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Abstract: The high-volume, velocity, and variety nature of Big Data introduces tremendous  difficulties in accurate classification, especially 
when dealing with class imbalance. Traditional computational methods often fail to handle the imbalanced nature of datasets that may result in 
predictions biasing toward majority classes and poor model accuracies. This work presents a novel classification framework that combines state-
of-the-art methodologies to provide a solution for the classic problem of class imbalance in Big Data environments. The proposed method is based 
on Generative Adversarial Network with Extreme Learning Machine for classification, Extreme Gradient Boosting with Bayesian Hyperparameter 
Optimization for feature selection, the Coati Optimization Algorithm for gradient optimization, and Fuzzy Adaptive SMOTE for oversampling. In 
addition to this, we put a Physics-Informed Policy Gradient to achieve interpretability of the model and classification decisions with respect to the 
domain classification rules. This framework provides better performance in terms of accuracy, robustness and scalability than other approaches for 
various types of imbalanced medical imaging datasets, such as histopathological images. The collaborative use of these state-of-the-art algorithms, 
taking into consideration common challenges like noisy data, redundant samples, and overfitting, will result in improved classification and provides 
a feasible solution for Big Data problems.
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1. Introduction
The steep growth of data (Internet of Things, eHealth, bioinfor-

matics, social networks, and many others) resulted in the Big Data 
phenomenon, generating an enormous amount of structured and 
unstructured data at massive volumes and high velocity with structural 
heterogeneity [1]. Conventional data processing methods fail to process 
such huge and complex datasets, especially when labeled classification 
is aimed at high-dimensional or unstructured data.  One of the biggest 
problems in Big Data classification is class imbalance because the 
minority class instances in such data are much less than majority 
class examples [2] leading to biased classification and less expressive 
generalization. In domains such as early disease diagnosis, fraud 
detection, and cybersecurity, the minority class often represents critical 
but rare events (presence of cancer, fraudulent transactions, or malware 
activity). Misclassifying these minority cases can lead to dire outcomes 
like delayed treatment, financial losses, or security breaches. Hence, 
accurate classification of minority instances in imbalanced datasets 
is not merely a statistical improvement but a functional necessity for 
high-impact decision-making. Techniques such as oversampling class 
imbalance have been widely accepted within the community to address 
class imbalance issues (Synthetic Minority Oversampling Technique 
[SMOTE]) [3]. In generating synthetic samples by interpolation, 
SMOTE has flaws that include noisy data, redundant samples, and class 
overlap. Better variants to overcome the imbalance of data have been 
proposed such as enhanced Center Point SMOTE (CP-SMOTE) and 
Inner–Outer SMOTE (IO-SMOTE). In CP-SMOTE, synthetic samples 

are generated around multiple centroids of the minority class to better 
preserve distribution diversity [4], while IO-SMOTE [5] differentiates 
between inner and outer minority samples to minimize overlap, noise, 
and related issues. Nevertheless, the variants are confronted with 
computational complexity and sample selection problems.

In Big Data classification, feature selection is essential for reducing 
computational complexity and improving performance. Extreme 
Gradient Boosting (XGB) works great for finding nonlinear features 
which are discriminative [6] but very expensive to hyperparameter 
tune manually. Incorporating Bayesian Hyperparameter Optimization 
(BHPO) to tune learning rates, tree depth, and regularization parameters 
by itself automates the process of XGB selection and boosts efficiency 
[7]. Deep learning (DL)–based methods are immensely powerful 
but often suffer from the vanishing gradient problem, which triggers 
suboptimal convergence in large-scale classification tasks. We propose 
rescaling the gradient using the Coati Optimization Algorithm(COA), 
which balances exploration and exploitation, thereby stabilizing weight 
updates and improving the convergence rate [8]. This is advantageous 
for training deep networks in imbalanced Big Data scenarios. A 
hybrid framework fusing Generative Adversarial Networks (GANs) 
with Extreme Learning Machines (ELMs) has proved effective for 
classification improvement under severe imbalance [9]. GANs yield 
good synthetic samples that help in class balancing, and ELMs have 
the advantage of fast learning and a single-layer structure that makes 
classification scalable as well as more efficient [10]. Moreover, the 
incorporation of Physics-Informed Policy Gradient Networks ensures 
that the model predictions adhere to domain constraints, thereby 
enhancing interpret ability and robustness [11]. 

This study introduces a novel integrated framework for Big 
Data classification that incorporates Fuzzy Adaptive SMOTE(FADA-
SMOTE) for dynamic oversampling, Extreme Gradient Boosting with 
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Bayesian Hyperparameter Optimization (XGB-BHPO) for feature 
selection [7], COA [8] for optimization, and a robust Generative 
Adversarial Network with Extreme Learning Machine (GAN-ELM) for 
classification [9]. The framework was evaluated on three imbalanced 
datasets, primarily histopathology images, demonstrating high 
scalability, improved classification accuracy, and efficient convergence 
in Big Data environments.

Contribution. In this article, the Big Data classification approach 
within a DL framework uses oversampling, feature selection, and 
vanishing gradient problems. The tackling mechanism is proposed for 
time series Big Data.

•  Development of FADA-SMOTE to overcome the limitations 
of existing oversampling techniques by generating statistically 
consistent synthetic samples while preventing noise and class 
overlap.

•  Integration of XGB-BHPO for feature selection, ensuring 
optimal feature selection while reducing dimensionality and 
computational complexity.

•  Implementation of GAN-ELM for robust classification, 
employing adversarial learning to enhance model generalization 
and classification accuracy.

•  Optimization via COA to address the vanishing gradient problem, 
stabilizing DL training for Big Data classification.

•  Incorporation of a Physics-Informed Policy Gradient Network, 
embedding domain knowledge into the classification process for 
improved interpretability and real-world applicability.

The article is organized as follows: The related works are 
reviewed in Section 2, followed by the proposed method in Section 3. 
Experimental details are given in Section 4. Results are discussed in 
Section 5, and finally, the conclusion is drawn in Section 6.

2. Literature Review
With the fast-developing field of information technology, 

intensive attention is given to intelligent medical data processes. 
However, imbalanced classification remains a major challenge, 
particularly in medical diagnostics, where class imbalance can lead to 
biased learning algorithms. In order to tackle the class imbalance issue, 
Vairetti et al. [12] work on SMOTENN [2] which is a hybrid resampling 
that uses SMOTE [1] and ENN [3] for more minority classes by using 
neighborhood structures to preserve the class margin. While effective, 
this approach struggles with high-dimensional data due to the generation 
of noisy synthetic samples. Similarly, Halim et al. [13] used ADASYN: 
adaptively generates synthetic minority classes in an epoch based on 
their learning difficulty. Although widely adopted, both ADASYN 
and SMOTE tend to create ambiguous samples near class boundaries, 
reducing classification performance. In order to reinforce the samples, 
Maldonado et al. [14] extended SMOTE into weighted Minkowski 
distance–based SMOTE and enhanced neighborhood selection but it is 
still affected by noisy features. To mitigate the generation of unwanted 
unsafe synthetic instance, Grina et al. [15] recommended SMOTE-BFT 
that uses an application of the Belief Function Theory for removing 
noisy samples effectively. Its dependence on belief thresholds hinders 
adaptability. Bao and Yang [16] reported the CP-SMOTE method as 
well as IO-SMOTE in relation to the enhancement of central reference 
points and minority sample separation. They show that these approaches 
curb noise but significantly fail in complex, high-dimensional data as a 
result of computational burden.

Apart from sampling, feature selection of imbalanced data is 
extremely important. Most traditional methods put the majority class 
on the lead. To solve this, Kamalov et al. [17] presented an F1-score 
filter using decision tree focusing on the relevance of the minority 
class. However, tree-based heuristics may ignore possible low-level 

inter-feature dependencies. Li et al. [18] presented multi-strategy 
grouped feature extraction, where redundancy is eliminated efficiently. 
For selection of dimension, Zhang et al. [19] took MOFS-BDE, a 
binary differential evolution [20] which is based on the novel mutation 
operators for balancing exploration and exploitation. Although effective, 
this method may struggle in high-noise environments. 

DL in breast cancer detection of imbalanced data causes 
performance limitation. To address this limitation, Kumari et al. [20] 
introduced Smart GAN for improving classifier training on limited data. 
But GANs tend to become gradient, vanishing when discriminators 
drown generators. Ding et al. [21] proposed RGAN-EL, which 
integrates GANs with ensemble learning to address class imbalance; 
however, this approach introduces significant training overhead due 
to the ensemble component. In a subsequent work, Ding et al. [22] 
developed RVGAN-TL, combining GANs with transfer learning for 
tabular data classification. While this method improves performance, its 
ability to transfer effectively across different datasets remains limited.  
Convolutional Neural Networks (CNN) have also shown to be very 
feasible in deep neural networks (DNNs) for histopathological image 
classification of the domain. Overfitting and vanishing gradients are 
still there. However, Thapa et al. [23] proposed a deep CNN model 
trained by DL for bypassing these problems and Chattopadhyay et al. 
[24] introduced a Residual Attention Network Dense Residual Dual-
Shuffle Attention (DRDA) on Low Data which is a lightweight version 
of DenseNet. Ultimately, while both models have been successful, they 
still require a lot of fine tuning and computational power. Saini and 
Susan [25] employed transfer learning with DNN, data augmentation, 
and regularization to address class imbalance but transfer learning not 
always aligns with target distributions. Bas et al. [26] later aimed at 
making the training method as good as possible using PSO (Particle 
Swarm Optimization) in order to improve Recurrent Neural Network 
(RNN) performance. Hu et al. [27] developed artificial derivatives 
as alternative activation functions which provide functionality while 
overcoming gradient issues. Nevertheless, they are sometimes difficult 
to interpret even in the originally built models and lack generalizability.

Recent work shows that data quality in resource-constrained 
sensing also benefits from freshness and attention mechanisms. Yang 
et al. [28] demonstrate how jointly optimizing Age of Information and 
information entropy improves data accuracy and energy efficiency in 
wireless sensing systems. Complementing this, Yang et al. [29] apply 
attention mechanisms in mobile crowd sensing—across task allocation, 
incentive design, privacy preservation, and data transmission—to 
dynamically prioritize high-value, low-noise inputs. These insights into 
temporal and contextual data weighting further motivate our framework’s 
emphasis on robust oversampling and feature selection. Moreover, online 
learning has focused on addressing challenges related to incomplete and 
imbalanced data streams. You et al. [30] introduced the Online Learning 
from Incomplete and Imbalanced Data Streams algorithm, which utilizes 
empirical risk minimization to select informative features and employs 
a dynamic cost-sensitive strategy to handle real-time class imbalance. 
Their evaluation across 27 datasets under various stream patterns 
(trapezoidal, evolvable, and capricious) and imbalance conditions 
demonstrated superior adaptability, particularly under concept drift. 
Extending this, You et al. [31] proposed Online Learning for Data 
Streams with Incomplete Features and Labels (OLIFL), a framework 
designed to handle data streams with simultaneous feature and label 
incompleteness. OLIFL dynamically maintains a global informative 
matrix and estimates label confidence to minimize the influence of 
unlabeled samples, enabling accurate learning in volatile environments. 

While significant progress has been made in addressing 
imbalance learning, feature selection, and vanishing gradients, critical 
challenges remain. Oversampling can still introduce noise, feature 
selection in high-dimensional imbalanced settings is not consistently 
optimal, and methods to prevent vanishing gradients can reduce 
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efficiency or scalability. In response to these limitations, the proposed 
framework leverages advanced oversampling techniques, ensemble-
based feature selection, and gradient-stabilizing architectures to deliver 
high classification accuracy with improved efficiency and adaptability, 
particularly on real-world healthcare datasets.

3. Proposed Methodology
Figure 1 depicts the end-to-end Big Data classification pipeline, 

which consists of five sequential stages. First, the raw imbalanced 
dataset is rebalanced using FADA-SMOTE, a method that computes 
a fuzzy membership score for each minority instance and generates 
synthetic samples adaptively, placing more samples in sparse regions 
and fewer in dense regions to reduce noise and class overlap. Second, 
the balanced data undergo feature selection with XGB-BHPO, where 
XGB ranks features by importance and BHPO automatically tunes 
parameters, removing redundant or noisy attributes and lowering 
dimensionality. Third, before training the deep model, the COA 
rescales weight updates dynamically to prevent vanishing gradients 
and ensure stable convergence. Fourth, the processed features are fed 
into the GAN-ELM classifier, in which the GAN component creates 
realistic minority samples through adversarial training and the Extreme 
Learning Machine trains rapidly using random input weights with a 
closed-form solution for output weights. Finally, a Physics-Informed 
Policy Gradient (PIPG) module adds domain-specific penalty terms 
to the GAN’s reward function to enforce real-world constraints and 
produce interpretable outputs. These stages—oversampling, feature 
selection, gradient stabilization, classification, and interpretability—
work together in a unified framework to handle class imbalance, noisy 
inputs, optimization challenges, and transparency.

3.1. Fuzzy Adaptive SMOTE
FADA-SMOTE is a new technique designed to address the 

shortcomings of traditional SMOTE and its derivatives which use class 
imbalance in large imbalanced datasets to their advantage. By linearly 
interpolating between the minority instance examples, SMOTE creates 
new samples; however, this approach has several drawbacks including 
noise class overlap and computational inefficiency. Although they are 
more sophisticated and (very) computationally expensive, techniques 
like CP-SMOTE and IO-SMOTE can result in overfitting. They aim to 
improve the quality of synthetic samples. 

To address these issues, FADA-SMOTE combines MapReduce-
distributed processing, fuzzy logic, and dynamic control over sample 
generation, making it scalable and accurate. To determine how salient 

an instance is for oversampling, the process begins by computing a 
fuzzy membership score for each minority instance . This weight is 
quantified by the fuzzy membership function as an importance:

Here,  is the Euclidean distance from  to its K-nearest 
majority class neighbors; β denotes the scaling parameter which adjusts 
sensitivity;  defines if the sample is vital for oversampling, with 
values closer to 1 indicating higher importance; and also, membership 
threshold θ is set to filter out low-significance instances, reducing the 
risk of introducing noise.

Once the high-significance instances are identified, FADA-
SMOTE employs an adaptive sample generation strategy. It is 
determined using how many synthetic samples must be made for each 
selected instance :

Here,  and  refer to the number of majority and minority 
instances, respectively, and  is a weight factor. In sparse regions, the 
adaptive sample generation mechanism boosts synthetic generation 
while preventing oversampling in dense minority regions. 

A method of fuzzy-weighted interpolation is employed to 
generate artificial samples. For every , a nearby minority instance 
is randomly selected and a new synthetic sample  is created using 
the process outlined below:

Here,  refers to an arbitrarily elected fuzzy nearest minority 
neighbor and  denotes a dynamic interpolation coefficient:

Here, δ is a value chosen at random from a uniform distribution 
in the interval [0, 1].

This minimizes class overlap by ensuring synthetic samples that 
stay inside clearly defined decision boundaries. 

Also, FADA-SMOTE is integrated as a distributed execution 
method into the MapReduce framework so that it could scale with large 
datasets. Each minority instance determines the fuzzy memberships and 
counts of the corresponding necessary synthetic samples after the dataset 
has been partitioned during the Mapper phase. To create a balanced 
dataset, several synthetic samples from each partition are combined 
during the Reducer phase. Even when processing high-dimensional 
large-scale data, the FADA-SMOTE–parallelized architecture retains 
its effectiveness and performance.

3.2. Feature selection using ensemble learning
A hybrid feature selection approach based on XGB and BHPO 

is proposed to enhance classification efficiency and mitigate overfitting 
in high-dimensional, imbalanced data. The study introduces a novel 
hybrid feature selection approach that combines XGB and BHPO to 
address the problem of overfitting in high-dimensional imbalanced 
data and improve classification efficiency. The three conventional filter 
wrapper and embedded approaches all have drawbacks such as missing 
feature interactions, being model dependent, and being computationally 
inefficient. The suggested method makes use of XGB ensemble learning 
which is reliably stable and BHPO due to its capacity for probabilistic 
optimization in order to address these issues.
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Policy Gradient Network
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3.2.1. XGB for feature selection
XGB is a regularized gradient-boosting framework that iteratively 

assesses and prunes features according to three key metrics: Cover 
(sample coverage), Weight (split frequency), and Gain (loss reduction). 
In subsequent iterations, low-importance features are eliminated 
minimizing dimensionality and redundancy while maintaining 
predictive relevance.

3.2.2. Bayesian hyperparameter optimization for XGB
BHPO will be used to fine tune critical XGB hyperparameters 

(learning rate depth and estimators) on the fly using Gaussian process–
based surrogate modeling. It continuously explores its surroundings to 
find solutions that lead to model generalization and better fit test data 
taking advantage of similarly promising points in order to find the ideal 
configuration in the bounded space. The classification accuracy gain 
and scalability in mass datasets using the XGB-BHPO framework were 
made possible by a condensed and interpretable feature subset.

3.3. Classification using GAN-ELM
ELMs and GANs are integrated into the Dynamic GAN-ELM 

framework to address classification problems in Big Data settings 
particularly for their use in high-dimensional noisy and imbalanced 
dataset classification problems. This hybrid architecture as shown in 
Figure 2 includes a discriminator (B) and a generator (C) as multichannel 
signal inputs into the GAN assembly. Based on inverse dynamics, the 
generator creates positive samples and the discriminator evaluates the 
quality of both generated and real samples. A crucial enhancement to 
this architecture superstructure is the use of a Physics-Informed Policy 
which ensures the legal expansion of practically possible synthetic 
information within constraints. The multilayer ELM classifier will use 
these improved samples following GAN refinement of the data. ELMs 
are a type of single-pass neural network in which the back propagation 
iteration is eliminated by randomly initializing the input weights and 
using Moore–Penrose pseudo-inversion to calculate the output weights 
in a closed-form solution. With minimal loss of accuracy, this saves a 
significant amount of time during the training session. Together, GAN-
based augmentation and ELM rapid learning enabled classification, 
making it possible to handle noise redundancy and imbalanced data.

3.3.1. Generative Adversarial Network
GAN comprises of generator (C) and discriminator (B) networks 

which are trained concurrently in an adversarial environment. The work 
of the generator is to generate the samples from the data which resemble 
the real data. On the other hand, the discriminator finds the difference 
between the real and synthetic samples. The process of generating data 
samples is explained in Figure 3 [32]. This training process can be 
defined by a minimax optimization problem:

Here, the distribution of the training set is denoted as , 
while  denotes distribution of noise. At equilibrium, the generator’s 
distribution approximates the real data distribution  making 
the discriminator output , indicating indistinguishability 
between real and fake data [32].

3.3.2. Integration with ELM for feature generation
The data generation is based on an ELM model. ELM uses a 

self-adaptive multi-layer ELM model for relatively accurate classifiers. 
The ELM is a machine learning model based on a multilayer perceptron 
(MLP) architecture. The ELM does not rely on MLP as W and b are 
initialized randomly using respective uniform random distributions. 
Also, using a linear combination yields the prediction. 

ELM-based data generation: In order to address the issue of 
under-representation in our minority class, we will use new ELM 
models dynamically with GANs to generate samples. The ELM 
samples will be derived using randomly segmented portions of the 
data fit with Seta {(i𝕝,𝕦𝕝 )}𝕝=1 ), providing fragments Wa* [33]. Using the 
Dynamic ELM model will use the samples to assess class imbalance in 
the generated data.

LPa=M𝕛
least ⁄ M𝕛

most

numclass+=⌊M𝕛
most ⁄ M𝕛

class+⌋

Generated features WC are obtained through

WC= 𝒟C γC

where 𝒟C is the output value from the hidden layer and γC the output 
weight matrix. The dynamic ELM can adaptively increase the number 
of hidden nodes in the generator, while simultaneously determining the 
structure of the output layer. Hidden layer I can be expressed as follows:

𝒟C , I +1 = [𝒟C , I𝕙]

(1)
(2)

(3)

(4)

(5)
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Figure 2
The architectural diagram of Dynamic GAN-ELM

 Figure 3
The complete process of generating data of GAN



Journal of Computational and Cognitive Engineering Vol. 00  Iss. 00  2025

where h is a random variable representing a new hidden node output. 
Optimization is aimed at minimizing expected cross-entropy:

 𝒴(B,C) =𝒜  [log B(Wa)]+

𝒜 [log (1−B(C(T)))]

Self-adaptive multilayer ELM modeling: The self-adaptive 
multilayer ELM automatically tunes the number of hidden layers 
and neurons to optimize model performance while balancing time 
complexity and generalization. Too few nodes result in underfitting, 
while too many increase computational overhead. The selection is 
guided by the data distribution and imbalance ratio, enabling dynamic 
reconfiguration during training [32]. The hidden layer size is computed 
based on sample complexity and feature richness:

S= function(nsamples, nfeatures, 𝕃ℙ)

where 𝕃ℙ is the imbalance ratio. This configuration allows for adaptive 
learning that supports the evolving complexity of input data.

3.4. Training of GAN-ELM through Physics-Informed 
Policy Gradient

By using a PIPG within the GAN-ELM training framework, 
we introduce a domain-aware reinforcement mechanism to assist 
with the generative process. Unlike traditional adversarial learning 
which minimizes statistical differences only, PIPG embeds domain-
based constraints as inductive biases in the reward function; therefore, 
generated outputs are required not only to fool the discriminator but 
to be consistent with the physics equations. This is important for any 
generalization especially when data are scarce [34]. Beyond enforcing 
physical consistency, PIPG also yields a constraint compliance profile 
for each generated sample (and thus each classification) by reporting 
the residual penalties associated with each rule. In medical imaging, 
for example, these rules can encode tissue stiffness ranges or contrast 
uptake kinetics; the model then explains its decisions in terms of which 
rules were most strongly satisfied or violated. This traceability gives 
clinicians actionable insights into the physical properties driving each 
prediction, enhances trust by linking outputs to established domain 
knowledge, and supports regulatory compliance by providing clear, 
rule-based justifications.

The reward function ℳ(ς) is composed of two parts: the structural 
incentive 𝒫  and the physical representation action 𝒮B(φ), expressed as 
follows:

ℳ(ς)=𝔸[𝒫 (Cς(s0:𝒪))]∙𝒮B(φ)  (Cς(s0:𝒪)),[ℬ,Θ]0:𝒪)

where s0:𝒪 denotes the multichannel signal sequence. Cς will produce 
unbiased samples ([ℬ,Θ]0:𝒪) consistent with physical dynamics. The 
structural reward is defined by

𝒫C ([ℬ,Θ]0:𝒪)=expℛℐ ([ℬ,Θ]0:𝒪)

where ℛℐ(.) is a residual informing the Lagrange motion equation

ℛℐ([ℬ,Θ]0:𝒪)= ∑𝕠=1(𝕛(Θ𝕠)Θ𝕠+𝕘(Θ𝕠,Θ𝕠)
+ 𝕔(Θ𝕠 )−∑𝕜

𝒦ℬ𝕠
𝕜 )2

This enforces alignment to system dynamics with minimal data. 
We sequentially obtain the policy gradient as follows:

δςℳ(ς)≃ ∑𝕠=1∑𝕧 ∈[ℬ,Θ] δς𝒫Cς(𝕧𝕠|[ℬ, Θ]𝒪)∙𝒮B(φ)(𝕧𝕠,[ℬ, Θ]0:𝒪)

The policy is then updated using the following:

ς ← ς + βδςC(ς)

where the learning rate is β∈P [34].

3.5. COA for solving the vanishing gradient problem
The COA minimizes disappearing gradients and allows for 

effective multi-objective optimization with little parameter tuning. The 
advantages of the COA include having no control parameters needed, 
strong global search, fast convergence, and good performance on high-
dimensional tasks.

Each coati represents a solution in the population and it is created 
as follows:

Here, p∈[0,1] denotes an arbitrary number and lbm and ubm refer 
to the lower and upper bounds of the m-th variable, respectively. The 
COA employs two distinct behaviors: exploration and exploitation [35].

3.5.1. Exploration phase
Half of the population waits below (local search), and the other 

half climbs the tree (broad search). That for the climbing team is as 
follows: 

where Iguanam is the best-known position and L∈{1,2} is a random 
integer. That for the remaining coati is as follows:

Updated positions are retained only if they improve the objective 
function:

Here, the new position calculated for nth is  is the mth 
dimension; the objective value function is represented as ; the 
random real number in the interval [0,1] is indicated as p; Iguana 
denotes the iguana’s location within the search space, representing 
the position of its finest member; Iguanam is its mth dimension; Lis an 
integer which is directly selected from the set {1,2}; the position of the 
iguana on the ground generated randomly is represented as IguanaT; and 
its dimension is ; the value of this objective function is , 
and the floor function is signified as ⌊∙⌋ [35].

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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3.5.2. Exploitation phase
This stage focuses on local refinement while simulating coati 

behavior in avoiding predators. This defines a local search space.

Each coati searches near its current position:

The new position is retained only if it yields better objective 
values:

4. Experimental Setup
A PIPG network combined with a GAN-ELM was used to classify 

unbalanced Big Data using images from breast cancer histopathology. 
Performance analysis was expanded to include ImageNet-LT and the 
CelebA Facial Attribute Dataset. Every model was put into practice 
in Python and compared with other approaches. A strong evaluation 
scenario is provided by the dataset class imbalance. A summary of the 
main features of the datasets used is provided in Table 1.

4.1. Hyperparameter settings
To maximize performance and guarantee stability during training, 

the suggested hyperparameters were carefully chosen. Extensive testing 
and validation on the dataset of Breast Cancer Histopathology images 
led to the determination of these values. Table 2 provides specifics 
about the selected hyperparameters and their values.

5. Results and Discussion
Key metrics like accuracy, precision, recall, specificity, F1-score, 

MCC, AUC, and computational time are used to assess the suggested 
GAN-ELM with a policy gradient network. Performance is evaluated 
in comparison to the DCNN, RGAN-EL, RVGAN-TL, and Smart GAN 
models. ImageNet-LT and CelebA are used for additional comparisons 
after the initial assessment of Breast Cancer Histopathology images. 
Findings demonstrate the model performance on unbalanced Big Data.

Figure 4 presents the 2D distribution of samples generated by 
No-Sampling, SMOTE, IO-SMOTE, CP-SMOTE, and the Proposed 
FADA-SMOTE on the Breast Cancer Histopathology dataset. Majority, 
minority, and synthetic samples are marked as blue circles, red pluses, 
and black snowflakes, respectively. While SMOTE-based methods 
reduce imbalance, they often generate overlapping or excessive 
synthetic points. FADA-SMOTE outperforms by adaptively generating 
fewer, high-quality samples away from decision boundaries. As shown 
in Table 3, FADA-SMOTE achieves the highest classification accuracy 

(99.81% training, 99.37% testing), improving generalization and 
minimizing error propagation.

Figure 5 compares error convergence across four oversampling 
techniques—No sampling, SMOTE, IO-SMOTE, and CP-SMOTE—
on the Breast Cancer Histopathology images dataset. All methods start 
with high error due to imbalance, but FADA-SMOTE achieves the 
lowest final error with smoother and faster convergence. While SMOTE 
and IO-SMOTE offer moderate improvements, they suffer from 
instability and sensitivity to class boundaries. CP-SMOTE performs 
better, but FADA-SMOTE stands out by generating noise-resistant, 
well-separated synthetic samples, leading to superior model learning 
and error reduction.

After feature selection, classifiers such as SVM, LGBM, ETC, 
FKNN, and the suggested XGB-BHPO are compared on the Breast 
Cancer Histopathology images dataset in Table 4. Metrics like accuracy, 
F1-score, recall, specificity, MCC, and AUC distinguish XGB-BHPO 
from the competition. Its combination of BHPO and XGB allows for 

(18)

(19)

(20)
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Method Parameter Optimal value
XGB No. of estimators 300

Learning rate 0.01
max depth 15
reg_lambda 2
objective function Binary-logistic
gamma 1
booster gbtree
reg_alpha 1

GAN-ELM Generator time 1.1
Bot filter quantile 0.0001
Top filter quantile 0.99
Maximum depth 2
Maximum bin 100
Learning rate 0.001
Random state Yes
Estimators 100
Batch size 500
Patience 25
Amplification factor 0.7
Population size 30
Number of generators 50
Lower bounds (1,0,0)
Upper bounds (300,9,1)

COA Parameter free --

Table 2
Hyperparameters of the XGB learning model

Dataset Number of samples Classes Size Number of attributes Data availability
Breast Cancer Histopathology images 277,524 2 50 × 50 4 Publicly available
CelebA Facial Attribute Dataset 202,599 10,177 178 × 218 40 Publicly available
ImageNet-LT (Long-Tailed ImageNet) 115,846 1,000 Variable N/A Publicly available

Table 1
Research gaps
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 Figure 4
Distribution of two-dimensional discrete point models using oversampling techniques for the Breast Cancer Histopathology images data-

set

 Figure 5
Comparison of oversampling approaches for error function with 

Breast Cancer Histopathology images dataset

Methods Models
Accuracy 

Values (%)
No sampling Training 99.36%

Test 98.64%
SMOTE Training 99.40%

Test 98.80%
IO-SMOTE Training 99.50%

Test 99.00%
CP-SMOTE Training 99.60%

Test 99.20%
FADA-SMOTE Training 99.81%

Test 99.37%

Table 3
Classification accuracy results for four different oversampling 
techniques in ELM with Breast Cancer Histopathology images 

dataset
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efficient feature removal and ideal tuning. This improves robustness and 
discrimination by class particularly for unbalanced data. For medical 
diagnosis tasks, its high recall, specificity, MCC, and AUC attest to its 
dependability.

The feature selection effectiveness of SVM, FKNN, ETC, 
LGBM, and XGB-BHPO on the Breast Cancer Histopathology images 
dataset is contrasted in Figure 6. The fact that XGB-BHPO chooses 
the fewest features suggests that it is better at keeping only the most 
important characteristics. More features are retained by LGBM and 
SVM whereas FKNN and ETC exhibit a moderate reduction. For 
high-dimensional medical data, the results demonstrate how well 
XGB-BHPO reduces dimensionality while preserving classification 
performance and scalability.

Feature selection models applied to images of breast cancer 
histopathology are technically compared in Table 5. The suggested 
XGB-BHPO achieves the best accuracy recall and specificity 
surpassing baseline techniques. In contrast to CFS-BA and IG+PCA 
which do not provide comprehensive metric reporting, XGB-BHPO 
exhibits balanced and excellent performance. It provides better feature 
selection and classification reliability than LightGBM and CatBoost 
demonstrating its resilience for medical image analysis.

Figure 7 represents the classification outcome of the proposed 
model regarding accuracy, precision, recall, and MCC of different ML 
models or approaches. Five models are compared such as Proposed 
GAN-ELM, Smart-GAN, RGAN-EL, RVGAN-TL, and DCNN. 
Among the data balancing techniques, the proposed approach achieves 
the highest accuracy, approaching 100%. Smart-GAN slightly lowers 
accuracy than Proposed but is still very high. RGAN-EL has lower 
accuracy than Proposed and Smart-GAN but is still above mid-range. 
RVGAN-TL has accuracy around the mid-range and DCNN has very 
low accuracy among all listed models. The proposed approach shows 
the promising results in accuracy, recall, and MCC.

A comparison of time complexity across models for unbalanced 
Big Data is shown in Figure 8. Large-scale data processing benefits 
greatly from the suggested model’s exceptional computational 
efficiency as input size grows. On the other hand, because they generate 
a lot of synthetic data, models like DCNN, Smart-GAN, RGAN-EL, 
and RVGAN-EL exhibit a much higher time complexity. The suggested 
method is perfect for real-time and resource-constrained situations 
since it strikes a balance between speed and performance.

Model space complexity for imbalanced Big Data classification 
is compared in Figure 9. For large datasets with limited storage, the 
suggested model is the most space-efficient option. On the other hand, 
because of their deep architectures and artificial data generation, 
RGAN-EL, RVGAN-TL, and DCNN demand more memory. The 
suggested method has little storage overhead and provides a scalable 
solution.

Table 6 provides a statistical comparison of classification 
methods based upon standard deviation, 95% confidence intervals (CI), 
and p-values. The proposed GAN-ELM has the highest classification 
accuracy (98.43%) and has the lowest variance (±0.15). This suggests 
that GAN-ELM has stable performance. The 95% CI (98.28–98.58) is 
both narrow and higher than other classification methods. All p-values 
are <0.05 suggesting statistically significant improvements (with 
respect to classification accuracy) over existing methods. The results 
tabulated here suggest that GAN-ELM is robust, reliable, or both.

The computational time of several optimization algorithms for 
solving the vanishing gradient problem is contrasted in Table 7. The 
suggested COA demonstrates superior efficiency in sustaining gradient 
flow by achieving the fastest convergence. With slower convergence, 
WOA, ACO, and ABC are less appropriate for deep networks that are 
susceptible to vanishing gradients whereas PSO and GWO likewise 
demonstrate strong performance.

Table 8 offers a complete modular ablation study explicitly 
examining the individual contributions of each key component of the 
proposed GAN-ELM model. The findings emphasize the sequential 
increases in classification performance gained by stacking sophisticated 
modules like FADA-SMOTE for generating synthetic samples, XGB-
BHPO for selecting optimal features, COA for resolving gradient 
vanishing in deep layers, and PIPG for implementing domain-specific 
constraints via policy-guided learning. Every module makes the 
model more robust, improves generalizability, and increases accuracy 
in dealing with class imbalance. The combined configuration that 
incorporates all modules has the maximum performance, illustrating 
the synergistic contribution of the entire architecture.
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Classifiers SVM LGBM ETC FKNN
Proposed 

XGB-BHPO
Accuracy 90.17 92.84 94.73 96.38 99.89
F1-score 89.57 90.83 92.69 94.82 98.01
Recall 89.46 91.65 94.48 95.38 97.75
Specificity 91.81 91.65 93.45 96.23 97.74
MCC 0.8493 0.8675 0.8814 0.8951 0.9184
AUC 0.9651 0.9704 0.9786 0.9729 0.9961

Table 4
Performance analysis for feature selection with Breast Cancer 

Histopathology images

Reference Method Accuracy Recall Specificity
[36] LightGBM 86.59 81.7 90.66
[36] CatBoost 87.68 83.3 91.33
[37] IG+PCA 98.24 - -
[37] CFS-BA 99.81 - -
Ours Proposed 

XGB-BHPO
99.89 98.01 97.75

Table 5
Comparison of baseline models for feature selection approach

 Figure 6
Comparative result for the feature selection model with the Breast 

Cancer Histopathology images dataset
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In Table 9, the proposed GAN-ELM model is compared with 
other peers using three unbalanced datasets: ImageNet-LT, CelebA, and 
Breast Cancer Histopathology images. With regard to medical imaging 
data, the classification performance of the model is outstanding with 
high precision, recall, and F1-score, indicating successful identification 
of both the majority and minority classes. The model demonstrates 

good generalization ability on the CelebA dataset; however, ImageNet-
LT performers are slightly lower, reflecting the challenges of long-tailed 
distributions. In this sense, GAN-ELM proves to be highly adaptable and 
efficient in tackling various issues of imbalanced image classification.
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 Figure 8
Comparison of time complexity analysis

 Figure 9
Comparison of scalability

 Figure 7
Classification outcome of the proposed model with the Breast Cancer Histopathology images dataset
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6. Conclusion
This research introduces a scalable classification strategy 

that addresses the challenges of imbalanced Big Data, specifically 
in the medical imaging field. The defined architecture incorporates 
several sophisticated elements which include FADA-SMOTE for 
oversampling, XGB-BHPO for feature selection, COA to mitigate the 
vanishing gradient problem, and a hybrid GAN-ELM classifier for 
enhanced learning. Moreover, the addition of a Physics-Informed Policy 
Gradient Network greatly improves the explicability of the system 
while ensuring adherence to domain-specific constraints. Testing on 
the Breast Cancer Histopathology images datasets verifies that FADA-
SMOTE not only increases the informativeness of synthetic samples 
but also reduces redundancy compared with other oversampling 
techniques. XGB-BHPO achieved best results among all classical and 
ensemble feature selection methods by being the most selective and 
discriminative. The COA-optimized GAN-ELM classification module 
also provided better accuracy, recall, and robustness than the baseline 
classifiers which demonstrates the effectiveness of the proposed 
system. The results obtained validated the framework’s efficacy using 
the Breast Cancer Histopathology images datasets where the system 
achieved 98.43% accuracy, the highest reported to date, which is a 
considerable improvement over conventional methods. This was due to 
an integration of advanced oversampling techniques, optimized feature 
selection, and robust classification methods. Further research will focus 
on the responsive adjustment to data shifts, decentralized data through 
federated learning, and integration of multi-modal medical datasets for 
enhanced classification generalizability.
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Methods Accuracy (%) Std Dev (±) 95% CI
p-value (vs Proposed GAN-

ELM)
nCOVnet [37] 88.00 ±0.46 [87.52–88.48] <0.001
Mini-COVIDNet [38] 83.20 ±0.33 [82.85–83.55] <0.001
Deep Neural Network [39] 95.81 ±0.28 [95.50–96.12] 0.012
T-ResNet50+STGAN+TTA [40] 98.23 ±0.22 [98.01–98.45] 0.041
Proposed GAN-ELM (Ours) 98.43 ±0.15 [98.28–98.58] —

Table 6
Statistical evaluation of classification performance

Methods Computational time(s)
ABC 167.3
ACO 146.2
WOA 118.8
GWO 109.6
PSO 97.05
Proposed COA 76.41

Table 7
Comparison of computational time for different optimization 

algorithms

Method
Accuracy 

(%)
CWGAN 91.80
IT-GAN 94.20
STGAN 96.60
GAN-ELM (Baseline only) 96.90
GAN-ELM + FADA-SMOTE 97.40
GAN-ELM + FADA-SMOTE + XGB-BHPO 97.85
GAN-ELM + FADA-SMOTE + XGB-BHPO + COA 98.10
GAN-ELM + FADA-SMOTE + XGB-BHPO + PIPG 98.15
Proposed GAN-ELM (all modules) 98.43

Table 8
Ablation study for the proposed model

Dataset Accuracy Precision Recall
F1-

Score
Breast Cancer 
Histopathology images 
(ours)

98.43 98.01 98.10 97

CelebA Facial Attribute 
Dataset 

97.36 97.21 97.6 96.42

ImageNet-LT (Long-
Tailed ImageNet) 

96.28 96.86 96.1 96

Table 9
Comparison of performance metrics with different datasets using 

the proposed GAN-ELM

https://www.kaggle.com/code/paultimothymooney/predict-idc-in-breast-cancer-histology-images/notebook
https://www.kaggle.com/code/paultimothymooney/predict-idc-in-breast-cancer-histology-images/notebook
https://www.kaggle.com/code/paultimothymooney/predict-idc-in-breast-cancer-histology-images/notebook
https://www.kaggle.com/datasets/jessicali9530/celeba-dataset
https://www.kaggle.com/datasets/jessicali9530/celeba-dataset
https://www.tensorflow.org/datasets/catalog/imagenet_lt
https://www.tensorflow.org/datasets/catalog/imagenet_lt
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