.47852/bonviewJCCE52025984

