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Abstract: Unmanned Aerial Vehicles (UAV) represent a new generation of intelligent solutions that improve productivity and safety in agriculture,
security, and healthcare services. However, they are more prone to cyber-attacks such as data manipulation, spoofing, vague attacks, and false
data injection due to increasing integration of Cyber-Physical Systems. This research proposes an anomaly-based intrusion detection system (IDS)
for UAVs with real-time cognition of cyberspace and physical presence using Machine Learning (ML) algorithms to achieve strong performance
metrics. The feature set includes both cyber-object characteristics (such as network traffic and IP addresses) and physical-object characteristics
(such as sensor data), collected under both normal and adversarial conditions. This data is used to train and evaluate the proposed approach. Prior
to training, exploratory data analysis, normalization, and data balancing using the Synthetic Minority Oversampling Technique (SMOTE) were
performed to maximize the efficiency of the feature space. A well-known cyber-physical dataset, T ITS, was used in this process. The results
show that high-quality preprocessing significantly improves key performance metrics such as accuracy, precision, recall, and F1-score. Among
the classifiers, Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) were identified as the top performers
achieving an accuracy of 99.18%. These results emphasize the importance of robust IDS frameworks in securing UAV operations against rising

threat of cyber-attacks.
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1. Introduction

Unmanned Aerial Vehicles (UAV) or drones are rapidly being
transformed by their innovative capabilities across many industries.
Almost every sector now depends almost entirely on autonomous
machines that fly without human pilots on board, entirely revolutionizing
safety and efficiency [1]. UAVs replace human presence in dangerous
environments when human presence is avoidable or unacceptable. To
enable effective control of these operations for real time monitoring
and guiding drones to operate smoothly, dedicated control centers are
created. Over the years, with automation, artificial intelligence, sensor
technology advancement, and UAVs are increasingly performing more
automated and more reliable tasks, taking on the responsibility that
once required very careful manual intervention. UAVs are extremely
useful in every field such as agriculture, environment monitoring,
security, aerial photography, transport, construction, and healthcare
today. However, they are adaptable (can take many problems on their
own) which results in increased safety and efficiency. For instance,
drones are used to monitor crop health, soil condition data, and data
work to help promote precision farming for maximum productivity and
minimum resource consumption at least in agriculture [2, 3]. During
security incidents, using UAVs enable continuous monitoring and
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better situational awareness compared to traditional security methods
and surveillance applications. One can envision the evolution of drones:
starting as large and heavy machines, gradually getting smaller and
more efficient, until a small Lindbergh-style drone capable of righting
itself mid-air and performing tasks like picking up trash in urban areas
or along rivers (the first of the flying Roombas) . At the same time,
these advancements have expanded the operational range of UAVs,
making many systems increasingly reliant on them [4, 5]. However,
UAVs are subjected to major challenges, particularly in cybersecurity.
Cyber and physical threats including data hijacking, spoofing, false data
injection (FDI), electromagnetic pulse (EMP) attacks, and brute force
password breaches put UAV operations at risk. The safety, reliability,
and efficiency of UAV systems rely on tackling these problems [6—11].

2. Related Work

This section presents a comprehensive review of the literature
on Machine Learning (ML) based intrusion detection systems. It
examines key methodologies from previous research and analyzes their
contributions to the field.

Jonsson and Olovsson [12] conducted a review of 62 studies
published between 2014 and 2024 in primary databases, following
the PRISMA model guidelines and categorizing IDS based on
detection methods, algorithms, datasets, types of attacks, and software
environments. It identifies some of the main problems in References
[13-14], including the large number of false positives, resource
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constraints, and the unavailability of standard datasets and presents
some emerging trends and future directions of research on how UAV
can be made more secure. A study [20] investigates ML-based anomaly
detection within the context of Aviation CPS . The authors emphasize
that unsupervised learning is a promising approach, particularly due to
the limited availability of labeled aviation data. In addition, they point
to the emergence of hybrid models that potentially increase detection
accuracy and robustness. Some of the most important issues mentioned
in a study by Heydarian et al. [21] are the inaccessibility of publicly
available datasets and evaluation measures, other than just accuracy,
limiting its future developments to containing standardized datasets, a
better hybrid method, and inclusion of explainable Al (XAI) approach
in enhancing model interpretability [22].

Aamir and Zaidi [23] proposed a decentralized learning
framework in intrusion detection of CPS. Their work is concerned
with using Federated learning in a scenario where feeding the data
to the centralized models has the drawbacks of data-sharing, with the
addition of differential privacy because of its advantages in enhancing
data safety. Deng et al. [24] and Macrina et al. [25] take this topic by
contrasting the centralized and decentralized models, and conclude
that despite having a better detection performance, centralized models
are associated with a higher risk of privacy. Kim et al. [26] understand
the structures of privacy-preserving IDs that would adopt the ability to
classify network traffic with a high degree of accuracy used by the CPS
forcing organizational sensitive information to be nullified.

In References [27-36], essential security and privacy needs, the
assessment of the threats, and the countermeasures that might be used to
address those threats were discussed and identified. These researches are
highly concentrated on IDSs by using machine learning in the context of
UAVs, including what techniques should be used in terms of detection,
features they select, test datasets, and the metrics of the algorithm's
performance. Besides evaluating the benefits and weaknesses of the
existing UAV IDSs, they also determine research gaps and propose
future improvements to the UAV cybersecurity [37-38].

3. Intrusion Detection System for UAV
IDS can be broadly classified into three categories:

1) Signature-Based IDS, which relies on predefined attack patterns and
signatures to detect known threats but is ineffective against zero-day
attacks.

2) Anomaly-Based IDS, which employs machine learning and
statistical models to identify deviations from normal behavior,
enabling the detection of novel and previously unseen threats; and

3) Hybrid IDS, which combines both signature-based and anomaly-
based techniques to improve detection accuracy and adaptability.

UAV network anomalies are effectively detected through
anomaly-based IDS because this solution can analyze both cyber
(network traffic, authentication logs, IP addresses) and physical (sensor
readings, GPS coordinates, altitude, velocity) parameters [39—42].

Anomaly based IDS for UAVs uses ML and statistical methods
(SMs) to analyze UAV suspicious activities activities/behaviors and
decides if these behaviors are anomalous on a real-time basis. IDS is
more important in detecting new threats that previous pattern-based
systems such as signature-based systems (SBS) cannot discern. In real
time of the network traffic and unmanned aerial vehicles operation, the
anomaly-based IDS improves the security of UAVs in the context of
the cyber-attacks and systems’ failures. Figure 1 presents a detailed
view of components in the UAV anomaly detection system [43]. To
better ensure the safety of UAVs, ML methods or algorithms have
been introduced into the research of UAV safety such as, Support

Figure 1
Anomaly based intrusion detection system for UAV
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4. Methodology

In addition to refining, we need to think about better training of
ML algorithms; high content of accurate data is crucial to gain better
outcomes. Normally, they are produced by hardware subsystems and
are kept in files or in a database. However, in our dataset [1, 43] raw
data at this state is not utilizable for ML training in its basic format. It
should not only be preprocessed but also be refined to create a training
dataset. This process includes several steps: the issues of missing
values, scaling through standardization, converting categorical data
into numerical through label encoding, and normalization. Finally, the
dataset is divided into training and testing zones. These steps help allow
the ML classifier to do well in training and to be evaluated well on this
test set. During the simulation process, data was collected in two phases
[44]. The initial part consisted of training flights where no cybersecurity
threats were implemented while the second part included five distinct
forms of cyber threats. The packets of WiFi traffic generated in the Tello
drone network were secured using the airodump-ng tool, which captures
the network traffic. A fixed flight plan was used, mimicking operations
such as farming or surveillance, and the drone transferred sensor data to
the control unit in 0.5 seconds per intervals. Parameters measured roll,
pitch, yaw rates, speed, and temperatures of motors. During flight, the
drone was programmed to carry out random tasks at 10%, 20%, and
50% chance of it executing the action such as moving and flipping by
left or right. In total, 35 flights were conducted: twenty normal flights,
where no cyber-attack was performed, and fifteen flights with different
cyber-attack scenarios. The collected data was categorized into physical
data (obtained from the sensors of the drone) and cyber data (file
format: packet capture (PCAP)). This dataset was utilized to analyze
the performance of the drone in normal and cyber-attack scenarios. The
data includes five categories: such as Distributed Denial-of-Service
(DDoS) Attack, Benign Attack, Evil Twin Attack, FDI Attack, and
Replay Attack. From the analysis of these attacks, it will be possible to
determine the potential of IDS for UAVs. IDS models can identify and
notify UAVs about the occurrence of a cyber-attack and possibly out
of usual behavior to improve the security and dependability of UAV
systems by mitigating the risk of cyber threats [45-52]. In Table 1, the
classification of attacks presented in the T _ITS dataset is described [1].
Below are the different cyber-attacks.
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Table 1
Comparative analysis of ML-based IDS research findings

Study/reference Identified limitations

[12]

Key focus
AIDS

High false positive rates, lack
of standard datasets, resource
constraints

SIDS Same as above — false
positives, resource usage,

dataset limitations

Few labeled datasets, difficulty
in applying supervised
learning, need for hybrid/
unsupervised models

[13-19]

[20] AIDS

[21,22] AIDS Lack of public datasets,
overreliance on accuracy
metric, missing explainability
(XAD

Centralized models risk
privacy; need for decentralized
and privacy-preserving

approaches

AIDS

[24, 25] DIDS Trade-off between
performance and privacy;
centralized systems perform
better but are less secure
[26] PIDS Sensitive organizational data
risk, limited adoption of
high-accuracy private models
[27-36] ML-IDS Dataset issues, vague threat
models, unclear feature
selection, inconsistent metrics

across evaluations

Lack of standardized
approaches; need for
improvement in detection

[37, 38] AIDS
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5. Results

The dataset structure was cleaned and restructured to allow for
analysis and training of a model. First, columns with numeric data
were identified, and initial replacements of invalid values (i.e., text or
special characters) from those columns with Not a Number (NaN) were
performed. We then substituted out these NaN with Os for consistency.
To prevent all future errors and to ensure the class-based analysis is
done only when it should be, rows with missing values on critical class
columns were dropped. They transformed categorical columns to the
category data type as categorical columns take up more memory and
transformed time stamp columns to numeric values so that we can-do
time-based pattern analysis [53—55]. Columns that did not introduce
any errors were dropped to simplify the dataset. To convert categorical
variables into a machine learning compatible form, we applied Label
Encoding [56—59]. Furthermore, the SMOTE synthesized new data
points for the minority class to address the class imbalance. This was
a very important step to avoid hydrangea models being biased toward
the most dominant class and at the same time reduce hydrangea risks
from overfitting the data to make it realistic. By looking into the
preprocessing steps done to this dataset, we ensured that it is all clean
and ready for efficient and reliable ML tasks by following the cleaning
and training ML as proposed in the methodology in Figure 2.

The evaluation of ML models was conducted using the T ITS
dataset in order to assess their classification performance. The most
crucial factors for classification appear in both the feature importance
chart and the confusion matrices for model accuracy displays. The bar
chart along with the table demonstrates that XGBoost (99.08%) coupled
with CatBoost Classifier (CBC) (99.18%) reaches the top performance
achievable because these models yield exceptional accuracy measures
together with precise outcomes and superior recall and Fl-score
measurements.

Various networks can generate a large volume of traffic in the IDS,
and therefore its feature engineering and selection are indispensable for
creating efficient machine learning. Feature selection is the process
of selecting, purging or deriving respective features from raw data,
which excludes noisy or useless data. Thus, IDS increases the threat
detection coefficients due to concentration on those aspects that are the
most important, otherwise the abundance of information only generates
confusion. Targeted feature selection also reduces computation cost and
makes it easier to interpret the model at the end of the day. The flaw
becomes critical while selecting features and other attributes that are
involved include the false alarm rate. This is a case of having more ‘false
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positives,” or where an alert system identifies non-threatening activities
as a problem when in fact they are not, and false ‘negatives,” where a
real problem is overlooked by the system [60]. That kind of trade-off
directly affects IDS and shows the need for constant optimization of a
feature set.

Data cleaning and preprocessing encompass essential steps
performed prior to data analysis and modeling. It is the first and a
foundational step when developing and constructing sound ML models.
This entails steps like data cleaning, data reduction where one removes
noise, data condensation where one must delete undesired information,
and data integration where one integrates many datasets. Preprocessing
is important since the input data of high quality enhances the reliability
of the models together with predictive performance [61-64]. Performing
this step will lead to incorrect predictions as well as skewness in the
output data, which in turn will lead to an erroneous propagation of the
issues affecting the usability of the model. After the refining, testing
multiple datasets lets researchers compare the strength of models that
have been developed. In the end, the results of the experiment showed
that cleaned and filtered datasets improve classifier accuracy as the
quality of the input data affects the entire learning process.

In the context of feature importance evaluation, it is very critical
to know which attributes influence model significantly. For instance,
a bar graph in Figure 3 with the distribution of feature importance
demonstrated that “timestamp_c” and “time_last packet” are the most
significant carriers, taking up to 32.06% and 27.20, respectively. These
time-related metrics therefore strongly indicate that their use is very
relevant, especially in the measurement of network patterns. Other
important characteristics are identified as “wlan.seq” at 8.97%, “wlan.
duration” at 6.05%, “ip.id” at 4.62%, data.data at 4.43%, and wlan.ra
at 4.30%, proving wireless and IP data's impact. On the other hand,
there was no impact presented by some features including “tcp. dsport,”
“wlan.sa,” “tcp. flags,” and “tcp. window_size” with an importance
of 0%. Whenever such insignificant characteristics are detected
and eliminated within a model, the resulting improved efficiency
contributes to decreased costs for calculations and more straightforward
interpretations of results while maintaining the level of accuracy.

Following data preprocessing, several machine learning
classifiers were used to classify the attacks on the T ITS dataset. To
compare the classifiers, means of performance measures including
precision, recall, and Fl-score were employed. The results showed
that all classifiers were quite successful, and that measures of precision
and recall were equivalent. Several algorithms, including XGBoost
Classifier, CatBoost Classifier, and LightGBM Classifier, demonstrated
superior performance in comparative evaluations. The results suggest

Figure 3
Dataset T_ITS feature importance
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that the dataset was well preprocessed and the models well-tuned. The
comparison of these classifiers is presented in Figure 4 and Table 2,
where the number of the classifiers was considered in the above list;
the accuracy, precision, recall, and Fl-score values are presented in
the table. Taken together, all these results demonstrated the positive
effects of clean and optimized raw data on algorithm performance. The
enhancement shown on the classifiers is commensurate on the need for
data preprocessing in improving the models for predictive analytics.

A comparative analysis of the classifiers' performance using
three key metrics was conducted: We report precision, recall, and F1-
score which provide clues about how each classifier works. Moreover,
Figure 4 indicates that all the algorithms performed well over the T _ITS
dataset, having a better balance between precision, recall, and F1 score
metrics.

To further assess classifier performance, we estimated the
distribution of true and false predictions for each model. As shown
in Figure 5, tree-based classifiers such as XGBoost, CatBoost, and
Random Forest Classifier produced a high number of true positives
and true negatives, with significantly lower false positives and false
negatives. In contrast, SVM exhibited a comparatively higher rate of
misclassification, particularly in the form of false positives. These results
reinforce the advantage of ensemble methods in reducing detection
errors in IDS system. Also, Figure 6 illustrates the Receiver Operating
Characteristic (ROC) curves for all classifiers in this environment.
Each curve depicts the trade-off between the True Positive Rate (TPR)
and False Positive Rate (FPR), with the Area Under the Curve (AUC)
providing a single-value summary of classification performance.

Figure 4
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Table 2
Distribution of different types of cyber-attacks in T_ITS dataset
Attack Start End
type Attack type  Environment index index
Benign - Cyber 1 9426
Physical 9427 13,717
DoS Active Cyber 13,718 25,389
attack Physical 25390 26,363
Replay Active Cyber 26,364 38,370
attack Physical 38371 39,344
Evil twin  Active Cyber 39,345 45,028
Physical 45,029 50,502
FDI Active Cyber 50,503 53,976
Physical 53,977 54,784
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Figure 5
True positives, true negatives, false positives, and false negatives
for each classifier on the T_ITS dataset
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Figure 6
ROC curves for all classifiers evaluated on the T _ITS dataset
1.0+
P
I
i
081
i
1
i
0.6 1 _il
£ ]
= L
IR
041§
I
I
{!
024;
!
0.0+ d . . :
0.0 0.2 0.4 0.6 08 1.0
FPR
SVM (AUC = 0.85) —e- LBM (AUC = 0.95)
—e- KNC (AUC = 0.93) —s- XGBC (AUC = 0.95)
—e- HGBC (AUC = 0.94) —e- CBC (AUC =0.94)
—

- RFC (AUC = 0.94)

Among the models, XGBoost and LightGBM achieved the highest
AUC scores (0.95), indicating strong discriminatory power. CatBoost
and Random Forest Classifier followed closely, demonstrating reliable
detection capabilities. In contrast, SVM exhibited the lowest AUC
(0.85), suggesting relatively weaker performance in distinguishing
between attack and benign instances. Overall, the ROC curves affirm
the effectiveness of tree-based ensemble models for this network.

Table 3 illustrates dramatic improvement in algorithm
performance especially with XGBC and CBC when clean and filtered
data is used. Figures 7—13 present heatmaps for top classifiers, which
represent the performance assessment results of classification techniques
used for HGBC and KNN, SVM and XGBoost, and LightGBM and
RNF Machine Learning models. The network analysis models use a
classification system to identify data points such as Denial-of-Service
(DoS) attacks, Replay attacks, Benign operations, or an unknown
category. The results in the confusion matrices show that both XGBoost
and RNF and HGBC correctly classified 2310 DoS attacks together
with 2358 Replay attacks and 1882 Benign instances and presented low
error rates.

The trained LightGBM model performed outstandingly by
correctly identifying 1881 Benign instances, 2369 Replay attack
instances, and 2307 DoS attack instances. On the other hand, SVM
demonstrated misclassification failure that involved classifying 428

Table 3
Results of various classifiers' accuracy score using T _ITS dataset

T_ITS dataset

using following Accuracy Precision Recall
classifier score score score  F-1 score
SVM 89.02 85.21 85.06 85.47
KNC 95.42 93.12 92.02 92.5
HGBC 97.17 94.03 93.12 93.5
RFC 98.91 94.5 94.35 94.25
LBM 99.03 94.5 94.65 94.25
XGBC 99.08 95.01 95.03 95.15
CBC 99.18 94.5 94.34 94.25
Figure 7

Confusion matrix heatmap (CatBoost model)
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Figure 8
Confusion matrix heatmap (XGBoost model)
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DoS attack samples and mistyping 155 Replay attack samples, thus
decreasing accuracy rates. An evaluation of KNN model classification
indicates that the system faces two major limitations since it
misinterprets 100 Replay attacks and 62 benign instances as Replay
attacks demonstrating its weaknesses when analyzing intricate network

traffic patterns.
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Figure 9
Confusion matrix heatmap (LightGBM model)
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Figure 10
Confusion matrix heatmap (RNF model)
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Figure 11
Confusion matrix heatmap (HGBC model)
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Figure 12
Confusion matrix heatmap (KNN model)
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Figure 13
Confusion matrix heatmap (SVM model)
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Table 4

Mean performance scores and standard deviation across S-fold
stratified cross-validation

Metric Mean Standard deviation
Accuracy 79.10% +2.82%
F1-score 78.33% +2.83%
AUC 93.40% +0.93%

Finally, we applied a 5-fold stratified cross-validation to validate
the model's generalization performance. As a result, Table 4 represents
the average performance of our best classifier that demonstrates a
consistent accuracy of 79.10% and macro F1-score of 78.33%, which
indicates a balanced classification across potentially imbalanced
class distributions. The high AUC score (93.40%) suggests strong
discriminative capability, meaning the classifier is effective at
distinguishing between attack types and benign traffic. The low
standard deviations across all metrics confirm that the model performs
stably across different folds, reducing concerns about data split bias or
overfitting.
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6. Conclusion

UAVs have completely changed the way things are done in fields
like agriculture, security, healthcare, and military operations. These
drones have become more efficient and versatile with advancements in
automation, Al, and the technologies of their sensor package. Despite
these, challenges such as poor battery life, lack of mobility, and inherent
vulnerability to Benign, Replay, FDI, and DoS attacks continue to
persist. In order to handle these, we focused on a dataset and cleaned
and prepared it (removing duplicates, removing missing values by
imputation, filtering outliers, and encoding categorical values using
label encoding and string conversion). Secondly, we balanced out data
distribution across classes with sampling and filtration approaches for
feature engineering, categorical encoding, and Transformation for better
dataset usability. After making necessary checks and data cleaning, we
tested the algorithms like XGBC, HGBC, RFC, SVM, KNC, CBC, and
LGBM to determine which performed best. We evaluated the models
with metrics such as the confusion matrix, accuracy, precision, recall,
F1 score, and heatmaps to get some insight about their performance. As
we approach the future, more sensible integration of more intelligent
IDS systems such as advanced deep learning models, graph algorithms,
and metaheuristic techniques are promising to further increase the
efficiency and security of UAVs. These new capabilities will meet
growing data demands, respond to emerging cyber threats, and allow
UAVs to continue to transform the industry while protecting operations.
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