
Received: 9 April 2025 | Revised: 30 July 2025 | Accepted: 10 August 2025 | Published online: 9 October 2025

RESEARCH ARTICLE Journal of Computational and Cognitive Engineering
2025, Vol. 00(00) 1-9

DOI: 10.47852/bonviewJCCE52025886

Comparative Analysis of ML-Based 
Intrusion Detection System for 
Cyber-Physical UAV System

Hafiz Muhammad Attaullah1,2  , Muhammad Harris2  , Inam Ullah Khan1, Muhammad Mansoor Alam1,3 and Mazliham 
Mohd Su’ud1,* 
1 Faculty of Computing and Informatics, Multimedia University, Malaysia
2 Faculty of Computing, Mohammad Ali Jinnah University, Pakistan
3 Faculty of Computing, Riphah International University, Pakistan

Abstract: Unmanned Aerial Vehicles (UAV) represent a new generation of intelligent solutions that improve productivity and safety in agriculture, 
security, and healthcare services. However, they are more prone to cyber-attacks such as data manipulation, spoofing, vague attacks, and false 
data injection due to increasing integration of Cyber-Physical Systems. This research proposes an anomaly-based intrusion detection system (IDS) 
for UAVs with real-time cognition of cyberspace and physical presence using Machine Learning (ML) algorithms to achieve strong performance 
metrics. The feature set includes both cyber-object characteristics (such as network traffic and IP addresses) and physical-object characteristics 
(such as sensor data), collected under both normal and adversarial conditions. This data is used to train and evaluate the proposed approach. Prior 
to training, exploratory data analysis, normalization, and data balancing using the Synthetic Minority Oversampling Technique (SMOTE) were 
performed to maximize the efficiency of the feature space. A well-known cyber-physical dataset, T_ITS, was used in this process. The results 
show that high-quality preprocessing significantly improves key performance metrics such as accuracy, precision, recall, and F1-score. Among 
the classifiers, Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) were identified as the top performers 
achieving an accuracy of 99.18%. These results emphasize the importance of robust IDS frameworks in securing UAV operations against rising 
threat of cyber-attacks. 
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1. Introduction
Unmanned Aerial Vehicles (UAV) or drones are rapidly being 

transformed by their innovative capabilities across many industries. 
Almost every sector now depends almost entirely on autonomous 
machines that fly without human pilots on board, entirely revolutionizing 
safety and efficiency [1]. UAVs replace human presence in dangerous 
environments when human presence is avoidable or unacceptable. To 
enable effective control of these operations for real time monitoring 
and guiding drones to operate smoothly, dedicated control centers are 
created. Over the years, with automation, artificial intelligence, sensor 
technology advancement, and UAVs are increasingly performing more 
automated and more reliable tasks, taking on the responsibility that 
once required very careful manual intervention. UAVs are extremely 
useful in every field such as agriculture, environment monitoring, 
security, aerial photography, transport, construction, and healthcare 
today. However, they are adaptable (can take many problems on their 
own) which results in increased safety and efficiency. For instance, 
drones are used to monitor crop health, soil condition data, and data 
work to help promote precision farming for maximum productivity and 
minimum resource consumption at least in agriculture [2, 3]. During 
security incidents, using UAVs enable continuous monitoring and 

better situational awareness compared to traditional security methods 
and surveillance applications. One can envision the evolution of drones: 
starting as large and heavy machines, gradually getting smaller and 
more efficient, until a small Lindbergh-style drone capable of righting 
itself mid-air and performing tasks like picking up trash in urban areas 
or along rivers (the first of the flying Roombas) . At the same time, 
these advancements have expanded the operational range of UAVs, 
making many systems increasingly reliant on them [4, 5]. However, 
UAVs are subjected to major challenges, particularly in cybersecurity. 
Cyber and physical threats including data hijacking, spoofing, false data 
injection (FDI), electromagnetic pulse (EMP) attacks, and brute force 
password breaches put UAV operations at risk. The safety, reliability, 
and efficiency of UAV systems rely on tackling these problems [6–11].

2. Related Work
This section presents a comprehensive review of the literature 

on Machine Learning (ML) based intrusion detection systems. It 
examines key methodologies from previous research and analyzes their 
contributions to the field.

Jonsson and Olovsson [12] conducted a review of 62 studies 
published between 2014 and 2024 in primary databases, following 
the PRISMA model guidelines and categorizing IDS based on 
detection methods, algorithms, datasets, types of attacks, and software 
environments. It identifies some of the main problems in References 
[13–14], including the large number of false positives, resource 
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constraints, and the unavailability of standard datasets and presents 
some emerging trends and future directions of research on how UAV 
can be made more secure. A study [20] investigates ML-based anomaly 
detection within the context of Aviation CPS . The authors emphasize 
that unsupervised learning is a promising approach, particularly due to 
the limited availability of labeled aviation data. In addition, they point 
to the emergence of hybrid models that potentially increase detection 
accuracy and robustness. Some of the most important issues mentioned 
in a study by Heydarian et al. [21] are the inaccessibility of publicly 
available datasets and evaluation measures, other than just accuracy, 
limiting its future developments to containing standardized datasets, a 
better hybrid method, and inclusion of explainable AI (XAI) approach 
in enhancing model interpretability [22].

Aamir and Zaidi [23] proposed a decentralized learning 
framework in intrusion detection of CPS. Their work is concerned 
with using Federated learning in a scenario where feeding the data 
to the centralized models has the drawbacks of data-sharing, with the 
addition of differential privacy because of its advantages in enhancing 
data safety. Deng et al. [24] and Macrina et al. [25] take this topic by 
contrasting the centralized and decentralized models, and conclude 
that despite having a better detection performance, centralized models 
are associated with a higher risk of privacy. Kim et al. [26] understand 
the structures of privacy-preserving IDs that would adopt the ability to 
classify network traffic with a high degree of accuracy used by the CPS 
forcing organizational sensitive information to be nullified.

In References [27–36], essential security and privacy needs, the 
assessment of the threats, and the countermeasures that might be used to 
address those threats were discussed and identified. These researches are 
highly concentrated on IDSs by using machine learning in the context of 
UAVs, including what techniques should be used in terms of detection, 
features they select, test datasets, and the metrics of the algorithm's 
performance. Besides evaluating the benefits and weaknesses of the 
existing UAV IDSs, they also determine research gaps and propose 
future improvements to the UAV cybersecurity [37–38].

3. Intrusion Detection System for UAV
IDS can be broadly classified into three categories: 

1)  Signature-Based IDS, which relies on predefined attack patterns and 
signatures to detect known threats but is ineffective against zero-day 
attacks. 

2)  Anomaly-Based IDS, which employs machine learning and 
statistical models to identify deviations from normal behavior, 
enabling the detection of novel and previously unseen threats; and 

3)  Hybrid IDS, which combines both signature-based and anomaly-
based techniques to improve detection accuracy and adaptability.

UAV network anomalies are effectively detected through 
anomaly-based IDS because this solution can analyze both cyber 
(network traffic, authentication logs, IP addresses) and physical (sensor 
readings, GPS coordinates, altitude, velocity) parameters [39–42].

Anomaly based IDS for UAVs uses ML and statistical methods 
(SMs) to analyze UAV suspicious activities activities/behaviors and 
decides if these behaviors are anomalous on a real-time basis. IDS is 
more important in detecting new threats that previous pattern-based 
systems such as signature-based systems (SBS) cannot discern. In real 
time of the network traffic and unmanned aerial vehicles operation, the 
anomaly-based IDS improves the security of UAVs in the context of 
the cyber-attacks and systems’ failures. Figure 1 presents a detailed 
view of components in the UAV anomaly detection system [43]. To 
better ensure the safety of UAVs, ML methods or algorithms have 
been introduced into the research of UAV safety such as, Support 

Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), 
HistGradientBoostingClassifier (HGBC), K-Nearest Neighbors 
Classifier (KNC), and Light Gradient Boosting Machine (LightGBM), 
which enhance detection accuracy and reduce possible false alarms. 

4. Methodology
In addition to refining, we need to think about better training of 

ML algorithms; high content of accurate data is crucial to gain better 
outcomes. Normally, they are produced by hardware subsystems and 
are kept in files or in a database. However, in our dataset [1, 43] raw 
data at this state is not utilizable for ML training in its basic format. It 
should not only be preprocessed but also be refined to create a training 
dataset. This process includes several steps: the issues of missing 
values, scaling through standardization, converting categorical data 
into numerical through label encoding, and normalization. Finally, the 
dataset is divided into training and testing zones. These steps help allow 
the ML classifier to do well in training and to be evaluated well on this 
test set. During the simulation process, data was collected in two phases 
[44]. The initial part consisted of training flights where no cybersecurity 
threats were implemented while the second part included five distinct 
forms of cyber threats. The packets of WiFi traffic generated in the Tello 
drone network were secured using the airodump-ng tool, which captures 
the network traffic. A fixed flight plan was used, mimicking operations 
such as farming or surveillance, and the drone transferred sensor data to 
the control unit in 0.5 seconds per intervals. Parameters measured roll, 
pitch, yaw rates, speed, and temperatures of motors. During flight, the 
drone was programmed to carry out random tasks at 10%, 20%, and 
50% chance of it executing the action such as moving and flipping by 
left or right. In total, 35 flights were conducted: twenty normal flights, 
where no cyber-attack was performed, and fifteen flights with different 
cyber-attack scenarios. The collected data was categorized into physical 
data (obtained from the sensors of the drone) and cyber data (file 
format: packet capture (PCAP)). This dataset was utilized to analyze 
the performance of the drone in normal and cyber-attack scenarios. The 
data includes five categories: such as Distributed Denial-of-Service 
(DDoS) Attack, Benign Attack, Evil Twin Attack, FDI Attack, and 
Replay Attack. From the analysis of these attacks, it will be possible to 
determine the potential of IDS for UAVs. IDS models can identify and 
notify UAVs about the occurrence of a cyber-attack and possibly out 
of usual behavior to improve the security and dependability of UAV 
systems by mitigating the risk of cyber threats [45–52]. In Table 1, the 
classification of attacks presented in the T_ITS dataset is described [1]. 
Below are the different cyber-attacks.
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 Figure 1
Anomaly based intrusion detection system for UAV
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The dataset structure was cleaned and restructured to allow for 
analysis and training of a model. First, columns with numeric data 
were identified, and initial replacements of invalid values (i.e., text or 
special characters) from those columns with Not a Number (NaN) were 
performed. We then substituted out these NaN with 0s for consistency. 
To prevent all future errors and to ensure the class-based analysis is 
done only when it should be, rows with missing values on critical class 
columns were dropped. They transformed categorical columns to the 
category data type as categorical columns take up more memory and 
transformed time stamp columns to numeric values so that we can-do 
time-based pattern analysis [53–55]. Columns that did not introduce 
any errors were dropped to simplify the dataset. To convert categorical 
variables into a machine learning compatible form, we applied Label 
Encoding [56–59]. Furthermore, the SMOTE synthesized new data 
points for the minority class to address the class imbalance. This was 
a very important step to avoid hydrangea models being biased toward 
the most dominant class and at the same time reduce hydrangea risks 
from overfitting the data to make it realistic. By looking into the 
preprocessing steps done to this dataset, we ensured that it is all clean 
and ready for efficient and reliable ML tasks by following the cleaning 
and training ML as proposed in the methodology in Figure 2.

5. Results
The evaluation of ML models was conducted using the T_ITS 

dataset in order to assess their classification performance. The most 
crucial factors for classification appear in both the feature importance 
chart and the confusion matrices for model accuracy displays. The bar 
chart along with the table demonstrates that XGBoost (99.08%) coupled 
with CatBoost Classifier (CBC) (99.18%) reaches the top performance 
achievable because these models yield exceptional accuracy measures 
together with precise outcomes and superior recall and F1-score 
measurements.

Various networks can generate a large volume of traffic in the IDS, 
and therefore its feature engineering and selection are indispensable for 
creating efficient machine learning. Feature selection is the process 
of selecting, purging or deriving respective features from raw data, 
which excludes noisy or useless data. Thus, IDS increases the threat 
detection coefficients due to concentration on those aspects that are the 
most important, otherwise the abundance of information only generates 
confusion. Targeted feature selection also reduces computation cost and 
makes it easier to interpret the model at the end of the day. The flaw 
becomes critical while selecting features and other attributes that are 
involved include the false alarm rate. This is a case of having more ‘false 

3

Study/reference Key focus Identified limitations
[12] AIDS High false positive rates, lack 

of standard datasets, resource 
constraints

[13–19] SIDS Same as above – false 
positives, resource usage, 
dataset limitations

[20] AIDS Few labeled datasets, difficulty 
in applying supervised 
learning, need for hybrid/
unsupervised models

[21, 22] AIDS Lack of public datasets, 
overreliance on accuracy 
metric, missing explainability 
(XAI)

[23] AIDS Centralized models risk 
privacy; need for decentralized 
and privacy-preserving 
approaches

[24, 25] DIDS Trade-off between 
performance and privacy; 
centralized systems perform 
better but are less secure

[26] PIDS Sensitive organizational data 
risk, limited adoption of 
high-accuracy private models

[27–36] ML-IDS Dataset issues, vague threat 
models, unclear feature 
selection, inconsistent metrics 
across evaluations

[37, 38] AIDS Lack of standardized 
approaches; need for 
improvement in detection 
models and performance 
metrics

Table 1
Comparative analysis of ML-based IDS research findings

Figure 2
Proposed workflow
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positives,’ or where an alert system identifies non-threatening activities 
as a problem when in fact they are not, and false ‘negatives,’ where a 
real problem is overlooked by the system [60]. That kind of trade-off 
directly affects IDS and shows the need for constant optimization of a 
feature set.

Data cleaning and preprocessing encompass essential steps 
performed prior to data analysis and modeling. It is the first and a 
foundational step when developing and constructing sound ML models. 
This entails steps like data cleaning, data reduction where one removes 
noise, data condensation where one must delete undesired information, 
and data integration where one integrates many datasets. Preprocessing 
is important since the input data of high quality enhances the reliability 
of the models together with predictive performance [61–64]. Performing 
this step will lead to incorrect predictions as well as skewness in the 
output data, which in turn will lead to an erroneous propagation of the 
issues affecting the usability of the model. After the refining, testing 
multiple datasets lets researchers compare the strength of models that 
have been developed. In the end, the results of the experiment showed 
that cleaned and filtered datasets improve classifier accuracy as the 
quality of the input data affects the entire learning process.

In the context of feature importance evaluation, it is very critical 
to know which attributes influence model significantly. For instance, 
a bar graph in Figure 3 with the distribution of feature importance 
demonstrated that “timestamp_c” and “time_last_packet” are the most 
significant carriers, taking up to 32.06% and 27.20, respectively. These 
time-related metrics therefore strongly indicate that their use is very 
relevant, especially in the measurement of network patterns. Other 
important characteristics are identified as “wlan.seq” at 8.97%, “wlan. 
duration” at 6.05%, “ip.id” at 4.62%, data.data at 4.43%, and wlan.ra 
at 4.30%, proving wireless and IP data's impact. On the other hand, 
there was no impact presented by some features including “tcp. dsport,” 
“wlan.sa,” “tcp. flags,” and “tcp. window_size” with an importance 
of 0%. Whenever such insignificant characteristics are detected 
and eliminated within a model, the resulting improved efficiency 
contributes to decreased costs for calculations and more straightforward 
interpretations of results while maintaining the level of accuracy.

Following data preprocessing, several machine learning 
classifiers were used to classify the attacks on the T_ITS dataset. To 
compare the classifiers, means of performance measures including 
precision, recall, and F1-score were employed. The results showed 
that all classifiers were quite successful, and that measures of precision 
and recall were equivalent. Several algorithms, including XGBoost 
Classifier, CatBoost Classifier, and LightGBM Classifier, demonstrated 
superior performance in comparative evaluations. The results suggest 

that the dataset was well preprocessed and the models well-tuned. The 
comparison of these classifiers is presented in Figure 4 and Table 2, 
where the number of the classifiers was considered in the above list; 
the accuracy, precision, recall, and F1-score values are presented in 
the table. Taken together, all these results demonstrated the positive 
effects of clean and optimized raw data on algorithm performance. The 
enhancement shown on the classifiers is commensurate on the need for 
data preprocessing in improving the models for predictive analytics.

A comparative analysis of the classifiers' performance using 
three key metrics was conducted: We report precision, recall, and F1-
score which provide clues about how each classifier works. Moreover, 
Figure 4 indicates that all the algorithms performed well over the T_ITS 
dataset, having a better balance between precision, recall, and F1 score 
metrics.

To further assess classifier performance, we estimated the 
distribution of true and false predictions for each model. As shown 
in Figure 5, tree-based classifiers such as XGBoost, CatBoost, and 
Random Forest Classifier produced a high number of true positives 
and true negatives, with significantly lower false positives and false 
negatives. In contrast, SVM exhibited a comparatively higher rate of 
misclassification, particularly in the form of false positives. These results 
reinforce the advantage of ensemble methods in reducing detection 
errors in IDS system. Also, Figure 6 illustrates the Receiver Operating 
Characteristic (ROC) curves for all classifiers in this environment. 
Each curve depicts the trade-off between the True Positive Rate (TPR) 
and False Positive Rate (FPR), with the Area Under the Curve (AUC) 
providing a single-value summary of classification performance. 
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 Figure 3
Dataset T_ITS feature importance

Attack 
type Attack type Environment

Start 
index

End 
index

Benign – Cyber 1 9426
Physical 9427 13,717

DoS 
attack

Active Cyber 13,718 25,389
Physical 25,390 26,363

Replay 
attack

Active Cyber 26,364 38,370
Physical 38,371 39,344

Evil twin Active Cyber 39,345 45,028
Physical 45,029 50,502

FDI Active Cyber 50,503 53,976
Physical 53,977 54,784

Table 2
Distribution of different types of cyber-attacks in T_ITS dataset

 Figure 4
Performance metrics for algorithms
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Among the models, XGBoost and LightGBM achieved the highest 
AUC scores (0.95), indicating strong discriminatory power. CatBoost 
and Random Forest Classifier followed closely, demonstrating reliable 
detection capabilities. In contrast, SVM exhibited the lowest AUC 
(0.85), suggesting relatively weaker performance in distinguishing 
between attack and benign instances. Overall, the ROC curves affirm 
the effectiveness of tree-based ensemble models for this network.

Table 3 illustrates dramatic improvement in algorithm 
performance especially with XGBC and CBC when clean and filtered 
data is used. Figures 7–13 present heatmaps for top classifiers, which 
represent the performance assessment results of classification techniques 
used for HGBC and KNN, SVM and XGBoost, and LightGBM and 
RNF Machine Learning models. The network analysis models use a 
classification system to identify data points such as Denial-of-Service 
(DoS) attacks, Replay attacks, Benign operations, or an unknown 
category. The results in the confusion matrices show that both XGBoost 
and RNF and HGBC correctly classified 2310 DoS attacks together 
with 2358 Replay attacks and 1882 Benign instances and presented low 
error rates.

The trained LightGBM model performed outstandingly by 
correctly identifying 1881 Benign instances, 2369 Replay attack 
instances, and 2307 DoS attack instances. On the other hand, SVM 
demonstrated misclassification failure that involved classifying 428 

DoS attack samples and mistyping 155 Replay attack samples, thus 
decreasing accuracy rates. An evaluation of KNN model classification 
indicates that the system faces two major limitations since it 
misinterprets 100 Replay attacks and 62 benign instances as Replay 
attacks demonstrating its weaknesses when analyzing intricate network 
traffic patterns.
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T_ITS dataset 
using following 
classifier

Accuracy 
score

Precision 
score

Recall 
score F-1 score

SVM 89.02 85.21 85.06 85.47
KNC 95.42 93.12 92.02 92.5
HGBC 97.17 94.03 93.12 93.5
RFC 98.91 94.5 94.35 94.25
LBM 99.03 94.5 94.65 94.25
XGBC 99.08 95.01 95.03 95.15
CBC 99.18 94.5 94.34 94.25

Table 3
Results of various classifiers' accuracy score using T_ITS dataset

 Figure 5
True positives, true negatives, false positives, and false negatives 

for each classifier on the T_ITS dataset

 Figure 6
ROC curves for all classifiers evaluated on the T_ITS dataset

 Figure 7
Confusion matrix heatmap (CatBoost model)

 Figure 8
Confusion matrix heatmap (XGBoost model)
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Finally, we applied a 5-fold stratified cross-validation to validate 
the model's generalization performance. As a result, Table 4 represents 
the average performance of our best classifier that demonstrates a 
consistent accuracy of 79.10% and macro F1-score of 78.33%, which 
indicates a balanced classification across potentially imbalanced 
class distributions. The high AUC score (93.40%) suggests strong 
discriminative capability, meaning the classifier is effective at 
distinguishing between attack types and benign traffic. The low 
standard deviations across all metrics confirm that the model performs 
stably across different folds, reducing concerns about data split bias or 
overfitting.

6

Metric Mean Standard deviation
Accuracy 79.10% ± 2.82%
F1-score 78.33% ± 2.83%
AUC 93.40% ± 0.93%

Table 4
Mean performance scores and standard deviation across 5-fold 

stratified cross-validation

 Figure 9
Confusion matrix heatmap (LightGBM model)

 Figure 13
Confusion matrix heatmap (SVM model)

 Figure 11
Confusion matrix heatmap (HGBC model)

 Figure 12
Confusion matrix heatmap (KNN model)

 Figure 10
Confusion matrix heatmap (RNF model)
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6. Conclusion
UAVs have completely changed the way things are done in fields 

like agriculture, security, healthcare, and military operations. These 
drones have become more efficient and versatile with advancements in 
automation, AI, and the technologies of their sensor package. Despite 
these, challenges such as poor battery life, lack of mobility, and inherent 
vulnerability to Benign, Replay, FDI, and DoS attacks continue to 
persist. In order to handle these, we focused on a dataset and cleaned 
and prepared it (removing duplicates, removing missing values by 
imputation, filtering outliers, and encoding categorical values using 
label encoding and string conversion). Secondly, we balanced out data 
distribution across classes with sampling and filtration approaches for 
feature engineering, categorical encoding, and Transformation for better 
dataset usability. After making necessary checks and data cleaning, we 
tested the algorithms like XGBC, HGBC, RFC, SVM, KNC, CBC, and 
LGBM to determine which performed best. We evaluated the models 
with metrics such as the confusion matrix, accuracy, precision, recall, 
F1 score, and heatmaps to get some insight about their performance. As 
we approach the future, more sensible integration of more intelligent 
IDS systems such as advanced deep learning models, graph algorithms, 
and metaheuristic techniques are promising to further increase the 
efficiency and security of UAVs. These new capabilities will meet 
growing data demands, respond to emerging cyber threats, and allow 
UAVs to continue to transform the industry while protecting operations.
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