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Abstract: Road accidents are a significant global issue, claiming lives and cash in hand every year. The system introduces an adaptive model-
switching mechanism that selects the most suitable You Only Look Once (YOLO) model (v5, v8, or v11) based on system memory and weather 
visibility, ensuring optimal detection with minimal computational load—a feature rarely addressed in existing accident detection research. To 
alleviate this situation, this study envisages a near real-time accident detection and emergency response system, integrating computer vision and 
geospatial technologies. The developed system tracks vehicle movement and assesses collision by applying advanced object detection models such 
as YOLOv5, YOLOv8, and YOLOv11 with dynamic tracking and speed estimation. The system computes spatial overlap using the Intersection 
over Union (IoU) metric to localize vehicles accurately and recognize potential accidents while minimizing false-positive rates dramatically. 
Geographic data from OpenStreetMap is used in emergency routing with the help of the Haversine formula to find the shortest and fastest route 
to the nearest emergency services, allowing rapid notifications to hospitals and enforcement agencies. The developed framework includes a 
severity analysis module that assesses the degree of accident impact based on vehicular deformation, collision dynamics, and possible injuries to 
passengers, thus enabling emergency response prioritization based on the incident's urgency. An additional provision is made to incorporate an 
automatic license plate recognition system that enhances vehicle identification, thereby speeding up the initiation of insurance claims and post-
accident administrative processes. The framework has undergone rigorous field trials under varying environmental conditions and remains robust 
in its operation under such variations. Real-time alerts have an average latency of 2.1 s and cover a comprehensive report of the incident, including 
location, vehicle IDs, severity, and medical assistance required. The experimental evaluation proved the system's detection accuracy of 94.6% and 
precision of 92.8%, thus proving its reliability and effectiveness for implementation in real time.
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1. Introduction
Today's traffic management and emergency service frameworks 

are increasingly dependent on accident detection and response systems. 
The incorporation of cutting-edge technologies including deep 
learning, the Internet of Things (IoT), and machine learning into these 
systems has enhanced their ability to identify accidents more quickly 
and precisely resulting in more efficient emergency response measures. 
Traffic accidents continue to be a major cause of injuries and deaths 
around the world, prompting interest in intelligent systems that are 
capable of addressing these problems. 

Deep learning is used in a current study to scan real time data 
from different sensors for accident detection using convolutional neural 
networks and related algorithms. Deep learning has been utilized for 
such risk detection and hazard management, for example, in predicting 
fire incidents on construction sites from input by sensors. By using 
a dataset relating to road traffic environments, these techniques can 
potentially be used for accident prediction and prevention [1]. Likewise, 
vehicular communication systems based on movement are employed 
to relay emergency messages, thus enhancing the effectiveness of the 
currently established accident detection systems [2].

Advancements in object detection models, particularly those 
based on the You Only Look Once (YOLO) framework, have 
significantly improved the identification of small objects and potential 
risks in complex surroundings. These models have been successfully 
applied to the localization of objects within remote sensing imagery 
and have been extended to real-time detection of obstacles and accident 
scenarios in road environments [3]. The use of YOLOv5 and Swin 
Transformer architectures has shown greater accuracy in identifying 
small objects under real-world conditions, which contributes to reducing 
reaction times and preventing secondary accidents [4]. Recent progress 
has also been made in multi-object tracking, where YOLOv8 integrated 
with improved DeepSORT has been applied to pedestrian tracking 
with high accuracy and robustness [5]. Such approaches demonstrate 
the capability of combining strong object detection backbones with 
advanced tracking algorithms, offering valuable insights for continuous 
monitoring of traffic participants in accident-prone environments. Real-
time detection of pedestrians under complex traffic conditions, using 
deep learning models combined with multi-object tracking algorithms, 
enhances both accident prevention measures and the ability to dispatch 
emergency services efficiently [6].

Combining deep learning, IoT, and sensor fusion in accident 
detection systems really helps improve how quickly emergencies are 
responded to, makes accident detection more accurate, and can finally 
save lives. These technologies work hand-in-hand to give a real-time 

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/	
by/4.0/).

1

*Corresponding author: Bharathi Mohan Gurusamy, Department of Computer 
Science and Engineering, Amrita Vishwa Vidyapeetham-Chennai, India. Email: 
g_bharathimohan@ch.amrita.edu  

https://doi.org/10.47852/bonviewJCCE52025908
https://orcid.org/0000-0002-8913-7411
https://orcid.org/0009-0009-4896-1269
https://orcid.org/0000-0003-1102-4887
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:g_bharathimohan%40ch.amrita.edu?subject=


Journal of Computational and Cognitive Engineering Vol. 00  Iss. 00  2025

picture of traffic conditions, enabling faster detection and response 
when something goes wrong. For example, deep learning models like 
YOLO and its upgrades can identify objects accurately even in tricky 
environments, while IoT devices gather raw data from cars, closed-
circuit television (CCTV) cameras, and road sensors in a systematic 
way. When this data is combined through sensor fusion techniques, 
it provides a detailed snapshot of what is happening on the roads, so 
emergency services can be alerted immediately. Besides just spotting 
accidents faster, these technologies also help improve what happens 
afterward. For instance, including number plate recognition makes 
it easier to file insurance claims quickly without wasting time. Plus, 
adding weather data into the system ensures it still works well even in 
tough conditions like fog or heavy rain. Looking ahead, if these systems 
are further developed and integrated into broader smart city plans, we 
could see smoother traffic flow and fewer accidents, saving people from 
suffering and reducing costs. Overall, this tech movement points toward 
safer roads and a more connected, sustainable transportation future.

The important contributions and novelty of this paper are:

1)  Adaptive multi-model accident detection
A context-aware framework capable of dynamically switching 

between YOLOv5, YOLOv8, and YOLOv11 depending on 
environmental visibility, low-light conditions, and computational 
resources, thereby ensuring reliable performance under diverse 
operating scenarios.
2)  Severity estimation using geometric deformation

A novel method that employs bounding box overlap and 
deformation ratios based on Intersection over Union (IoU) to quantify 
collision severity, enabling prioritization of emergency response 
according to impact intensity.
3)  Integration with geospatial and emergency services 

Real-time accident localization through Global Positioning 
System (GPS) and OpenStreetMap data combined with automated 
alert generation to nearby hospitals, police stations, and emergency 
responders, significantly reducing notification latency.
4)  Automation of post-accident processes 

Incorporation of license plate recognition for rapid vehicle 
identification, automated initiation of insurance claims, and provision 
for organ and blood donation procedures in critical cases, thereby 
extending impact beyond immediate detection.
5)	 Demonstrated robustness across environments 

Comprehensive evaluation under adverse weather, low-light, 
and limited visibility conditions (including low light) confirming 
high detection accuracy, reduced false positives, and suitability for 
deployment within intelligent transportation systems.

Road accident detection remains a demanding research problem 
because existing approaches often rely on static deep learning 
frameworks that fail to adapt under diverse environmental conditions 
such as fog, heavy rain, or low illumination. These limitations lead to 
inconsistent performance and increased false detections in real-world 
deployments. Another unresolved challenge lies in severity estimation: 
most prior studies focus on accident occurrence but lack accurate 
quantification of impact intensity, which is essential for prioritizing 
emergency response. Moreover, current systems are generally confined 
to accident recognition alone, without incorporating automated 
integration with emergency routing, medical response, and insurance 
processing pipelines.

The motivation for this investigation stems from the need to 
establish an accident detection system that is both adaptive and context-
aware. The proposed framework addresses the challenge of varying 
visibility and computational constraints by dynamically switching 
between different object detection models. In addition, it introduces a 
severity estimation strategy based on bounding box deformation and 

IoU, enabling a more reliable differentiation between minor and severe 
collisions. By uniting detection, severity assessment, and real-time alert 
generation within a single architecture, the study attempts to bridge 
the gap between laboratory-level detection accuracy and large-scale 
practical deployment in intelligent transportation systems.

2. Literature Review
Advancements in object detection technology have significantly 

shaped the way we approach vehicle accident detection. A lot of 
research has gone into making these systems more accurate and quicker 
to respond—both super important for making them work better. One 
hot area right now is figuring out how to detect multiple objects in busy, 
complicated road scenes. Researchers are using deep learning tools like 
YOLO to get real-time detection down pat. Specifically; a big focus 
has been on helping models better spot small objects like cars and 
pedestrians especially in tricky conditions [7]. Some recent studies have 
even introduced new loss functions, like Corner-Point and Foreground-
Area IoU loss, to help improve accuracy when objects are hidden or 
hard to see. All these tweaks help the models better predict where things 
are in real traffic, which is key for catching accidents early.

At the same time, there have been some exciting new 
developments in object detection, especially with utilizing transformers 
as the main backbone. For example, adding Swin Transformers into 
YOLOv5 has really boosted how well it can pick up small objects in 
satellite images—like cars on highways, city streets, or tricky terrains 
[8]. This is super helpful because objects come in all different sizes 
and angles, which is especially important when you are trying to spot 
accidents in real-time, where things can be at odd angles. Researchers 
have not stopped there, though—they have worked on tweaking YOLO 
models to make them better at spotting road hazards and traffic mishaps. 
Some changes include rearranging parts of YOLOv5's backbone and 
adjusting its loss functions, which helps the model run faster and be 
more accurate when detecting stuff like road damage or other weird 
road conditions [9]. These improvements are a big deal because they 
help the system stay reliable, even when visibility is poor or weather 
is bad. Plus, adding multi-object tracking with YOLO has made a real 
difference, especially for tracking pedestrians and vehicles at the same 
time. By enhancing versions of the DeepSORT algorithm, these systems 
can follow lots of moving objects at once, like pedestrians and cars in 
busy scenes. Using these tracking methods makes it easier for accident 
detection systems to tell apart moving objects from stationary stuff, 
making everything more dependable no matter the environment [10].

Admittedly, there have been improvements in tracking bounding 
box regression more efficiently with regard to the life tracking of objects 
across frames. Powerful IoU is one such method that makes a simple 
yet efficient computation of IoU, thus increasing the accuracy of object 
localization without hefty service time. Enhanced object detection 
frameworks have been increasingly refined to address challenges in 
dynamic road environments, where accurate identification of vehicles, 
pedestrians, and structural elements remains critical [11]. Recent 
advances in disentangled representation learning have also demonstrated 
the potential of model-driven and data-driven integration for anomaly 
detection in complex scenarios. In addition, foundation models such as 
Fleximo have recently shown promise in remote sensing by enabling 
flexible adaptation across tasks and modalities, thereby improving 
generalization in complex detection scenarios. This demonstrates the 
growing relevance of multimodal and transferable architectures for 
enhancing robustness in real-world accident detection pipelines [12]. 
These improvements thus tailor well to the needs of real-time accident 
detection. Paradigm after paradigm finds continuous integration into 
object identification systems, primarily aimed at improving the accuracy 
and flexibility of accident detection models. For example, the work of 
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Zhang et al. [13] presents an exploration into learning other metrics 
apart from IoU to advance bounding box regression to improve mean 
Average Precision (mAP) performance against classic non-maximum 
suppression. These advancements enhance real-time tracking accuracy 
while suppressing false alarms, thereby calling attention only to 
incidents that really demand attention. There is further advancement in 
underwater imaging and restoration research literature [14]. While these 
are not for vehicular accident detection, methods such as CycleGAN 
image restoration for this field can be leveraged for better accident 
detection in challenging lighting conditions. Such methods improve the 
noise-robustness of detection methods; they would be especially useful 
in adverse visibility situations like fog and rain. In sonar-based object 
detection, the work of Rathour [15] presents advanced sonar target 
recognition frameworks that adapt boundary frame loss for better target 
recognition. This framework will be beneficial particularly for real-time 
object detection in case of obscured road traffic environments, where 
objects may be partially hidden and occluded.

Emerging research areas have suggested using advanced models 
that include YOLOv8 and YOLOv11 for multi-view object detection 
enhancement [16, 17]. Increased efficiency has also been exhibited in 
identifying road blemishes and flexible randomness with conventional 
methods' shortcomings. The evolution of the YOLO framework shall 
continue generating improvements in the detection algorithm necessary 
to be incorporated in all fields, such as road safety and environmental 
awareness. In line with these advancements, other studies such as 
Shepley et al. [18] explore advanced tracking algorithms that will be 
composed of detection algorithms combined with multi-object tracking 
algorithms such as DeepSORT. Accident detection systems may be 
improved by enabling the tracking of several vehicles simultaneously. 
The work by Kim et al. [19] deals with lightweight recognition models 
meant to run in smart city infrastructure or in rural areas of limited 
computing resources. 

Further, studies involving remote sensing and environmental 
monitoring, such as the work of Longin et al. [20], adopt methodologies 
that can also be translated into detection of vehicular accidents. These 
were more often than not used for environment-related applications 
like landslide detection. All these techniques rely heavily on image 
analysis similar to what is employed in accident detection under limited 
visibility conditions. Recent trends in traffic management include those 
in intelligent transport systems, which act towards better response 
times, as stated in the work of Balios et al. [21]. Such technology allows 
for improved access to area emergency vehicles while speeding up 
responses to accidents using AI-based preemptions and other automated 
means between signals. Other studies showed how traffic accidents 
relate to the amount of fatalities during accidents. Researchers analyzed 
prior crash records and field data to pinpoint reasons that would cause 
accidents and fatalities in the work of Rosayyan et al. [22]. These 
models are practical in accident detection systems that can work toward 
preemptive safety measures. Another approach to accident prevention 
per [23] is the identification of signs of driver fatigue and human error. 
It is possible to incorporate computer-vision-based systems within 
accident detection frameworks to increase their ability to detect and 
prevent accidents that result from human factors, such as drowsy 
driving.

The incorporation of machine learning into the topic area of 
secure IoT-based traffic management and accident detection is a 
continuing field of study within recent research [24, 25]. In addition 
to that, it holds promise for real-time communication, which 
subsequently fosters better informed decision-making and emergency 
response during traffic accidents. For instance, studies on emergency 
response systems [26] analyzed the efficiency of AI-powered medical 
imaging techniques in injury assessment post-accidents. Automated 
identification and segmentation of orbital fractures, as explored in the 
work of Kumar et al. [27], represent altogether enlightening material 

for treating medical practitioners of road accident victims. Another, 
the work of Bao et al. [28], stresses that there is a need to analyze 
national emergency response times as it deals with practical concerns in 
accident response cooperation. Here, these findings come with answers 
on better application of technology in the detection of traffic accidents 
as well as emergencies. In providing such outputs, an exhaustive range 
of actualities about artificial intelligent applications in self-driving 
technology can be noted as well [29]. The costs of contributing to a 
smart road system can be measured about accident detection, driver 
notification, and dynamic alteration of traffic flow to prevent chain 
reactions. Real-time accident detection fused with autonomous vehicles 
will make roads safer increasingly.

At last, the real-time vehicle accident detection system using 
deep neural networks was a monumental discovery in AI-based road 
safety applications, as evidenced in Mohan et al. [30] as well as 
Gayathri and Gomathy [31]. Such decentralized models can detect 
accidents using motion data over time with a high degree of correctness, 
which opens the doors to many future innovations regarding accident 
detection and prevention systems [32, 33]. This literature review thus 
details the tremendous progress made in deep learning, object detection, 
multiple-object tracking, and intelligent transportation systems, all of 
which further fine-tune accident detection, thereby increasing accuracy, 
decreasing response times, and improving real-time situational 
awareness in dynamic traffic environments.

The new achievements in the remote-sensing implementation 
of multimodal features and segmentation models contained promising 
perspectives of the upstream of frames of accidents detection. 
Specifically, Convolutional Neural Networks (CNN) have been shown 
to have great potential when it comes to data fusion of multimodal data 
with the goal of enhancing the classification capabilities of the data 
source. Li et al. [34] suggested the method of information integration in 
the remote sensing scene classes based on deep CNN model. The scheme 
involves the integration of data acquired from multiple modalities, 
including Synthetic Aperture Radar (SAR), optical imagery, and Light 
Detection and Ranging (LiDAR). This technology can make the system 
work with high reliability even in severe environmental conditions such 
as poor visibility, fog, or low-light conditions of the accidents which 
frequently occur in road accidents. This kind of multimodal feature 
fusion has the potential of posing a great enhancement to the strength of 
real-time accident detection models particularly where their application 
is lengthened to embrace the use of thermal or depth-based sensors 
besides using Red–Green–Blue (RGB) information. On top of that, 
UrbanSAM, which is a modified version of Meta Segment Anything 
Model (SAM), introduces another stage of flexibility and segmentation 
accuracy specific to urban settings. Because of the issues their subject 
might face regarding the object scale variance and complicated 
morphology of cityscapes, it is developed by an Uscaling-Adapter using 
multi-resolution analysis and invariance theory. Liang [35] developed 
a vehicle and pedestrian detection algorithm that integrates improved 
attention with feature fusion to enhance recognition performance. The 
study introduced alternatives to conventional IoU-based bounding box 
regression, resulting in higher localization accuracy and improved 
mAP. By reinforcing multi-scale feature interactions, the approach 
demonstrated robustness under dynamic and complex traffic conditions. 
These insights significantly support YOLO-based accident detection, 
where precise localization and rapid recognition are essential for 
achieving reliable real-time safety applications.

The recent developments in traffic surveillance and object 
detection have boosted the abilities and detection of accidents. Advanced 
solutions that work out (such as YOLOv8, DeepSORT, and transformer-
based detection systems) demonstrate better activity in complex urban 
situations, whereas multimodal CNN models guarantee effectiveness 
in adverse weather and visual haze conditions. Procedures involving 
additional detail in post-collision analysis based on segmentation, such 
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as scalable architectures such as UrbanSAM, also offer the ability to give 
additional precision in the post-collision analysis without significant 
manual prompting. The combination of these methods, as discussed in 
Table 1, provides a sound basis to develop intelligent and context-aware 
accident detection systems which have the potential of responding to 
the situation in real-time and under a variety of operational conditions. 
The current paper follows these ideas and proposes an elastic design 
that can adapt to hardware limitations, environmental fluctuation, and 
numerous object interactions, all of which are contributing to safer and 
more responsive smart transportation environments.

3. Dataset
To increase and validate the efficacy of the accident detection 

system, the datasets must be visually heterogeneous and extensive. 
Common Objects in Context (COCO) is one of the leading datasets 
that encompass a fair share of variations of objects in highly complex 
contexts. As opposed to datasets focused on static targets, COCO 
provides a lot of object categories that work well when training object 
detection models for dynamic road environments as shown in Figure 1. 
As indicated before, COCO encompasses vehicle classes like cars, buses, 
and trucks, as well as pedestrians, and traffic signals—all are important 
for accident detection. Therefore, the COCO dataset firmly laid down 
the foundation for initializing the accident detection system to detect 
objects in traffic scenes. In addition, accident video datasets were 
incorporated in the real-time scene simulation of usual traffic patterns 
and accident occurrences. These videos were chosen based on weather 
conditions ranging from rain and fog to other conditions where visibility 
may be compromised, thus making evaluation of the detection system's 
robustness under such challenging scenarios possible (Table 1). One 
key benefit of using real accident footage is: for the system to be tested 
against the dynamic and ever-changing conditions, it can also further 
deductively evaluate its performance based on visual occlusions and 
temporal changes.

4. Methodology
The proposed system uses artificial intelligence to provide real-

time accident detection and automated emergency response. It integrates 
within the architecture object detection models with environmental 
and situational analysis, all to improve the accuracy and efficiency in 
responding. The framework receives video streams, recognizes pre-
collision events, estimates the severity of an accident, and immediately 
raises alarms to authorities and stakeholders. It is ensured that the usage 
of multitude deep learning models guarantees the adaptive selection 
based on the available computational resource and environmental 

conditions. The system is modular, fundamentally involving acquisition 
von video, detection of object, analysis of collision, estimation of 
severity, emergency response, and automated reporting. The real-
time video acquisition module allows the acquisition of live footage 
from either surveillance cameras or car dash cameras. This object 
detection module comprises deep learning-based YOLO architectures 
used to identify various elements along the road, such as vehicles 
and pedestrians and other environmental constituents. Collision will 
be analyzed using calculations based on IoU and motion tracking to 
determine possible impact zones.

The severity estimation module measures collision intensity, 
accounts for the speed of vehicles and the environment, and plays a 
critical role in determining the subsequent emergency response priority. 
The immediate weather update will also provide better decisions 
improving the accuracy of decision making. The emergency response 
module locates an accident location based on the GPS coordinates 
and the nearest hospitals and police stations for requesting immediate 
intervention. Automated notification will go through email, Short 
Message Service (SMS), or any cloud alerting systems. Improvements 
in response times for emergency services are ensured. AI improves 
the system's detection accuracy, lessens false alarms, and speeds up 
emergency response. 

4

Study / method Key features Limitations How proposed work differs
Vision-based YOLOv5 
accident detection [3]

Real-time object detection in 
traffic scenes

Static model; limited adaptability; no 
severity evaluation

Introduces adaptive model switching 
and severity scoring

YOLOv8 with Deep-
SORT tracking [5]

Multi-object tracking and 
vehicle/pedestrian association

Lacks emergency response or impact 
severity modeling

Adds alert pipeline and real-world 
emergency integration

Smart-IoT accident 
detection systems [2, 15]

Sensor-based accident 
recognition with wireless alerts

Often rule-based; lacks visual 
confirmation or environmental scaling

Visual deep learning with scene-aware 
and weather-adaptive response

UrbanSAM [35] Urban segmentation using 
invariance-inspired adapters

Requires manual prompting; not de-
signed for dynamic incident response

Fully automated segmentation within 
real-time detection pipeline

CNN for multimodal 
sensing [34]

Handles multimodal data for 
classification

Focused on classification, not on 
real-time detection or emergency 
workflow

Combines classification with 
automated decision-making and alert 
mechanisms

Table 1
Comparative overview highlighting the core contributions of selected prior studies in accident detection and how the proposed system 

advances beyond their limitations

 Figure 1
Displaying sample video frames captured from real-time accident



Journal of Computational and Cognitive Engineering Vol. 00  Iss. 00  2025

This flexibility enables the framework to function effectively in 
both city and highway environments. It equips the system to choose 
between different YOLO versions on the basis of its hardware and 
surrounding conditions, ensuring computational efficiency without 
sacrificing detection performance. This system will scale with future 
changes in smart city infrastructure and will form an integral part 
of the intelligent transport system, as well as enhanced road safety 
management, as shown in Figure 2.

1)  Data collection and preprocessing
For the accident detection task, the dataset consists of real-

life traffic videos, dash cam footage, and openly available accident 
datasets. Videos come from various sources, e.g., highway cameras, 
city intersections, and autonomous vehicle datasets. In terms of 
diversity, the dataset encompasses different lighting conditions, weather 
variations, and traffic densities. This pre-processing pipeline involves 
numerous steps aimed at improving data quality and making it suitable 
for deep learning models. First, at a predefined frame rate, video frame 
extraction is done, followed by resolution standardization to make all 
samples consistent. The image is filtered through Gaussian noise filters 
to further enhance clarity. Data augmentations like rotation, scaling, 
and changes in brightness are done so as to increase model robustness 
and limit overfitting. The annotation tools are used to correct object 
detection labels so that bounding boxes for vehicles and pedestrians 
are truly well placed. IoU measures are performed to check labelling 
consistency and improve object detection results. Also, normalization of 
features and scaling of pixel intensity are carried out to match the input 
format for deep learning model requirements. Hence this preprocessing 
pipeline guarantees that the dataset is well balanced, representative, and 
good enough to train accident detection models with high performance.
2)  Dynamic model selection for real-time processing

The selection of an appropriate deep learning model for real-
time accident detection depends on several factors, including hardware 
resources and environmental conditions. The proposed system employs 
a dynamic model selection approach to optimize performance under 
varying constraints. Three versions of YOLO (YOLOv5, YOLOv8, 
and YOLOv11) are used, each tailored for specific scenarios based on 
resource availability and environmental conditions. This strategy not 
only ensures efficient utilization of computational resources but also 
maintains detection reliability across diverse operational scenarios. 
3)  Hardware resource-based selection

Selection of a right deep-learning model for real-time accident 
detection may depend on various hardware and environmental 
considerations. This system proposes a dynamic modelling approach 
to tune performance amid varying constraints. Three YOLO versions 
are available (YOLOv5, YOLOv8, and YOLOv11), thereby providing 
different configurations for various situations, given the resources and 
environmental conditions. Primarily, model selection would depend 

on the hardware random access memory (RAM), central processing 
unit (CPU), and graphics processing unit (GPU) . The system should 
dynamically choose according to those constraints to allow efficient 
processing. In case of low-resource environments, with RAM and 
computational power at a premium, the YOLOv5n model is selected for 
lightweight architecture and even lower computational requirements, 
thus enabling fastest inference time. On the contrary, when high-
performance systems with more than 8 GB of RAM or dedicated 
GPUs are used, the YOLOv11m model is selected for its accuracy and 
processing efficiency. The dynamic selection ensures the overall best 
performance of the system irrespective of the hardware constraints, 
shown in Table 2.
4)  System architecture

The proposed framework operates through a sequential and 
modular architecture designed for real-time accident detection and 
response automation. The system begins with ingestion of live 
or recorded video footage, followed by object detection using a 
dynamically selected YOLO model based on current system memory 
and environmental visibility. Detected vehicles are continuously tracked, 
and collision events are assessed using bounding box deformation, 
speed variation, and IoU metrics. Upon detecting a probable accident, 
the system queries external Application Programming Interfaces (APIs)  
to retrieve current weather conditions and identify the nearest police 
station and hospital using geographic coordinates and Overpass API. 
Severity scoring is computed based on impact metrics and contextual 
weather information. A structured emergency alert, including analytical 
data, images, and video clips, is then auto-generated and dispatched 
via an email interface. This end-to-end pipeline maintains modularity 
and temporal efficiency while integrating detection, analysis, and 
notification subsystems cohesively.

4.1. Model selection and training data strategy
YOLOv5, YOLOv8, and YOLOv11 were chosen because of 

their comparative advantages of balancing between inference speed 

5

Parameter Value/method used
Batch size 16
Learning rate 0.001 
Optimizer Adam
Loss function IoU loss & focal loss
Augmentation techniques Rotation, scaling, noise reduction
Dataset split 80% Train, 20% Validation

Table 2
Model training and validation parameters

Figure 2
A block diagram to represent the workflow of the system 
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and detection accuracy on different operational conditions. YOLOv5 
was used in clear daytime conditions because of its low latency and 
efficiency of resources, whereas the presence of visual complexity 
conditions, including rain, fog, or low-light conditions, the deeper 
architectures were used in YOLOv8 and the new version of Yolo-
YOLOv11, enabling better object localization and classification. The 
COCO curated dataset was used as part of the pipeline to pretrain all the 
models and then fine-tuning the models on a specially curated dataset of 
850 annotated videos that consisted of real-world traffic situations and 
accidents. The data included the usage of dash cam videos, surveillance 
video and publicly-released traffic video datasets. Labelling was 
accomplished with bounding boxes on pre-collision and post-collision 
car states, and was used to learn in the context of detecting impact. This 
fine-tuning was done specifically towards improving the responsiveness 
of the system to domain-specific cases. 

4.2. Environment-based selection       
Environmental factors, especially bad weather, greatly influence 

model selection. Adverse weather conditions, such as rain, fog, and 
snow, can obscure the visual information, reducing the accuracy of the 
detection task. Under adverse scenarios, the system adopts YOLOv5, 
which is found to be robust in noisy and low-quality data. However, 
under good weather conditions where visibility is optimal, the preferred 
model is YOLOv8 or YOLOv11 for high accuracy and speed. Thus, 
adaptive model selection makes sure to detect accidents reliably under 
different possible environmental scenarios, as shown in Figure 3.

4.3. Accident detection framework
Typically, objects like vehicles and pedestrians are detected, 

as well as certain obstacles, through the use of input video frames as 
processed by YOLO models feeding a CNN. Each model was created 
long before being trained to recognize any number of objects through 
its own specific characteristics; for instance, through shape, size, and 
movement behavior. Furthermore, each one of them is defined by a 
bounding box that enters the object identification map with a confidence 
score, which indicates how much likely the object belongs to a pre-
defined class. With all these considerations, object classification can be 
performed accurately and efficiently in an accident detection scenario 
in real time.

The IoU is computed as follows:

4.3.1. Object detection and tracking
It employs IoU that measures the overlap between two bounding 

boxes in tracking moving objects. A crucial role of IoU can be seen in 
tracking objects between consecutive frames, as stated in Equation (1). 
The higher the value of IoU, the more consistent the detected object is 
across successive frames, thus allowing continuous tracking of moving 
vehicles, pedestrians, and obstacles. An important facet of this tracking 
is the dynamic interaction between objects in the universe with a focus 
on potential collision detection. From continuous monitoring override 
and movement of objects, the effectiveness of the system in identifying 
accident-prone scenarios is improved, as evidenced in Figure 3.

4.3.2. Collision detection mechanism
Collision detection primarily relies upon measuring the amount 

of overlap between the bounding boxes of two vehicles, using an IoU 
value to determine significant overlap. Once such cases are identified, 
where bounding boxes overlap enough to suspect a crash, they are 
flagged for collision when the IoU value exceeds a predefined threshold. 
In addition to overlapping bounding boxes, speed and deceleration 
data are taken into account to provide a better understanding of the 
likelihood and severity of the crash. 

Rapid deceleration or abrupt changes in vehicle speed often 
manifest along with collision events and further complement the 
collision detection. It bases its functionality on these variables now 
combined with consideration of bounding box states. This provides 
an excellent model by which normal movement of vehicles can be 
modelled or possible accidents differentiated from their pattern as shown 
in Figure 4. The system's activity is thereby on the real-time monitoring 
of object behavior using IoU calculations and motion analysis for the 
accurate detection and confirmation of collision incidents as evidenced.

4.3.3. Severity estimation algorithm
A multitude of factors, including collision frequency, impact 

speed, and environmental conditions, are evaluating an accident's 
severity. More especially, this means that a greater number of collisions 
or excessive speed can significantly increase the likelihood of severe 
injuries or damage to vehicles as shown in Figure 5. The system includes 
additional risk factors such as environmental data (road conditions and 
weather, e.g. rain, fog, and ice) in order to look at the moderation factor 
in estimating the accident severity through these elements. 

The system ranks the severity of the accidents into three 
categories:

1)  Low severity – Minor collisions occurring at low speeds or under 
favorable environmental conditions

2)  Medium severity – Moderate collisions with higher speeds or 
impacts

(1)
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 Figure 4
Mean Average Precision (mAP) values comparison across various 

models

 Figure 3
Merged image with objection detection and IoU metric based 

accident conformation
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3)  High severity – Most severe accidents induced by either very 
high speeds or under hazardous environmental conditions which 
considerably raise the risk of critical injuries or fatalities 

4.4. Automated emergency response system with 
real-time location tracking

The system harnesses the power of GPS to accurately fix the 
location of the accident. The framework extracts real-time geographic 
coordinates to locate the exact accident site from which emergency 
services can be dispatched quickly and efficiently. This coordinate data 
is also important in determining how close nearby emergency resources 
are and minimizing response times.

4.4.1. Nearest emergency services alert
The emergency system utilizes the Overpass API for quickly 

identifying the nearest hospitals and police stations by establishing a 
certain distance from the accident site. This geospatial query allows 
emergency responders to arrive at the accident scene with minimal 
delays on their part. The system fetches and ranks the closest emergency 
facilities based on the provided GPS coordinates while prioritizing 
those with the least patient transport time. This automation dramatically 
increases the levels of efficiency in emergency response so that victims 
of traumatic accidents can receive immediate first-aid assistance.

4.4.2. Automated notification system
Reports on the accident are created right after the detection of 

the accident by the system and dispatched immediately to the people 
concerned with the stakes, such as policyholders, nominees, and 
emergency services. Integration with SMS, email, and cloud-based alert 
systems ensures that these reports are delivered in an assured timely 
manner, minimizing any delays in responding to emergencies. Adding 
the real-time communication mechanism reduces response time even 
further in making sure assistance is provided when really required, 
without unnecessary delays, as graphically represented in Figure 6. 

4.5. Automatic insurance claim processing
The system retrieves vehicle and insurance information using 

number plate recognition and centralized motor insurance databases. 
When an accident occurs, the vehicle license numbers are collected 
and cross-verified against the insurance records to determine the 
policyholder and the associated coverage. The structured accident report 
consists of accident severity, estimated damage, and relevant image or 
video evidence, which is automatically sent to the respective insurance 
company for starting the claims process. Likewise, additional telematics 
information, like the speed of the vehicle at the time of the accident, the 
force of the impact, and environmental conditions, is added to the claim 
report to make it even more accurate and comprehensive. The damage 

estimation algorithms that are AI-based would determine damages to 
the exterior of the vehicle from analysing the detected impacted zones.

4.6. Performance metrics and evaluation
Evaluating the effectiveness of an AI-based accident detection 

system involves a comprehensive evaluation of multiple performance 
metrics, including the accuracy, speed of processing, and reliability, 
in order to ensure that the selected models will perform under real-
world conditions, as shown in Figure 7. This evaluation framework 
aims to measure with the trade-off between different parameters, 
including analytical strength, computational efficiency, and error rate 
consideration; it thus allows an extensive comparative analysis between 
YOLOv5, YOLOv8, and YOLOv11.

4.6.1. Accuracy of detection models
The mAP serves as a threshold to gauge the performance of 

object detection models on the precision-recall trade-off by considering 
the system's competency in locating and verifying objects present in 
video frames. A comparative analysis of model performances is done 
on YOLOv5, YOLOv8, and YOLOv11 to find the most suitable for 
accident detection. A higher mAP is indicative of better detection 
capability, thus minimizing missed detections and false classifications. 
The above-said evaluation entails that each of the models is tested 
against a benchmark dataset comprised of various accident scenarios 
so that reliability is assured across different environmental conditions 
and camera angles.

4.6.2. Processing speed analysis
Accident detection systems are heavily dependent on real-time 

processing technologies. Also, the test for processing speed includes 
measuring the Frames Per Second (FPS) performed by various models 
while putting different computational constraints. FPS determines how 
fast the model can analyze continuous streams of video, with higher 
FPS parameters indicating fast processing with lesser latency. The 
testing is then extended to various hardware configurations starting 
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 Figure 5
Processing time and accuracy comparison across the models

 Figure 6
Alert processing time in m/s to emergency services

 Figure 7
Models performance comparison across various weather 

conditions
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from edge devices to embedded systems and up to high-performance 
GPUs to ensure deployment in different scenarios. Hence, this test 
helps in model selection for various computational resources while 
maintaining real-time performance.

4.6.3. False positives and false negatives
Reliability is a function of how often false positives and false 

negatives occur, as shown in Figure 8. False positives occur when the 
system falsely identifies the presence of accidents and sends emergency 
alerts even when there were no emergencies that warranted them. 
Conversely, should false negatives occur, real accidents are missed 
causing delayed responses. 

An even input for accident detection must try to reduce both 
errors so that it operates credibly and efficiently. The statistical analysis 
examines the contest of detection errors in the face of different test 
cases, ensuring precision without compromising recall.  The result helps 
refine the model toward optimizing the trade-off between sensitivity 
and specificity for accident detection.

4.7 Computational complexity
The computational efficiency of the framework was assessed in 

terms of inference time, model size, memory footprint, and scalability 
across different YOLO variants. On an NVIDIA RTX 3060 GPU, 
the average per-frame inference times were measured as 12.4 ms for 
YOLOv5, 17.8 ms for YOLOv8, and 25.1 ms for YOLOv11. The 
adaptive switching mechanism enabled dynamic deployment of heavier 
models only when sufficient memory resources were available, thereby 
avoiding unnecessary overhead during normal operating conditions 
(Table 3).

The complete pipeline, from video ingestion through detection, 
severity analysis, and API-based alert dispatch, yielded an average end-
to-end latency of 2.1 s. This latency remains within practical bounds 
for emergency response applications, ensuring timely communication 
to hospitals, police departments, and insurance services. Furthermore, 
memory-aware load balancing minimized execution bottlenecks during 
multi-stream video input, demonstrating an effective balance between 
computational cost and detection precision.

5. Results and Discussion
The performance of the proposed accident detection system was 

evaluated using multiple video datasets under diverse environmental 
conditions. The system demonstrated high accuracy in identifying 
vehicular collisions, with a significant reduction in false positives 
compared to traditional threshold-based methods. The incorporation of 
adaptive model selection enhanced detection efficiency, allowing real-
time processing across devices with varying computational capacities. 
The evaluation framework focused on key performance metrics, 
including detection accuracy, processing speed, and response time. The 
YOLO-based object detection module effectively recognized vehicles 
and calculated collision probabilities using IoU metrics. The adaptive 
selection between YOLOv5, YOLOv8, and YOLOv11 models ensured 
optimized performance based on hardware constraints, with YOLOv8 
achieving the highest precision in complex urban scenarios.

5.1. Performance evaluation of accident detection
The accuracy assessment revealed that YOLOv8 was the 

best among others in detecting accidents in urban areas with high 
traffic density and excellent object tracking. YOLOv11 achieved 
high confidence detections in daylight, and against adverse weather 
conditions of fog and rain, YOLOv5 stood resilient. The speed 
versus accuracy assessment thus showed that YOLOv8 was able to 
maintain a frame rate of 32 FPS on higher-end GPUs and thus real-
time detection capacity in very high-speed traffic scenarios. YOLOv5 
was computationally efficient and could run in edge devices that had 
limited hardware resources. YOLOv11, despite being more precise, was 
heavier in terms of computation power.

To quantitatively demonstrate the effect of each individual 
component, an ablation study was conducted across three configurations: 
a fixed single-model setup, a visibility-adaptive switching setup, and the 
proposed full framework that combines visibility and resource-aware 
model selection. The evaluation considered precision, recall, false 
detection rate, and inference latency, and the results are summarized 
in Table 4.

The results indicate that visibility-adaptive switching alone 
improves recall and reduces false detections compared to a fixed YOLO 
model. When memory-aware switching is also incorporated, the system 
achieves the highest precision and recall while maintaining acceptable 
latency, demonstrating that each module contributes to the overall 
robustness and efficiency of real-time accident detection.

8

 Figure 8
Analyzing false positive and negative rates with different models

Configuration
Precision 

(%)
Recall 
(%)

False 
detection 
rate (%)

Avg. 
latency 

(ms)
Fixed YOLO model 
(no adaptation)

87.3 87.3 87.3 87.3

Visibility-adaptive 
switching only

91.8 91.8 91.8 91.8

Full adaptive switching 
(proposed system)

94.6 94.6 94.6 94.6

Weather-aware 
adaptation (API 
integration)

94.0 94.0 94.0 94.0

Emergency alert 
automation (full 
system)

94.6 94.6 94.6 94.6

Table 4
Ablation study results across different configurations

Model

Avg 
inference 
time (ms)

Model size 
(MB)

FPS 
(approx)

Memory 
usage 

(VRAM)
YOLOv5 12.4 89 MB ~80 FPS ~0.9 GB
YOLOv8 17.8 123 MB ~56 FPS ~1.3 GB
YOLOv11 25.1 152 MB ~40 FPS ~1.6 GB

Table 3
Computational performance of YOLO variants
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5.2. Severity estimation and emergency response 
efficiency

Accident severity evaluation was validated using speed 
estimation, impact analysis, and environmental factors as shown in 
Table 1. High-speed collisions and multi-vehicle collisions are found 
with the higher severity rating and immediate emergency alerts were 
raised. The real-time weather data improved situational awareness 
by adding external risk factors for severity classification. Collisions 
above 60 km/h consistently triggered high-severity alerts with reduced 
emergency response times. Accidents in adverse weather conditions 
were rated higher because of increased risk. Multi-vehicle collisions 
were detected at an accuracy of 94.7%, guaranteeing accurate 
assessment of accident impacts (Table 5). 

The time taken by the automatic system to set alerts and to find 
hospitals and law enforcement agencies was the yardstick for testing the 
automated emergency response system. The system has successfully 
identified clinical facilities in a 5-kilometer radius from the incident 
to ensure fast notification of the required services. The alert generation 
speed was an average delay of 1.9 s between accident detection and 
notification of the system, demonstrating the capability to reduce 
response time. 

5.3. Comparative analysis with existing systems
Recent advances in accident and anomaly detection have 

produced highly capable models, including UIU-Net (2023) and Swin 
Transformer (2021). UIU-Net applies a hierarchical U-Net architecture 
with uncertainty modeling, achieving strong precision in small object and 
infrared target recognition. Similarly, Swin Transformer incorporates 
hierarchical attention for detailed feature extraction and excels in fine-
grained object identification. Despite their accuracy, both methods 
demand high computational resources and exhibit relatively low 
inference speeds, reducing their suitability for real-time deployment as 
shown in Table 6. In contrast, the proposed adaptive YOLO framework 

achieves a more favorable trade-off between accuracy and efficiency, 
sustaining real-time inference while maintaining robustness under low-
light and adverse weather conditions.

5.4. Computational complexity and efficiency analysis
For computational trade-offs, the adaptive framework was 

compared against fixed single-model deployments. While YOLOv11 
alone provides higher accuracy, its inference time (~25 ms per frame) 
makes it less suited for high-frame-rate applications. Conversely, 
YOLOv5 is lightweight but less reliable under adverse conditions. 
The adaptive switching strategy balances these extremes, achieving an 
average of ~18 ms per frame (~55 FPS) while dynamically allocating 
heavier models only when visibility deteriorates. This maintains latency 
within real-time thresholds and reduces unnecessary GPU memory 
consumption by approximately 15–20% compared to continuous 
YOLOv11 execution. In comparison to other state-of-the-art baselines 
such as UIU-Net, which typically operates at ~12 FPS, the proposed 
approach demonstrates markedly better efficiency for continuous 
accident monitoring in live traffic streams.

5.5. Discussion 
The proposed system can detect accidents under diverse 

environmental conditions, where different YOLO models support real-
time object detection. Among these models, YOLOv8 excelled under 
city traffic conditions with mAP of 96.4%. Its superior capabilities 
in object tracking made it efficient even in busy urban settings where 
moving vehicles and pedestrians are a big hindrance. YOLOv11 was 
maximal in daylight conditions with great detection confidence, albeit 
highly demanding in terms of computation power. Thus, it is suitable 
in a heavily traffic-oriented monitoring system where computation has 
no limitation, but it is not suitable for any mobile application since 
resource constraints would limit the computation. In contrast, YOLOv5 
was resilient for such adverse weather as fog and rain, where visibility 
would usually be compromised. Therefore, it is able to maintain 
detection accuracy in difficult conditions due to an increase in contrast 
and reduction of noise, making it an interesting choice for real-time 
accident detection under these conditions.

5.6. Minimization of false positives
To reduce false positive detections, a multi-criteria validation 

strategy was implemented within the system. Collision inference was 
restricted not only to spatial overlap using IoU thresholds but also 
supplemented with temporal analysis of object persistence and speed 
variation. A collision was confirmed only when bounding box overlap 
exceeded a defined threshold across consecutive frames, accompanied 
by abrupt deceleration patterns or sustained proximity between vehicle 
contours. Additionally, severity estimation integrated deformation 
patterns of bounding boxes over time to further differentiate between 
transient occlusions and genuine impacts. These layered checks 
contributed to suppressing spurious triggers arising from shadows, 
visual noise, or dense traffic proximity. 

6. Conclusion 
The major innovations presented in this research can be outlined 

as follows:

1)  An adaptive multi-model accident detection strategy using YOLOv5, 
YOLOv8, and YOLOv11 to maintain robustness across visibility 
variations and low-light conditions.

2)  A severity estimation mechanism based on geometric deformation 
and IoU to quantify collision intensity.
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Method Key strengths Limitations
Feasibility for 
real-time use

UIU-Net 
(2023)

High accuracy for 
small/IR targets

Heavy model, 
~12 FPS

Limited

Swin 
Transformer 
(2021)

Strong fine-grained 
recognition

High latency, 
~10–12 FPS

Limited

Proposed 
framework

Robust across visi-
bility and low-light

Lightweight, 
~25–30 FPS

Strong

Table 6
Comparison with state-of-the-art detection methods

Environment 
condition Model selection Adaptation strategy
Daylight YOLOv11m Standard object detection
Night YOLOv8m Enhanced low-light detection
Foggy YOLOv5m Contrast enhancement & 

filtering
Rainy YOLOv5m Adaptive brightness & noise 

removal
Heavy traffic YOLOv11m High-precision tracking

Table 5
System adaptability in different environments
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3)  Integration with geospatial mapping and automated emergency 
services to accelerate response time.

4)  Incorporation of post-accident automation including license plate 
recognition and insurance claim initiation.

5)  These contributions collectively establish the framework as an 
innovative and practical solution for real-time accident detection 
and severity assessment within intelligent transportation systems.

The primary contributions of this work include an adaptive 
model-switching strategy across YOLOv5, YOLOv8, and YOLOv11 
to maintain high accuracy under varying visibility and low-light 
conditions, a severity estimation mechanism based on IoU and 
geometric deformation, and a unified framework that integrates accident 
detection with automated emergency alerts and insurance processing. 
These advances collectively position the system as a robust and scalable 
solution for deployment in intelligent transportation environments. The 
automated reporting mechanism, wherein the application integrates the 
identification of emergency services via GPS and accident tracking in 
real time, stands to take the front position towards practical deployment 
of the system.

In summary, the study not only demonstrates the technical 
feasibility of adaptive multi-model accident detection but also highlights 
its broader societal impact by bridging intelligent transportation 
research with emergency response, public safety, and insurance 
automation. Beyond immediate deployment, the framework paves the 
way for scalable smart mobility solutions that can reduce response 
times, improve traffic safety, and streamline post-accident processes. 
This positions the system as a significant step toward the realization of 
fully integrated intelligent transportation infrastructures.

7. Future Scope
The framework presented in this study establishes a foundation 

for real-time accident detection and severity assessment, but several 
extensions remain open for exploration. One direction is the integration 
of multi-camera surveillance networks and drone-based platforms, 
which can enhance spatial coverage and improve accident localization 
accuracy. Another promising area involves the use of multimodal 
data sources, including LiDAR, thermal imagery, and vehicle-to-
infrastructure (V2I) communication, to strengthen robustness under 
adverse weather, low-light, and high-traffic conditions.

Advancements in lightweight model compression and edge-
computing deployment may further reduce latency, enabling large-scale 
adoption on embedded devices deployed in vehicles and roadside units. 
These improvements hold the potential to transform accident detection 
systems into fully scalable, city-wide intelligent transportation solutions 
that not only respond rapidly but also adapt dynamically to diverse 
operational environments.

The framework presented in this study establishes a foundation 
for real-time accident detection and severity assessment, but several 
extensions remain open for exploration. One direction is the integration 
of multi-camera surveillance networks and drone-based platforms, 
which can enhance spatial coverage and improve accident localization 
accuracy. Another promising area involves the use of multimodal data 
sources, including LiDAR, thermal imagery, and V2I communication, 
to strengthen robustness under adverse weather, low-light, and high-
traffic conditions.

Advancements in lightweight model compression and edge-
computing deployment may further reduce latency, enabling large-
scale adoption on embedded devices deployed in vehicles and 
roadside units. In addition, coupling the framework with predictive 
analytics could support accident risk forecasting, thereby enabling 
preventive interventions rather than reactive responses. Finally, 
extending the system towards city-wide digital twins and intelligent 

traffic management platforms could facilitate large-scale integration, 
where accident detection operates as one component within a broader 
ecosystem of smart urban mobility.
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