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Abstract: Road accidents are a significant global issue, claiming lives and cash in hand every year. The system introduces an adaptive model-
switching mechanism that selects the most suitable You Only Look Once (YOLO) model (v5, v8, or v11) based on system memory and weather
visibility, ensuring optimal detection with minimal computational load—a feature rarely addressed in existing accident detection research. To
alleviate this situation, this study envisages a near real-time accident detection and emergency response system, integrating computer vision and
geospatial technologies. The developed system tracks vehicle movement and assesses collision by applying advanced object detection models such
as YOLOvVS, YOLOvS, and YOLOvVI11 with dynamic tracking and speed estimation. The system computes spatial overlap using the Intersection
over Union (IoU) metric to localize vehicles accurately and recognize potential accidents while minimizing false-positive rates dramatically.
Geographic data from OpenStreetMap is used in emergency routing with the help of the Haversine formula to find the shortest and fastest route
to the nearest emergency services, allowing rapid notifications to hospitals and enforcement agencies. The developed framework includes a
severity analysis module that assesses the degree of accident impact based on vehicular deformation, collision dynamics, and possible injuries to
passengers, thus enabling emergency response prioritization based on the incident's urgency. An additional provision is made to incorporate an
automatic license plate recognition system that enhances vehicle identification, thereby speeding up the initiation of insurance claims and post-
accident administrative processes. The framework has undergone rigorous field trials under varying environmental conditions and remains robust
in its operation under such variations. Real-time alerts have an average latency of 2.1 s and cover a comprehensive report of the incident, including
location, vehicle IDs, severity, and medical assistance required. The experimental evaluation proved the system's detection accuracy of 94.6% and
precision of 92.8%, thus proving its reliability and effectiveness for implementation in real time.
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1. Introduction Advancements in object detection models, particularly those
based on the You Only Look Once (YOLO) framework, have
significantly improved the identification of small objects and potential
risks in complex surroundings. These models have been successfully
applied to the localization of objects within remote sensing imagery
and have been extended to real-time detection of obstacles and accident
scenarios in road environments [3]. The use of YOLOVS and Swin
Transformer architectures has shown greater accuracy in identifying
small objects under real-world conditions, which contributes to reducing
reaction times and preventing secondary accidents [4]. Recent progress
has also been made in multi-object tracking, where YOLOVS integrated
with improved DeepSORT has been applied to pedestrian tracking
with high accuracy and robustness [5]. Such approaches demonstrate
the capability of combining strong object detection backbones with
advanced tracking algorithms, offering valuable insights for continuous
monitoring of traffic participants in accident-prone environments. Real-
time detection of pedestrians under complex traffic conditions, using
deep learning models combined with multi-object tracking algorithms,
enhances both accident prevention measures and the ability to dispatch
emergency services efficiently [6].

Today's traffic management and emergency service frameworks
are increasingly dependent on accident detection and response systems.
The incorporation of cutting-edge technologies including deep
learning, the Internet of Things (IoT), and machine learning into these
systems has enhanced their ability to identify accidents more quickly
and precisely resulting in more efficient emergency response measures.
Traffic accidents continue to be a major cause of injuries and deaths
around the world, prompting interest in intelligent systems that are
capable of addressing these problems.

Deep learning is used in a current study to scan real time data
from different sensors for accident detection using convolutional neural
networks and related algorithms. Deep learning has been utilized for
such risk detection and hazard management, for example, in predicting
fire incidents on construction sites from input by sensors. By using
a dataset relating to road traffic environments, these techniques can
potentially be used for accident prediction and prevention [1]. Likewise,
vehicular communication systems based on movement are employed
to relay emergency messages, thus enhancing the effectiveness of the

currently established accident detection systems [2]. Combining deep learning, IoT, and sensor fusion in accident

detection systems really helps improve how quickly emergencies are
responded to, makes accident detection more accurate, and can finally
save lives. These technologies work hand-in-hand to give a real-time

*Corresponding author: Bharathi Mohan Gurusamy, Department of Computer
Science and Engineering, Amrita Vishwa Vidyapeetham-Chennai, India. Email:
g bharathimohan@ch.amrita.edu

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/
by/4.0/


https://doi.org/10.47852/bonviewJCCE52025908
https://orcid.org/0000-0002-8913-7411
https://orcid.org/0009-0009-4896-1269
https://orcid.org/0000-0003-1102-4887
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:g_bharathimohan%40ch.amrita.edu?subject=

Journal of Computational and Cognitive Engineering

Vol. 00 Iss. 00 2025

picture of traffic conditions, enabling faster detection and response
when something goes wrong. For example, deep learning models like
YOLO and its upgrades can identify objects accurately even in tricky
environments, while [oT devices gather raw data from cars, closed-
circuit television (CCTV) cameras, and road sensors in a systematic
way. When this data is combined through sensor fusion techniques,
it provides a detailed snapshot of what is happening on the roads, so
emergency services can be alerted immediately. Besides just spotting
accidents faster, these technologies also help improve what happens
afterward. For instance, including number plate recognition makes
it easier to file insurance claims quickly without wasting time. Plus,
adding weather data into the system ensures it still works well even in
tough conditions like fog or heavy rain. Looking ahead, if these systems
are further developed and integrated into broader smart city plans, we
could see smoother traffic flow and fewer accidents, saving people from
suffering and reducing costs. Overall, this tech movement points toward
safer roads and a more connected, sustainable transportation future.
The important contributions and novelty of this paper are:

1) Adaptive multi-model accident detection

A context-aware framework capable of dynamically switching
between YOLOvVS, YOLOVS, and YOLOvll depending on
environmental visibility, low-light conditions, and computational
resources, thereby ensuring reliable performance under diverse
operating scenarios.

2) Severity estimation using geometric deformation

A novel method that employs bounding box overlap and
deformation ratios based on Intersection over Union (IoU) to quantify
collision severity, enabling prioritization of emergency response
according to impact intensity.

3) Integration with geospatial and emergency services

Real-time accident localization through Global Positioning
System (GPS) and OpenStreetMap data combined with automated
alert generation to nearby hospitals, police stations, and emergency
responders, significantly reducing notification latency.

4) Automation of post-accident processes

Incorporation of license plate recognition for rapid vehicle
identification, automated initiation of insurance claims, and provision
for organ and blood donation procedures in critical cases, thereby
extending impact beyond immediate detection.

5) Demonstrated robustness across environments

Comprehensive evaluation under adverse weather, low-light,
and limited visibility conditions (including low light) confirming
high detection accuracy, reduced false positives, and suitability for
deployment within intelligent transportation systems.

Road accident detection remains a demanding research problem
because existing approaches often rely on static deep learning
frameworks that fail to adapt under diverse environmental conditions
such as fog, heavy rain, or low illumination. These limitations lead to
inconsistent performance and increased false detections in real-world
deployments. Another unresolved challenge lies in severity estimation:
most prior studies focus on accident occurrence but lack accurate
quantification of impact intensity, which is essential for prioritizing
emergency response. Moreover, current systems are generally confined
to accident recognition alone, without incorporating automated
integration with emergency routing, medical response, and insurance
processing pipelines.

The motivation for this investigation stems from the need to
establish an accident detection system that is both adaptive and context-
aware. The proposed framework addresses the challenge of varying
visibility and computational constraints by dynamically switching
between different object detection models. In addition, it introduces a
severity estimation strategy based on bounding box deformation and

IoU, enabling a more reliable differentiation between minor and severe
collisions. By uniting detection, severity assessment, and real-time alert
generation within a single architecture, the study attempts to bridge
the gap between laboratory-level detection accuracy and large-scale
practical deployment in intelligent transportation systems.

2. Literature Review

Advancements in object detection technology have significantly
shaped the way we approach vehicle accident detection. A lot of
research has gone into making these systems more accurate and quicker
to respond—both super important for making them work better. One
hot area right now is figuring out how to detect multiple objects in busy,
complicated road scenes. Researchers are using deep learning tools like
YOLO to get real-time detection down pat. Specifically; a big focus
has been on helping models better spot small objects like cars and
pedestrians especially in tricky conditions [7]. Some recent studies have
even introduced new loss functions, like Corner-Point and Foreground-
Area IoU loss, to help improve accuracy when objects are hidden or
hard to see. All these tweaks help the models better predict where things
are in real traffic, which is key for catching accidents early.

At the same time, there have been some exciting new
developments in object detection, especially with utilizing transformers
as the main backbone. For example, adding Swin Transformers into
YOLOVS has really boosted how well it can pick up small objects in
satellite images—Ilike cars on highways, city streets, or tricky terrains
[8]. This is super helpful because objects come in all different sizes
and angles, which is especially important when you are trying to spot
accidents in real-time, where things can be at odd angles. Researchers
have not stopped there, though—they have worked on tweaking YOLO
models to make them better at spotting road hazards and traffic mishaps.
Some changes include rearranging parts of YOLOVS's backbone and
adjusting its loss functions, which helps the model run faster and be
more accurate when detecting stuff like road damage or other weird
road conditions [9]. These improvements are a big deal because they
help the system stay reliable, even when visibility is poor or weather
is bad. Plus, adding multi-object tracking with YOLO has made a real
difference, especially for tracking pedestrians and vehicles at the same
time. By enhancing versions of the DeepSORT algorithm, these systems
can follow lots of moving objects at once, like pedestrians and cars in
busy scenes. Using these tracking methods makes it easier for accident
detection systems to tell apart moving objects from stationary stuff,
making everything more dependable no matter the environment [10].

Admittedly, there have been improvements in tracking bounding
box regression more efficiently with regard to the life tracking of objects
across frames. Powerful IoU is one such method that makes a simple
yet efficient computation of loU, thus increasing the accuracy of object
localization without hefty service time. Enhanced object detection
frameworks have been increasingly refined to address challenges in
dynamic road environments, where accurate identification of vehicles,
pedestrians, and structural elements remains critical [11]. Recent
advances in disentangled representation learning have also demonstrated
the potential of model-driven and data-driven integration for anomaly
detection in complex scenarios. In addition, foundation models such as
Fleximo have recently shown promise in remote sensing by enabling
flexible adaptation across tasks and modalities, thereby improving
generalization in complex detection scenarios. This demonstrates the
growing relevance of multimodal and transferable architectures for
enhancing robustness in real-world accident detection pipelines [12].
These improvements thus tailor well to the needs of real-time accident
detection. Paradigm after paradigm finds continuous integration into
object identification systems, primarily aimed at improving the accuracy
and flexibility of accident detection models. For example, the work of
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Zhang et al. [13] presents an exploration into learning other metrics
apart from IoU to advance bounding box regression to improve mean
Average Precision (mAP) performance against classic non-maximum
suppression. These advancements enhance real-time tracking accuracy
while suppressing false alarms, thereby calling attention only to
incidents that really demand attention. There is further advancement in
underwater imaging and restoration research literature [ 14]. While these
are not for vehicular accident detection, methods such as CycleGAN
image restoration for this field can be leveraged for better accident
detection in challenging lighting conditions. Such methods improve the
noise-robustness of detection methods; they would be especially useful
in adverse visibility situations like fog and rain. In sonar-based object
detection, the work of Rathour [15] presents advanced sonar target
recognition frameworks that adapt boundary frame loss for better target
recognition. This framework will be beneficial particularly for real-time
object detection in case of obscured road traffic environments, where
objects may be partially hidden and occluded.

Emerging research areas have suggested using advanced models
that include YOLOvV8 and YOLOv11 for multi-view object detection
enhancement [16, 17]. Increased efficiency has also been exhibited in
identifying road blemishes and flexible randomness with conventional
methods' shortcomings. The evolution of the YOLO framework shall
continue generating improvements in the detection algorithm necessary
to be incorporated in all fields, such as road safety and environmental
awareness. In line with these advancements, other studies such as
Shepley et al. [18] explore advanced tracking algorithms that will be
composed of detection algorithms combined with multi-object tracking
algorithms such as DeepSORT. Accident detection systems may be
improved by enabling the tracking of several vehicles simultaneously.
The work by Kim et al. [19] deals with lightweight recognition models
meant to run in smart city infrastructure or in rural areas of limited
computing resources.

Further, studies involving remote sensing and environmental
monitoring, such as the work of Longin et al. [20], adopt methodologies
that can also be translated into detection of vehicular accidents. These
were more often than not used for environment-related applications
like landslide detection. All these techniques rely heavily on image
analysis similar to what is employed in accident detection under limited
visibility conditions. Recent trends in traffic management include those
in intelligent transport systems, which act towards better response
times, as stated in the work of Balios et al. [21]. Such technology allows
for improved access to area emergency vehicles while speeding up
responses to accidents using Al-based preemptions and other automated
means between signals. Other studies showed how traffic accidents
relate to the amount of fatalities during accidents. Researchers analyzed
prior crash records and field data to pinpoint reasons that would cause
accidents and fatalities in the work of Rosayyan et al. [22]. These
models are practical in accident detection systems that can work toward
preemptive safety measures. Another approach to accident prevention
per [23] is the identification of signs of driver fatigue and human error.
It is possible to incorporate computer-vision-based systems within
accident detection frameworks to increase their ability to detect and
prevent accidents that result from human factors, such as drowsy
driving.

The incorporation of machine learning into the topic area of
secure loT-based traffic management and accident detection is a
continuing field of study within recent research [24, 25]. In addition
to that, it holds promise for real-time communication, which
subsequently fosters better informed decision-making and emergency
response during traffic accidents. For instance, studies on emergency
response systems [26] analyzed the efficiency of Al-powered medical
imaging techniques in injury assessment post-accidents. Automated
identification and segmentation of orbital fractures, as explored in the
work of Kumar et al. [27], represent altogether enlightening material

for treating medical practitioners of road accident victims. Another,
the work of Bao et al. [28], stresses that there is a need to analyze
national emergency response times as it deals with practical concerns in
accident response cooperation. Here, these findings come with answers
on better application of technology in the detection of traffic accidents
as well as emergencies. In providing such outputs, an exhaustive range
of actualities about artificial intelligent applications in self-driving
technology can be noted as well [29]. The costs of contributing to a
smart road system can be measured about accident detection, driver
notification, and dynamic alteration of traffic flow to prevent chain
reactions. Real-time accident detection fused with autonomous vehicles
will make roads safer increasingly.

At last, the real-time vehicle accident detection system using
deep neural networks was a monumental discovery in Al-based road
safety applications, as evidenced in Mohan et al. [30] as well as
Gayathri and Gomathy [31]. Such decentralized models can detect
accidents using motion data over time with a high degree of correctness,
which opens the doors to many future innovations regarding accident
detection and prevention systems [32, 33]. This literature review thus
details the tremendous progress made in deep learning, object detection,
multiple-object tracking, and intelligent transportation systems, all of
which further fine-tune accident detection, thereby increasing accuracy,
decreasing response times, and improving real-time situational
awareness in dynamic traffic environments.

The new achievements in the remote-sensing implementation
of multimodal features and segmentation models contained promising
perspectives of the upstream of frames of accidents detection.
Specifically, Convolutional Neural Networks (CNN) have been shown
to have great potential when it comes to data fusion of multimodal data
with the goal of enhancing the classification capabilities of the data
source. Li et al. [34] suggested the method of information integration in
the remote sensing scene classes based on deep CNN model. The scheme
involves the integration of data acquired from multiple modalities,
including Synthetic Aperture Radar (SAR), optical imagery, and Light
Detection and Ranging (LiDAR). This technology can make the system
work with high reliability even in severe environmental conditions such
as poor visibility, fog, or low-light conditions of the accidents which
frequently occur in road accidents. This kind of multimodal feature
fusion has the potential of posing a great enhancement to the strength of
real-time accident detection models particularly where their application
is lengthened to embrace the use of thermal or depth-based sensors
besides using Red—Green—Blue (RGB) information. On top of that,
UrbanSAM, which is a modified version of Meta Segment Anything
Model (SAM), introduces another stage of flexibility and segmentation
accuracy specific to urban settings. Because of the issues their subject
might face regarding the object scale variance and complicated
morphology of cityscapes, it is developed by an Uscaling-Adapter using
multi-resolution analysis and invariance theory. Liang [35] developed
a vehicle and pedestrian detection algorithm that integrates improved
attention with feature fusion to enhance recognition performance. The
study introduced alternatives to conventional IoU-based bounding box
regression, resulting in higher localization accuracy and improved
mAP. By reinforcing multi-scale feature interactions, the approach
demonstrated robustness under dynamic and complex traffic conditions.
These insights significantly support YOLO-based accident detection,
where precise localization and rapid recognition are essential for
achieving reliable real-time safety applications.

The recent developments in traffic surveillance and object
detection have boosted the abilities and detection of accidents. Advanced
solutions that work out (such as YOLOvVS, DeepSORT, and transformer-
based detection systems) demonstrate better activity in complex urban
situations, whereas multimodal CNN models guarantee effectiveness
in adverse weather and visual haze conditions. Procedures involving
additional detail in post-collision analysis based on segmentation, such
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as scalable architectures such as UrbanSAM, also offer the ability to give
additional precision in the post-collision analysis without significant
manual prompting. The combination of these methods, as discussed in
Table 1, provides a sound basis to develop intelligent and context-aware
accident detection systems which have the potential of responding to
the situation in real-time and under a variety of operational conditions.
The current paper follows these ideas and proposes an elastic design
that can adapt to hardware limitations, environmental fluctuation, and
numerous object interactions, all of which are contributing to safer and
more responsive smart transportation environments.

3. Dataset

To increase and validate the efficacy of the accident detection
system, the datasets must be visually heterogeneous and extensive.
Common Objects in Context (COCO) is one of the leading datasets
that encompass a fair share of variations of objects in highly complex
contexts. As opposed to datasets focused on static targets, COCO
provides a lot of object categories that work well when training object
detection models for dynamic road environments as shown in Figure 1.
Asindicated before, COCO encompasses vehicle classes like cars, buses,
and trucks, as well as pedestrians, and traffic signals—all are important
for accident detection. Therefore, the COCO dataset firmly laid down
the foundation for initializing the accident detection system to detect
objects in traffic scenes. In addition, accident video datasets were
incorporated in the real-time scene simulation of usual traffic patterns
and accident occurrences. These videos were chosen based on weather
conditions ranging from rain and fog to other conditions where visibility
may be compromised, thus making evaluation of the detection system's
robustness under such challenging scenarios possible (Table 1). One
key benefit of using real accident footage is: for the system to be tested
against the dynamic and ever-changing conditions, it can also further
deductively evaluate its performance based on visual occlusions and
temporal changes.

4. Methodology

The proposed system uses artificial intelligence to provide real-
time accident detection and automated emergency response. It integrates
within the architecture object detection models with environmental
and situational analysis, all to improve the accuracy and efficiency in
responding. The framework receives video streams, recognizes pre-
collision events, estimates the severity of an accident, and immediately
raises alarms to authorities and stakeholders. It is ensured that the usage
of multitude deep learning models guarantees the adaptive selection
based on the available computational resource and environmental

Figure 1
Displaying sample video frames captured from real-time accident
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conditions. The system is modular, fundamentally involving acquisition
von video, detection of object, analysis of collision, estimation of
severity, emergency response, and automated reporting. The real-
time video acquisition module allows the acquisition of live footage
from either surveillance cameras or car dash cameras. This object
detection module comprises deep learning-based YOLO architectures
used to identify various elements along the road, such as vehicles
and pedestrians and other environmental constituents. Collision will
be analyzed using calculations based on IoU and motion tracking to
determine possible impact zones.

The severity estimation module measures collision intensity,
accounts for the speed of vehicles and the environment, and plays a
critical role in determining the subsequent emergency response priority.
The immediate weather update will also provide better decisions
improving the accuracy of decision making. The emergency response
module locates an accident location based on the GPS coordinates
and the nearest hospitals and police stations for requesting immediate
intervention. Automated notification will go through email, Short
Message Service (SMS), or any cloud alerting systems. Improvements
in response times for emergency services are ensured. Al improves
the system's detection accuracy, lessens false alarms, and speeds up
emergency response.

Table 1

Comparative overview highlighting the core contributions of selected prior studies in accident detection and how the proposed system
advances beyond their limitations

Study / method

Key features

Limitations

How proposed work differs

Vision-based YOLOvV5
accident detection [3]

YOLOv8 with Deep-
SORT tracking [5]

Smart-IoT accident
detection systems [2, 15]

UrbanSAM [35]

CNN for multimodal
sensing [34]

Real-time object detection in
traffic scenes

Multi-object tracking and
vehicle/pedestrian association
Sensor-based accident
recognition with wireless alerts
Urban segmentation using
invariance-inspired adapters
Handles multimodal data for
classification

Static model; limited adaptability; no
severity evaluation

Lacks emergency response or impact
severity modeling

Often rule-based; lacks visual
confirmation or environmental scaling
Requires manual prompting; not de-
signed for dynamic incident response
Focused on classification, not on
real-time detection or emergency
workflow

Introduces adaptive model switching
and severity scoring

Adds alert pipeline and real-world
emergency integration

Visual deep learning with scene-aware
and weather-adaptive response

Fully automated segmentation within
real-time detection pipeline

Combines classification with

automated decision-making and alert
mechanisms
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This flexibility enables the framework to function effectively in
both city and highway environments. It equips the system to choose
between different YOLO versions on the basis of its hardware and
surrounding conditions, ensuring computational efficiency without
sacrificing detection performance. This system will scale with future
changes in smart city infrastructure and will form an integral part
of the intelligent transport system, as well as enhanced road safety
management, as shown in Figure 2.

1) Data collection and preprocessing

For the accident detection task, the dataset consists of real-
life traffic videos, dash cam footage, and openly available accident
datasets. Videos come from various sources, e.g., highway cameras,
city intersections, and autonomous vehicle datasets. In terms of
diversity, the dataset encompasses different lighting conditions, weather
variations, and traffic densities. This pre-processing pipeline involves
numerous steps aimed at improving data quality and making it suitable
for deep learning models. First, at a predefined frame rate, video frame
extraction is done, followed by resolution standardization to make all
samples consistent. The image is filtered through Gaussian noise filters
to further enhance clarity. Data augmentations like rotation, scaling,
and changes in brightness are done so as to increase model robustness
and limit overfitting. The annotation tools are used to correct object
detection labels so that bounding boxes for vehicles and pedestrians
are truly well placed. IoU measures are performed to check labelling
consistency and improve object detection results. Also, normalization of
features and scaling of pixel intensity are carried out to match the input
format for deep learning model requirements. Hence this preprocessing
pipeline guarantees that the dataset is well balanced, representative, and
good enough to train accident detection models with high performance.
2) Dynamic model selection for real-time processing

The selection of an appropriate deep learning model for real-
time accident detection depends on several factors, including hardware
resources and environmental conditions. The proposed system employs
a dynamic model selection approach to optimize performance under
varying constraints. Three versions of YOLO (YOLOvS, YOLOVS,
and YOLOv11) are used, each tailored for specific scenarios based on
resource availability and environmental conditions. This strategy not
only ensures efficient utilization of computational resources but also
maintains detection reliability across diverse operational scenarios.
3) Hardware resource-based selection

Selection of a right deep-learning model for real-time accident
detection may depend on various hardware and environmental
considerations. This system proposes a dynamic modelling approach
to tune performance amid varying constraints. Three YOLO versions
are available (YOLOvVS, YOLOvVS, and YOLOV11), thereby providing
different configurations for various situations, given the resources and
environmental conditions. Primarily, model selection would depend

on the hardware random access memory (RAM), central processing
unit (CPU), and graphics processing unit (GPU) . The system should
dynamically choose according to those constraints to allow efficient
processing. In case of low-resource environments, with RAM and
computational power at a premium, the YOLOvS5n model is selected for
lightweight architecture and even lower computational requirements,
thus enabling fastest inference time. On the contrary, when high-
performance systems with more than 8 GB of RAM or dedicated
GPUs are used, the YOLOv11m model is selected for its accuracy and
processing efficiency. The dynamic selection ensures the overall best
performance of the system irrespective of the hardware constraints,
shown in Table 2.
4) System architecture

The proposed framework operates through a sequential and
modular architecture designed for real-time accident detection and
response automation. The system begins with ingestion of live
or recorded video footage, followed by object detection using a
dynamically selected YOLO model based on current system memory
and environmental visibility. Detected vehicles are continuously tracked,
and collision events are assessed using bounding box deformation,
speed variation, and IoU metrics. Upon detecting a probable accident,
the system queries external Application Programming Interfaces (APIs)
to retrieve current weather conditions and identify the nearest police
station and hospital using geographic coordinates and Overpass API.
Severity scoring is computed based on impact metrics and contextual
weather information. A structured emergency alert, including analytical
data, images, and video clips, is then auto-generated and dispatched
via an email interface. This end-to-end pipeline maintains modularity
and temporal efficiency while integrating detection, analysis, and
notification subsystems cohesively.

4.1. Model selection and training data strategy
YOLOV5, YOLOvS8, and YOLOvI11 were chosen because of

their comparative advantages of balancing between inference speed

Table 2
Model training and validation parameters

Parameter Value/method used
Batch size 16

Learning rate 0.001

Optimizer Adam

Loss function IoU loss & focal loss

Augmentation techniques Rotation, scaling, noise reduction

Dataset split 80% Train, 20% Validation

Figure 2
A block diagram to represent the workflow of the system
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and detection accuracy on different operational conditions. YOLOVS
was used in clear daytime conditions because of its low latency and
efficiency of resources, whereas the presence of visual complexity
conditions, including rain, fog, or low-light conditions, the deeper
architectures were used in YOLOvVS8 and the new version of Yolo-
YOLOVI11, enabling better object localization and classification. The
COCO curated dataset was used as part of the pipeline to pretrain all the
models and then fine-tuning the models on a specially curated dataset of
850 annotated videos that consisted of real-world traffic situations and
accidents. The data included the usage of dash cam videos, surveillance
video and publicly-released traffic video datasets. Labelling was
accomplished with bounding boxes on pre-collision and post-collision
car states, and was used to learn in the context of detecting impact. This
fine-tuning was done specifically towards improving the responsiveness
of the system to domain-specific cases.

4.2. Environment-based selection

Environmental factors, especially bad weather, greatly influence
model selection. Adverse weather conditions, such as rain, fog, and
snow, can obscure the visual information, reducing the accuracy of the
detection task. Under adverse scenarios, the system adopts YOLOVS,
which is found to be robust in noisy and low-quality data. However,
under good weather conditions where visibility is optimal, the preferred
model is YOLOVS or YOLOvVI11 for high accuracy and speed. Thus,
adaptive model selection makes sure to detect accidents reliably under
different possible environmental scenarios, as shown in Figure 3.

4.3. Accident detection framework

Typically, objects like vehicles and pedestrians are detected,
as well as certain obstacles, through the use of input video frames as
processed by YOLO models feeding a CNN. Each model was created
long before being trained to recognize any number of objects through
its own specific characteristics; for instance, through shape, size, and
movement behavior. Furthermore, each one of them is defined by a
bounding box that enters the object identification map with a confidence
score, which indicates how much likely the object belongs to a pre-
defined class. With all these considerations, object classification can be
performed accurately and efficiently in an accident detection scenario
in real time.

The IoU is computed as follows:

Area of Overlap
Area of Union

10U = 0

Figure 3
Merged image with objection detection and IoU metric based
accident conformation

4.3.1. Object detection and tracking

It employs IoU that measures the overlap between two bounding
boxes in tracking moving objects. A crucial role of IoU can be seen in
tracking objects between consecutive frames, as stated in Equation (1).
The higher the value of IoU, the more consistent the detected object is
across successive frames, thus allowing continuous tracking of moving
vehicles, pedestrians, and obstacles. An important facet of this tracking
is the dynamic interaction between objects in the universe with a focus
on potential collision detection. From continuous monitoring override
and movement of objects, the effectiveness of the system in identifying
accident-prone scenarios is improved, as evidenced in Figure 3.

4.3.2. Collision detection mechanism

Collision detection primarily relies upon measuring the amount
of overlap between the bounding boxes of two vehicles, using an loU
value to determine significant overlap. Once such cases are identified,
where bounding boxes overlap enough to suspect a crash, they are
flagged for collision when the [oU value exceeds a predefined threshold.
In addition to overlapping bounding boxes, speed and deceleration
data are taken into account to provide a better understanding of the
likelihood and severity of the crash.

Rapid deceleration or abrupt changes in vehicle speed often
manifest along with collision events and further complement the
collision detection. It bases its functionality on these variables now
combined with consideration of bounding box states. This provides
an excellent model by which normal movement of vehicles can be
modelled or possible accidents differentiated from their pattern as shown
in Figure 4. The system's activity is thereby on the real-time monitoring
of object behavior using IoU calculations and motion analysis for the
accurate detection and confirmation of collision incidents as evidenced.

4.3.3. Severity estimation algorithm

A multitude of factors, including collision frequency, impact
speed, and environmental conditions, are evaluating an accident's
severity. More especially, this means that a greater number of collisions
or excessive speed can significantly increase the likelihood of severe
injuries or damage to vehicles as shown in Figure 5. The system includes
additional risk factors such as environmental data (road conditions and
weather, e.g. rain, fog, and ice) in order to look at the moderation factor
in estimating the accident severity through these elements.

The system ranks the severity of the accidents into three
categories:

1) Low severity — Minor collisions occurring at low speeds or under
favorable environmental conditions
2) Medium severity — Moderate collisions with higher speeds or

impacts
Figure 4
Mean Average Precision (mAP) values comparison across various
models

B mAP@0.5
B mAP@0.5:0.95
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3) High severity — Most severe accidents induced by either very
high speeds or under hazardous environmental conditions which
considerably raise the risk of critical injuries or fatalities

4.4. Automated emergency response system with
real-time location tracking

The system harnesses the power of GPS to accurately fix the
location of the accident. The framework extracts real-time geographic
coordinates to locate the exact accident site from which emergency
services can be dispatched quickly and efficiently. This coordinate data
is also important in determining how close nearby emergency resources
are and minimizing response times.

4.4.1. Nearest emergency services alert

The emergency system utilizes the Overpass API for quickly
identifying the nearest hospitals and police stations by establishing a
certain distance from the accident site. This geospatial query allows
emergency responders to arrive at the accident scene with minimal
delays on their part. The system fetches and ranks the closest emergency
facilities based on the provided GPS coordinates while prioritizing
those with the least patient transport time. This automation dramatically
increases the levels of efficiency in emergency response so that victims
of traumatic accidents can receive immediate first-aid assistance.

4.4.2. Automated notification system

Reports on the accident are created right after the detection of
the accident by the system and dispatched immediately to the people
concerned with the stakes, such as policyholders, nominees, and
emergency services. Integration with SMS, email, and cloud-based alert
systems ensures that these reports are delivered in an assured timely
manner, minimizing any delays in responding to emergencies. Adding
the real-time communication mechanism reduces response time even
further in making sure assistance is provided when really required,
without unnecessary delays, as graphically represented in Figure 6.

4.5. Automatic insurance claim processing

The system retrieves vehicle and insurance information using
number plate recognition and centralized motor insurance databases.
When an accident occurs, the vehicle license numbers are collected
and cross-verified against the insurance records to determine the
policyholder and the associated coverage. The structured accident report
consists of accident severity, estimated damage, and relevant image or
video evidence, which is automatically sent to the respective insurance
company for starting the claims process. Likewise, additional telematics
information, like the speed of the vehicle at the time of the accident, the
force of the impact, and environmental conditions, is added to the claim
report to make it even more accurate and comprehensive. The damage

estimation algorithms that are Al-based would determine damages to
the exterior of the vehicle from analysing the detected impacted zones.

4.6. Performance metrics and evaluation

Evaluating the effectiveness of an Al-based accident detection
system involves a comprehensive evaluation of multiple performance
metrics, including the accuracy, speed of processing, and reliability,
in order to ensure that the selected models will perform under real-
world conditions, as shown in Figure 7. This evaluation framework
aims to measure with the trade-off between different parameters,
including analytical strength, computational efficiency, and error rate
consideration; it thus allows an extensive comparative analysis between
YOLOvV5, YOLOVS, and YOLOvI11.

4.6.1. Accuracy of detection models

The mAP serves as a threshold to gauge the performance of
object detection models on the precision-recall trade-off by considering
the system's competency in locating and verifying objects present in
video frames. A comparative analysis of model performances is done
on YOLOVS5, YOLOVS, and YOLOvII to find the most suitable for
accident detection. A higher mAP is indicative of better detection
capability, thus minimizing missed detections and false classifications.
The above-said evaluation entails that each of the models is tested
against a benchmark dataset comprised of various accident scenarios
so that reliability is assured across different environmental conditions
and camera angles.

4.6.2. Processing speed analysis

Accident detection systems are heavily dependent on real-time
processing technologies. Also, the test for processing speed includes
measuring the Frames Per Second (FPS) performed by various models
while putting different computational constraints. FPS determines how
fast the model can analyze continuous streams of video, with higher
FPS parameters indicating fast processing with lesser latency. The
testing is then extended to various hardware configurations starting

Figure 7
Models performance comparison across various weather
conditions
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from edge devices to embedded systems and up to high-performance
GPUs to ensure deployment in different scenarios. Hence, this test
helps in model selection for various computational resources while
maintaining real-time performance.

4.6.3. False positives and false negatives

Reliability is a function of how often false positives and false
negatives occur, as shown in Figure 8. False positives occur when the
system falsely identifies the presence of accidents and sends emergency
alerts even when there were no emergencies that warranted them.
Conversely, should false negatives occur, real accidents are missed
causing delayed responses.

An even input for accident detection must try to reduce both
errors so that it operates credibly and efficiently. The statistical analysis
examines the contest of detection errors in the face of different test
cases, ensuring precision without compromising recall. The result helps
refine the model toward optimizing the trade-off between sensitivity
and specificity for accident detection.

4.7 Computational complexity

The computational efficiency of the framework was assessed in
terms of inference time, model size, memory footprint, and scalability
across different YOLO variants. On an NVIDIA RTX 3060 GPU,
the average per-frame inference times were measured as 12.4 ms for
YOLOVS, 17.8 ms for YOLOvVS, and 25.1 ms for YOLOvI1I1. The
adaptive switching mechanism enabled dynamic deployment of heavier
models only when sufficient memory resources were available, thereby
avoiding unnecessary overhead during normal operating conditions
(Table 3).

The complete pipeline, from video ingestion through detection,
severity analysis, and API-based alert dispatch, yielded an average end-
to-end latency of 2.1 s. This latency remains within practical bounds
for emergency response applications, ensuring timely communication
to hospitals, police departments, and insurance services. Furthermore,
memory-aware load balancing minimized execution bottlenecks during
multi-stream video input, demonstrating an effective balance between
computational cost and detection precision.

Figure 8
Analyzing false positive and negative rates with different models
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Table 3
Computational performance of YOLO variants
Avg Memory
inference Model size FPS usage

Model time (ms) (MB) (approx) (VRAM)
YOLOVS5 12.4 89 MB ~80FPS  ~0.9GB
YOLOv8 17.8 123 MB ~56 FPS  ~1.3GB
YOLOv11 25.1 152 MB ~40 FPS  ~1.6 GB

5. Results and Discussion

The performance of the proposed accident detection system was
evaluated using multiple video datasets under diverse environmental
conditions. The system demonstrated high accuracy in identifying
vehicular collisions, with a significant reduction in false positives
compared to traditional threshold-based methods. The incorporation of
adaptive model selection enhanced detection efficiency, allowing real-
time processing across devices with varying computational capacities.
The evaluation framework focused on key performance metrics,
including detection accuracy, processing speed, and response time. The
YOLO-based object detection module effectively recognized vehicles
and calculated collision probabilities using loU metrics. The adaptive
selection between YOLOvVS, YOLOvVS, and YOLOv11 models ensured
optimized performance based on hardware constraints, with YOLOVS
achieving the highest precision in complex urban scenarios.

5.1. Performance evaluation of accident detection

The accuracy assessment revealed that YOLOvVS was the
best among others in detecting accidents in urban areas with high
traffic density and excellent object tracking. YOLOv11 achieved
high confidence detections in daylight, and against adverse weather
conditions of fog and rain, YOLOVS stood resilient. The speed
versus accuracy assessment thus showed that YOLOv8 was able to
maintain a frame rate of 32 FPS on higher-end GPUs and thus real-
time detection capacity in very high-speed traffic scenarios. YOLOVS
was computationally efficient and could run in edge devices that had
limited hardware resources. YOLOv11, despite being more precise, was
heavier in terms of computation power.

To quantitatively demonstrate the effect of each individual
component, an ablation study was conducted across three configurations:
a fixed single-model setup, a visibility-adaptive switching setup, and the
proposed full framework that combines visibility and resource-aware
model selection. The evaluation considered precision, recall, false
detection rate, and inference latency, and the results are summarized
in Table 4.

The results indicate that visibility-adaptive switching alone
improves recall and reduces false detections compared to a fixed YOLO
model. When memory-aware switching is also incorporated, the system
achieves the highest precision and recall while maintaining acceptable
latency, demonstrating that each module contributes to the overall
robustness and efficiency of real-time accident detection.

Table 4
Ablation study results across different configurations
False Avg.
Precision Recall detection latency

Configuration (%) (%) rate (%) (ms)
Fixed YOLO model 87.3 87.3 87.3 87.3
(no adaptation)
Visibility-adaptive 91.8 91.8 91.8 91.8
switching only
Full adaptive switching ~ 94.6 94.6 94.6 94.6
(proposed system)
Weather-aware 94.0 94.0 94.0 94.0
adaptation (API
integration)
Emergency alert 94.6 94.6 94.6 94.6

automation (full
system)
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5.2. Severity estimation and emergency response
efficiency

Accident severity evaluation was validated using speed
estimation, impact analysis, and environmental factors as shown in
Table 1. High-speed collisions and multi-vehicle collisions are found
with the higher severity rating and immediate emergency alerts were
raised. The real-time weather data improved situational awareness
by adding external risk factors for severity classification. Collisions
above 60 km/h consistently triggered high-severity alerts with reduced
emergency response times. Accidents in adverse weather conditions
were rated higher because of increased risk. Multi-vehicle collisions
were detected at an accuracy of 94.7%, guaranteeing accurate
assessment of accident impacts (Table 5).

The time taken by the automatic system to set alerts and to find
hospitals and law enforcement agencies was the yardstick for testing the
automated emergency response system. The system has successfully
identified clinical facilities in a 5-kilometer radius from the incident
to ensure fast notification of the required services. The alert generation
speed was an average delay of 1.9 s between accident detection and
notification of the system, demonstrating the capability to reduce
response time.

5.3. Comparative analysis with existing systems

Recent advances in accident and anomaly detection have
produced highly capable models, including UIU-Net (2023) and Swin
Transformer (2021). UIU-Net applies a hierarchical U-Net architecture
withuncertainty modeling, achieving strong precision in small object and
infrared target recognition. Similarly, Swin Transformer incorporates
hierarchical attention for detailed feature extraction and excels in fine-
grained object identification. Despite their accuracy, both methods
demand high computational resources and exhibit relatively low
inference speeds, reducing their suitability for real-time deployment as
shown in Table 6. In contrast, the proposed adaptive YOLO framework

Table 5
System adaptability in different environments
Environment
condition Model selection Adaptation strategy
Daylight YOLOv11m Standard object detection
Night YOLOv8m Enhanced low-light detection
Foggy YOLOvVSm Contrast enhancement &
filtering
Rainy YOLOv5m Adaptive brightness & noise
removal
Heavy traffic ~ YOLOvllm High-precision tracking
Table 6
Comparison with state-of-the-art detection methods
Feasibility for

Method Key strengths Limitations  real-time use
UIU-Net High accuracy for ~ Heavy model, Limited
(2023) small/IR targets ~12 FPS
Swin Strong fine-grained High latency, Limited
Transformer recognition ~10-12 FPS
(2021)
Proposed Robust across visi- Lightweight,  Strong
framework  bility and low-light ~25-30 FPS

achieves a more favorable trade-off between accuracy and efficiency,
sustaining real-time inference while maintaining robustness under low-
light and adverse weather conditions.

5.4. Computational complexity and efficiency analysis

For computational trade-offs, the adaptive framework was
compared against fixed single-model deployments. While YOLOvI11
alone provides higher accuracy, its inference time (~25 ms per frame)
makes it less suited for high-frame-rate applications. Conversely,
YOLOVS is lightweight but less reliable under adverse conditions.
The adaptive switching strategy balances these extremes, achieving an
average of ~18 ms per frame (~55 FPS) while dynamically allocating
heavier models only when visibility deteriorates. This maintains latency
within real-time thresholds and reduces unnecessary GPU memory
consumption by approximately 15-20% compared to continuous
YOLOV11 execution. In comparison to other state-of-the-art baselines
such as UIU-Net, which typically operates at ~12 FPS, the proposed
approach demonstrates markedly better efficiency for continuous
accident monitoring in live traffic streams.

5.5. Discussion

The proposed system can detect accidents under diverse
environmental conditions, where different YOLO models support real-
time object detection. Among these models, YOLOvVS8 excelled under
city traffic conditions with mAP of 96.4%. Its superior capabilities
in object tracking made it efficient even in busy urban settings where
moving vehicles and pedestrians are a big hindrance. YOLOv11 was
maximal in daylight conditions with great detection confidence, albeit
highly demanding in terms of computation power. Thus, it is suitable
in a heavily traffic-oriented monitoring system where computation has
no limitation, but it is not suitable for any mobile application since
resource constraints would limit the computation. In contrast, YOLOVS
was resilient for such adverse weather as fog and rain, where visibility
would usually be compromised. Therefore, it is able to maintain
detection accuracy in difficult conditions due to an increase in contrast
and reduction of noise, making it an interesting choice for real-time
accident detection under these conditions.

5.6. Minimization of false positives

To reduce false positive detections, a multi-criteria validation
strategy was implemented within the system. Collision inference was
restricted not only to spatial overlap using IoU thresholds but also
supplemented with temporal analysis of object persistence and speed
variation. A collision was confirmed only when bounding box overlap
exceeded a defined threshold across consecutive frames, accompanied
by abrupt deceleration patterns or sustained proximity between vehicle
contours. Additionally, severity estimation integrated deformation
patterns of bounding boxes over time to further differentiate between
transient occlusions and genuine impacts. These layered checks
contributed to suppressing spurious triggers arising from shadows,
visual noise, or dense traffic proximity.

6. Conclusion

The major innovations presented in this research can be outlined
as follows:

1) Anadaptive multi-model accident detection strategy using YOLOVS,
YOLOVS, and YOLOvVI11 to maintain robustness across visibility
variations and low-light conditions.

2) A severity estimation mechanism based on geometric deformation
and IoU to quantify collision intensity.
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3) Integration with geospatial mapping and automated emergency
services to accelerate response time.

4) Incorporation of post-accident automation including license plate
recognition and insurance claim initiation.

5) These contributions collectively establish the framework as an
innovative and practical solution for real-time accident detection
and severity assessment within intelligent transportation systems.

The primary contributions of this work include an adaptive
model-switching strategy across YOLOvS5, YOLOvS, and YOLOv11
to maintain high accuracy under varying visibility and low-light
conditions, a severity estimation mechanism based on IoU and
geometric deformation, and a unified framework that integrates accident
detection with automated emergency alerts and insurance processing.
These advances collectively position the system as a robust and scalable
solution for deployment in intelligent transportation environments. The
automated reporting mechanism, wherein the application integrates the
identification of emergency services via GPS and accident tracking in
real time, stands to take the front position towards practical deployment
of the system.

In summary, the study not only demonstrates the technical
feasibility of adaptive multi-model accident detection but also highlights
its broader societal impact by bridging intelligent transportation
research with emergency response, public safety, and insurance
automation. Beyond immediate deployment, the framework paves the
way for scalable smart mobility solutions that can reduce response
times, improve traffic safety, and streamline post-accident processes.
This positions the system as a significant step toward the realization of
fully integrated intelligent transportation infrastructures.

7. Future Scope

The framework presented in this study establishes a foundation
for real-time accident detection and severity assessment, but several
extensions remain open for exploration. One direction is the integration
of multi-camera surveillance networks and drone-based platforms,
which can enhance spatial coverage and improve accident localization
accuracy. Another promising area involves the use of multimodal
data sources, including LiDAR, thermal imagery, and vehicle-to-
infrastructure (V2I) communication, to strengthen robustness under
adverse weather, low-light, and high-traffic conditions.

Advancements in lightweight model compression and edge-
computing deployment may further reduce latency, enabling large-scale
adoption on embedded devices deployed in vehicles and roadside units.
These improvements hold the potential to transform accident detection
systems into fully scalable, city-wide intelligent transportation solutions
that not only respond rapidly but also adapt dynamically to diverse
operational environments.

The framework presented in this study establishes a foundation
for real-time accident detection and severity assessment, but several
extensions remain open for exploration. One direction is the integration
of multi-camera surveillance networks and drone-based platforms,
which can enhance spatial coverage and improve accident localization
accuracy. Another promising area involves the use of multimodal data
sources, including LiDAR, thermal imagery, and V2I communication,
to strengthen robustness under adverse weather, low-light, and high-
traffic conditions.

Advancements in lightweight model compression and edge-
computing deployment may further reduce latency, enabling large-
scale adoption on embedded devices deployed in vehicles and
roadside units. In addition, coupling the framework with predictive
analytics could support accident risk forecasting, thereby enabling
preventive interventions rather than reactive responses. Finally,
extending the system towards city-wide digital twins and intelligent
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traffic management platforms could facilitate large-scale integration,
where accident detection operates as one component within a broader
ecosystem of smart urban mobility.
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