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Abstract: Autonomous driving technology is advancing quickly. Full self-driving systems aim to navigate safely in complex and busy traffic 
conditions. A key challenge for these systems is predicting how nearby vehicles will move. Accurate trajectory prediction helps the vehicle 
make better decisions. It improves motion planning and reduces the risk of collisions. This study introduces a deep learning model that improves 
trajectory forecasting. The model uses convolutional neural networks (CNNs) to learn spatial features from the traffic scene. It also uses long 
short-term memory (LSTM) networks to understand how vehicle movement changes over time. Together, these methods help the system predict 
future paths more effectively. The model was tested in various real-world traffic scenarios. It performed well across different conditions and showed 
strong accuracy in its predictions. These results show that combining CNN and LSTM networks can help autonomous vehicles better understand 
their surroundings. This approach supports safer and smarter decision-making on the road.
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1. Introduction
Recent years have witnessed transformative advancements in AI 

and full self-driving (FSD) systems, particularly in the transportation 
sector [1, 2]. Modern FSD technology empowers vehicles to perceive 
their environment, make critical decisions autonomously, and navigate 
complex real-world scenarios with minimal human intervention. 
Breakthroughs in computer vision, reinforcement learning, and deep 
learning have significantly enhanced these systems’ capabilities, 
enabling safer operation in dynamic conditions [3, 4].

However, deploying autonomous systems in real-world 
environments presents numerous challenges. Among these, trajectory 
prediction emerges as a pivotal capability—the system’s ability to 
anticipate future movements of surrounding vehicles, pedestrians, 
cyclists, and other agents [5, 6]. This function is indispensable for safe 
navigation, directly affecting collision avoidance, smooth interaction 
with road users, and precise maneuver execution. Beyond safety, 
accurate trajectory prediction improves traffic flow, reduces energy 
consumption, and facilitates cooperative behaviors among autonomous 
systems [7]. Its applications span self-driving cars, service robots in 
crowded spaces, and intelligent surveillance, making robust real-time 
prediction crucial across domains [8].

To address this challenge, researchers have developed diverse 
modeling approaches. Although traditional physics-based and rule-
driven models offer interpretability, they often fail to capture the 
complexity of human behaviors, which are inherently nonlinear and 
socially influenced. In contrast, data-driven deep learning methods—
including convolutional neural networks (CNNs), RNNs, long 
short-term memory (LSTM), and Transformer-based architectures—
demonstrate superior ability to learn intricate motion patterns directly 
from data. These models adapt effectively to varying contexts, delivering 
enhanced predictive performance in highly dynamic environments.

Despite their advancements, current trajectory prediction 
models still face critical limitations. Real-world driving scenarios 
are inherently unpredictable, demanding systems that can generalize 
across diverse environments and reason effectively under uncertainty. 
Accurate forecasting relies not only on historical motion patterns but 
also on contextual understanding—including road semantics, traffic 
regulations, and the inferred intentions of surrounding agents. To 
address these challenges, recent research has focused on integrating 
spatio-temporal modeling with attention mechanisms and multimodal 
data fusion, enhancing models’ contextual awareness. These hybrid 
approaches represent a crucial evolution toward more robust and 
scalable autonomous navigation systems capable of handling real-
world complexity.

This paper introduces a light but expressive deep learning design 
to address some of the critical limitations of the existing trajectory 
prediction models for autonomous vehicles. Although previous work 
has attempted CNN–LSTM hybrids, the model presented here develops 
specific architectural novelties that enhance both predictive performance 
and real-time feasibility. In particular, a two-stage approach is taken, 
wherein 1D CNNs are employed to learn local spatial motion features 
from temporal input sequences, followed by stacked LSTM layers 
that capture temporal relationships. One novelty is the application of 
axis-specific linear decoders for both X and Y coordinates, allowing 
the model to learn directionally unique motion behaviors, a highly 
applicable property in dynamic urban scenarios where lateral and 
longitudinal movements have disparate trends.

In addition, uncertainty-aware evaluation through the application 
of Brier scores and common trajectory metrics, including average 
displacement error (ADE), final displacement error (FDE), and 
miss rate (MR), was employed to provide a more safety-focused 
evaluation of model performance. Implementation was developed 
based on NuScenes data, utilizing real-world signals such as velocity, 
acceleration, and heading to enrich inputs. A well-crafted preprocessing 
pipeline alleviates the effects of noise and outlier artifacts typical in 
dynamic traffic data. As opposed to computationally costly Transformer-
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based or heavy networks with attention, the design is edge-optimized, 
balancing performance and efficiency most ideally suited for real-time 
autonomous driving scenarios where low-latency inference is crucial.

2. Literature Review
Over the past few years, there has been a significant advancement 

in the field of autonomous systems such as advanced decision-making 
and perception that help in navigating complex environments safely 
and efficiently. However, one of their main challenges lies in generating 
trajectories that are optimal in terms of safety, length of path, and time 
taken and are adaptable to the dynamically changing environment, 
which can have moving obstacles, varying traffic conditions, and 
unpredictable human behavior. Traditional approaches [9] rely on 
preplanned trajectories, which is effective only in static environments 
and is inefficient for complex real-world scenarios. Thus, there is a need 
for dynamic, sequential models that can adapt to changing conditions. 
Karaman et al. introduced PRM* and RRT*, ensuring asymptotic 
optimality in path planning [10]. 

Reda et al. [11] categorized traditional trajectory planning 
techniques into four types, namely, graph, gradient, sampling, and 
optimization-based methods. Methods based on graphs use graph 
theory and algorithms such as Dijkstra’s and A* search to find the 
shortest possible path in the graphical representation depicting the 
vehicle’s environment [12]. Some advanced graph-based methods use 
bio-inspired algorithms such as the improved seagull optimization 
algorithm for high-quality path computation [13]. However, graph-
based methods fail to perform well in computationally intensive 
scenarios when the graph density increases.

Rapidly exploring random trees (RRT) and probabilistic roadmaps 
(PRM) are examples of sampling methods. These are effective for high-
dimensional spaces and generate feasible paths. However, they rely on 
static environments [14]. Gradient-based methods use techniques such 
as gradient descent and optimization-based methods use techniques 
such as model predictive control (MPC) to calculate the trajectory 
based on a cost function. These methods are computationally intensive 
and do not adapt quickly to a dynamic environment [15]. The limitation 
of preplanned paths in dynamic environments, as mentioned by 
Machavaram [16], is largely due to obstacles, adverse traffic conditions, 
and unpredictability in other agent’s behaviors [17]. 

Some models such as time-optimal trajectory planning and 
tracking use a layered structure for control. This is usually used with 
an offline trajectory optimization module and an online NMPC module, 
which accurately tracks the trajectories in reference [18]. Zhao et al. 
[18] proposed a quintic polynomial-based method to generate smooth 
trajectories. These help in generating trajectories and tracking these 
trajectories in real-time but face challenges in adaptability.

These limitations highlight the need for dynamic, sequential-
based models that can continuously update the trajectory based on real-
time sensor data and environmental feedback [19]. Deep reinforcement 
learning (DRL) [20] has introduced more data-driven and adaptive 
approaches for trajectory planning. It combines data-dependent 
applications with control systems to enhance trajectory planning and 
dynamic control [21]. DRL uses techniques such as a deep Q-network 
(DQN) to train an agent to engage the environment through a hit-and-
miss-based approach to learn optimal driving policies [22, 23]. 

DQN guides the agent to opt for an optimal strategy to act by 
observing the expected cumulative reward of state-action pairs. Other 
DRL-based methods such as proximal policy optimization [24] aide 
decision-making by improving and optimizing the policy instead of 
approximating the value function using objective functions to ensure 
stability and policy improvements [25]. Hoel et al. demonstrated that 

DRL is used for decision-making tasks such as speed and lane changes 
through a DQN agent [26]. Beyond traditional DRL, game-theoretic 
approaches [27] have shown promise in UAV networks, optimizing 
trajectories through AoI minimization for latency-sensitive decisions in 
dynamic environments.

Al-Kamil et al. suggested motion capture technology to enhance 
real-time data for optimal path planning and control in mobile robot 
systems. This technology uses sensors such as camera and LiDAR 
to measure and monitor the position and movement of the robot. 
However, it falters when the robot is put in a situation with multiple 
vehicles [28]. 

Heuristic algorithms such as genetic algorithms, particle 
swarm optimization, gray wolf algorithm, ant colony algorithm, and 
differential evolution algorithm have also been studied for path planning 
optimization but are not very effective for dynamic environments. Such 
methods provide suboptimal solutions but lack adaptability, and they 
are complex computationally [29, 30].

Large language models (LLMs) have enhanced the trajectory 
prediction capabilities for autonomous systems [31]. Various traditional 
ML and DL models such as decision trees, random forest, SVMs, 
RNNs, CNNs, and LSTMs are being used to learn the behaviors and 
predict traffic patterns for better path planning [32, 33].

Li et al. [34] introduced a large language driving assistant to 
interpret and adapt to local traffic rules and driving policies. It uses a 
pretrained LLM, GPT-4V, to generate an executable policy by extracting 
relevant traffic rules using a traffic rule extractor. Other methods used 
by the models to learn traffic rules are in the form of metric temporal 
logic, linear temporal logic, and signal temporal logic. Although they 
are good for training the model, these methods face scalability issues 
when trained on a vast number of rules.

The research for the application of vision-language models 
(VLMs) alongside LLMs for enhanced scene understanding and path 
planning in autonomous systems has been expanded recently. As 
demonstrated by Tian et al. [35], their DriveVLM framework utilizes 
a chain-of-thought reasoning process to systematically analyze critical 
scene elements and generate hierarchical plans through comprehensive 
scene description and analysis. Complementing this work, Pan et al. 
[36] developed a vision-language-planning module that incorporates 
bird’s eye view feature maps to strengthen semantic representation and 
reasoning, specifically designed to align path planning with both driving 
objectives and real-time vehicle status. For security-critical scenarios, 
RSSI-aware RL methods [37] demonstrate how autonomous systems 
can dynamically adapt trajectories to avoid malicious interference, 
highlighting the importance of real-time environmental sensing.

For trajectory prediction, LSTM networks remain particularly 
effective due to their established performance in processing sequential 
data. Sun et al. [38] proposed an integrated LSTM–MPC approach, 
where LSTM networks predict surrounding vehicle trajectories 
that subsequently inform the MPC’s path planning decisions for 
the ego vehicle. However, current implementations of LLM-based 
models exhibit several limitations in practical applications, including 
suboptimal real-time performance, limited adaptability compared to 
conventional algorithms, excessive dependence on heuristic functions, 
and significant scalability constraints.

Although traditional trajectory planning methods have formed 
the foundation of autonomous navigation systems, their effectiveness 
diminishes in highly dynamic environments. This limitation emphasizes 
the critical need for more adaptable, sequence-based modeling 
approaches. The integration of heuristic methods with modern deep 
learning techniques presents a promising direction for developing 
robust trajectory planning systems capable of handling the complexities 
of real-world driving scenarios.
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3. Working Methodology

3.1. Dataset preprocessing
NuScenes is an image-based large-scale autonomous driving 

benchmark dataset that supports research in perception and planning for 
autonomous cars [39]. It provides multimodal sensor data for over 1000 
diverse scenes collected in urban environments in Boston and Singapore. 
Each scene spans 20 s and contains multiple annotated objects, including 
vehicles, pedestrians, and cyclists. This work is primarily focused on 
vehicle trajectory prediction, extracting approximately 11,000 vehicle 
trajectories. Each trajectory was segmented into overlapping windows 
comprising 8 historical frames (past 0.8 s) and 12 future prediction 
steps (next 1.2 s). After preprocessing and filtering out inconsistent or 
noisy samples using statistical techniques such as Z-score-based outlier 
detection, the dataset was split into training (70%), validation (15%), and 
testing (15%) subsets, ensuring a representative distribution of different 
scene types such as intersections, straight roads, and turning maneuvers. 
The dataset chosen for this study consists of multidimensional time-
series data representing object trajectories. Each trajectory comprises 
spatial coordinates (x, y), along with motion-related features such as 
speed, acceleration, and heading rate. The reason for choosing this over 
other datasets is that NuScenes provides a more accurate localization 
that cannot be found in similar FSD datasets such as KITTI [40]. Such 
localization systems are vulnerable to GPS outages. More importantly, 
to facilitate this study, the NuScenes dataset provides raw CAN bus 
data such as, velocities, accelerations, torque, steering angles, wheel 
speeds.

All annotations of the dataset can be represented as a schema 
displayed in Figure 1. Out of all of these, only some parts of the 
dataset are required. The focus is on the translation, instance_token, 
and attribute_tokens. The translation attribute will give bounding box 
locations in meters as center_x, center_y, and center_z. The instance_
token and the attribute_token help in fetching the velocity, acceleration, 
and heading.

The dataset extraction flowchart is shown in Figure 2. Given the 
temporal nature of the data, they are structured in sequential windows, 
allowing the model to identify spatio-temporal relations effectively. 
The data were thoroughly cleaned and formatted to accommodate 
sudden jumps, or unrealistic movements (e.g., instantaneous large 
displacements) were detected using statistical thresholding (e.g., 
Z-score method) and removed to avoid skewing the model’s learning.

To prepare the trajectory data for training, a sliding window 
mechanism was applied to have overlapped time windows. This assists 
with the extraction of temporal dependencies [41].

3.2. Model architecture
A fundamental challenge in deep learning involves balancing 

effective feature extraction with temporal sequence modeling. 
Although CNNs demonstrate exceptional capability in detecting local 
spatial patterns, they inherently lack mechanisms to capture long-term 
temporal dependencies [42–44]. Conversely, LSTM networks excel at 
modeling sequential relationships but are inefficient at learning spatial 
hierarchies [45]. To bridge this gap, researchers have proposed a CNN–
LSTM hybrid architecture that synergistically combines convolutional 
layers for spatial feature extraction with LSTM networks for temporal 
sequence learning [46].

As shown in Figure 3, the proposed architecture follows a 
two-stage spatio-temporal framework designed to balance predictive 
accuracy with real-time performance. The first stage involves spatial 
feature extraction using two 1D convolutional (Conv1D) layers, each 
followed by ReLU activation and max pooling. The first Conv1D layer 
uses 64 filters with a kernel size of 3, and the second expands to 128 
filters to capture higher-level spatial abstractions. These layers operate 
on input sequences comprising motion features such as velocity, 
acceleration, and heading, derived from the NuScenes CAN bus data. 
Max pooling serves to reduce noise and dimensionality, making the 
subsequent learning more efficient. The resulting feature maps are 
flattened and passed into the temporal modeling stage.

The second stage uses a stacked LSTM architecture with two 
layers: the first with 128 hidden units and the second with 64 units. This 
setup enables the model to learn sequential dependencies and encode 
temporal patterns in vehicle behavior. To improve generalization, 
dropout regularization (p = 0.3) is applied between layers. The final 
LSTM output is fed into two parallel fully connected layers: one for the 
X-coordinate and one for the Y-coordinate prediction. This axis-specific 
decoding allows for more precise modeling of lateral and longitudinal 
motion—an essential feature for trajectory prediction in dynamic 
urban environments. The model is trained using mean squared error 
(MSE) loss and optimized with the Adam optimizer. In addition, model 
confidence is evaluated using Brier scores, offering a safety-aware 
perspective often missing in traditional CNN–LSTM approaches. This 
lightweight yet effective architecture is well suited for real-time FSD 
systems that operate under latency and computational constraints.

3.3. Training, testing, and validation
Training of the CNN–LSTM model involved the MSE as the loss 

function, with optimization carried out using the Adam optimizer. It 
was trained with a learning rate starting at 0.001. To prevent overfitting 
and adapt the learning process dynamically, a ReduceLROnPlateau 
learning rate scheduler was used in the training process, reducing the 
learning rate by a factor of 0.5 when the validation loss plateaued for 
two consecutive epochs. 

The hybrid model was trained for 12 epochs, processing sequential 
input windows of 8-time steps (SEQ_LENGTH) and predicting future 
values over a 12-step horizon (PREDICTED_LENGTH). The training 
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NuScenes dataset schema
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Dataset extraction flow
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process iteratively minimized the loss using batch-wise optimization, 
where performance metrics such as training loss and validation loss 
were logged after each epoch.

To evaluate the model’s generalization capabilities, 
comprehensive testing using a separate validation dataset containing 
previously unseen trajectories was conducted. The evaluation process 
involved preprocessing input sequences through min–max scaling 
before feeding them to our trained CNN–LSTM model. The model’s 
predictions were then converted back to their original scale using 
inverse transformation, enabling accurate comparison with ground-
truth trajectory data. For qualitative assessment, a visualization method 
that plots the model’s predicted trajectories alongside actual paths was 
implemented. This provided clear insight into its ability to capture and 
replicate real-world motion patterns. This approach allows the thorough 
examination of the model’s performance in learning and predicting 
complex movement dynamics.

4. Result Analysis

4.1. Metrics
Assessing trajectory prediction models requires comprehensive 

metrics that quantify accuracy, reliability, and predictive uncertainty 
[47]. In addition, to evaluate the acceptability and diversity of the 
trajectories, the following measures are necessary as they define 
compliance at many levels, including road and kinematic compliancy 
[48–52].

MR: Calculates the percentage of test cases where none of the 
predicted trajectories fall within a 2-m threshold of the actual final 
position. This reveals how often the model completely misses the target 
destination.

Minimum FDE (minFDE): Measures the straight-line distance 
(L2 norm) between the ground truth endpoint and the closest predicted 
endpoint among all forecasted trajectories. This identifies the model’s 
best-case positional accuracy.

Minimum ADE (minADE): The minADE computes the mean 
L2 distance between the points in ground truth and the overall best 
trajectory (i.e., the one with the lowest endpoint error) across all time 
steps.

Brier Scores for Minimum FDE (brier-minFDE): The brier-
minFDE is a variation of minFDE, incorporating uncertainty by 
penalizing low-probability predictions.

Brier Scores for Minimum ADE (brier-minADE): The brier-
minADE extends minADE by incorporating uncertainty penalties 
similar to brier-minFDE [53].

The chosen evaluation metrics provide a balanced assessment of 
both spatial accuracy and predictive reliability. Metrics such as minADE 
and minFDE capture the model’s ability to produce accurate short- and 
long-term trajectory estimates, and MR highlights failure cases that are 
critical in safety-sensitive applications such as autonomous driving. 

To go beyond deterministic accuracy, Brier scores were incorporated 
to evaluate the model’s confidence calibration, offering a probabilistic 
lens on performance. This combination ensures that the evaluation 
reflects not only how close predictions are to ground truth but also how 
trustworthy and robust they are under uncertainty.

4.2. Results
To visualize the results of the model, the prediction results are 

extracted and mapped as x–y coordinates on a plane. This approach 
allows us to compare the predicted trajectory against the actual 
movement of the vehicle, providing insights into the model’s accuracy 
and effectiveness. In the visualization, different colored paths represent 
distinct aspects of the vehicle’s trajectory:

Green Path: Represents the ego vehicle’s historical movement 
before prediction begins. This provides essential context for both the 
model’s input and the viewer’s interpretation.

Blue Path: Shows the actual future trajectory (ground truth) after 
the prediction point, serving as the benchmark to evaluate the model’s 
accuracy against the predicted path.

Red Path: Displays the model’s predicted trajectory, forecasting 
the next 12 positional points based on learned motion patterns and 
behavioral cues.

As illustrated in Figure 4, the model’s predicted trajectory 
(red path) can be directly compared against the ground truth (blue 
path) to evaluate its performance. An effective model will generate 
predictions that closely follow the actual trajectory, demonstrating 
its ability to minimize positional deviation and accurately capture 
the vehicle’s natural movement patterns. Significant divergences 
between the paths, however, may reveal specific challenges, such 
as difficulty predicting sharp turns, abrupt stops, or responses to 
environmental factors not adequately represented in the training data. 
This comparative visualization provides valuable insights into the 
model’s strengths and limitations. The visual feedback becomes an 
essential tool for iteratively refining both the model’s design and its 
training methodology.

From the results shown in Table 1 and Table 2, it can be inferred 
that the CNN + LSTM with LinearX, LinearY model outperforms all 
other models across all metrics. This suggests that combining CNN and 
LSTM is effective in capturing both spatial and temporal dependencies. 
Using separate LinearX and LinearY layers further improves 
performance, likely because it allows for better independent modeling 
of x and y coordinates.

The LSTM-only models perform worse, suggesting that LSTMs 
alone are not as effective in learning spatial features. Their predictions 
are less accurate (higher ADE and FDE) and more uncertain (higher 
Brier scores). Overall, the CNN layer does a good job of capturing 
spatial patterns, which helps with better feature extraction. In addition, 
using separate linear layers for X and Y seems to help in modeling their 
trajectories more independently and accurately.
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To isolate the impact of each architectural component, an ablation 
study across four model configurations was conducted. 

1) LSTM (LinearXY) – Baseline with shared output layer.
2) LSTM (LinearX, LinearY) – Axis-specific outputs.
3) CNN + LSTM (LinearXY) – Hybrid model with shared output.
4) CNN + LSTM (LinearX, LinearY) – Proposed full model.

This ablation analysis highlights the distinct advantages offered 
by each architectural enhancement in our proposed model. The 
introduction of CNN layers significantly improves the model’s ability 
to extract localized spatial features from vehicle-centric data, such as 
sudden positional shifts, lane changes, or turning patterns. Traditional 

LSTM-only models, although competent at modeling temporal 
sequences, are inherently limited in capturing spatial nuances across 
consecutive frames. By applying 1D convolutions in the initial stages, 
our model learns localized motion cues that reflect not only vehicle 
velocity and heading but also trajectory curvature and relative motion 
trends. These features provide a more robust representation to the 
LSTM layers, enabling them to learn temporal dynamics from enriched 
spatial embeddings.

Moreover, decoupling the output layers into separate linear 
projections for the X- and Y-axes offers additional flexibility in 
capturing motion trajectories with directional specificity. This design 
choice acknowledges that horizontal and vertical displacements in a 
2D driving plane may follow different dynamics—for example, lateral 
maneuvers such as lane shifts often involve sharp, brief changes, 
whereas longitudinal motion such as acceleration or deceleration is 
smoother and more sustained. By learning independent mappings for 
each axis, the model avoids blending these distinct behaviors into a 
shared latent space, thereby reducing prediction variance and improving 
final displacement accuracy. The resulting CNN + LSTM configuration 
with split outputs consistently outperformed all other variants across 
both accuracy and uncertainty metrics, validating our hypothesis that 
architectural disentanglement enhances the model’s spatio-temporal 
learning capacity in trajectory forecasting tasks.

In addition to evaluating predictive performance, a benchmarking 
analysis to assess the real-time viability of the proposed model was 
conducted. The full CNN–LSTM architecture was tested on an NVIDIA 
RTX 3060 GPU, and the average inference time per input sequence 
was measured to be approximately 8.3 ms. This low latency indicates 
that the model is suitable for onboard edge deployment in FSD systems 
where rapid decision-making is critical. The model’s lightweight 
structure, which avoids attention mechanisms and transformer layers, 
contributes significantly to this efficiency. Further performance gains 
can be achieved through model optimization techniques such as 
quantization, which reduces numerical precision to speed up inference, 
and pruning, which removes redundant weights to lower computational 
overhead. These enhancements are particularly useful for deployment 
on embedded systems or edge devices with constrained resources, 
without significantly compromising predictive accuracy.

5. Conclusion
This study proposed a lightweight CNN–LSTM hybrid model for 

short-term trajectory prediction in FSD systems, addressing the need 
for real-time, accurate path forecasting in complex urban environments. 
By integrating 1D convolutional layers for spatial feature extraction 
with stacked LSTM layers for temporal modeling, the architecture 
effectively learns dynamic motion patterns from vehicle-centric sensor 
data. Furthermore, the use of separate linear output layers for X and Y 
coordinates improves the granularity of the predictions, enabling more 
accurate modeling of maneuver variations such as sharp turns or lane 
changes.
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 Figure 4
Mapping the prediction on a plane revealing the accuracy of the 

model and potential for improvement

Metrics
CNN + LSTM 

(LinearXY)
CNN + LSTM 

(LinearX, LinearY)
avg_ade 1.934 1.097
avg_fde 3.132 2.060
avg_mr 1.845 0.765
avg_brier_minADE 1.659 1.077
avg_brier_minFDE 2.617 2.051

Table 2
Metrics results of the CNN + LSTM model

Metrics LSTM (LinearXY)
LSTM (LinearX, 

LinearY)
avg_ade 3.221 3.210
avg_fde 3.985 3.772
avg_mr 2.766 2.246
avg_brier_minADE 3.294 3.197
avg_brier_minFDE 3.873 3.687

Table 1
Metrics results of the LSTM model 
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Through comprehensive evaluation on the NuScenes dataset, our 
model demonstrated competitive performance across multiple metrics, 
including ADE, FDE, and Brier scores. An ablation study confirmed 
the individual benefits of the CNN and LSTM components, and the 
contribution of axis-specific decoding. Importantly, the architecture 
achieves these results while maintaining low computational overhead—
making it a viable candidate for deployment on resource-constrained 
autonomous platforms.

However, the model currently focuses solely on vehicle 
kinematics and does not incorporate higher-level contextual cues such 
as road semantics, traffic rules, or interactions with pedestrians and 
other agents [54, 55]. In addition, the evaluation focuses on average-
case performance and lacks a detailed assessment of edge-case or 
safety-critical scenarios—areas that are vital for real-world autonomous 
deployment. The model also does not estimate predictive uncertainty 
beyond Brier scores, which may limit its utility in high-risk decision-
making contexts.

To address these gaps, future research will explore the integration 
of multimodal data sources, including LiDAR, radar, and high-
definition map, to improve scene understanding [56, 57]. Future work 
includes incorporating intent prediction and interaction modeling, 
potentially through the use of attention mechanisms or graph-based 
relational encoders. Further, techniques such as Bayesian deep learning 
and Monte Carlo dropout could be employed to quantify prediction 
uncertainty. Real-time deployment considerations such as quantization, 
model pruning, and hardware-specific optimization will be investigated 
to enhance inference speed without compromising safety [58].

In conclusion, although our CNN–LSTM approach may be 
seen as an incremental advancement, its modular design, axis-specific 
decoding, and real-time readiness position it as a strong baseline 
for practical trajectory prediction in FSD applications. By building 
upon this foundation with richer context modeling and safety-aware 
evaluation, the aim is to push toward more robust and trustworthy 
autonomous navigation systems.
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