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Abstract: The high-volume, velocity, and variety nature of Big Data introduces tremendous difficulties in accurate classification, especially
when dealing with class imbalance. Traditional computational methods often fail to handle the imbalanced nature of datasets that may result in
predictions biasing toward majority classes and poor model accuracies. This work presents a novel classification framework that combines state-
of-the-art methodologies to provide a solution for the classic problem of class imbalance in Big Data environments. The proposed method is based
on Generative Adversarial Network with Extreme Learning Machine for classification, Extreme Gradient Boosting with Bayesian Hyperparameter
Optimization for feature selection, the Coati Optimization Algorithm for gradient optimization, and Fuzzy Adaptive SMOTE for oversampling. In
addition to this, we put a Physics-Informed Policy Gradient to achieve interpretability of the model and classification decisions with respect to the
domain classification rules. This framework provides better performance in terms of accuracy, robustness and scalability than other approaches for
various types of imbalanced medical imaging datasets, such as histopathological images. The collaborative use of these state-of-the-art algorithms,
taking into consideration common challenges like noisy data, redundant samples, and overfitting, will result in improved classification and provides

a feasible solution for Big Data problems.
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1. Introduction

The steep growth of data (Internet of Things, eHealth, bioinfor-
matics, social networks, and many others) resulted in the Big Data
phenomenon, generating an enormous amount of structured and
unstructured data at massive volumes and high velocity with structural
heterogeneity [1]. Conventional data processing methods fail to process
such huge and complex datasets, especially when labeled classification
is aimed at high-dimensional or unstructured data. One of the biggest
problems in Big Data classification is class imbalance because the
minority class instances in such data are much less than majority
class examples [2] leading to biased classification and less expressive
generalization. In domains such as early disease diagnosis, fraud
detection, and cybersecurity, the minority class often represents critical
but rare events (presence of cancer, fraudulent transactions, or malware
activity). Misclassifying these minority cases can lead to dire outcomes
like delayed treatment, financial losses, or security breaches. Hence,
accurate classification of minority instances in imbalanced datasets
is not merely a statistical improvement but a functional necessity for
high-impact decision-making. Techniques such as oversampling class
imbalance have been widely accepted within the community to address
class imbalance issues (Synthetic Minority Oversampling Technique
[SMOTE]) [3]. In generating synthetic samples by interpolation,
SMOTE has flaws that include noisy data, redundant samples, and class
overlap. Better variants to overcome the imbalance of data have been
proposed such as enhanced Center Point SMOTE (CP-SMOTE) and
Inner-Outer SMOTE (I0-SMOTE). In CP-SMOTE, synthetic samples
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are generated around multiple centroids of the minority class to better
preserve distribution diversity [4], while IO-SMOTE [5] differentiates
between inner and outer minority samples to minimize overlap, noise,
and related issues. Nevertheless, the variants are confronted with
computational complexity and sample selection problems.

InBigData classification, feature selection is essential for reducing
computational complexity and improving performance. Extreme
Gradient Boosting (XGB) works great for finding nonlinear features
which are discriminative [6] but very expensive to hyperparameter
tune manually. Incorporating Bayesian Hyperparameter Optimization
(BHPO) to tune learning rates, tree depth, and regularization parameters
by itself automates the process of XGB selection and boosts efficiency
[7]. Deep learning (DL)-based methods are immensely powerful
but often suffer from the vanishing gradient problem, which triggers
suboptimal convergence in large-scale classification tasks. We propose
rescaling the gradient using the Coati Optimization Algorithm(COA),
which balances exploration and exploitation, thereby stabilizing weight
updates and improving the convergence rate [8]. This is advantageous
for training deep networks in imbalanced Big Data scenarios. A
hybrid framework fusing Generative Adversarial Networks (GANs)
with Extreme Learning Machines (ELMs) has proved effective for
classification improvement under severe imbalance [9]. GANs yield
good synthetic samples that help in class balancing, and ELMs have
the advantage of fast learning and a single-layer structure that makes
classification scalable as well as more efficient [10]. Moreover, the
incorporation of Physics-Informed Policy Gradient Networks ensures
that the model predictions adhere to domain constraints, thereby
enhancing interpret ability and robustness [11].

This study introduces a novel integrated framework for Big
Data classification that incorporates Fuzzy Adaptive SMOTE(FADA-
SMOTE) for dynamic oversampling, Extreme Gradient Boosting with
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Bayesian Hyperparameter Optimization (XGB-BHPO) for feature
selection [7], COA [8] for optimization, and a robust Generative
Adversarial Network with Extreme Learning Machine (GAN-ELM) for
classification [9]. The framework was evaluated on three imbalanced
datasets, primarily histopathology images, demonstrating high
scalability, improved classification accuracy, and efficient convergence
in Big Data environments.

Contribution. In this article, the Big Data classification approach
within a DL framework uses oversampling, feature selection, and
vanishing gradient problems. The tackling mechanism is proposed for
time series Big Data.

* Development of FADA-SMOTE to overcome the limitations
of existing oversampling techniques by generating statistically
consistent synthetic samples while preventing noise and class
overlap.

Integration of XGB-BHPO for feature selection, ensuring

optimal feature selection while reducing dimensionality and

computational complexity.

* Implementation of GAN-ELM for robust classification,
employing adversarial learning to enhance model generalization
and classification accuracy.

* Optimization via COA to address the vanishing gradient problem,

stabilizing DL training for Big Data classification.

Incorporation of a Physics-Informed Policy Gradient Network,

embedding domain knowledge into the classification process for

improved interpretability and real-world applicability.

The article is organized as follows: The related works are
reviewed in Section 2, followed by the proposed method in Section 3.
Experimental details are given in Section 4. Results are discussed in
Section 5, and finally, the conclusion is drawn in Section 6.

2. Literature Review

With the fast-developing field of information technology,
intensive attention is given to intelligent medical data processes.
However, imbalanced classification remains a major challenge,
particularly in medical diagnostics, where class imbalance can lead to
biased learning algorithms. In order to tackle the class imbalance issue,
Vairetti et al. [12] work on SMOTENN [2] which is a hybrid resampling
that uses SMOTE [1] and ENN [3] for more minority classes by using
neighborhood structures to preserve the class margin. While effective,
this approach struggles with high-dimensional data due to the generation
of noisy synthetic samples. Similarly, Halim et al. [13] used ADASYN:
adaptively generates synthetic minority classes in an epoch based on
their learning difficulty. Although widely adopted, both ADASYN
and SMOTE tend to create ambiguous samples near class boundaries,
reducing classification performance. In order to reinforce the samples,
Maldonado et al. [14] extended SMOTE into weighted Minkowski
distance—based SMOTE and enhanced neighborhood selection but it is
still affected by noisy features. To mitigate the generation of unwanted
unsafe synthetic instance, Grina et al. [15] recommended SMOTE-BFT
that uses an application of the Belief Function Theory for removing
noisy samples effectively. Its dependence on belief thresholds hinders
adaptability. Bao and Yang [16] reported the CP-SMOTE method as
well as IO-SMOTE in relation to the enhancement of central reference
points and minority sample separation. They show that these approaches
curb noise but significantly fail in complex, high-dimensional data as a
result of computational burden.

Apart from sampling, feature selection of imbalanced data is
extremely important. Most traditional methods put the majority class
on the lead. To solve this, Kamalov et al. [17] presented an F1-score
filter using decision tree focusing on the relevance of the minority
class. However, tree-based heuristics may ignore possible low-level

inter-feature dependencies. Li et al. [18] presented multi-strategy
grouped feature extraction, where redundancy is eliminated efficiently.
For selection of dimension, Zhang et al. [19] took MOFS-BDE, a
binary differential evolution [20] which is based on the novel mutation
operators for balancing exploration and exploitation. Although effective,
this method may struggle in high-noise environments.

DL in breast cancer detection of imbalanced data causes
performance limitation. To address this limitation, Kumari et al. [20]
introduced Smart GAN for improving classifier training on limited data.
But GANs tend to become gradient, vanishing when discriminators
drown generators. Ding et al. [21] proposed RGAN-EL, which
integrates GANs with ensemble learning to address class imbalance;
however, this approach introduces significant training overhead due
to the ensemble component. In a subsequent work, Ding et al. [22]
developed RVGAN-TL, combining GANs with transfer learning for
tabular data classification. While this method improves performance, its
ability to transfer effectively across different datasets remains limited.
Convolutional Neural Networks (CNN) have also shown to be very
feasible in deep neural networks (DNNs) for histopathological image
classification of the domain. Overfitting and vanishing gradients are
still there. However, Thapa et al. [23] proposed a deep CNN model
trained by DL for bypassing these problems and Chattopadhyay et al.
[24] introduced a Residual Attention Network Dense Residual Dual-
Shuffle Attention (DRDA) on Low Data which is a lightweight version
of DenseNet. Ultimately, while both models have been successful, they
still require a lot of fine tuning and computational power. Saini and
Susan [25] employed transfer learning with DNN, data augmentation,
and regularization to address class imbalance but transfer learning not
always aligns with target distributions. Bas et al. [26] later aimed at
making the training method as good as possible using PSO (Particle
Swarm Optimization) in order to improve Recurrent Neural Network
(RNN) performance. Hu et al. [27] developed artificial derivatives
as alternative activation functions which provide functionality while
overcoming gradient issues. Nevertheless, they are sometimes difficult
to interpret even in the originally built models and lack generalizability.

Recent work shows that data quality in resource-constrained
sensing also benefits from freshness and attention mechanisms. Yang
et al. [28] demonstrate how jointly optimizing Age of Information and
information entropy improves data accuracy and energy efficiency in
wireless sensing systems. Complementing this, Yang et al. [29] apply
attention mechanisms in mobile crowd sensing—across task allocation,
incentive design, privacy preservation, and data transmission—to
dynamically prioritize high-value, low-noise inputs. These insights into
temporal and contextual data weighting further motivate our framework’s
emphasis on robust oversampling and feature selection. Moreover, online
learning has focused on addressing challenges related to incomplete and
imbalanced data streams. You et al. [30] introduced the Online Learning
from Incomplete and Imbalanced Data Streams algorithm, which utilizes
empirical risk minimization to select informative features and employs
a dynamic cost-sensitive strategy to handle real-time class imbalance.
Their evaluation across 27 datasets under various stream patterns
(trapezoidal, evolvable, and capricious) and imbalance conditions
demonstrated superior adaptability, particularly under concept drift.
Extending this, You et al. [31] proposed Online Learning for Data
Streams with Incomplete Features and Labels (OLIFL), a framework
designed to handle data streams with simultaneous feature and label
incompleteness. OLIFL dynamically maintains a global informative
matrix and estimates label confidence to minimize the influence of
unlabeled samples, enabling accurate learning in volatile environments.

While significant progress has been made in addressing
imbalance learning, feature selection, and vanishing gradients, critical
challenges remain. Oversampling can still introduce noise, feature
selection in high-dimensional imbalanced settings is not consistently
optimal, and methods to prevent vanishing gradients can reduce
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efficiency or scalability. In response to these limitations, the proposed
framework leverages advanced oversampling techniques, ensemble-
based feature selection, and gradient-stabilizing architectures to deliver
high classification accuracy with improved efficiency and adaptability,
particularly on real-world healthcare datasets.

3. Proposed Methodology

Figure 1 depicts the end-to-end Big Data classification pipeline,
which consists of five sequential stages. First, the raw imbalanced
dataset is rebalanced using FADA-SMOTE, a method that computes
a fuzzy membership score for each minority instance and generates
synthetic samples adaptively, placing more samples in sparse regions
and fewer in dense regions to reduce noise and class overlap. Second,
the balanced data undergo feature selection with XGB-BHPO, where
XGB ranks features by importance and BHPO automatically tunes
parameters, removing redundant or noisy attributes and lowering
dimensionality. Third, before training the deep model, the COA
rescales weight updates dynamically to prevent vanishing gradients
and ensure stable convergence. Fourth, the processed features are fed
into the GAN-ELM classifier, in which the GAN component creates
realistic minority samples through adversarial training and the Extreme
Learning Machine trains rapidly using random input weights with a
closed-form solution for output weights. Finally, a Physics-Informed
Policy Gradient (PIPG) module adds domain-specific penalty terms
to the GAN’s reward function to enforce real-world constraints and
produce interpretable outputs. These stages—oversampling, feature
selection, gradient stabilization, classification, and interpretability—
work together in a unified framework to handle class imbalance, noisy
inputs, optimization challenges, and transparency.

3.1. Fuzzy Adaptive SMOTE

FADA-SMOTE is a new technique designed to address the
shortcomings of traditional SMOTE and its derivatives which use class
imbalance in large imbalanced datasets to their advantage. By linearly
interpolating between the minority instance examples, SMOTE creates
new samples; however, this approach has several drawbacks including
noise class overlap and computational inefficiency. Although they are
more sophisticated and (very) computationally expensive, techniques
like CP-SMOTE and IO-SMOTE can result in overfitting. They aim to
improve the quality of synthetic samples.

To address these issues, FADA-SMOTE combines MapReduce-
distributed processing, fuzzy logic, and dynamic control over sample
generation, making it scalable and accurate. To determine how salient

Figure 1
Block diagram of the Proposed GAN-ELM via Physics-Informed
Policy Gradient Network
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an instance is for oversampling, the process begins by computing a
fuzzy membership score for each minority instance ;. This weight is
quantified by the fuzzy membership function as an importance:

wz;) = HTld(K)

Here, d(z;, K) is the Euclidean distance from x; to its K-nearest
majority class neighbors; ff denotes the scaling parameter which adjusts
sensitivity; #(2:) defines if the sample is vital for oversampling, with
values closer to 1 indicating higher importance; and also, membership
threshold @ is set to filter out low-significance instances, reducing the
risk of introducing noise.

Once the high-significance instances are identified, FADA-
SMOTE employs an adaptive sample generation strategy. It is
determined using how many synthetic samples must be made for each
selected instance ;:

S(zi)) =a- xmaj

o p(xi)

Here, Nmaj and Ny refer to the number of majority and minority
instances, respectively, and « is a weight factor. In sparse regions, the
adaptive sample generation mechanism boosts synthetic generation
while preventing oversampling in dense minority regions.

A method of fuzzy-weighted interpolation is employed to
generate artificial samples. For every ;, a nearby minority instance Z;
is randomly selected and a new synthetic sample z,ew is created using
the process outlined below:

Tnew = T; + )\(.’L’] - :L‘,)

Here, z; refers to an arbitrarily elected fuzzy nearest minority
neighbor and A denotes a dynamic interpolation coefficient:

A= p(xi)- 6

Here, 0 is a value chosen at random from a uniform distribution
in the interval [0, 1].

This minimizes class overlap by ensuring synthetic samples that
stay inside clearly defined decision boundaries.

Also, FADA-SMOTE is integrated as a distributed execution
method into the MapReduce framework so that it could scale with large
datasets. Each minority instance determines the fuzzy memberships and
counts of the corresponding necessary synthetic samples after the dataset
has been partitioned during the Mapper phase. To create a balanced
dataset, several synthetic samples from each partition are combined
during the Reducer phase. Even when processing high-dimensional
large-scale data, the FADA-SMOTE-parallelized architecture retains
its effectiveness and performance.

3.2. Feature selection using ensemble learning

A hybrid feature selection approach based on XGB and BHPO
is proposed to enhance classification efficiency and mitigate overfitting
in high-dimensional, imbalanced data. The study introduces a novel
hybrid feature selection approach that combines XGB and BHPO to
address the problem of overfitting in high-dimensional imbalanced
data and improve classification efficiency. The three conventional filter
wrapper and embedded approaches all have drawbacks such as missing
feature interactions, being model dependent, and being computationally
inefficient. The suggested method makes use of XGB ensemble learning
which is reliably stable and BHPO due to its capacity for probabilistic
optimization in order to address these issues.
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3.2.1. XGB for feature selection

XGB is aregularized gradient-boosting framework that iteratively
assesses and prunes features according to three key metrics: Cover
(sample coverage), Weight (split frequency), and Gain (loss reduction).
In subsequent iterations, low-importance features are eliminated
minimizing dimensionality and redundancy while maintaining
predictive relevance.

3.2.2. Bayesian hyperparameter optimization for XGB

BHPO will be used to fine tune critical XGB hyperparameters
(learning rate depth and estimators) on the fly using Gaussian process—
based surrogate modeling. It continuously explores its surroundings to
find solutions that lead to model generalization and better fit test data
taking advantage of similarly promising points in order to find the ideal
configuration in the bounded space. The classification accuracy gain
and scalability in mass datasets using the XGB-BHPO framework were
made possible by a condensed and interpretable feature subset.

3.3. Classification using GAN-ELM

ELMs and GANSs are integrated into the Dynamic GAN-ELM
framework to address classification problems in Big Data settings
particularly for their use in high-dimensional noisy and imbalanced
dataset classification problems. This hybrid architecture as shown in
Figure 2 includes a discriminator (B) and a generator (C) as multichannel
signal inputs into the GAN assembly. Based on inverse dynamics, the
generator creates positive samples and the discriminator evaluates the
quality of both generated and real samples. A crucial enhancement to
this architecture superstructure is the use of a Physics-Informed Policy
which ensures the legal expansion of practically possible synthetic
information within constraints. The multilayer ELM classifier will use
these improved samples following GAN refinement of the data. ELMs
are a type of single-pass neural network in which the back propagation
iteration is eliminated by randomly initializing the input weights and
using Moore—Penrose pseudo-inversion to calculate the output weights
in a closed-form solution. With minimal loss of accuracy, this saves a
significant amount of time during the training session. Together, GAN-
based augmentation and ELM rapid learning enabled classification,
making it possible to handle noise redundancy and imbalanced data.

3.3.1. Generative Adversarial Network

GAN comprises of generator (C) and discriminator (B) networks
which are trained concurrently in an adversarial environment. The work
of the generator is to generate the samples from the data which resemble
the real data. On the other hand, the discriminator finds the difference
between the real and synthetic samples. The process of generating data
samples is explained in Figure 3 [32]. This training process can be
defined by a minimax optimization problem:

mén max Y(B,C) = Ay, [log B(t)]+
Avrlog(1 — B(C(s)))] 0

Figure 2
The architectural diagram of Dynamic GAN-ELM
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Here, the distribution of the training set is denoted as 7Tdata(t),
while 75 denotes distribution of noise. At equilibrium, the generator’s
distribution approximates the real data distribution 7, = T'qata making
the discriminator output B.(t) = 1/2, indicating indistinguishability
between real and fake data [32].

3.3.2. Integration with ELM for feature generation

The data generation is based on an ELM model. ELM uses a
self-adaptive multi-layer ELM model for relatively accurate classifiers.
The ELM is a machine learning model based on a multilayer perceptron
(MLP) architecture. The ELM does not rely on MLP as W and b are
initialized randomly using respective uniform random distributions.
Also, using a linear combination yields the prediction.

ELM-based data generation: In order to address the issue of
under-representation in our minority class, we will use new ELM
models dynamically with GANs to generate samples. The ELM
samples will be derived using randomly segmented portions of the
data fit with Set {(i,,w, )} ), providing fragments ¥ * [33]. Using the
Dynamic ELM model will use the samples to assess class imbalance in
the generated data.

LP :M_least/M_mos( (2)
a J J

num

class+

:lMﬁmost/MﬁclasﬁJ (3)
Generated features /¥, are obtained through

W=Dy, @

where D, is the output value from the hidden layer and y,. the output

weight matrix. The dynamic ELM can adaptively increase the number

of hidden nodes in the generator, while simultaneously determining the
structure of the output layer. Hidden layer I can be expressed as follows:

D, 1+1=[D,,1,] )

C’"h
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where 4 is a random variable representing a new hidden node output.
Optimization is aimed at minimizing expected cross-entropy:

mcm min Y(B,C) =Ay,__ ., [log B(W)]+

_ (6)
Ar.mllog (1-B(C(1)))]

Self-adaptive multilayer ELM modeling: The self-adaptive
multilayer ELM automatically tunes the number of hidden layers
and neurons to optimize model performance while balancing time
complexity and generalization. Too few nodes result in underfitting,
while too many increase computational overhead. The selection is
guided by the data distribution and imbalance ratio, enabling dynamic
reconfiguration during training [32]. The hidden layer size is computed
based on sample complexity and feature richness:

(N

S= function(n LP)

samples’ nfealures’
where LLP is the imbalance ratio. This configuration allows for adaptive
learning that supports the evolving complexity of input data.

3.4. Training of GAN-ELM through Physics-Informed
Policy Gradient

By using a PIPG within the GAN-ELM training framework,
we introduce a domain-aware reinforcement mechanism to assist
with the generative process. Unlike traditional adversarial learning
which minimizes statistical differences only, PIPG embeds domain-
based constraints as inductive biases in the reward function; therefore,
generated outputs are required not only to fool the discriminator but
to be consistent with the physics equations. This is important for any
generalization especially when data are scarce [34]. Beyond enforcing
physical consistency, PIPG also yields a constraint compliance profile
for each generated sample (and thus each classification) by reporting
the residual penalties associated with each rule. In medical imaging,
for example, these rules can encode tissue stiffness ranges or contrast
uptake kinetics; the model then explains its decisions in terms of which
rules were most strongly satisfied or violated. This traceability gives
clinicians actionable insights into the physical properties driving each
prediction, enhances trust by linking outputs to established domain
knowledge, and supports regulatory compliance by providing clear,
rule-based justifications.

The reward function M'(¢) is composed of two parts: the structural
incentive Pe. and the physical representation action § BC((‘), expressed as
follows:

M()=A[P ¢ (C (5, )] S5 ®)

B(p)

(C(5)0).[B.0],,)

where s, denotes the multichannel signal sequence. C_ will produce
unblased samples ([B, @] ) consistent with physical dynamlcs The
structural reward is deﬁned by

P ([B.0],)=exp™([B.0],,) )
where RJ(.) is a residual informing the Lagrange motion equation
RI([B,01,)=527,((©,0,+8©,.0,) (10)

+¢(0,)-Y,¥B k)

This enforces alignment to system dynamics with minimal data.
We sequentially obtain the policy gradient as follows:

SM(Q=LT0 S s 0P (V,|[B,6],)SSv,[B,6],,) (1)

The policy is then updated using the following:

¢—¢+po (o) (12)

where the learning rate is fEP [34].

3.5. COA for solving the vanishing gradient problem

The COA minimizes disappearing gradients and allows for
effective multi-objective optimization with little parameter tuning. The
advantages of the COA include having no control parameters needed,
strong global search, fast convergence, and good performance on high-
dimensional tasks.

Each coati represents a solution in the population and it is created
as follows:
= lby, + p(uby, — uby),n = q,w,..., M,
m=1,2,...,j

Un: n,m
o (13)

Here, p€[0,1] denotes an arbitrary number and /b and ub  refer
to the lower and upper bounds of the m-th variable, respectively. The
COA employs two distinct behaviors: exploration and exploitation [35].

3.5.1. Exploration phase

Half of the population waits below (local search), and the other
half climbs the tree (broad search). That for the climbing team is as
follows:

UQI ygin = Ynm +p- (Iguana +L‘yn,m)7 (14)
forn=1,2,. ,[MJ andm=1,2,...,j

where Iguana is the best-known position and LE{1,2} is a random
integer. That for the remaining coati is as follows:

IguanaT Iguana =y +p- (uby —1lby),m=1,2,....5, (15
UQI . _ Yn,m +p- Igua'na' —L- Yn. m) VvlguanaT<V"

t Yn,m +p ynm — IguanaT), else (16)
forn = %J J s Mandm=1,2,...,j

Updated positions are retained only if they improve the objective
function:

Q1 1,01
- _{Un V&<V, )

U,, else

Here, the new position calculated for n is Uan, U is the m“‘
dimension; the objective value function is represented as v ; the
random real number in the interval [0,1] is indicated as p; Iguana
denotes the iguana’s location within the search space, representing
the position of its finest member; Iguana_is its m™ dimension; Lis an
integer which is directly selected from the set {1,2}; the position of the
iguana on the ground generated randomly is represented as Iguana’; and
its dimension is Iguana? : the value of this objective function is Viguanal >
and the floor function is signified as || [35].
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3.5.2. Exploitation phase
This stage focuses on local refinement while simulating coati
behavior in avoiding predators. This defines a local search space.

ol = Lo yplocal = B p—19,.....N (18)
Each coati searches near its current position:
U,fp : yg%n (1—2p). (lbi,‘;cal + p. (ubiﬁcal — lbi‘,’fal)), (19)

n=12,....M, m=1,2,...,j

The new position is retained only if it yields better objective
values:

n =

Q2 ,Q2
{m,n <V, o)

U,, else

4. Experimental Setup

APIPG network combined with a GAN-ELM was used to classify
unbalanced Big Data using images from breast cancer histopathology.
Performance analysis was expanded to include ImageNet-LT and the
CelebA Facial Attribute Dataset. Every model was put into practice
in Python and compared with other approaches. A strong evaluation
scenario is provided by the dataset class imbalance. A summary of the
main features of the datasets used is provided in Table 1.

4.1. Hyperparameter settings

To maximize performance and guarantee stability during training,
the suggested hyperparameters were carefully chosen. Extensive testing
and validation on the dataset of Breast Cancer Histopathology images
led to the determination of these values. Table 2 provides specifics
about the selected hyperparameters and their values.

5. Results and Discussion

Key metrics like accuracy, precision, recall, specificity, F1-score,
MCC, AUC, and computational time are used to assess the suggested
GAN-ELM with a policy gradient network. Performance is evaluated
in comparison to the DCNN, RGAN-EL, RVGAN-TL, and Smart GAN
models. ImageNet-LT and CelebA are used for additional comparisons
after the initial assessment of Breast Cancer Histopathology images.
Findings demonstrate the model performance on unbalanced Big Data.

Figure 4 presents the 2D distribution of samples generated by
No-Sampling, SMOTE, I0-SMOTE, CP-SMOTE, and the Proposed
FADA-SMOTE on the Breast Cancer Histopathology dataset. Majority,
minority, and synthetic samples are marked as blue circles, red pluses,
and black snowflakes, respectively. While SMOTE-based methods
reduce imbalance, they often generate overlapping or excessive
synthetic points. FADA-SMOTE outperforms by adaptively generating
fewer, high-quality samples away from decision boundaries. As shown
in Table 3, FADA-SMOTE achieves the highest classification accuracy

Table 2
Hyperparameters of the XGB learning model

Method Parameter Optimal value
XGB No. of estimators 300
Learning rate 0.01
max depth 15
reg_lambda 2
objective function Binary-logistic
gamma 1
booster gbtree
reg alpha 1
GAN-ELM Generator time 1.1
Bot filter quantile 0.0001
Top filter quantile 0.99
Maximum depth 2
Maximum bin 100
Learning rate 0.001
Random state Yes
Estimators 100
Batch size 500
Patience 25
Amplification factor 0.7
Population size 30
Number of generators 50
Lower bounds (1,0,0)
Upper bounds (300,9,1)
COA Parameter free -

(99.81% training, 99.37% testing), improving generalization and
minimizing error propagation.

Figure 5 compares error convergence across four oversampling
techniques—No sampling, SMOTE, 10-SMOTE, and CP-SMOTE—
on the Breast Cancer Histopathology images dataset. All methods start
with high error due to imbalance, but FADA-SMOTE achieves the
lowest final error with smoother and faster convergence. While SMOTE
and IO-SMOTE offer moderate improvements, they suffer from
instability and sensitivity to class boundaries. CP-SMOTE performs
better, but FADA-SMOTE stands out by generating noise-resistant,
well-separated synthetic samples, leading to superior model learning
and error reduction.

After feature selection, classifiers such as SVM, LGBM, ETC,
FKNN, and the suggested XGB-BHPO are compared on the Breast
Cancer Histopathology images dataset in Table 4. Metrics like accuracy,
Fl-score, recall, specificity, MCC, and AUC distinguish XGB-BHPO
from the competition. Its combination of BHPO and XGB allows for

Table 1
Research gaps

Dataset Number of samples Classes Size Number of attributes Data availability
Breast Cancer Histopathology images 277,524 2 50 x 50 4 Publicly available
CelebA Facial Attribute Dataset 202,599 10,177 178 x 218 40 Publicly available
ImageNet-LT (Long-Tailed ImageNet) 115,846 1,000 Variable N/A Publicly available
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Figure 4
Distribution of two-dimensional discrete point models using oversampling techniques for the Breast Cancer Histopathology images data-
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Table 3
Classification accuracy results for four different oversampling
techniques in ELM with Breast Cancer Histopathology images

Figure 5

Comparison of oversampling approaches for error function with

Breast Cancer Histopathology images dataset

dataset -1
Accuracy Ll
Methods Models Values (%)
No sampling Training 99.36%
Test 98.64%
SMOTE Training 99.40%
Test 98.80%
10-SMOTE Training 99.50%
Test 99.00%
CP-SMOTE Training 99.60% -
Test 99.20% 0 200 400 600 800 1000
FADA-SMOTE Training 99.81% Number ofterations
None CP-Smote
Test 99.37% ——— Smote ——— FADA-Smote

—— 10-Smote
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Table 4
Performance analysis for feature selection with Breast Cancer
Histopathology images
Proposed
Classifiers SVM LGBM ETC FKNN XGB-BHPO
Accuracy 90.17 92.84 9473  96.38 99.89
F1-score 89.57 90.83  92.69  94.82 98.01
Recall 89.46 91.65 9448  95.38 97.75
Specificity 91.81 91.65 9345 96.23 97.74
MCC 0.8493  0.8675 0.8814 0.8951 0.9184
AUC 0.9651  0.9704 0.9786 0.9729 0.9961
Figure 6

Comparative result for the feature selection model with the Breast
Cancer Histopathology images dataset

Proposed |
XGB-BHPO

FKNN H

ETC 1

Models

LGBM -

SVM A

o 1 2 3 4 5 6 1 8
Number of selected features

Table S

Comparison of baseline models for feature selection approach
Reference Method Accuracy  Recall  Specificity
[36] LightGBM 86.59 81.7 90.66
[36] CatBoost 87.68 83.3 91.33
[37] IG+PCA 98.24 - -
[37] CFS-BA 99.81 - -
Ours Proposed 99.89 98.01 97.75

XGB-BHPO

efficient feature removal and ideal tuning. This improves robustness and
discrimination by class particularly for unbalanced data. For medical
diagnosis tasks, its high recall, specificity, MCC, and AUC attest to its
dependability.

The feature selection effectiveness of SVM, FKNN, ETC,
LGBM, and XGB-BHPO on the Breast Cancer Histopathology images
dataset is contrasted in Figure 6. The fact that XGB-BHPO chooses
the fewest features suggests that it is better at keeping only the most
important characteristics. More features are retained by LGBM and
SVM whereas FKNN and ETC exhibit a moderate reduction. For
high-dimensional medical data, the results demonstrate how well
XGB-BHPO reduces dimensionality while preserving classification
performance and scalability.

Feature selection models applied to images of breast cancer
histopathology are technically compared in Table 5. The suggested
XGB-BHPO achieves the best accuracy recall and specificity
surpassing baseline techniques. In contrast to CFS-BA and IG+PCA
which do not provide comprehensive metric reporting, XGB-BHPO
exhibits balanced and excellent performance. It provides better feature
selection and classification reliability than LightGBM and CatBoost
demonstrating its resilience for medical image analysis.

Figure 7 represents the classification outcome of the proposed
model regarding accuracy, precision, recall, and MCC of different ML
models or approaches. Five models are compared such as Proposed
GAN-ELM, Smart-GAN, RGAN-EL, RVGAN-TL, and DCNN.
Among the data balancing techniques, the proposed approach achieves
the highest accuracy, approaching 100%. Smart-GAN slightly lowers
accuracy than Proposed but is still very high. RGAN-EL has lower
accuracy than Proposed and Smart-GAN but is still above mid-range.
RVGAN-TL has accuracy around the mid-range and DCNN has very
low accuracy among all listed models. The proposed approach shows
the promising results in accuracy, recall, and MCC.

A comparison of time complexity across models for unbalanced
Big Data is shown in Figure 8. Large-scale data processing benefits
greatly from the suggested model’s exceptional computational
efficiency as input size grows. On the other hand, because they generate
a lot of synthetic data, models like DCNN, Smart-GAN, RGAN-EL,
and RVGAN-EL exhibit a much higher time complexity. The suggested
method is perfect for real-time and resource-constrained situations
since it strikes a balance between speed and performance.

Model space complexity for imbalanced Big Data classification
is compared in Figure 9. For large datasets with limited storage, the
suggested model is the most space-efficient option. On the other hand,
because of their deep architectures and artificial data generation,
RGAN-EL, RVGAN-TL, and DCNN demand more memory. The
suggested method has little storage overhead and provides a scalable
solution.

Table 6 provides a statistical comparison of classification
methods based upon standard deviation, 95% confidence intervals (CI),
and p-values. The proposed GAN-ELM has the highest classification
accuracy (98.43%) and has the lowest variance (£0.15). This suggests
that GAN-ELM has stable performance. The 95% CI (98.28-98.58) is
both narrow and higher than other classification methods. All p-values
are <0.05 suggesting statistically significant improvements (with
respect to classification accuracy) over existing methods. The results
tabulated here suggest that GAN-ELM is robust, reliable, or both.

The computational time of several optimization algorithms for
solving the vanishing gradient problem is contrasted in Table 7. The
suggested COA demonstrates superior efficiency in sustaining gradient
flow by achieving the fastest convergence. With slower convergence,
WOA, ACO, and ABC are less appropriate for deep networks that are
susceptible to vanishing gradients whereas PSO and GWO likewise
demonstrate strong performance.

Table 8 offers a complete modular ablation study explicitly
examining the individual contributions of each key component of the
proposed GAN-ELM model. The findings emphasize the sequential
increases in classification performance gained by stacking sophisticated
modules like FADA-SMOTE for generating synthetic samples, XGB-
BHPO for selecting optimal features, COA for resolving gradient
vanishing in deep layers, and PIPG for implementing domain-specific
constraints via policy-guided learning. Every module makes the
model more robust, improves generalizability, and increases accuracy
in dealing with class imbalance. The combined configuration that
incorporates all modules has the maximum performance, illustrating
the synergistic contribution of the entire architecture.
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Figure 7
Classification outcome of the proposed model with the Breast Cancer Histopathology images dataset
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Comparison of time complexity analysis

1000-

8001
Z

3 600
o
£
S
Q

g 4004
=

200+

0 . . : - !
0 200 400 600 800 1000
Input size
Proposed RVGAN-TL
Smart-GAN ~——— DCNN
——— RGAN-EL

In Table 9, the proposed GAN-ELM model is compared with
other peers using three unbalanced datasets: ImageNet-LT, CelebA, and
Breast Cancer Histopathology images. With regard to medical imaging
data, the classification performance of the model is outstanding with
high precision, recall, and F1-score, indicating successful identification
of both the majority and minority classes. The model demonstrates
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good generalization ability on the CelebA dataset; however, ImageNet-
LT performers are slightly lower, reflecting the challenges of long-tailed
distributions. In this sense, GAN-ELM proves to be highly adaptable and
efficient in tackling various issues of imbalanced image classification.
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Table 6
Statistical evaluation of classification performance

p-value (vs Proposed GAN-

Methods Accuracy (%) Std Dev (%) 95% Cl1 ELM)
nCOVnet [37] 88.00 +0.46 [87.52-88.48] <0.001
Mini-COVIDNet [38] 83.20 +0.33 [82.85-83.55] <0.001
Deep Neural Network [39] 95.81 +0.28 [95.50-96.12] 0.012
T-ResNet50+STGAN-+TTA [40] 98.23 +0.22 [98.01-98.45] 0.041
Proposed GAN-ELM (Ours) 98.43 +0.15 [98.28-98.58] —
6. Conclusion
Table 7
Comparison of computational time for different optimization This research introduces a scalable cllassiﬁcation strategy
algorithms that addresses the challenges of imbalanced Big Data, specifically
in the medical imaging field. The defined architecture incorporates
Methods Computational time(s) several sophisticated elements which include FADA-SMOTE for
ABC 167.3 oversampling, XGB-BHPO for feature selection, COA to mitigate the
ACO 146.2 vanishing gradient problem, and a hybrid GAN-ELM classifier for
enhanced learning. Moreover, the addition of a Physics-Informed Policy
WOA 118.8 Gradient Network greatly improves the explicability of the system
GWO 109.6 while ensuring adherence to domain-specific constraints. Testing on
PSO 97.05 the Breast Cancer Histopathology images datasets verifies that FADA-
SMOTE not only increases the informativeness of synthetic samples
Proposed COA 7641 but also reduces redundancy compared with other oversampling
techniques. XGB-BHPO achieved best results among all classical and
ensemble feature selection methods by being the most selective and
Table 8 discriminative. The COA-optimized GAN-ELM classification module
Ablation study for the proposed model also provided better accuracy, recall, and robustness than the baseline
classifiers which demonstrates the effectiveness of the proposed
Acc(l'lracy system. The results obtained validated the framework’s efficacy using
Method (%) the Breast Cancer Histopathology images datasets where the system
CWGAN 91.80 achieved 98.43% accuracy, the highest reported to date, which is a
IT-GAN 94.20 considerable improvement over conventional methods. This was due to
STGAN 96.60 an integration of advanced oversampling techniques, optimized feature
' selection, and robust classification methods. Further research will focus
GAN-ELM (Baseline only) 96.90 on the responsive adjustment to data shifts, decentralized data through
GAN-ELM + FADA-SMOTE 97.40 federated learning, and integration of multi-modal medical datasets for
GAN-ELM + FADA-SMOTE + XGB-BHPO 97 85 enhanced classification generalizability.
GAN-ELM + FADA-SMOTE + XGB-BHPO + COA 98.10 Ethical Statement
GAN-ELM + FADA-SMOTE + XGB-BHPO + PIPG ~ 98.15 , , S ,
This study does not contain any studies with human or animal
Proposed GAN-ELM (all modules) 98.43

Table 9

Comparison of performance metrics with different datasets using
the proposed GAN-ELM

F1-
Dataset Accuracy Precision Recall Score
Breast Cancer 98.43 98.01 98.10 97
Histopathology images
(ours)
CelebA Facial Attribute 97.36 97.21 97.6 96.42
Dataset
ImageNet-LT (Long- 96.28 96.86 96.1 96
Tailed ImageNet)
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