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Abstract: Autonomous vehicle (AV) perception tasks are critical for enabling self-driving cars to navigate complex environments, relying
on advanced technologies to interpret and understand the surrounding world through sensors, deep learning models, and sensor fusion
techniques. This review paper provides a comprehensive overview of deep learning architectures applied to AV perception tasks, with a
particular focus on recent advancements from 2019 to 2024. The paper begins by examining 3D object detection techniques, exploring the
state-of-the-art methods developed during the past six years. Moreover, object localization innovations are discussed, pointing out certain
key advancements in that area. The paper also discusses sensor fusion techniques and how they are central to improving performance in 3D
object detection. Finally, the discussion encompasses various environmental perception methods such as road and lane detection and traffic
sign recognition, all of which are crucial for the safe and efficient operation of AVs. This paper aims to provide insights into the evolving
landscape of AV perception and its applications in intelligent transportation systems.
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1. Introduction

Autonomous vehicles (AVs) are reshaping transportation by
offering enhanced safety, reduced traffic congestion, and improved
energy efficiency [1]. For safe navigation, AVs must accurately per-
ceive and interpret their surroundings. Deep learning has emerged
as a critical technology enabling AVs to reliably perform core tasks,
including precise 3D object detection, accurate object localization,
effective sensor fusion, and robust environmental perception [2, 3].
The deep learning innovations for AV perception are essential for
addressing challenges posed by complex driving conditions, such as
dynamic environments, varying weather, and the demand for real-
time processing. However, the rapid evolution and diversity of these
methodologies have complicated the knowledge landscape, mak-
ing it challenging for researchers and practitioners to effectively
summarize, integrate, and build upon recent developments.

The autonomy of vehicle systems heavily relies on robust
environmental perception, sophisticated motion planning, and accu-
rate control mechanisms [4]. Figure 1 illustrates the architecture
of such autonomous systems. Utilizing a perception module [5],
these systems interpret both their internal states and external envi-
ronments through techniques like visual localization, mapping, and
environmental analysis. They integrate the results of perception
[6] with motion planning to generate suitable control commands,
enabling precise navigation and the autonomous completion of
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Figure 1
Architecture of autonomous systems
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complex tasks. Effective understanding and interpretation of the
surrounding environment are essential for autonomous systems [7].
Visual simultaneous localization and mapping (vSLAM) signifi-
cantly enhances autonomy by allowing robots to determine their
position and create environmental models using visual sensors.
With vSLAM, autonomous systems can effectively gather environ-
mental data, build accurate environment models, and assess their
internal status, thus increasing their intelligence and operational
autonomy.

Accurate perception and understanding of the environment
are essential for autonomous systems. Visual simultaneous local-
ization and mapping (vSLAM) algorithms are widely employed
to build various environmental representations, including sparse,
semi-dense, and dense maps, depending on specific application
requirements [8]. The AV’s state, comprising its position and orien-
tation, must be continuously monitored, as real-time state estimation
is foundational for autonomous control [9]. Despite their effective-
ness in self-localization and ego-motion estimation, contemporary
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vSLAMmethods often rely on restrictive assumptions, such as static
scenes and photometric consistency [10].

This review paper provides a thorough information resource for
scholars and practitioners by examining cutting-edgemethodologies
and their practical applications. This review’s primary contributions
are as follows:

1) This article examines the latest advances (2019–2024) in deep
learning architectures employed in AV perception systems.

2) It highlights state-of-the-art 3D object detection methods for
understanding vehicle environments, combined with an analy-
sis of object localization approaches designed to improve spatial
awareness and accuracy in autonomous systems.

3) It provides a detailed overview of sensor fusion strategies that
integrate data from Light Detection and Ranging (LiDAR),
cameras, and radar to support robust perception capabilities.

4) It evaluates key environmental perception techniques, including
road and lane detection and traffic sign recognition, which are
critical for reliable and safe autonomous navigation.

1.1. Search strategy and inclusion criteria

This study follows a four-step procedure for identifying and
selecting articles, as illustrated in Figure 2. The preliminary search
process began by identifying papers by keywords through stan-
dard electronic databases such as Google Scholar, Scopus, ACM,
Springer Link, Elsevier, IEEE Explore, MDPI, and Wiley, includ-
ing journal articles, book chapters, and conference papers published
within the last six years (2019–2024). The primary keywords
utilized to identify relevant articles were “autonomous vehicle
perception,” “deep learning,” “3D object detection,” “object local-
ization,” “sensor fu sion,” “lane detection,” and “traffic sign
recognition” with logical operators (AND/OR) between each key-
word. The articles are initially evaluated using the criteria outlined
in Figure 3. In all, only 116 articles met the inclusion criteria for this
review. Table 1 outlines the key acronyms used in the article.

Figure 2
PRISMA model used in the literature review
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Figure 3
Inclusion criteria for the paper selection process Figure_01

Table 1
Acronyms and descriptions

Acronyms Description
AV Autonomous Vehicle
CNN Convolutional Neural Network
RNN Recurrent Neural Network
GAN Generative Adversarial Networks
vSLAM Visual Simultaneous Localization and

Mapping
AP Average Precision
GRU Gated Recurrent Unit
MLP Multilayer Perceptron
IMU Inertial Measurement Unit
LiDAR Light Detection and Ranging
ROI Region of Interest
SDTM Simultaneous Dynamic Triangulation

Mapping
LFA Local Feature Aggregation
BEV Bird’s Eye View
ADS Autonomous Driving Systems
TSSR Traffic Sign and Signal Recognition

The article is structured into several sections: Section 2 reviews
AV perception systems, including traditional systems and their key
components. Section 3 analyzes deep learning approaches used in
perception tasks, while Section 4 summarizes 3D object detection
methods. Section 5 covers techniques for the 3D perception and
localization of AVs. Section 6 explores sensor fusion strategies, and
Section 7 addresses specific challenges related to environmental
perception. Section 8 highlights the limitations and ongoing chal-
lenges, and Section 9 suggests directions for future research. The
whole structure of this study is depicted in Figure 4.
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Figure 4
Structure of our study

2. Overview of Autonomous Driving Perception
Systems

Perception involves gathering data from sensory inputs and the
environment, interpreting it to achieve meaningful comprehension,
and subsequently employing this information to inform actions.
In AVs, perception relies on several onboard sensors that collect
diverse data types, which are analyzed using sophisticated com-
putational algorithms and machine learning models to assess the
vehicle’s environment and guide driving decisions. Comprehending
perception in AVs necessitates knowledge of the sensors incorpo-
rated inside these vehicles and the unique methodologies utilized for
interpreting sensory data.

2.1. Traditional perception systems

The development of AVs began with the establishment of
sophisticated perception systems designed to ensure safe navigation.
The primary objective of these systems is to assist vehicles in identi-
fying and comprehending critical environmental components, such
as other vehicles, pedestrians, roadways, and traffic signals. Essen-
tial perception tasks encompass localization and mapping, object
detection and tracking, lane marker recognition, traffic sign iden-
tification, and comprehensive scene understanding, necessitating
sophisticated sensing technologies and dependable data processing
techniques.

Traditionally, AVs had various sensor arrays, each executing
distinct functions. Cameras proficiently recorded visual elements
like lane markings, traffic signs, and adjacent objects, although they
were susceptible to disruptions caused by fluctuating light condi-
tions, shadows, and visibility challenges [11]. Radar devices offered
reliable readings of object distances and velocities irrespective of
weather conditions, crucial for monitoring vehicles and barriers;
nevertheless, they were deficient in the spatial resolution character-
istics of cameras and LiDAR. LiDAR sensors utilize laser pulses to
create intricate three-dimensional maps, providing accurate spatial
measurements essential for mapping and object detection; neverthe-
less, they are expensive and less effective under adverse weather
conditions. Ultrasonic sensors, defined by limited range and low

resolution, were predominantly appropriate for parking assistance
and close-range object avoidance.

2.2. Perception challenges in autonomous driving

Despite their innovative designs, traditional perception sys-
tems in AVs encountered several significant challenges, the most
critical being limited precision and robustness. These systems often
failed under variable lighting conditions, adverse weather, or visual
obstructions [12]. For instance, a lane detection system relying on
cameras might misinterpret shadows cast by vehicles or trees as
lane markings, leading to incorrect navigation. Such inconsistencies
emphasized the need for more reliable and adaptive solutions.

Another major hurdle was the complexity involved in sensor
fusion.Merging data frommultiple sensors proved to be error-prone,
especially when the temporal or spatial alignment of sensor outputs
was not perfectly synchronized. Misaligned data could result in
flawed interpretations and unreliable decisions, complicating the
development of a coherent and accurate perception framework. The
intricacies of this integration process posed a serious obstacle to
achieving smooth and dependable performance.

Additionally, the high computational demands of traditional
systems created further limitations. Processing data in real-time
from high-resolution sensors, such as LiDAR, requires powerful and
expensive computing resources. The vast datasets generated needed
to be analyzed rapidly to avoid delays in decision-making, but this
often restricted the complexity of algorithms that could beused effec-
tively. Moreover, these systems lacked flexibility and scalability,
making it difficult to adapt to new environments or evolving traf-
fic regulations. For example, a traffic sign recognition system might
struggle to accommodate newly introduced signs or regional vari-
ations without significant reconfiguration, highlighting the urgent
need for more adaptable and future-ready perception systems.

3. Deep Learning for Autonomous Perception

This section categorizes 3D object detection methods accord-
ing to their training strategies, addressing the training processes of
various deep learning models.
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3.1. Convolutional neural networks (CNNs)

The automobile’s vision system, or perception system, is where
the quest for accuracy and safety starts at the forefront of self-driving
car technology, when time is of the essence. Imagine a car navi-
gating the streets of a city while identifying other cars, pedestrians,
and traffic signs. Convolutional neural networks (CNNs) hold the
key to this miracle [13–24]. They break down images into their
important elements with the aid of several layers that resemble those
seen in human visual cortices. For example, they are able to dis-
tinguish between various types of things based just on their shapes
and recognize stop signs and lane markers. The basis for an AV’s
understanding of its surroundings is its capacity to recognize spatial
hierarchies in pictures.

3.2. Recurrent neural networks (RNNs)

On the other hand, the world is a dynamic entity. As a result,
driving presents a dynamic situation that necessitates anticipating
not just what is currently happening but also what might happen
in the future. Recurrent neural networks are useful in this situa-
tion. These networks are adept at managing sequences, recalling
past inputs to predict subsequent events [25, 26]. Consider a self-
driving car that can identify a cyclist’s path or the movements of
nearby cars. When presented with complex scenarios, the vehicle
uses RNNs to analyze temporal trends during its journey and make
informed decisions.

3.3. Generative adversarial networks (GANs)

However, what happens if there isn’t enough training data to
cover every scenario? Generative adversarial networks (GANs) are
useful in this situation. GANs provide realistic simulations of wide-
ranging driving conditions by using a dual network architecture, one
of which generates data and the other assesses its authenticity [27].
The development of perception systems that can handle uncommon
but significant events, such as odd road designs and strange climates,
depends on such synthetic datasets.

3.4. Transformers and attention mechanisms

The car needs to focus on key elements and ignore irrelevant
details in order to comprehend complex pictures. Transformers and
attention processes convert this by giving distinct input information
parts with varying degrees of relevance. By helping automobiles
comprehend context, these attention techniques allow them to dis-
tinguish between a pedestrian and a background advertising board,
resulting in more accurate and sophisticated decisions [18, 28–30].
Table 2 summarizes the major deep learning architectures used for
performing various tasks in autonomous driving perception.

4. 3D Object Detection

The growth of AV perception has moved from 2D to more
complex 3D object identification, with depth information playing an
important role. This review categorizes contemporary deep learning

Table 2
Summary of deep learning architectures in autonomous driving

Article Year Article type Architecture type Perception tasks Dataset
[13] 2023 Journal CNN Vehicle dynamics modeling

and control
CarSim

[28] 2024 Journal Attention-based
Transformer

Egocentric gesture
recognition

EgoGesture, Interactive Museum,
Ego-Driving (to be released)

[14] 2024 Journal CNN Instance and drivable
segmentation

BDD100K

[15] 2021 Journal Attention-based CNN Panoramic semantic
segmentation

Cityscapes, Mapillary Vistas,
IDD20K, PASS, WildPASS

[16] 2024 Journal CNN Free road segmentation KITTI, R2D
[17] 2020 Journal CNN Lane detection CULane, TuSimple, CurveLanes
[18] 2023 Journal Attention-based CNN Object detection Custom Dataset of 800 Objects
[19] 2022 Journal CNN Object detection MSDataset
[29] 2023 Journal Attention-based

Transformer
Object detection –

[20] 2023 Journal CNN Object detection Local Bandung Dataset (15,717
images)

[21] 2022 Journal CNN Uncertainty-aware decisions PeSOTIF
[22] 2022 Journal CNN Semantic segmentation –
[30] 2024 Journal Transformer, CNN Lane detection CULane, TuSimple, CurveLanes
[27] 2021 Conference GAN Visual data generation KITTI, CityScapes
[25] 2021 Journal RNN, LSTM, GRU Motion prediction, Motion

planning
NGSIM data

[23] 2020 Conference CNN Object detection KITTI
[24] 2019 Conference CNN Object detection KITTI
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Figure 5
Classification of 3D object detection methods based on training strategies

Supervised Learning

Single-stage detector

Two-stage detector

Semi-supervised/Weakly

supervised Learning

Pseudo-labeling Techniques

Consistency Regularization

Weakly Supervised Learning

Self-supervised Learning

Pretext Task Learning

Constrastive Learning

Masked Auto Encoding

Multitask Learning

Detection & Segmentation

Detection & Tracking

3D Object Detection

Table 3
Comparison of techniques in 3D object detection

Learning technique Representative methods Advantages Limitations
Single-stage detectors CenterNet3D, 3DSSD,

SMOKE
Real-time inference, simpler pipeline,
anchor-free architectures

Lower precision, struggles with
occlusions and small objects

Two-stage detectors PV-RCNN, Voxel RCNN,
CT3D

High accuracy, better refinement of
proposals, strong multi-scale features

Higher latency, computationally
expensive

Semi-supervised learning Mix-Teaching, 3DIoUMatch Reduces the need for labeled data,
enables scalable training

Quality of pseudo-labels critical,
risk of error propagation

Weakly supervised
learning

WeakM3D, VS3D,
MonoGRNet

Leverages cheap annotations (e.g., 2D
boxes), useful in early data stages

Lower generalization, often task- or
modality-specific

Self-supervised learning MonoRUn, BEVSOC,
GeoMAE

Utilizes unlabeled data, enhances
pretraining and robustness

Pretext tasks must be care-
fully designed, not always
task-specific

Multitask learning HDMapNet Joint detection, segmentation, tracking;
improves resource efficiency

Training complexity, risk of
negative transfer across tasks

algorithms for 3D object detection based on the learning strate-
gies used. The training strategies used to develop the models are
the basis for the categorization of 3D object detection methods
in Figure 5. Learning paradigms are classified into four primary
categories: supervised learning trains models with labeled data,
semi-supervised or weakly supervised learning uses both labeled
and unlabeled data, self-supervised learning learns representations
from data without annotations, and multitask learning trains a
single model to solve multiple related tasks at the same time, allow-
ing for shared representations that can improve 3D object detection
performance. Each of these learningmethods provides distinct bene-
fits and drawbacks in terms of data requirements, model complexity,
and total detection accuracy, as summarized in Table 3.

4.1. Supervised learning

4.1.1. Single-stage detectors
Single-stage 3D object detectors have made major advances

in AV perception, with an emphasis on balancing accuracy and
real-time performance. CenterNet3D [31] pioneered anchor-free
keypoint estimation for direct 3D box regression, whereas 3DSSD
[32] optimized performance using a lightweight design and fusion
sampling. FCOS3D [33] improved monocular detection by convert-
ing 7-DoF targets to the image domain, whereas IA-SSD [34] added

instance-aware point selection algorithms. SMOKE [35] improved
detection with keypoint estimation and 3D variable regression.
SA-SSD [36] enhanced localization, Voxel-FPN [37] merged
multi-scale features, HV-Net [38] tackled voxel size difficulties,
and HDNet [39] used HD maps as priors. These approaches jointly
exhibit the advancement of anchor-free methods and efficient point
selection while preserving real-time performance.

4.1.2. Two-stage detectors
Through the region proposal and refining stages, two-stage

3D object detectors greatly improved AV perception. PV-RCNN
[40] integrated voxel CNN and PointNet-based features, whereas
Voxel RCNN [41] obtained good accuracy with voxel-only rep-
resentations. Fast Point RCNN [42] combined voxel and point
cloud processing with attention mechanisms, while Part-A 2 net
[43] introduced part-aware supervision to enhance proposal quality.
Recent improvements includeHPV-RCNN [44] withmulti-attentive
voxel encoding, and CT3D [45] with channel-wise transformers for
proposal refinement. These methods highlight the field’s progress
toward multi-representation learning and complex architectures
while maintaining excellent accuracy for self-driving applications.
Table 4 shows the comparison of models evaluated with the KITTI
test set. The performance comparisons in Table 4 are derived directly
from the official KITTI 3D object detection benchmark leaderboard
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[46]. The models were assessed using the KITTI dataset using a
standardized benchmark process, which has predetermined training
and testing divisions (typically 7481 training images and 7518 test
images). All methodologies adhere to the KITTI evaluation param-
eters for 3D average precision (AP) across varying difficulty levels
(Easy, Moderate, Hard).

4.2. Semi-supervised learning

4.2.1. Pseudo-labeling technique
Semi-supervised learning with pseudo-labeling has emerged as

a potential solution to 3Dobject detection for autonomous cars,mini-
mizingtheneedformanualannotations.Mix-Teaching[47]pioneered
instance-levelpicturepatchmergingwithuncertainty-basedfiltering,
whereas 3DIoUMatch [48] presented a teacher-student framework
utilizing 3D IoU estimation for pseudo-label refining. Zhang et al.
[49] focused on decreasing annotation workload through teacher-
student label generation,whileDetMatch [50] employedmultimodal
fusion of RGB and point cloud data to construct robust pseudo-
labels.Recently,3DSimDet[51]proposedahigh-qualitypseudo-label
generator that leverages predictions from its novel BIoU Head mod-
ule. The generator demonstrated improved detection performance
withinasemi-supervised learning frameworkwhilemaintaining real-
time capabilities crucial for autonomous driving applications. These
approaches show that labeled and unlabeled data may be combined
well using complex pseudo-labeling algorithms, outperforming fully
supervised methods while addressing label quality and multimodal
integration issues.

4.2.2. Consistency regularization
In the field of AV 3D object detection, consistency regular-

ization has become a crucial semi-supervised learning technique.
A privacy-preserving method using de-identified intermediate fea-
tures was presented by Upcycling [52]. For efficient supervision,
hybrid pseudo-labels were combined with feature-level Ground
Truth sampling (F-GT). By combining uncertainty-based filtering
with instance-level image patching, Mix-Teaching [47] enhanced
this field and indirectly enforced consistency through mixed images
with high-quality pseudo-labels. In particular, these methods handle
privacy issues and computational efficiency while preserving strong
detection performance, illustrating the development of consistency
regularization in semi-supervised learning.

4.2.3. Weakly supervised learning
A promising method for lowering the annotation burden in

3D object detection for driverless cars is weakly supervised learn-
ing. For efficient detection, WeakM3D [53] uses 3D alignment
loss and RoI LiDAR points in conjunction with 2D bounding
boxes as weak supervision. VS3D [54] uses cross-modal knowl-
edge distillation from pre-trained image networks and presents an
unsupervised 3D proposal module based on point cloud densities.
Despite not being precisely weakly supervised, MonoGRNet [55]
makes a contribution by using geometric reasoning under sparse-
depth supervision. These methods address the problem of limited
fully annotated 3D data in autonomous driving applications by
showing how to use less accurate annotations and 2D information
to create effective 3D detection systems.

4.3. Self-supervised learning

4.3.1. Pretext task learning
An inventive method for enhancing 3D object detection in

autonomous driving is self-supervised learning via pretext tasks.

Pdf_Fol io:606



Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Using unlabeled point cloud data, Shi and Rajkumar [56] showed
how geometric pretext tasks may effectively pre-train neural net-
works, resulting in enhanced object heading accuracy and AP. This
field was advanced by MonoRUn [57], which introduced a frame-
work that learns geometry and dense correspondences through a
variety of pretext tasks, such as regional reconstruction with uncer-
tainty awareness and dense 2D-3D correspondence mapping. These
methods show howwell-crafted pretext tasks can improve 3D object
detection skills while lowering the need for copious manual anno-
tations, offering supplementary features to those discovered from
labeled data for reliable autonomous car perception.

4.3.2. Contrastive learning
A potent self-supervised method for 3D object identification

in driverless cars is contrastive learning. In order to represent 3D-
to-2D relationships without the need for explicit camera calibration,
BEVSOC [58] presented a calibration-free technique that makes
use of group-equivariant convolutional networks and projection
modules. For point cloud object detection, Shi and Rajkumar [56]
showed how well contrastive learning works when combined with
geometric pretext tasks. They found that while contrastive loss alone
increases AP, integrating it with geometric tasks improves both
precision and heading accuracy. These methods demonstrate how
contrastive learning may be used to improve detection robustness
and generalization skills in autonomous driving applications while
lowering the need for annotation.

4.3.3. Masked autoencoding
Masked autoencoding (MAE) has become a potent self-

supervised pretraining method for autonomous driving’s 3D object
identification. While GD-MAE [59] suggested a more straightfor-
ward paradigm utilizing a generative decoder for flexible masking
methods, Occupancy-MAE [60] presented range-aware random
masking for voxel-based LiDAR data. Voxel-MAE [61] tackled
sparse point cloud issues by masked voxel reconstruction, whereas
GeoMAE [62] utilized geometric features through centroid predic-
tion, normal estimation, and curvature prediction targets. Across the
main autonomous driving benchmarks, these methods show how
MAE can effectively reduce the amount of labeled data needed
while enhancing detection performance and generalization capabil-
ities, especially in difficult situations like small object detection and
variable point cloud densities.

4.4. Multitask learning

4.4.1. Detection and segmentation
With a shared emphasis on creating effective and precise mul-

titask learning frameworks that can complete both tasks at once, the
papers showcase the developments in joint 3D object detection and
semantic segmentation for autonomous driving applications [63–
66]. Leveraging the synergy between the two tasks and enhancing
autonomous systems’ total perceptual capabilities is the main driv-
ing force behind this. In order to achieve state-of-the-art results on
the difficult BDD100K dataset and show real-time performance on
embedded devices, Wu et al.[63] present a comprehensive panop-
tic driving perception network that simultaneously performs lane
detection, drivable area segmentation, and traffic object detection.
Using a Spatial Embeddings (SEs) strategy to aggregate foreground
points, Zhou and Tuzel provide a novel detection framework that
outperforms existing methods on the KITTI dataset and jointly
predicts 3D bounding boxes and instance segmentation [64]. In
order to achieve state-of-the-art results on the nuScenes dataset,

Xie et al.[65] resent a unified framework that uses multi-camera
image inputs to perform 3D object detection and map segmenta-
tion in the Bird’s-Eye View (BEV) space. They propose several
important design choices that greatly enhance the performance of
camera-based 3D perception tasks. In order to achieve state-of-the-
art results on a large benchmark dataset, Meyer et al.[66] present
an extension to an effective LiDAR-based 3D object detector by
introducing a sensor fusion approach that incorporates image data
with LiDAR input. This improves detection performance, particu-
larly at long ranges, and expands the model’s capabilities to perform
3D semantic segmentation in addition to 3D object detection [66].
All things considered, these studies indicate how multitask learn-
ing works well for 3D object detection and semantic segmentation
in autonomous driving, presenting a range of cutting-edge meth-
ods that help develop complete and real-time perception systems
for autonomous cars.

4.4.2. Detection and tracking
Using multitask learning frameworks, the articles demonstrate

advances in jointly learning 3D object detection and tracking for
autonomous driving [67–71]. These studies create effective models
that can complete both tasks at once, making use of the synergies
to enhance perceptive abilities overall. The creation of spatiotempo-
ral representations to facilitate collaboration between detectors and
trackers [69], end-to-end joint monocular 3D detection and track-
ing with spatial-temporal feature aggregation [67], camera-LiDAR
fusion for robust multi-object detection and tracking [68], using 3D
box depth-ordering and motion modeling for monocular 3D vehi-
cle tracking [70], and incorporating historical object tracking data
to improve 3D object detection in cooperative perception settings
[71] are some of the key innovations. These combined tracking
and detection techniques show cutting-edge results on benchmark
datasets while preserving real-time inference speeds, helping to
create complete and effective perception systems for self-driving
cars.

5. 3D Perception and Localization

Localization is an essential task for AVs, enabling them to
accurately determine their position and orientation within an envi-
ronment. This capability is vital for safe navigation, lane-keeping,
and overall vehicle control. There are many different methods for
localization, each well-known for its own advantages and disadvan-
tages. These are GPS-IMU fusion, SLAM, and a priori map-based
localization.

Perception is the process of extracting certain information from
the data generated by various sensors, allowing for a more thor-
ough understanding of the robot’s perceived surroundings. This
is important for object identification, obstacle recognition, and
environmental interaction. A summary of the 3D perception and
localization techniques is provided in Table 5. Table 6 provides
a summary of the datasets used for training and evaluating AV
perception tasks.

5.1. Localization strategies

Odometry technique uses data from motion sensors, such as
wheel encoders and inertial measurement units (IMUs), to estimate
changes in position over time. While odometry provides a continu-
ous estimate, it suffers from cumulative errors like drift, which can
degrade accuracy over extended distances [1]. By using cameras
to capture images, visual localization identifies and tracks environ-
mental features or landmarks. This method can be highly effective
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Table 5
Detailed summary: 3D perception and localization

Component Methods/techniques Advantages Limitations
Localization Strategies Odometry, visual localization,

SLAM
Effective real-time estimation,
feature robustness

Odometry drift errors; sensitivity to
lighting and occlusion (visual local-
ization); computational complexity
(SLAM)

Perceptual Sensors LiDAR, cameras, ultrasonic
sensors, sensor fusion

High resolution, compre-
hensive environmental
understanding, robustness to
single-sensor failures

LiDAR cost, weather sensitivity,
camera lighting limitations, low
resolution of ultrasonic sensors

Deep Learning PointNet, PointNet++, VoxelNet,
Frustum PointNet, 3D spatial
feature extraction

Improved accuracy through
direct spatial and structural
data handling

Computational complexity, exten-
sive dataset requirement, real-time
application challenges

PointNet & PointNet++ Direct point cloud processing,
shared MLPs, symmetric max
pooling, multi-scale hierarchical
learning (PointNet++)

Efficient, low computational
cost, robustness to transfor-
mations, multi-scale detail
capture (PointNet++)

Difficulty capturing local detail
(PointNet); increased computational
demands (PointNet++)

VoxelNet Voxelization, end-to-end 3D con-
volution, Structured 3D data
handling, simplified PointNet
feature extraction

Real-time capability, improved
spatial coherence, structured
data handling suitable for AV
applications

High computational needs for dense
3D data, performance limitations in
cluttered environments

Frustum PointNets 2D detection integration, ROI
generation, 3D bounding
box estimation, instance
segmentation, spatial attention

High accuracy in complex
and occluded scenarios,
ROI-focused computational
efficiency

Dependence on accurate initial 2D
detection; effectiveness reduced
with inaccurate 2D detection

Table 6
Summary of open source datasets for autonomous vehicle perception tasks

Dataset Modality Tasks Size Notes
KITTI [46] Camera, LiDAR,

GPS
3D detection, tracking,
segmentation

7481 images Real-world street scenes

nuScenes [72] Camera, LiDAR,
Radar, IMU

Detection, tracking,
segmentation, fusion

40157 images Full sensor suite, weather
variations

Waymo Open [73] Camera, LiDAR 3D detection, tracking,
lane detection

1,950 segments of 20 s each,
collected at 10 Hz (390,000
frames)

High-res LiDAR, multiple
vehicles

Lyft [74] Camera, LiDAR Motion prediction and
forecasting

170,000 scenes, where each scene
is 25 seconds long

Urban driving scenes

Cityscapes [75] Camera Semantic segmentation 5000 annotated images with fine
annotations, 20000 annotated
images with coarse annotations

Urban German roads with
pixel labels

BDD100K [76] Camera Detection, segmentation,
lane detection

100,000 videos. Each video is
about 40 seconds long, 720 p,
and 30 fps

Multitask, diverse weather and
time

CRUW Radar [77] Radar, Camera Object detection,
tracking

400K frames Radar fusion benchmark, low-
light data

CARLA [78] Camera and
pseudo-sensors

Detection, segmentation – Used for training and safety
testing, simulated using
Unreal Engine 4

in visually distinct environments but is susceptible to variations in
lighting and occlusion [79].

Simultaneous localization and mapping (SLAM) algorithms
enable robots to generate a map of an unfamiliar environment while

simultaneously determining their position within it. This process
utilizes sensor fusion and probabilistic models such as Kalman fil-
ters or particle filters to address uncertainties in the acquired data,
focusing on precision in localization [1].
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5.2. Perceptual sensors

LiDAR uses laser beams to measure distances, providing high-
resolution 3D maps of the environment. It is highly effective in both
indoor and outdoor settings, offering precise distance measurements
that aid in navigation and obstacle avoidance [79]. Cameras cap-
ture visual information that can be processed for object recognition,
scene understanding, and depth estimation. Visual data is crucial
for tasks like identifying landmarks and detecting moving objects
[1]. Ultrasonic sensors emit sound waves to measure the distance
to nearby objects, making them useful for basic obstacle detection,
particularly in low-cost applications [79]. To enhance the precision
of perception, sensor fusion combines data from multiple sources,
such as LiDAR, cameras, and IMUs. This approach mitigates the
drawbacks of individual sensors, resulting in a more comprehensive
and reliable understanding of the environment [79].

5.3. Deep learning techniques for 3D perception

Advancements in the field of perception were achieved mainly
through deep learning techniques, allowing the handling of raw
point clouds directly [80]. Unlike previous traditional feature-based
or 2D projected procedures, depth learning models utilize 3D
data’s spatial and structural characteristics for significant hope for
improvements in object detection, segmentation, and localization
tasks [81].

Deep learning methods seek to characterize 3D worlds by
directly employing spatial hierarchies and establishing local-global
feature relationships from the point clouds. These developments
underscore the porosity of PointNet and PointNet++ networks,
which directly conduct operations on an unordered set of points
and largely reflect permutation invariance, ensuring integrity in
maintaining spatial information [82].

5.3.1. PointNet and PointNet++
PointNet was an innovative model that pioneered a new way of

processing point clouds by working directly on the raw point data
without needing voxelization or image projections [80]. The model
employs certain shared MLPs and the symmetric max pooling func-
tion for the extraction of global features, which allows it to deal with
unordered data with robustness against transformations like rotation
and translation [81].

For irregular point data, PointNet provides a neural network
architecture that is end-to-end learnable and sufficiently robust to
noise and outlier point perturbations. It sets a new standard for 3D
recognition and does away with expensive and handcrafted feature
engineering. PointNet is efficient because its architecture allows an
efficient and effective point cloud of object instance-specific param-
eters in Airborne Laser Scanning (ALS) data [83]. The PointNet
model reduces memory and computation costs by more than 80%
and 88%, respectively, compared to volumetric models. As a result,
it is frequently chosen for mobile and portable devices [83].

This multi-scale learning approach allows PointNet++ to cap-
ture intricate details of complex 3D shapes, making it more effective
for tasks such as segmentation, classification, and object detection
in scenes with varying point densities [81].

5.3.2. VoxelNet
Recently, there has been a growing emphasis on 3D object

detection that utilizes only point clouds. Generally, these methods
can be classified into three groups: BEV-based, point-based, and
voxel-based. For the first time, an end-to-end learning approach
has been applied in the voxel-based domain using VoxelNet, which

integrates a simplified form of PointNet to automatically extract
features from each voxel. It divides the points into voxels, uses
PointNet to obtain features from the separate voxels, and then
merges the features from these voxels in the central convolutional
layers for detection [37].

VoxelNet introduces a new approach by combining feature
learning and the prediction of 3D bounding boxes within a single
cohesive end-to-end framework [80]. In contrast to PointNet-based
models that function on discrete points, VoxelNet transforms the
3D space into uniformly distributed 3D grids (voxels), enabling
the model to handle structured data that aligns better with 3D
convolutional operations [81].

VoxelNet’s capability to preserve spatial coherence while han-
dling dense 3D data enables it to excel in real-time 3D object
detection applications, especially in autonomous driving situations
where both speed and precision are essential [82].

5.3.3. Frustum PointNets
Frustum PointNet merges the strong points of 2D object detec-

tion and 3D point cloud processing to perform 3D object detection
from RGB-D data [80]. The 2D detections are back-projected into
3D space, forming frustums (3D cones extending from the camera
through the 2D bounding boxes), while Frustum PointNet narrows
down points inside these volumes for further processing [81]. This
technique squeezes down the search space and channels the net-
work’s focus and strength on the areas of interest and improves the
detection accuracy [82].

The architecture is organized into three stages: 2D object detec-
tion, Frustum Proposal Generation, and 3D object localization via
PointNet [80]. In detail, a 2D detection network was used to build
an image region of interest (ROI), which was then projected onto
the point cloud to concoct a proposal for frustums. At this stage,
the 2D ROI served as prior knowledge to evaluate the frustum point
cloud proposals. The frustum proposals are then processed using an
amodal 3D bounding box estimation with PointNet, followed by 3D
instance segmentation [84].

It is beneficial to combine the features of object detection
in 2D images with LiDAR-based SLAM in order to detect small
and distant things. It narrows down the search space for particular
3D targets and lessens noise and error interference while detecting
objects in 2D photos. It provides a Simultaneous Dynamic Triangu-
lation Mapping (SDTM) framework based on the aforementioned
concept [85].

A 3D object detection method that employs spatial attention,
improving the detection performance for occluded objects. The SAF
(spatial attention frustum) module effectively encapsulates a signif-
icant representation of the features associated with occluded objects
in a limited feature space [86]. The Local Feature Aggregation
(LFA) module enhances the understanding of the local arrangement
of the concealed object. It allows for a better deduction of the entire
structure of the hidden object using a limited amount of locally vis-
ible point clouds, even when only the surface area of the object is
visible [86].

6. Sensor Fusion

Sensor fusion enhances the accuracy and robustness of AV
perception by integrating data from heterogeneous sensors such as
cameras, LiDARs, and radars. While traditional reviews focus on
early, mid, and late fusion strategies [87, 88], this paper adopts a
modality-based perspective, analyzing fusion approaches accord-
ing to sensor combinations like Camera-LiDAR, Camera-Radar,
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Table 7
Summary of sensor fusion strategies in recent autonomous vehicle perception models

Fusion strategy Representative methods Advantages Limitations
Camera + LiDAR FuseMODNet, BEVFusion High accuracy; strong spatial

semantic fusion; effective in all
lighting

Expensive sensors; LiDAR
sensitivity to adverse
weather

Camera + Radar CRF-Net, RadarFormer Cost-effective; operates in low
visibility; reliable velocity
estimation

Low spatial resolution;
calibration can be difficult

LiDAR + Radar CenterRadarNet, RODNet Complementary range and resolution;
robust in harsh conditions

Sensor-disparity makes fusion
challenging

Multimodal Fusion BEVGuide, PMF, CARLA-
based frameworks

Resilient and generalizable; han-
dles edge cases; proven real-world
applicability

High compute cost;
latency and synchronization
challenges

and LiDAR-Radar. This practical categorization reflects real-world
deployment needs and highlights how different modalities com-
plement each other. Table 7 summarizes representative methods,
their advantages, and limitations across these fusion strategies,
while Table 8 provides a broader overview of recent research
trends, categorized by sensor combinations, datasets, and perception
tasks.

6.1. Camera

Recent progress in 3D object detection for AVs has explored
various camera-based methods, including stereo vision, pseudo-
LiDAR, and monocular approaches. Pseudo-LiDAR techniques
convert monocular images into 3D point clouds using depth estima-
tion, showing promise in benchmarks like KITTI-3D and NuScenes
[23, 89]. However, challenges like overfitting, high computational
cost, and performance gaps with real LiDAR remain. Addition-
ally, validation bias due to overlapping datasets has been addressed
through innovations like 3D confidence prediction modules [90].

End-to-end monocular models such as DD3D [89] bypass
depth estimation by learning 3D object detection directly from
images. While efficient and effective—especially when pre-trained
on large datasets—they struggle with occlusion and complex scenes
due to limited depth cues. Stereo vision methods like IDA-3D [91]
and Stereo RCNN [92] estimate depth from image pairs without
dedicated depth networks but still face limitations in textureless or
occluded regions, impacting real-world reliability.

BEV representations have also gained traction for their
improved spatial understanding. Recent breakthroughs, such as
BEVFormer [93], have shown that combining spatiotemporal data
from several cameras can considerably improve the performance
of vision-based models. BEVFormer, for example, achieves more
accurate velocity estimation and recall on low-visibility objects,
demonstrating the expanding utility of camera-based fusion tech-
niques. Also, other transformer-based models like HeightFormer
[94] and WidthFormer [95] leverage multi-view cameras to gener-
ate BEVmaps with low latency, though challenges persist in feature
quality and accurate map generation. Despite these issues, ongoing

Table 8
Comparison of articles by year, type, modality, and task

Paper type Sensor modality Dataset Perception task
Paper Year Journal Conference Camera LiDAR Radar
[89] 2021 ✓ ✓ KITTI-3D, nuScenes 3D object detection
[23] 2020 ✓ ✓ KITTI-3D 3D object detection
[90] 2021 ✓ ✓ KITTI-3D 3D object detection
[91] 2020 ✓ ✓ KITTI-3D 3D object detection
[92] 2019 ✓ ✓ KITTI-3D Object localization
[93] 2022 ✓ ✓ nuScenes, Waymo Open 3D object detection,

segmentation
[94] 2024 ✓ ✓ NuScenes 3D object detection
[95] 2024 ✓ ✓ nuScenes 3D object detection
[96] 2020 ✓ ✓ KITTI-3D 3D object detection
[97] 2021 ✓ ✓ nuScenes, Waymo 3D object detection
[52] 2023 ✓ ✓ KITTI-3D, Waymo, Lyft 3D object detection
[98] 2021 ✓ ✓ KITTI-3D, Waymo 3D object detection
[99] 2022 ✓ ✓ Waymo 3D object detection
[100] 2019 ✓ ✓ ATG4D, KITTI-3D 3D object detection

(Continued)
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Table 8
(Continued)

[101] 2019 ✓ ✓ KITTI-3D 3D object detection
[40] 2020 ✓ ✓ KITTI-3D, Waymo 3D object detection
[102] 2021 ✓ ✓ Waymo 3D object detection
[103] 2022 ✓ ✓ KITTI-3D, Waymo 3D object detection
[104] 2024 ✓ ✓ K-Radar Object tracking
[105] 2024 ✓ ✓ nuScenes, Aptiv 3D object detection
[106] 2019 ✓ ✓ nuScenes 3D object detection
[107] 2023 ✓ ✓ CRUW radar 3D object detection
[108] 2021 ✓ ✓ CRUW Object localization
[109] 2023 ✓ ✓ ✓ Custom dataset 3D object detection
[110] 2019 ✓ ✓ ✓ Dark-KITTI, KITTI-3D 3D object detection
[111] 2020 ✓ ✓ ✓ KITTI-3D 3D object detection
[112] 2021 ✓ ✓ ✓ nuScenes, PMF 3D object detection
[113] 2020 ✓ ✓ ✓ Custom dataset 3D object detection
[114] 2023 ✓ ✓ ✓ KITTI-3D 3D object detection
[115] 2019 ✓ ✓ ✓ nuScenes, TUM (custom) 3D object detection
[116] 2020 ✓ ✓ ✓ nuScenes 3D object detection
[106] 2019 ✓ ✓ ✓ nuScenes 3D object detection
[117] 2022 ✓ ✓ ✓ Custom dataset 3D object tracking
[118] 2020 ✓ ✓ ✓ Custom dataset Object localization
[119] 2023 ✓ ✓ ✓ CARLA 3D object detection
[120] 2022 ✓ ✓ ✓ ✓ Custom dataset Semantic

segmentation
[121] 2023 ✓ ✓ ✓ ✓ nuScenes, ESCAPE 3D object detection
[122] 2022 ✓ ✓ ✓ ✓ CARLA Overall perception

research continues to enhance monocular and stereo-based 3D
detection, with future efforts likely to focus on scalability, occlusion
handling, and real-time efficiency.

6.2. LiDAR

Recent advances in LiDAR-based 3D object detection for AVs
have been driven by deep learning techniques aimed at improving
accuracy, efficiency, and data utilization. SSADNet [96] enhances
computation through dual-task learning for the drivable region
and vehicle detection, though its accuracy remains limited. Self-
supervised methods like GCC-3D [97] reduce reliance on labeled
data using geometry-aware contrastive learning but may struggle
in complex environments. UpCycling [52] applies semi-supervised
learning to protect privacy through intermediate feature training, yet
its adaptability in dynamic settings is constrained.

Transformer-based models offer improved long-range context
modeling. VoTr [98] enhances point cloud detection via sparse voxel
transformers but is resource-intensive. SWFormer [99] increases
efficiency with windowed attention but at a computational cost.
LaserNet [100] enables real-time detection by processing LiDAR’s
native range view, though it faces challenges with scale variation.
PointPillars [101] accelerates inference through pillar encoding but
is less robust in complex scenes compared to models like PV-RCNN
[40], which fuses voxel- and point-based learning for high accuracy
at increased complexity.

Additional methods like RangeDet [102] offer efficient range-
view processing with some flexibility limitations, while VoxSeT

[103] merges voxel efficiency with Transformer self-attention for
powerful, though complex, detection. Despite significant progress,
balancing real-time performance, accuracy, and scalability remains
a core challenge. Future work will likely refine these models to
better meet the demands of dynamic driving environments.

6.3. Radar

Radar-based object detection is proving vital for AVs, espe-
cially in poor visibility conditions like rain, fog, or nighttime, where
vision sensors underperform. Advances in radar perception, such as
CenterRadarNet [104], which fuses 4D radar data for 3D detection
and tracking, have achieved state-of-the-art results on benchmarks
like K-Radar. Its integrated online tracker improves object reiden-
tification in dynamic scenes. Similarly, CenterPoint Transformer
[105] enhances BEVdetection using transformers, achieving amean
AP of 23.6% on NuScenes.

Other innovations focus on real-time efficiency. RRPN [106]
accelerates object proposal generation directly from radar signals,
outperforming older methods like Selective Search. RadarFormer
[107] reduces model complexity by over 90% using a transformer
design and efficient data fusion, making it ideal for real-time use.
RODNet [108] leverages radar frequency data and 3D autoen-
coders for high-performance detection without relying on LiDAR or
cameras, and when combined with camera-radar fusion, it reduces
manual labeling needs.

These radar-driven approaches like CenterRadarNet, Radar-
Former, and RODNet highlight radar’s growing role in robust,
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efficient AV perception. Their ability to operate reliably under chal-
lenging conditions, combined with modern deep learning, positions
radar as a key pillar in the future of autonomous driving.

6.4. Camera and LiDAR fusion

The integration of camera and LiDAR sensors has become
critical for AV perception due to their complementary strengths.
Cameras give high-resolution visual data for item classification,
whereas LiDAR provides exact 3D spatial and depth informa-
tion, allowing for comprehensive scene interpretation. Advances in
deep learning have improved sensor fusion approaches, increasing
accuracy and dependability in various settings.

Several studies have proved the efficiency of camera-LiDAR
fusion in object detection. A sensor fusion system that combines a
thermal infrared camera and LiDAR improves detection in adverse
conditions like fog and nighttime by aligning data using a 3D
calibration target [109]. FuseMODNet used a CNN-based design
to integrate sensor data, resulting in considerable performance
improvements in low-light conditions on the Dark-KITTI dataset
[110]. In another technique, LiDAR-generated region proposals
were merged with a CNN for real-time detection, resulting in high
accuracy on the KITTI dataset [111].

For semantic segmentation, the perception-aware multi-sensor
fusion (PMF) technique fused RGB and LiDAR information using
a two-stream network. It retained appearance and depth informa-
tion and showed robustness in the SemanticKITTI and nuScenes
datasets [112]. Low-level fusion approaches like projecting LiDAR
data onto camera pictures have improved object distance estimation,
especially for obstructed objects [113]. Faster-RCNN feature-
level fusion improves detection accuracy and reduces computing
overhead [114].

Despite these advances, issues persist in assuring data coher-
ence, real-time performance, and resilience to environmental
changes. Future research should overcome these restrictions in
order to develop scalable and efficient sensor fusion methods for
self-driving vehicles.

6.5. Camera and radar fusion

Radar-camera fusion is becoming a key technology in AV
perception, leveraging radar’s reliable distance and velocity data
alongside the visual richness of cameras. Deep learning models
enhance detection by integrating these modalities. CRF-Net [115]
addresses radar sparsity and camera limitations for better accu-
racy, while RANet and BIRANet [116] use radar to guide anchor
generation, improving detection in challenging conditions.

Fusion also improves tracking and localization. JPDA-based
methods boost tracking in harsh weather [117], and specialized
frameworks enhance lateral accuracy in occlusions [118]. Models
like CR-YOLOnet [119] apply attention mechanisms to combine
radar and camera data, improving detection of small and dis-
tant objects in poor conditions. Together, these advances highlight
radar-camera fusion as a robust, scalable solution for AV perception.

6.6. Multimodal fusion

Multimodal fusion significantly enhances AV perception by
integrating data from sensors like cameras, LiDAR, radar, and
ultrasonics, boosting accuracy and resilience in complex scenar-
ios. One advancement is the self-evolving Free Space Detection
(FSD) framework, which uses online active learning to adapt in real
time, outperforming models like DeepLabV3+ without requiring

large datasets [120]. Similarly, a multimodal architecture incorpo-
rating image, radar, sound, and seismic data enhances detection in
non-line-of-sight (NLOS) scenarios, improving safety in obstructed
environments [121]. BEVGuide [123] introduces a BEV-based
fusion model that merges inputs from multiple sensors using atten-
tion mechanisms, improving motion estimation and segmentation,
particularly in the nuScenes dataset.

End-to-end approaches combining RGB and depth via early
fusion outperform single-modality methods, as shown in CARLA
simulator experiments using CIL architecture [122]. While early
fusion captures detailed features, it’s resource-intensive; mid-level
fusion balances performance and efficiency, and late fusion supports
modular design. Overall, models like BEVGuide and adaptive FSD
frameworks highlight the flexibility of multimodal fusion, though
further research is needed for scalable, real-time deployment in
dynamic driving conditions.

7. Perception of the Environment

7.1. Deep learning models

Understanding the environment is crucial for autonomous driv-
ing systems (ADS), enabling real-time lane detection, trajectory
prediction, and safe navigation. Advanced sensing and processing
ensure consistent environmental perception, essential for effective
decision-making on the road.

In smart cities, predicting how people perceive urban environ-
ments is a growing research area supporting human-centered design.
Traditional methods relying on expert opinions are time-consuming,
prompting the use of machine learning to estimate perceptual scores
from single-frame street view images [124]. However, aspects like
dual visual states (pleasant/unpleasant), perceptual mapping using
CNNs, and spatial factors affecting perception are often underex-
plored [125]. CNNs are used in both urban design and Unmanned
Aerial Vehicle (UAV) applications for object detection and feature
extraction, underlining the importance of environmental perception
frameworks for reliable, adaptive operations and human-centered
outcomes [126].

7.2. Road and lane detection

Machine vision that adapts quickly utilizes machine vision
techniques alongside a RALPH (Rapidly Adapting Lateral Position
Handler) vision system developed by Carnegie Mellon University
and Assist-Ware Technologies Inc. RALPH processes the obtained
image through three main phases: capturing the image, analyzing
road curvature, and finally determining the vehicle’s lateral position
in relation to the center of the lane.

Currently, the methods include geometric modeling and tra-
ditional techniques, while artificial intelligence (AI) involves deep
learning and machine learning. Examples of deep neural net-
works and architectures include CNN, Fully Convolutional Network
(FCN), and RNN. In the last four years, there has been an increasing
amount of research focused on the use of deep learning [127].

To predict vehicle paths, the lane detection pipeline typi-
cally includes perspective transformations to convert camera images
to top-down views. In this format, DBSCAN clustering identi-
fies lane boundaries, followed by fitting quadratic polynomials to
the points for smooth path estimation. This process, as demon-
strated by CNN-PP, allows for lateral offset estimation and accurate
curvature modeling for real-time driving decisions [128]. The CNN-
PP operates at 10 fps, maintaining efficiency in dynamic driving
environments.
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Innovations in sensor fusion, such as radar-camera fusion,
complement lane detection, especially in adverse weather condi-
tions. CR-YOLOnet combines radar and camera data, improving the
detection of small or distant objects under low-visibility scenarios,
thereby strengthening overall lane detection and vehicle localiza-
tion [129]. Evaluations on diverse datasets like TORCS, TuSimple,
CULane, and LLAMASdemonstrate the effectiveness of thesemod-
els in handling various lane configurations and traffic environments.
For example, DSUNet outperforms UNet in terms of recall, while
DeepLabV3 shows better robustness against occlusions [127, 128].

7.3. Traffic sign and signal recognition

Traffic Sign and Signal Recognition (TSSR) is essential for
AVs to interpret road signs, signals, and markers, ensuring safe and
lawful navigation. This involves three key layers: sensing, percep-
tion, and decision-making, which work together to help the vehicle
understand and respond to its environment. Object detection tech-
niques like YOLOv3 andViola-Jones were used to identify vehicles,
pedestrians, traffic lights, and signs. Among the nine detectors
tested, YOLOv3 outperformed Viola-Jones in terms of precision,
recall, and processing speed [130]. For comprehensive environ-
mental understanding, including the detection of static and moving
obstacles, vehicles rely on various onboard sensors, while local-
ization and mapping determine vehicle position relative to global
coordinates [131].

Advanced traffic signal control systems now integrate IoT and
video processing, using tools likeOpenCV andRaspberry Pi toman-
age lights based on vehicle count and density, though this is best
suited for low-traffic intersections [132]. In the perception layer,
CNNs enable accurate traffic sign and signal classification under
diverse conditions. The decision-making layer converts this data
into timely actions, such as stopping or rerouting, ensuring safety
and real-time responsiveness [88, 133].

8. Challenges and Limitations

8.1. Data scarcity and quality issues

Data scarcity and quality difficulties are important challenges
in AV perception, limiting the development of dependable and
resilient systems. Rare events, such as extreme weather or nighttime
driving, are difficult to capture in significant quantities, and annotat-
ing complicated datasets, such as 3D point clouds or semantic maps,
is time-consuming and costly. Furthermore, datasets frequently con-
tain sensor noise, calibration mistakes, and labeling inconsistencies,
compromising the reliability of supervised learning models. Imbal-
anced datasets, in which typical scenarios are over-represented but
rare or difficult cases are underrepresented, impose additional biases
in model training. Issues with synchronization and alignment in
multimodal data exacerbate these obstacles, lowering sensor fusion
performance. Increased data diversity and quality via data aug-
mentation, synthetic data generation in simulation environments,
self-supervised learning, and active learning can help mitigate these
challenges. These are important considerations to make sure that
AV perception systems work in different and dynamic real-world
scenarios.

8.2. Computational complexity and efficiency

Real-time performance requirements present significant chal-
lenges with respect to computational complexity and efficiency for
deep learning-based AV perception. These methods have millions

of parameters and demand a lot of processing to interpret high-
dimensional data such as LiDAR point clouds and video streams
for tasks like 3D object detection or semantic segmentation or
multimodal fusion. Low latency is essential for real-time decision-
making, as delays could endanger safety in ever-changing scenarios.
Additionally, processing high frame rates and varied driving sce-
narios within the AV’s constrained power budget adds another
layer of complexity. These models must be optimized further for
deployment on edge devices to bridge the gap between computation
requirements and performance. The challenges of AV percep-
tion motivate innovations in model pruning, quantization, efficient
designs, and hardware accelerators to ensure AV perception systems
remain fast, scalable, and energy-efficient enough to operate reliably
in the real world.

8.3. Real-time processing and latency

Deep learning-based perception in AVs faces major challenges
with real-time processing and latency.While manymodels prioritize
accuracy, they often overlook the time needed for inference—
critical for making timely decisions in dynamic environments.
Tasks like 3D object detection and semantic segmentation are
computationally intensive, leading to delays that can compromise
safety.

Current methods typically focus on metrics like accuracy and
recall, but lack standardized benchmarks for inference time, making
it difficult to assess suitability for real-world applications. This issue
worsens with multimodal sensor fusion (e.g., combining data from
cameras, LiDAR, and radar), which adds processing complexity and
potential latency.

AV systems must operate within tight temporal limits—
processing data in milliseconds—to respond effectively to road
conditions. Excessive latency can result in missed detections
or delayed responses. Addressing this trade-off between speed
and performance requires optimized model architectures, hard-
ware acceleration, and techniques like pruning and quantization to
develop fast, accurate, and responsive perception systems.

8.4. Ethical and safety considerations

The ethical and safety issues are always very important when
talking about AV perception systems that use deep learning. The
problem is that deep learning models often present enormous chal-
lenges that make it difficult to reach an optimal balance between
AV decision-making and the acceptable level of risk toward human
safety.

8.4.1. Lack of explainability and transparency
Decision-making in the case of deep learning models such as

deep neural networks is hard to fathom, which is one of the reasons
thesemodels are often referred to as “black boxes.” This “black box”
problem is indeed a serious issue, especially when one considers
the vehicle scenario where an explanation is needed as to why a
decision was made, for example, in the case of a vehicle collision
with a pedestrian or vice versa. It is one thing to state that the model
followed a particular sequence of reasoning resulting in a decision
and another thing to be able to understand that reasoning. And so the
question of how trustworthy the model’s choice is does come to the
forefront, especially if the ethical constraint in this specific example
implies saving a human’s life in the case of an emergency.
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8.4.2. Bias and fairness
The performance of deep learning models is highly dependent

on the data they are taught. If the training datasets were to be biased
or unrepresentative, it is highly probable that the AV perception
system would have similar biases. For instance, if the model were
trained on a narrow set of data, which has people, but not enough
of different ethnicities and genders, the model would not be able to
recognize particular individuals, which means there could be conse-
quences in the real world.While it is important to ensure fairness, the
more pressing issue is the ethical issues of AV development, espe-
cially concerning safety-critical aspects such as object identification
or traffic sign recognition.

8.4.3. Accountability and liability
The liability of an accident is heavily debated, as no one knows

if the software developers, the manufacturer, or even the vehicle
itself is to be blamed. All parties share partial responsibility, and
legal and ethical dilemmas often ensue, while deep learning models
do add to the ambiguity. For instance, if a model’s prediction leads
to damage, the legally critical question emerges: who is to take the
blame? This is particularly burdensome when the model’s reasoning
is poorly documented.

8.4.4. Safety and robustness
Deep learning models for AV perception must generalize well

to diverse real-world conditions such as lighting changes, weather
variations, and sensor noise. Failure under scenarios like fog or
heavy rain can pose serious safety risks. Ensuring model relia-
bility through extensive testing and validation is critical, as even
small perception errors can lead to accidents. Addressing these chal-
lenges also involves tackling ethical and safety concerns, such as
reducing training data bias, building transparent decision-making
frameworks, and defining clear accountability in case of failures.
Robust testing and clear ethical guidelines are essential for safe
deployment. Balancing the need for high accuracy with safety,
fairness, and accountability remains a major hurdle in advancing
self-driving technology.

9. Open Research Issues and Future Directions

Although there has been substantial advancement in the field
of deep learning-based perception for AVs, there are still numerous
unresolved research challenges that necessitate further investiga-
tion, particularly in the context of the emerging developments of
2024.

9.1. End-to-end autonomous driving frameworks

Perception, planning, and control are divided into distinct
stages in conventional modular pipelines. Recent advancements
imply a transition toward end-to-end learning frameworks [134],
wherein a singular neural architecture directly maps raw sensor
data to driving actions or intermediate representations. Signifi-
cant developments in 2024 encompass BEVFormer [135], Trans-
Fuser [136], and end-to-end BEV-based transformers [137], which
exhibit enhanced performance in urban driving contexts by inte-
grating spatial-temporal information from cameras, LiDAR, and
high-definition maps. Improvements to the interpretability, general-
ization, and safety guarantees of these densely coupled architectures
should be the primary focus of future research.

9.2. World models

The integration of world models, including DreamerV3 and
PlaNet, into autonomous driving frameworks is another promising
direction [138, 139]. These models acquire a latent dynamics repre-
sentation of the environment, allowing agents to internally simulate
future paths. Their application to AVs, although mainly investigated
in robotics and gaming contexts, can markedly improve sampling
efficiency, long-term prediction, and uncertainty-informed planning
in intricate metropolitan settings. In order to align with real-world
sensor dynamics, future research must investigate the training of
such models using multimodal driving datasets.

9.3. Foundation models and multimodal pretraining

The emergence of foundation models [140], trained on exten-
sive and diverse datasets (e.g., LiDAR, RGB pictures, semantic
maps), has facilitated the development of generalizable perception
systems. Pretraining on large autonomous driving datasets (such
as nuScenes++ and Waymo Open Dataset 2024) has been investi-
gated in 2024 to facilitatemultitask learning, domain adaptation, and
zero-shot transfer. Nonetheless, obstacles persist in scaling these
models, aligning them with safety-critical goals, and minimizing
computational demands for real-time implementation.

9.4. Emerging cross-domain directions

While traditional perception systems have focused on 3D
object detection, sensor fusion, and real-time inference, emerging
research has begun to address adjacent challenges related to data
privacy, edge processing, and intelligent wireless sensing. Notably,
works such as generative AI for privacy-preserving crowdsensing
[141] and attention mechanisms in wireless networks [142] intro-
duce generative models and attention-based methods to improve
secure data handling and adaptive model behavior in distributed
environments. These studies reflect a growing trend of integrating
privacy-aware, intelligent edge computing techniques into percep-
tion systems—a direction that could significantly impact future
sensor-driven AI frameworks.

10. Conclusion

The rapid advancement of deep learning techniques in AV per-
ception has considerably improved self-driving cars’ capabilities,
allowing them to navigate complex and dynamic situations more
accurately and safely. This review has examined recent advances
from 2019 to 2024, emphasizing critical domains such as 3D object
detection, sensor fusion, object localization, and environmental per-
ception. Methods including CNNs, RNNs, GANs, and transformers,
in conjunction with sensor fusion, have improved system precision
and dependability. Nevertheless, ethical concerns, data scarcity,
real-time processing, and computational complexity continue to be a
challenge. Future research should focus on these difficulties in order
to improve performance, ensure safety, and permit the widespread
deployment of AVs in real-world circumstances.
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