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Abstract: Deep learning techniques are transforming stock market forecasting by significantly improving the accuracy of predicting price
movements andmarket patterns. In this researchwork, we propose two novel hybrid architectures –MSLSTM (Multivariate Sequential Long
Short-Term Memory) and MSLSTMA (Multivariate Sequential Long Short-Term Memory Autoencoder). Both models leverage the Long
Short-Term Memory (LSTM) ability to capture complex temporal dependencies in sequential financial data. Our method performs well in
a variety of industries and surpasses a few other LSTMs and their autoencoder-augmented variations, as well as conventional deep learning
models like CNNLSTM. MSLSTMA achieves the highest sector-wise winning rates, notably 95.83% in the telecommunication sector,
87.5% in technology, and 83.33% in industrials. Model performance was rigorously evaluated using mean squared error, root mean squared
error, mean absolute error, and mean absolute percentage error. Across all these metrics, MSLSTMA consistently delivered the lowest error
rates, showcasing its superior accuracy and practical relevance for real-world financial forecasting. MSLSTM also demonstrated strong
performance, with winning rates of 50% in consumer staples and 45.83% in the healthcare sector. This research introduces an effective and
scalable tool for investors, with the potential to enhance investment decisions through precise stock price prediction.
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1. Introduction

Investment, a strategic financial practice, involves the allo-
cation of capital to various assets to generate income or capital
gains. This financial strategy not only allows individuals to com-
bat the erosive impact of inflation but also serves as a mechanism
for wealth accumulation over time, thereby contributing to financial
security for both the investor and their family. Traditional models
such as GARCH and ARIMA have difficulty capturing the complex
nonlinear correlations that are present in stock prices. It is diffi-
cult for Recurrent Neural Networks (RNNs) to identify long-term
dependencies in sequential data because of the vanishing gradient
problem. The Long Short-Term Memory (LSTM) was introduced
to overcome this limitation by allowing the network to selectively
remember or forget information over extended sequences.

The proposed methodology utilizes the application of Mul-
tivariate Sequential Long Short-Term Memory (MSLSTM) and
Multivariate Sequential Long Short-Term Memory Autoencoder
(MSLSTMA), a novel approach in the realm of stock price pre-
diction. By leveraging the inherent sequential nature of stock price
data, MSLSTM networks aim to capture long-term dependencies
and intricate relationships amongmultiple variables simultaneously.

*Corresponding author: Jobish Vallikavungal, School of Engineering and
Sciences, Tecnologico de Monterrey, Mexico. Email: jobish03@tec.mx

The sequential structure of MSLSTM makes it well-suited for fore-
casting tasks that involve temporal dependencies, aligning with the
dynamic nature of market fluctuations. These models stand out
for their capacity to simultaneously consider multiple variables,
departing from the conventional practice of treating each variable
in isolation, as often observed in traditional forecasting methods.
This research endeavor aims to bridge the existing gap and lay the
groundwork for future investigation, further exploration, and refine-
ment ofMSLSTM andMSLSTMA-based approaches in the domain
of financial forecasting.

Further, we are conducting a comprehensive analysis of the
models and algorithms employed in the field of deep learning
for various tasks, including time series prediction and classifica-
tion. Univariate Sequential LSTM (USLSTM), Univariate Sequen-
tial Long Short-Term Memory Autoencoder (USLSTMA), Gated
Recurrent Unit (GRU), Generative Adversarial Networks (GANඌ),
and Convolutional Neural Network Long Short-Term Memory
(CNNLSTM) are the prominent ones in the field. The USLSTM
is a type of RNN intended to identify persistent dependencies in
sequential information. Thismodel is specifically applied to univari-
ate (single-variable) time series data, focusing on predicting future
values based on the historical values of a single variable.

The USLSTMA model is a modified version of USLSTM that
incorporates an autoencoder to improve the results. It consists of
an encoder and a decoder, and its goal is to figure out how to
represent the input data. This model is intended to represent the
key elements and trends in a time series that consists of a single
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variable. GRU is a kind of RNN that is similar to LSTM
and is intended to identify persistent dependencies in data that
occur sequentially. This research contributes to the evolving land-
scape of stock price prediction by introducing and validating the
effectiveness of two variations of LSTM networks.

1) Multi-sequential Long Short-Term Memory (MSLSTM) – The
purpose of this model is to capture the temporal dynamics.
The model can comprehend the complex interactions between
the indicators better with additional LSTM layers. In this
case, the network may learn temporal properties at different
abstraction levels.

2) Multi-sequential Long Short-Term Memory Autoencoder
(MSLSTMA) – In this framework, an autoencoder is included
to incorporate the latent variables that affect the distribution of
the data. This reduces noise and complexity by extracting only
the most important features from the incoming data. The LSTM
can focus on the most important information by receiving this
compressed and denoised data, which could result in more
accurate predictions.

Our experimental results demonstrate this technique’s supe-
riority. To ensure the accuracy and consistency of the financial
data, the Refinitiv Eikon dataset is used. Together, these approaches
produce market share forecasts that are more reliable, strong, and
broadly applicable. These forecasts can be useful resources for
investors and financial professionals attempting to comprehend the
complexities of the financial system.

The rest of this research is structured as follows. In Section 2,
we present the relevant literature, and then in Section 3, we present
some predictive artificial intelligence (AI) models for stock price
prediction and their architectures. It covers established machine
learning techniques such as random forests (RFs) and advanced
deep learning models including LSTM networks. In Section 4, we
propose new predictive models that build upon existing methodolo-
gies. The experimental setups and data collection methods used to
evaluate the proposed models are detailed in Section 5. Then, in
Section 6, we present and analyze the results of our experiments. The
analysis includes a comparison of prediction accuracies, computa-
tional efficiency, and robustness of the proposed models. Lastly,
Section 7 summarizes the key findings of the research and discusses
potential future directions. It highlights the contributions of the pro-
posedmodels to the field of stock price prediction and suggests areas
for further investigation. The discussion includes reflections on lim-
itations and possible improvements to enhance model accuracy and
applicability.

2. Literature Review on Predictive AI Models in
Stock Market Price Prediction

Recent research has explored a range of AI and machine learn-
ing techniques for stock market prediction. Among these, LSTM
networks have gained prominence for their superior accuracy in
forecasting stock prices [1, 2]. Additionally, hybrid models that
integrate multiple AI techniques are emerging, capitalizing on the
strengths of each approach to enhance predictive performance.
While a comprehensive analysis of all models is beyond the scope of
this study, we will focus on the most significant AI models and their
hybrid forms documented in the literature. This includes a detailed
examination of recent advancements in deep learning techniques for
price prediction, as outlined in Reference [3], which categorizes var-
ious aspects such as neural network architectures, databases, eval-
uation metrics, and implementation strategies. The study offers a

thorough classification of standard models and their variants, hybrid
models combining deep learning with traditional approaches, and
those integrating different deep learning techniques. Shahi et al. [4]
compared the performance of deep learning models based on LSTM
and GRU models. To make predictions, the authors used multivari-
ate inputs in both bidirectional and unidirectional stacked structures.
Asgarian et al. [5] developed GAN-based models to predict stock
prices by incorporating optimized price features and sentiment data
from social media. The S&P 500 index’s next-day closing price
was predicted using single-layer and multi-layer LSTM models
in Reference [6].

Wang et al. [7] created a complex model that improved the
accuracy of stock price prediction across four significant Asian
markets by combining secondary decomposition (SD), multi-factor
analysis, and attention-based LSTM (ALSTM) networks. Similarly,
Polamuri et al. [8] introduced the Stock-GAN framework, which
integrates GANs with LSTM networks and Convolutional Neural
Networks (CNNs) as the generator and discriminator, respectively.
This framework is further refined by combining it with the Multi-
Model-based Hybrid Prediction Algorithm and is optimized through
reinforcement learning and Bayesian methods.

A notable contribution in Reference [9] involves a hybrid
framework that integrates empirical wavelet transform for pre-
processing, LSTM networks with dropout and particle swarm
optimization for prediction, and outlier robust extreme learning
machine (ORELM) for post-processing, demonstrating significant
improvements over traditional forecasting methods. Additionally,
Lin et al. [10] combined LSTM networks and Complete Ensemble
EmpiricalModeDecomposition with Adaptive Noise (CEEMDAN)
to forecast realized volatility of financial indices, outperform-
ing other models such as back propagation (BP) neural networks
and support vector regression (SVR). Vidal and Kristjanpoller
[11] developed a hybrid model that merges CNNඌ with LSTMs
to enhance the prediction of gold volatility, showcasing superior
performance compared to traditional GARCH and LSTM mod-
els. Forecasting accuracy for major stock indices was greatly
improved in Reference [12] by a model that combined Adaptive
Wavelet Transformwith LSTMand several econometricmodels like
ARIMAX-GARCH.

Other hybrid models also demonstrate promising advance-
ments. Chong et al. [13] carried out a systematic evaluation of
deep learning networks, including LSTM for the prediction of the
stock market, highlighting the efficacy of LSTMs. To improve
stock market predictions, Zhang et al. [14] created the CEEMD-
PCA-LSTM model, which combines principal component analysis
(PCA) and LSTM networks with Complementary Ensemble Empir-
ical Mode Decomposition (CEEMD). Gao et al. [15] optimized a
model that incorporated technical indicators and investor sentiment,
comparing the performance of LSTM and GRU models and find-
ing LASSO dimension reduction superior to PCA. Kim and Won
[16] proposed a hybrid approach combining LSTM networks with
various GARCH-type models, demonstrating improved forecasting
accuracy. Furthermore, Bai et al. [17] enhanced stock price predic-
tion by integrating neighborhood rough set theory and multivariate
empirical mode decomposition (EMD) with LSTM networks, while
Chen and Ge [18] improved prediction by incorporating an atten-
tion mechanism into LSTMs. These studies highlight the ongoing
innovation and integration of LSTM networks in hybrid forecast-
ing models, reflecting their potential for improving stock market
predictions.

Many researchers have prominently featured the integration
of LSTM networks and other RNNs. He and Kita [19] introduced
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a hybrid sequential GAN model that incorporates various types of
RNNs, including LSTM and GRU, within both the generator and
discriminator components of the GAN. This framework was applied
to predict stock prices based on S&P 500 data and evaluated using
diverseperformancemetrics. Similarly,DingandQin [20]developed
aDeepRecurrentNeuralNetwork (DRNN)model applyingLSTMto
simultaneouslypredictmultiplestockprices, suchasopening, lowest,
andhighest prices, and achieved an accuracy of over 95%, surpassing
traditional LSTM and other DRNNmodels. Building on this, He and
Kita[21]proposedanovelpredictionmodelthatintegratesGANswith
various types ofRNNඌ, includingLSTMandGRU. In their approach,
LSTMwas utilized as the generator within the GAN framework, and
its performance was compared against different discriminators such
as Multilayer Perceptron (MLP), RNN, LSTM, and GRU.

Many of the recent advancements in stock price prediction have
prominently featured the integration of LSTM networks and CNNs,
often within hybrid or adversarial frameworks. In Reference [22], a
comparison was conducted between CNN and LSTM networks for
stock price prediction. Building on this, Kumar et al. [23] devel-
oped a system incorporating GANs, where LSTM networks served
as the generative model and CNNs as the discriminative model,
aiming to enhance forecasting accuracy and reduce error. Similarly,
Zhou et al. [24] proposed the GAN-FD framework, which combines
LSTM and CNNwithin a GAN structure to forecast high-frequency
stock market data, leveraging adversarial training to simulate trader
behavior and improve prediction accuracy.

Expanding on these approaches, Wu et al. [25] introduced
stock sequence array convolutional LSTM (SACLSTM), a novel
framework that integrates CNNs and LSTMs to boost prediction
accuracy. In this model, CNNs extract features, which are then
processed by LSTMs for final predictions. Vidal and Kristjan-
poller [11] also developed a hybrid system blending CNNs with
LSTMs to improve gold volatility predictions, demonstrating supe-
rior performance over traditional models. Additionally, Jin et al.
[26] created the empirical modal decomposition (EMD) and LSTM
models, which integrates CNN-based sentiment analysis, EMD, and
an enhanced LSTM featuring an attention mechanism to refine the
accuracy of predictions and minimize delays.

Recent developments in stock market forecasting have promi-
nently featured the integration of LSTMnetworks with various other
models to enhance prediction accuracy. In Reference [27], resear
chers introduced NuNet, a deep learning framework that combines
ConvLSTM for spatiotemporal feature extraction with LSTM for
capturing temporal patterns. This approach is further enhanced by
advanced sampling and data augmentation techniques, including
trend sampling and column-wise random shuffling, to improve fore-
cast accuracy. Similarly,Lin et al. [28] developed a forecastingmodel
that integrates LSTMwith CEEMDAN. They first decompose stock
index data using CEEMDAN and then apply LSTM to forecast the
decomposed components, reconstructing the final predictions from
these components. Their CEEMDAN-LSTM model demonstrated
superiorperformanceinbothemerginganddevelopedequitymarkets.

Furthermore, Md et al. [29] proposed a Multi-Layer Sequential
Long Short-TermMemory (MLS LSTM) model that was optimized

using the Adam optimizer to address the vanishing gradient prob-
lem often encountered with simpler RNNs. Apart from that, Zhang
et al. [30] developed a feature-enhanced LSTM network combined
with residual-driven 𝜈 support vector regression (FEL-𝜈SVR). This
model integrates convolutional layers for feature extraction, LSTM
for initial predictions, and 𝜈SVR to refine these predictions by mod-
eling residuals, highlighting the potential of combining LSTM with
other sophisticated methods to improve prediction capabilities.

Recent advancements in the forecasting of stock prices have
showcased the effectiveness of various sophisticated models, each
contributing unique strengths to enhance forecasting accuracy. Sim-
ilarly, Ghosh et al. [31] examined the effectiveness of RF and
CuDNNLSTM networks, demonstrating that incorporating multi-
ple features surpasses single-feature models in forecasting price
movements. In a different approach, Ito et al. [32] utilized LSTM
networks to predict returns in foreign exchange markets by incor-
porating limited order book events. Their results showed that
LSTM models applying limit order book events outperformed
traditional benchmarks and transaction-only models in predic-
tion accuracy, though the economic gains were not as significant
when transaction costs were factored in. Additionally, Mirza et al.
[33] enhanced online learning algorithms by integrating covari-
ance information into LSTM and GRU networks, introducing
covariance-based LSTM variants and weight matrix factorization
to reduce computational complexity while improving performance.

Moreover, Patel et al. [34] developed a two-phase fusion
approach for predicting stock market index values, using SVR
to forecast technical indicators, which then served as inputs for
Artificial Neural Networks (ANN), RF, and SVR in the second
stage. This method outperformed single-stage models. In Refer-
ence [35], the researchers evaluated various time-varying volatility
models, finding that models incorporating realized volatility, such
as Realized EGARCH and Realized SV, generally provided better
forecasts than traditional models like Exponential GARCH. Addi-
tionally, Wang and Chen [36] developed Factor-GAN, a framework
that employs GANs for factor investing, integrating deep learn-
ing with a multi-factor pricing model. Factor-GAN demonstrated
superior performance in stock return predictions and investment
outcomes compared to traditional linear models. Lastly, Wu et al.
[37] introduced the quantile autoregressive (QAR)model to forecast
stock return volatility, showing that QAR outperforms traditional
GARCH-type models, especially during financial turmoil, and
offers valuable insights into the leverage effect on asset returns.

The recent reviews of stock market price prediction tech-
niques have underscored the pivotal role of LSTM networks in
advancing forecasting accuracy. In Reference [38], a review from
2015 onward highlighted the increasing use of LSTM among var-
ious deep learning methods, such as CNN, RNN, and advanced
models like HAN and Wavenet. This review emphasized the ben-
efits of deep learning and identified a gap in combining multiple
deep learning approaches. Similarly, Hu et al. [39] systematically
analyzed forecasting techniques from2014 to 2018, focusing on how
LSTM integrates with both traditional and nontraditional data for
improved predictions. A comprehensive comparison of model types

Table 1
Comparison of model types and performance metrics from recent research studies

Article Models Performance measure
[5] GAN, LSTM, CNN Accuracy, F-Score

[17] LSTM MAE, MAPE, RMSE, R2

[6] SLSTM, MLSTM RMSE, MAPE, R
(Continued)
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Table 1
(Continued)

Article Models Performance measure
[18] LSTM, AttLSTM Wilcoxon signed-rank test, McNemar’s test
[13] DNN, PCA, AE, RBM NMSE, RMSE, MAE, MI
[40] HHT, XGBoost Cumulative Rate of Return, Maximum Drawdown, SR
[20] ADRNN, LSTM, DRNN, MSE, MAE
[15] LSTM, GRU MSE, RMSE, MAE
[31] CuDNNLSTM, RF Daily Return, Sharpe Ratio, SD, Maximum Drawdown, VaR, CVaR
[19] MLP, RNN, LSTM, GRU RMSE, MAE
[21] GAN, LSTM, MLP, RNN, GRU RMSE, MAE
[32] LSTM Investment returns

[26] CNN, LSTM MAE, RMSE, MAPE, R2

[41] SVM Diebold-Mariano and Giacomini-White tests
[22] CNN, LSTM Training and Testing Loss (Error), RMSE, MAPE
[16] LSTM, DFN, GARCH MAE, MSE, HMAE, HMSE
[23] LSTM, CNN RMSE, Forecast Error Loss
[27] ConvLSTM, LSTM MSE, MAE, MAPE
[28] LSTM, SVM, BP MSE, MAE, MAPE, RMSE, MCS
[10] LSTM, BP, Elman, SVR, AR, HAR MSE, MAE, HMSE, HMAE, MCS
[9] LSTM, ORELM MAE, MAPE, RMSE, SDE

[42] CNN, LSTM, MLP, RNN, CNN-RNN, CNNLSTM MAE, RMSE, R2

[29] MLS LSTM MAPE, RMSE, R2

[33] LSTM, GRU MSE, cross-entropy loss
[43] ARIMA, SVM, MSE
[34] ANN, RF, SVR, SVR–ANN, SVR–RF, SVR–SVR. MAPE, MAE, rRMSE, MSE
[8] STM, CNN, GAN MAE, MSE
[35] EGARCH, SV, HAR, REGARCH, RSV MSE, QLIKE
[11] CNN, LSTM MSE, MCS
[7] VMD, ICEEMDAN, ALSTM MAE, RMSE, MAPE, ROC, AUC

[36] LSTM, GAN RMSE, R2

[25] CNN, LSTM, SACLSTM Accuracy
[37] SSACNN Accuracy

[30] LSTM, SVR R2, RMSE, MAE, MAPE
[14] EEMD, PCA, LSTM. RMSE, MAE, NMSE, DS
[38] QAR, GARCH, MS-GARCH MSE, DM
[24] LSTM, CNN RMSRE, DPA

[12] LSTM, XGBoost RMSE, MAE, SMAPE, R2

and performancemetrics from recent research studies is presented in
Table 1.

Additionally, Gandhmal and Kumar [44] reviewed various
methodologies, including LSTM within a broader context of
Bayesian models, Fuzzy classifiers, and ANN. Complementing
these, Kehinde et al. [45] reviewed 220 articles from 2001 to 2021,
revealing a trend toward advanced models and hybrid approaches,
with LSTM networks increasingly being explored for their effec-
tiveness in stock market forecasting. Mehtarizadeh et al. [46] used
a hybrid modeling technique, initially using an ARIMA-GARCH
framework to capture the statistical properties of the time series data
before applying an LSTM network to improve predictive perfor-
mance. Wang et al. [47] employs Large Language Model’s (LLM)
natural token prediction ability by treating stock prices as sequen-
tial tokens to enhance stock price prediction. The application of

Gaussian process regression for price prediction in References
[48–50] demonstrates the potential of advanced machine learn-
ing algorithms to capture complicated pricing behavior across
domains.

The impressive performance metrics reported across vari-
ous studies affirm the potential of these sophisticated techniques
to advance the accuracy and effectiveness of stock market fore-
casting. To the best of our knowledge, none of the researchers
explored LSTM in univariate and multivariate, sequential layers as
we explored in this research.

3. AI Models for Stock Price Prediction

AI-based stock predictionmodels utilize techniques inmachine
learning and deep learning to study historical stock market
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Figure 1
Long short-term memory architecture

information, identify patterns, and predict future stock prices. Deep
learning algorithms, including LSTM networks, are particularly
effective for stock prediction. LSTMnetworks, a type of RNN, excel
at capturing long-term dependencies and patterns in stock prices.
Thesemodels, alongwith others like FeedforwardNeural Networks,
autoencoders, and CNN, are adapted to handle the intricate patterns
in stock market data, with hybrid architectures often enhancing their
predictive accuracy. The Long Short-Term Memory architecture is
presented in Figure 1.

The autoencoders are unsupervised learning models that aim
to learn efficient representations of input data by encoding and
decoding it and are used for feature extraction and dimensional-
ity reduction in stock market data. Often associated with image
processing, CNNs can be adapted to analyze sequential data and
capture patterns using convolutional layers and are useful for
extracting hierarchical features from stock market time series data.
Deep learning algorithms, like the USLSTM model that blends
LSTM and dense layers, are particularly good at learning from
complicated, high-dimensional data in predictive modeling. This is
further improved by the USLSTMA, which uses an autoencoder
architecture with LSTM layers in both the encoding and decoding
phases to enable precise sequence reconstructions.

3.1. The convolutional neural network model for
stock price prediction (CNNLSTM)

The neural network architecture illustrated in Figure 2 inte-
grates convolutional and LSTM layers to effectively model
sequential data. The combination of convolutional and LSTM layers
enables the model to make advantage of both spatial and temporal
information for improved predictive performance.

Themodel is compiled using the Adam optimizer (with a learn-
ing rate of 0.00001) and mean squared error (MSE) as the loss
function. The architecture is illustrated in Figure 2.

3.2. The Univariate Sequential Long Short-Term
Memory model

The neural network architecture shown in Figure 3 illustrates
USLSTM, a hybrid model combining LSTM layers with a dense
layer, for time series prediction.

This architecture consists of two sequential LSTM layers fol-
lowed by a dense output layer. The training procedure involves
compiling the model with the Adam optimizer and MSE loss func-
tion. Early stopping and model checkpointing are implemented to
avoid overfitting and save the best performing model. The model
is trained on historical stock price data and validated on a separate
validation set. Post training, the best model weights are loaded, and
predictions are made on the test set.

3.3. The Univariate Sequential Long Short-Term
Memory Autoencoder model

Figure 4 illustrates an autoencoder architecture, USLSTMA,
designed for sequence data, employing LSTM layers in both the
encoding and decoding phases. The architecture begins with an
input layer that receives the sequence data, which is then processed
by the first LSTM layer acting as an encoder. The encoder captures
the temporal dependencies in the input sequence and produces a
fixed size latent space representation.

The decoder, constituted by the second LSTM layer, recon-
structs the sequence from the latent representation. The output of the
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Figure 2
Architecture of CNNLSTM model

decoder is passed through a dense layer, which maps the decoder’s
output to the final reconstructed sequence.

The USLSTM model comprises two LSTM layers, while the
USLSTMAmodel employs a single LSTM layer. Both models con-
clude with a dense layer with one unit, suitable for regression tasks
such as stock price prediction.

4. Proposed Predictive AI Models for Stock Price
Prediction

This section presents various LSTM-based models designed
for stock price prediction, highlighting their architectures and
functionalities. The MSLSTM model, featuring multiple LSTM

layers followed by dense layers, and the MSLSTMA model,
a sequence-to-sequence autoencoder, are introduced for robust
sequence modeling, showcasing their capabilities in handling tem-
poral dependencies and complex patterns in time series data. Even
though LSTM-based architectures are widely used in stock price
prediction, they frequently ignore the wealth of multivariate infor-
mation available or rely on shallow architectures. Also, limited
attention has been given to sector-wise comparisons of various
deep learning architectures. This research work fills these gaps by
employing MSLSTM and its autoencoder variation MSLSTMA to
capture intricate temporal dynamics while also providing insights
into the architecture that performs best in each sector.

Figure 3
Architecture of USLSTM model
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Figure 4
Architecture of USLSTMA model

Figure 5
Architecture of MSLSTM model

4.1. The Multi-sequential Long Short-Term
Memory model

A deep learning architecture, Multi-sequential Long Short-
Term Memory, in short, MSLSTM architecture, is presented in
Figure 5, which is designed for sequence modeling, featuring two
LSTM layers followed by dense layers. The MSLSTM architecture

leverages the LSTM units to identify the sequential correlations in
the input data, and the multivariate nature enables it to consider
interactions and relationships among multiple features. LSTMs
can retain relevant information over extended sequences, allowing
the model to effectively learn from historical market behav-
ior. Furthermore, the internal gating mechanism allows selective
memory updates, making them robust in dealing with noisy and
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Table 2
Model summary: MSLSTM

Layer (Type) Output shape Param #
lstm (LSTM) (None, 42, 210) 181,440
lstm_1 (LSTM) (None, 210) 353,640
dense (Dense) (None, 6) 1,266
dense_1 (Dense) (None, 1) 7
Total params 536,353 (2.05 MB)
Trainable params 536,353 (2.05 MB)
Non-trainable params 0 (0.00 MB)

non-stationary data such as stock prices. These characteristics make
LSTM an appropriate choice for modeling the dynamic nature of
stock market trends and for generating reliable predictions.

The process begins with the input layer, which receives the
sequence data. This data is then fed into the first LSTM layer (LSTM
Layer 1), where the temporal dependencies within the sequence are
captured. The output from LSTMLayer 1 is subsequently processed
by the second LSTM layer (LSTM Layer 2), which further refines
the temporal representation.

The refined output from LSTM Layer 2 is then passed to
Dense Layer 1. This layer performs a nonlinear transformation of the
LSTM output, preparing it for the final prediction. The output from
Dense Layer 1 is fed into Dense Layer 2, which acts as the final layer
of the network, producing the ultimate output of the model. This
architecture is well-suited for tasks requiring sequential data model-
ing, such as time series forecasting, natural language processing, and
other applications where capturing temporal dependencies is cru-
cial. The combination of multiple LSTM layers allows the model to
learn complex patterns over time, while the dense layers provide the
necessary transformations to map the LSTM outputs to the desired
prediction space. The model summary is given in Table 2.

4.2. The Multi-sequential Long Short-Term
Memory Autoencoder model

The MSLSTMA architecture is presented in Figure 6, which
is designed for sequence-to-sequence tasks. The architecture begins
with an input layer that feeds the sequence data into the LSTM
encoder.

Following the encoding stage, the latent space representation is
passed to the LSTM decoder, which reconstructs the sequence from
this compressed form. The decoder processes the latent space repre-
sentation, expanding it back into a sequence form. The output from
the LSTM decoder is then fed into Dense Layer 1, which performs
a nonlinear transformation to refine the reconstructed sequence.
This refined output is further processed by Dense Layer 2, which
produces the final output of the model.

This architecture is particularly effective for tasks requiring the
understanding and generation of sequential data, such as time series
prediction, anomaly detection, and natural language processing. The
autoencoder can discover complex patterns and connections in the
data by compressing the input sequence into a latent space and
then rebuilding it. This enhances the model’s capacity to produce

Figure 6
Architecture of MSLSTMA model
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Table 3
Model summary: MSLSTMA

Layer (Type) Output shape Param #
lstm (LSTM) (None, 210) 181,440
repeat_vector (RepeatVector) (None, 210, 210) 0
lstm_1 (LSTM) (None, 210) 353,640
dense (Dense) (None, 6) 1,266
dense_1 (Dense) (None, 1) 7
Total params 536,353 (2.05 MB)
Trainable params 536,353 (2.05 MB)
Non-trainable params 0 (0.00 MB)

Table 4
Comparative summary of model architectures

Model Input type LSTM layers Autoencoder
CNNLSTM Univariate 1 No
USLSTM Univariate 1 No
USLSTMA Univariate 1 Yes
MSLSTM Multivariate 2 No
MSLSTMA Multivariate 2 Yes

precise and significant outputs. The autoencoder component
improves the stock price prediction by performing feature
extraction, noise reduction, and dimensionality reduction. The
MSLSTMA model summary is given in Table 3.

The primary differences between MSLSTM and MSLSTMA
models lie in their architectures and intended functionalities. The
architectural configuration of the model, including the number of
units in the LSTM layers and neurons in the dense layers, was
established through manual tuning. The objective was to achieve
the right balance between model complexity and generalizability,
ensuring enough capacity to represent temporal connections while
avoiding overfitting.

A comparative overview of the main architectural differences
between the models in this study is given in Table 4.

5. Experimental Setups and Data Collection

Using Eikon Refinitiv as the data source ensures the accu-
racy and consistency of the financial data used in this research
work. Eikon, a widely recognized platform used by financial insti-
tutions and researchers, delivers comprehensive and timely market
information, which improves the validity of the analysis.

The models employ daily data from December 12, 1980, to
February 05, 2024, to train the stock market data, encompassing key
aspects like open, high, low, trading price, and volume. As some
equities were listed after the initial date, their early records have
missing values. These NaN entries are removed from the dataset.
The remaining datawas normalized usingmin-max scaling to ensure
uniformity across input values during model training.

To guarantee the accuracy of time series forecasting, a sliding
window approach was used with a fixed window size of 42 time
steps. This means that each input to the model includes the pre-
vious 42 days of historical data. The dataset was chronologically
divided into 60% training, 20% validation, and 20% testing with-
out random shuffling. This sliding window technique was used to
build input and output sequences, ensuring that themodel is assessed

Figure 7
Validation process

on future values and only learns from historical values. This
prevents data leakage and simulates a realistic forecast scenario. By
incorporating early stopping and dropout layers, the model manages
overfitting by avoiding excessive reliance on training data. Figure 7
illustrates the validation process with a representative temporal data
split. The exact split may differ depending on the stock-specific data
availability.

Although the models are trained using a single-step prediction
mechanism, they are applied recursively for multistep forecasting
over an extended horizon of approximately 5 years. The predictions
are generated iteratively by predicting the subsequent time point
using the past outputs as inputs. Figure 8 offers a detailed flow chart
that demonstrates the methodological framework used in this study.

Here are some key points considered for choosing equities:

1) High liquidity (high trading volumes): to ensure that there is
enough market activity and trading volume for accurate price
discovery, reducing the impact of slippage and ensuring efficient
execution of trades.
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Figure 8
Methodological framework

2) Volatility: stocks with moderate to high volatility provide more
opportunities for trading and testing the predictive capabilities
of the models.

3) Industry representation: the selection across different indus-
tries to capture varying market dynamics. Testing the models
on stocks from different sectors can help evaluate the robust-
ness and generalizability of the models across different market
conditions.

4) Market capitalization: stocks with different market capital-
izations, including large-cap, mid-cap, and small-cap stocks.
Each category has its own characteristics and risk-return pro-
files, which can impact the behavior of stock prices and the
performance of the models.

5) Correlation analysis: to avoid overfitting the models to specific
market conditions or stock-specific factors. We chose stocks
with low correlation, which can help ensure the diversity of the
testing dataset.

6) Availability of external data: incorporating external data sources,
such as economic indicators, sentiment analysis, or news senti-
ment, to enhance the predictive power of the models and capture
additional market insights.

Table 5 lists the stock names spanning diverse industries,
carefully chosen for evaluating AI models aimed at stock price
prediction. The Sector column delineates the industry sector to
which each equity belongs, while the Ticker column provides the

associated market ticker symbol. Liquidity levels are presented in
the Liquidity column, offering insights into the ease of trading each
equity. Additionally, the P/E ratio column showcases the respec-
tive price-to-earnings ratios, a crucial metric for assessing valuation,
while the MarCap column reveals the market capitalization of each
equity, underscoring their respective financial magnitude within the
market landscape.

6. Experimental Results and Analysis

The AI models utilized in this study were implemented using
Python and executed on a computing device with the following
specifications: the device features a 12 th Gen Intel Core i7-
12700 processor operating at a base frequency of 2.10 GHz. It is
equipped with 16.0 GB RAM. The device runs on a 64-bit operating
system, Windows 11 Pro edition. These specifications describe the
computational infrastructure used to deploy and assess AI models
for the research endeavor. Hyperparameter tuning was performed
using random search to optimize the number of epochs and batch
size for each stock. This approach enabled efficient exploration of
the hyperparameter space while avoiding the computational cost of
exhaustive search methods. Furthermore, we took model complex-
ity into account and deliberately refrained from using excessively
deep architectures to balance representational capacity and training
efficiency. This constraint was imposed to maintain model gener-
alizability, prevent overfitting, and guarantee that training could be
completed within a reasonable time frame, given the multitude of
tests conducted across multiple stocks.

The models are built with Tensorflow and Keras. In each of
the models, we tested the commonly used metrics for evaluating the
performance of each of the models, which are MSE, root mean
squared error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE).

These metrics are used to assess the performance of predic-
tive models and to compare the accuracy of different models in
predicting stock prices. Lower values of MSE, RMSE, MAE, and
MAPE indicate better predictive performance. Thus, a total of 480
experiments is carried out. The MSLSTMA model consistently
outperforms others across most metrics and stocks, demonstrating
its superior predictive accuracy. For a comprehensive view of the
model performance, including detailed sector-wise comparisons and
performance metrics, please refer to the Tables A1–A6.

Table 6 presents the performance results of various AI models
in predicting stock prices across different industry sectors – shown
in each row. Each cell in the table represents the winning rate of each
model (expressed as a percentage) of a specific AI model within
a particular sector. The winning rate refers to the proportion of
times a particular model outperforms other models across various
performance metrics within a sector. For each metric, the model
yielding the lowest error is considered as the winner for that
instance. The winning rate is then calculated as the percentage of
times a model achieves the best performance across all stocks and
metrics within that sector.

To instantiate, the performance rate of MSLSTMA is 95.83%
in the telecommunication sector. In each sector, we choose six
equities from a wide range of selection criteria.

The USLSTM model exhibited some predictive capability,
particularly in the technology and financials sectors. However, its
accuracy was relatively low compared to later models. The inclu-
sion of moving averages in the USLSTMA model led to slight
improvements in winning rates, especially in the financials and
industrials sectors. The MSLSTM model exhibited considerable
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Table 5
Equities used for AI model testing

Sector Ticker Liquidity P/E ratio MarCap
INTC Large 93.10 High
NTES Large 14.70 Low
AEIS Medium 27.90 High
MTCH Medium 14.11 Low
VRNT Small 100.48 High

Technology VSAT Small 2.07 Low
CME Large 24.02 High
XP Large 15.77 Low
MKTX Medium 29.78 High
SEIC Medium 19.36 Low
PLMR Small 25.39 High

Financials EFSC Small 7.55 Low
ISRG Large 68.06 High
GILD Large 14.90 Low
RGEN Medium 237.89 High
ROIV Medium 2.10 Low
CPRX Small 24.80 High

Healthcare AMPH Small 15.81 Low
HON Large 22.94 High
CSX Large 18.87 Low
ESLT Medium 41.72 High
MIDD Medium 19.24 Low
USLM Small 22.48 High

Industrials ANDE Small 19.81 Low

Table 6
Sector-wise winning rate of each model

TEST

SECTOR CNNLSTM USLSTM USLSTMA MSLSTM MSLSTMA
TECHNOLOGY 0.00% 8.33% 0.00% 4.17% 87.50%
FINANCIALS 0.00% 12.50% 0.00% 37.50% 50.00%
HEALTHCARE 0.00% 0.00% 8.33% 45.83% 45.83%
CONSUMER STAPLES 0.00% 0.00% 8.33% 50.00% 41.67%
INDUSTRIALS 0.00% 0.00% 0.00% 16.67% 83.33%
TELECOMMUNICATION 0.00% 0.00% 0.00% 4.17% 95.83%

improvements over baseline models such as CNNLSTM, USLSTM,
and USLSTMA across multiple sectors.

Finally, the MSLSTMA model emerged as the most effective
acrossall sectors,demonstrating thehighestpredictionaccuracy.This
model achieved remarkable accuracy, especially in the technology
sector, indicating its robust predictive capabilities when considering
a combination of multivariate data and moving averages.

In summary, while early models struggled to provide accurate
predictions, the more advanced models, particularly the ආඌඅඌඍආൺ
model, showcased promising predictive capabilities, offering poten-
tial utility in forecasting stock prices across diverse industry sectors.

7. Conclusion and Future Directions

In this work, we have proposed and evaluated two innovative
AI models based on LSTM networks for stock price prediction.

The first approach deepens the LSTM model by adding multi-
ple layers, allowing the model to capture hierarchical patterns and
capture temporal dependencies. The second approach is a hybrid
model that integrates an autoencoder with the LSTM network to
enhance feature extraction, noise reduction, and improvement of the
generalization capabilities of the model.

Our findings demonstrate that both variations offer signifi-
cant improvements to the LSTM model. Even while our models
perform better, several limitations remain. Hyperparameter tun-
ing was conducted manually, which, while effective in our case,
may hinder scalability across diverse datasets or domains. Addi-
tionally, like most deep learning models, the proposed approach
requires substantial data and computational resources. Future direc-
tions include incorporating automated hyperparameter optimization
methods. A thorough knowledge of the strengths and trade-offs of
our models could be obtained by extending comparisons to a wider
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range of machine learning models and alternate hybrid techniques.
We believe this research can support investors in evaluating assets
more effectively and making informed investment decisions.
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Appendix

Here, you will see the entire experiments.

Table A1
Performance comparison of predictive models for technology sector equities

Model Name
Ticker Metric USLSTM USLSTMA MSLSTM CNNLSTM MSLSTMA Winner

MSE 2.34 1.77 1.79 4.62 1.70 MSLSTMA
RMSE 1.53 1.33 1.34 2.15 1.30 MSLSTMA
MAE 1.06 0.91 0.92 1.54 0.88 MSLSTMA

INTC MAPE 2.44 2.09 2.13 3.60 2.04 MSLSTMA
MSE 745.04 825.04 489.30 873.97 351.98 MSLSTMA
RMSE 27.30 28.72 22.12 29.56 18.76 MSLSTMA
MAE 13.95 15.05 9.15 12.28 8.33 MSLSTMA

NTES MAPE 6.41 6.62 5.96 8.07 5.77 MSLSTMA
MSE 159.12 16.29 10.71 27.98 9.60 MSLSTMA
RMSE 12.61 4.04 3.27 5.29 3.10 MSLSTMA
MAE 4.77 2.99 2.44 4.01 2.29 MSLSTMA

AEIS MAPE 2.94 3.68 3.12 4.94 3.00 USLSTM
MSE 10.52 8.95 6.27 21.14 5.55 MSLSTMA
RMSE 3.24 2.99 2.50 4.59 2.36 MSLSTMA
MAE 2.41 2.33 1.89 3.67 1.73 MSLSTMA

MTCH MAPE 3.16 5.17 4.09 8.42 3.70 USLSTM
MSE 3.00 2.95 3.01 7.55 1.75 MSLSTMA
RMSE 1.73 1.72 1.73 2.75 1.32 MSLSTMA
MAE 1.03 1.07 1.01 1.77 0.90 MSLSTMA

VRNT MAPE 2.42 2.51 2.40 4.21 2.96 MSLSTM
MSE 4.62 4.72 4.59 12.28 4.42 MSLSTMA
RMSE 2.15 2.17 2.14 3.50 2.10 MSLSTMA
MAE 1.54 1.56 1.54 2.62 1.49 MSLSTMA

VSAT MAPE 3.63 3.69 3.59 6.00 3.51 MSLSTMA

Table A2
Performance comparison of predictive models for financial sector equities

Model Name
Ticker Metric USLSTM USLSTMA MSLSTM CNNLSTM MSLSTMA Winner

MSE 22.20 28.16 21.75 58.19 21.98 MSLSTM
RMSE 4.71 5.31 4.66 7.63 4.69 MSLSTM
MAE 3.30 3.71 3.27 5.34 3.31 MSLSTM

CME MAPE 1.69 1.91 1.68 2.80 1.71 MSLSTM
MSE 2.49 1.25 1.54 2.69 1.01 MSLSTMA
RMSE 1.58 1.12 1.24 1.64 1.01 MSLSTMA
MAE 1.22 0.84 0.98 1.33 0.77 MSLSTMA

XP MAPE 5.65 3.84 4.60 6.10 3.55 MSLSTMA
MSE 159.12 423.76 179.78 517.43 189.49 USLSTM
RMSE 12.61 20.58 13.41 22.75 13.77 USLSTM
MAE 4.76 15.28 9.54 17.89 9.89 USLSTM

MKTX MAPE 2.94 3.83 2.63 4.94 2.74 MSLSTM
MSE 1.88 1.92 1.72 3.08 1.72 MSLSTMA
RMSE 1.37 1.39 1.31 1.75 1.31 MSLSTMA
MAE 0.98 0.99 0.94 1.29 0.94 MSLSTMA

SEIC MAPE 1.78 1.79 1.71 2.34 1.70 MSLSTMA
MSE 4.08 3.71 3.48 8.98 3.52 MSLSTM
RMSE 2.02 1.93 1.87 2.99 1.88 MSLSTM
MAE 1.53 1.47 1.37 2.49 1.42 MSLSTM

PLMR MAPE 2.77 2.67 2.48 4.52 2.57 MSLSTM
MSE 2.71 2.19 1.85 2.76 1.58 MSLSTMA
RMSE 1.65 1.48 1.36 1.66 1.26 MSLSTMA
MAE 1.23 1.22 0.99 1.24 0.92 MSLSTMA

EFSC MAPE 3.12 2.77 2.49 3.11 2.32 MSLSTMA
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Table A3
Performance comparison of predictive models for healthcare sector equities

Model name
Ticker Metric USLSTM USLSTMA MSLSTM CNNLSTM MSLSTMA Winner

MSE 967.65 1045.54 942.24 1380.27 940.79 MSLSTMA
RMSE 31.11 32.33 30.70 37.15 30.67 MSLSTMA
MAE 13.26 14.55 12.22 18.24 12.23 MSLSTM

ISRG MAPE 2.99 3.03 2.78 4.00 2.77 MSLSTMA
MSE 2.85 3.14 2.55 5.76 2.56 MSLSTM
RMSE 1.69 1.77 1.60 2.40 1.60 MSLSTMA
MAE 1.26 1.35 1.16 1.79 1.16 MSLSTMA

GILD MAPE 1.78 1.92 1.63 2.51 1.64 MSLSTM
MSE 171.13 213.07 46.64 191.38 52.11 MSLSTM
RMSE 13.08 14.60 6.83 13.83 7.22 MSLSTM
MAE 8.44 9.44 4.21 9.33 4.47 MSLSTM

RGEN MAPE 5.29 5.93 3.11 6.86 3.27 MSLSTM
MSE 0.54 0.40 0.46 0.86 0.43 USLSTMA
RMSE 0.73 0.63 0.68 0.93 0.66 USLSTMA
MAE 0.59 0.48 0.53 0.76 0.47 MSLSTMA

ROIV MAPE 5.69 4.54 5.06 7.29 4.50 MSLSTMA
MSE 2.25 1.69 0.41 1.16 0.64 MSLSTM
RMSE 1.50 1.30 0.64 1.08 0.80 MSLSTM
MAE 0.99 0.87 0.40 0.73 0.53 MSLSTM

CPRX MAPE 7.76 6.98 3.80 6.37 4.66 MSLSTM
MSE 8.54 9.62 6.53 12.68 4.49 MSLSTMA
RMSE 2.92 3.10 2.56 3.56 2.12 MSLSTMA
MAE 2.14 2.28 1.86 2.80 1.46 MSLSTMA

AMPH MAPE 4.74 5.04 2.23 6.64 3.38 MSLSTMA

Table A4
Performance comparison of predictive models for consumer staples sector equities

Model name
Ticker Metric USLSTM USLSTMA MSLSTM CNNLSTM MSLSTMA Winner

MSE 15.84 14.98 15.76 36.18 14.84 MSLSTMA
RMSE 3.98 3.87 3.97 6.01 3.85 MSLSTMA
MAE 1.48 1.38 1.44 2.75 1.46 USLSTMA

MNST MAPE 2.29 2.09 2.22 4.43 2.22 USLSTMA
MSE 3.27 5.41 1.42 4.47 1.84 MSLSTM
RMSE 1.81 2.32 1.19 2.12 1.36 MSLSTM
MAE 1.50 1.91 0.90 1.67 1.07 MSLSTM

MDLZ MAPE 2.39 2.96 1.49 2.71 1.73 MSLSTM
MSE 0.51 0.51 0.51 0.74 0.49 MSLSTMA
RMSE 0.72 0.71 0.71 0.86 0.70 MSLSTMA
MAE 0.50 0.50 0.49 0.62 0.49 MSLSTMA

PPC MAPE 1.96 1.96 1.95 2.42 1.92 MSLSTMA
MSE 1101.37 1032.12 318.07 1510.83 348.02 MSLSTM
RMSE 33.19 32.13 17.83 38.87 18.66 MSLSTM
MAE 20.93 20.27 11.25 28.88 11.69 MSLSTM

COKE MAPE 4.51 4.45 2.78 7.25 3.07 MSLSTM
MSE 2.56 1.96 2.43 3.46 1.95 MSLSTMA
RMSE 1.60 1.40 1.56 1.86 1.39 MSLSTMA
MAE 1.17 1.02 1.18 1.51 1.00 MSLSTMA

COCO MAPE 4.50 3.98 4.59 5.87 3.87 MSLSTMA
MSE 26.29 39.15 9.48 22.41 11.09 MSLSTM
RMSE 5.13 6.26 3.08 4.73 3.33 MSLSTM
MAE 3.88 4.62 2.23 3.64 2.42 MSLSTM

MGPI MAPE 4.83 5.54 3.07 5.31 3.25 MSLSTM
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Table A5
Performance comparison of predictive models for industrial sector equities

Model name
Ticker Metric USLSTM USLSTMA MSLSTM CNNLSTM MSLSTMA Winner
Ticker Model Name USLSTM USLSTMA MSLSTM CNNLSTM MSLSTMA Winner

MSE 28.83 86.56 23.09 67.97 44.29 MSLSTM
RMSE 5.37 9.30 4.81 8.24 6.66 MSLSTM
MAE 4.10 7.71 3.76 6.27 5.49 MSLSTM

HON MAPE 2.32 4.06 2.06 3.57 2.94 MSLSTM
MSE 5.73 5.44 5.64 6.96 5.39 MSLSTMA
RMSE 2.39 2.33 2.37 2.64 2.32 MSLSTMA
MAE 1.09 0.98 1.04 1.37 0.96 MSLSTMA

CSX MAPE 2.22 2.05 2.26 3.21 2.03 MSLSTMA
MSE 80.81 106.88 61.12 56.23 33.90 MSLSTMA
RMSE 8.99 10.34 7.82 7.50 5.82 MSLSTMA
MAE 6.78 8.07 5.81 5.44 4.30 MSLSTMA

ESLT MAPE 3.87 4.57 3.38 3.34 2.50 MSLSTMA
MSE 18.11 19.35 16.77 55.33 16.23 MSLSTMA
RMSE 4.26 4.40 4.10 7.44 4.03 MSLSTMA
MAE 3.11 3.20 2.94 5.57 2.89 MSLSTMA

MIDD MAPE 2.56 2.63 2.42 4.54 2.37 MSLSTMA
MSE 39.30 87.58 30.20 45.32 21.75 MSLSTMA
RMSE 6.27 9.36 5.50 6.73 4.66 MSLSTMA
MAE 3.97 5.75 3.53 4.57 2.92 MSLSTMA

USLM MAPE 3.00 4.12 2.76 3.88 2.37 MSLSTMA
MSE 2.15 2.21 2.03 2.83 1.76 MSLSTMA
RMSE 1.47 1.49 1.42 1.68 1.33 MSLSTMA
MAE 1.02 1.03 0.99 1.19 0.91 MSLSTMA

ANDE MAPE 3.35 3.43 3.31 4.05 2.99 MSLSTMA

Table A6
Performance comparison of predictive models for telecommunication sector equities

Model name
Ticker Metric USLSTM USLSTMA MSLSTM CNNLSTM MSLSTMA Winner

MSE 12.20 16.62 9.25 31.48 7.83 MSLSTMA
RMSE 3.49 4.08 3.04 5.61 2.80 MSLSTMA
MAE 2.85 3.39 2.34 4.40 2.16 MSLSTMA

TMUS MAPE 2.08 2.46 1.78 3.36 1.62 MSLSTMA
MSE 1.12 1.19 1.15 2.34 1.12 MSLSTMA
RMSE 1.06 1.09 1.07 1.53 1.06 MSLSTMA
MAE 0.75 0.79 0.75 1.12 0.74 MSLSTMA

CSCO MAPE 1.60 1.71 1.62 2.42 1.60 MSLSTMA
MSE 1.25 1.07 1.15 1.86 1.05 MSLSTMA
RMSE 1.12 1.04 1.07 1.36 1.03 MSLSTMA
MAE 0.91 0.83 0.87 1.12 0.81 MSLSTMA

FYBR MAPE 4.96 4.42 4.76 6.10 4.34 MSLSTMA
MSE 14.50 15.24 13.45 29.21 13.21 MSLSTMA
RMSE 3.81 3.90 3.67 5.40 3.63 MSLSTMA
MAE 2.78 2.81 2.64 3.99 2.61 MSLSTMA

LBRDK MAPE 3.09 3.13 2.96 4.44 2.91 MSLSTMA
MSE 7.22 21.00 5.91 11.38 4.34 MSLSTMA
RMSE 2.69 4.58 2.43 3.37 2.08 MSLSTMA
MAE 1.72 3.01 1.72 2.28 1.26 MSLSTMA

NSSC MAPE 6.75 10.08 6.59 8.11 5.06 MSLSTMA
MSE 0.50 0.66 0.38 1.44 0.38 MSLSTMA
RMSE 0.68 0.81 0.61 1.20 0.62 MSLSTM
MAE 0.45 0.58 0.40 0.88 0.40 MSLSTMA
MAPE 4.26 5.52 3.89 8.80 3.84 MSLSTMA
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