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Abstract: In contemporary information fusion theory, the Maclaurin symmetric mean (MSM) operator is a traditional mean type aggregation
operator (AO) that is an appropriate-able technique for aggregating numerical quantities. The MSM operator’s ability to record the
relationships between the several input arguments is one of its standout features. The spherical fuzzy set (SFS) is also a remarkable
technique that covers the maximum information from real-life scenarios with the help of four grades. This manuscript consists of the
development of the MSM and weighted MSM for the information obtained by SFS. Consequently, the spherical fuzzy MSM (SFMSM)
and spherical fuzzy weighted MSM (SFWMSM) operators are developed, and their basic properties are studied. Finally, the developed
SFMSM and SFWMSM operators have been applied to the real-life problem of the multi-attribute decision-making problem. All the

results are compared and then clearly tabulated and graphed.
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1. Introduction

SFS is the framework that is used to extract information from
any real-life scene. Moreover, the MSM operator is the AO that is
used to aggregate the information by keeping the relation between
attributes conservative. Hence, the MSM has been extended to the
SFSs and a new technique has been developed.

The most familiar type of decision-making (DM), known as
multi-attribute decision-making (MADM), seeks to choose the
best option from a group of options when there are several,
frequently at odds criteria. Due to its simplicity of use and
acceptance as an important technique, MADM is used when DM
themes and situations are indefinite. Zadeh (1965) proposed the
idea of fuzzy sets (FSs), which describe the membership degree
(MD) of data lies in [0,1] and provides an elastic stand to grip
uncertainties, to solve such situations when the information
contains uncertainty. By pairing MD with a non-membership
degree (NMD) with the limitation that the total of both lies in
[0,1], Atanassov (1986, 2000) introduced the intuitionistic FS
(IFS). Even though IFS offers a better description of an object to
real-life scenarios, it still limits the choice-maker’s options and
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offers very little scope. To improve the IFSs limits and offer
additional adaptable grounds for taking MDs and NMDs, Yager
(2013, 2016) introduced the models of Pythagorean FS (PyFS)
and g-rung orthopair FS (q-ROPFS). By enhancing the model of
interval-valued FS (IVFS), which was investigated by Zadeh
(1975) and Atanassov (1999) developed the model of interval-
valued IFS (IVIFS) while keeping in mind the benefits of defining
the MD and NMD in the shape of intervals rather than crisp
values from [0,1]. Joshi et al. (2018) introduced valued q-ROPFS
(IVqQ-ROPFS) in their paper.

The concept of IFS, PyFS, and q-ROPFS deals with complex
and uncertain material in several real-world MADM and design
gratitude circumstances, but these frameworks only discoursed the
MD and NMD phases of human opinion, ignoring the abstinence
degree (AD) and refusal degree (RD), which results in
information loss. The concept of picture FS (PFS) constructed on
MD, AD, NMD, and RD of data with the restriction that the total
of all values must be in [0, 1] interval was proposed by Cuong and
Kreinovich (2014) to address such challenges. Furthermore, Cuong
and Kreinovich (2014) developed the concept of interval-valued PFS
(IVPES). The tight constraint of PFS was loosened by establishing
the idea of spherical FS (SFS) (Mahmood et al., 2019).

As, the AOs have been utilizing as the helpful tools for
information collection and its aggregation. They are widely used
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in various branches of science. For example, in Biswas and Deb
(2021) the family of some AOs is introduced and used to solve
problems involving DM. Due to their applicability in several
fields such as DM, the measurement of the continuous domain,
and medical diagnosis, these AOs are very important.

The Maclaurin symmetric mean (MSM) operators are an
essential component of aggregation techniques. Initially proposed
by Maclaurin (1729), the MSM was later advanced by Gou et al.
(2016). The interaction between the multi-input arguments is one
of the MSM’s standout characteristics. To handle MADM where
the characteristics are enlightened, the MSM operator can offer
information fusion that is more flexible and resilient. Additionally,
the MSM operator decreases monotonically concerning restriction
values of a provided set of arguments, which may represent the
decision-maker’s preferences for risk in actual solutions. The
MSM has drawn increasing interest in recent years, and numerous
significant results in theory and practice have been produced and
can be found in Ren et al. (2016) and Zeng et al. (2016). Some
more AOs can be found in Ali and Naeem (2022) and Chen (2014).

As we can see from the foregoing, the majority of the prevailing
SF combination operators rely on the numerical sum of SFSs to
perform the aggregation method and do not take into account the
relationships between the multi-input elements. Many researchers
have recently focused on the MSM operator and its
implementations, which just take into account the scenario when
arguments take the form of distinct values. In Garg (2016) and
Maclaurin (1729), MSM AOs recount more than two input
opinions, unlike conventional AOs. The concept of IF MSM
operators was proposed by Reformat and Yager (2014) and
further generalized by Liu (2017). Wang and Liu (2019) studied
the use of PyFMSM operatives in DM. Wei et al. (2019)
introduced the g-ROPFS MSM concept and used it in MADM.
Moreover, Ullah (2021) generalized MSM for framework of PFS.

The literature does not consist of study on MSM operators for
the spherical fuzzy environment to date. Therefore, it makes sense to
focus on this topic. This concept serves as our inspiration as we
concentrate on expanding the MSM to combined SF data and
their use in MADM in this study. For this, the remaining of this
essay is planned as upcoming. The following chapter provided
certain fundamental SFS principles as well as several SFV
operating laws. The SFMSM operator is created in Section 3. The
SFWMSM operator is created in Section 4. We used the
SFWMSM operator in Section 5 to create a MADM ideal with
spherical fuzzy material. In Section 6, a real-world illustration is
given to approve the established method, show its applicability
and efficiency, and provide a comprehensive analysis. Section 7
provides the paper’s conclusion and certain closing thoughts.

2. Preliminaries

This chapter discusses some fundamental concepts and terms
associated with the planned study. In this chapter, we describe all
the words and concepts related to FS, IFS, PyFS, q-ROPFS, PFS,
and SFS.

The main concept of SFSs (Mahmood et al., 2019) is detailed
reviewed in this chapter. Later, we discuss score and accuracy
functions for spherical fuzzy values (SFVs). Moreover, a new
assessment technique for SFVs is established.

Definition 1. (Zadeh, 1965)

Assume that X is a non-empty set. An FS is defined as § = (o(x) :
x € X) where w : X — [0, 1] is known as MD.

Definition 2. (Atanassov, 1986)

Suppose that X is taken non-empty set. An IFS defined as
S = {(ws(x), ¥s(x)) : x € X} such as w,:X —[0,1] describes
MD and ¥ : X — [0, 1] describes NMD of the element x € X to S,
respectively, and satisfies 0 < w,(x) + v,(x) < 1. The formula for
hesitation degree is r(x) = 1—(w,(x) + ¥,(x)), and the pair
(wy(x), ¥y(x)) is known as IFV.

Definition 3. (Yager, 2013; Yager 2016)

Suppose that X is taken as non-empty set. A PyFS defined as
S = {(w(x), ¥(x)) : x € X} such as w;:X — [0,1] describes
MD and ¥ : X — [0, 1] describes NMD of the element x ¢ X to S,
respectively, and satisfies condition 0 < (w(x))? + (¥,(x))* < 1.
The hesitancy degree is defined by r(x) = /T — (wy(x))? + (¥:(x))%,
and the duplet (w,(x), ¥,(x)) is known as PyFV.

Definition 4. (Maclaurin, 1729)

Suppose that X is taken as non-empty set. A q-ROPFS defined
as S = {(ws(x), ¥s(x)) : x € X} such as w,: X — [0,1] describes
MD and ,:X — [0,1] describes the NMD of the element
xe X to S, respectively, and satisfies condition 0 < (w,(x))9 +
(Yo(x))2 <1 for g. The hesitancy degree is defined by
H(x) = YT (@(X)T + (500, and the duplet (@,(x), v4(x))
is known as q-ROPFV.

Definition 5. (Cuong & Kreinovich, 2014)
Suppose that X is taken as non-empty set. A PFS is defined

as § = {((x), 0,(x), ¥s(x)) : x € X}

where w, : X — [0, 1] describes the MD, 1, : X — [0, 1] describes the
AD, and ; : X — [0, 1] describes the NMD of the element xe X to
S, respectively, and for each x € X, it satisfies the condition
0 < wy(x) + n5(x) + ¥(x) < 1. The RD is defined as r(x) = 1—
(0,(x) + 1,(x) + ,(x)), and the triplet (w,(x),n,(x), U (x)) is
known as PFV.

Definition 6. (Mahmood et al., 2019)
Suppose that X is a non-empty set. The definition of SFS as

§ = {(@s(x),05(x), ¥(x)) : x€ X}

where o, :X — [0,1] describes the MD, the 1p,:X — [0,1]
describes the AD, and ¥, : X — [0,1] describes the NMD of the
element x € X to S, respectively, and for each x € X, it satisfies that

0 < (o(x))* + (05(x))* + (Y(x))* < 1.

The RD is defined as r(x) = 1 — (w,(x)+ 1,(x) + ¥,(x)), and the
triplet (w,(x),n,(x), ¥,(x)) is known as SFV. Let & = (w,(x),
n,(x), ¥,(x)) be an SFV, S(&) = w?—y¥*? where r=1—
(@s(x) +0:(x) + ¥(x)) and  H(@) = (os(x))*+  (0:(x))* +
(¥(x))? are corresponding score and accuracy function of the
SFV a.

Definition 7. (Mahmood et al., 2019)
Suppose that &, = (w;, 91, v¥,) and & = (w,,1,,V,) be two
SFVs, S(6,) = w,? — ¥ 212 and S(&,) = w,% — ¥,%r,? be the scores
of «a and B, respectively, and let H(&;) = w,> + 1% + ¥,% and
H(&,) = 0,> + 1,2 + y,2 be the accuracy degree of o and B
correspondingly, then S(&) < S(B), then & < B; if (&) = S(B),
<

If H(@) = H(B), then & = B; (2) if H(&) < H(B), then & < B.
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Definition 8. (Mahmood et al., 2019)

Let & = (w;,01, Y1) and &, = (0,, 1, ) and & = (o, 1, V)
be three SFVs and we apply an elementary operation on them as
below:

a4 oa,= (\/(‘Ul)z + (@) = (01)*(@2)*, 9112, Wﬂﬁz) )

(91)2(U2)2>> o

[CONOIN 24 2
d1®&2—< 102 \/(01) (1)

V) + @) — (1) (¥2)?
m:( 17(17w2)k,gk,w>, A=0; (3)
(a)kz(wk,\/ (=) /1 ( ) W> 0 (4)
& = (Y,n, ) ®)

This technique was first presented by Maclaurin (1729), which is a
helpful method categorized by the ability to lock up the affiliation
between the involved opinions. The classification of this method
is described below:

Definition 9. Suppose that a,(q = 1,2,3- -,
non-negative values, t = 1,2,3-- -, n. Then,

¢ 1
a; \!
Zl<il<.4.<ii<an:1 lq

c

n) be a collection of

MSMY (ay, 0, -+ - .ty,) =

is known as the MSM operator, where (iy, iy, - - - .i,) traversal entire
k-tuple mixture of (1 2,---00,n) and ¢, is defined as a binomial

coefficient. MSM (") have properties:

MSM®(0,0,---,0) = 0;

MSMY (o, at, - -+ 0t) = o
MSM(I)(O%O% ceay) < MSMYW (B, B, - Bn), ifo; < B for all i
m;n{ai} < MSMW (ay, 0y, -+ - . ty) < max

3. New MSM Based on SFS

Here we define some SFMSM operators based on the process
of SFVs.
Definition 10. Let o, = (0,1, ¥,) (9=1,2,3---,n) be a
collection of SFVs, and then, we define the SFMSM operators as
follows:

SEMSM(@y, @, ..., 0,) = .

By getting the information about the SF ideals, we can develop
Theorem 1.
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(q=1,2,...,n) be a

Theorem 1. Assume that &; = (wq,qu, 2
SM operator as below:

collection of SFVs, then we describe the SF

»Yn

<\/1 Y § P
\/1 - (1 ~ (Tl ey - TL (1 - (U)2>)—)>
1o (0 (e T 0 (0)))))

SFMSM (&, dy, ..., a,) =

Proof: By the operating laws of the SFVs, we have

qu'q\/ qu (,,))’
TG ()
And

e t
1<i<..<i<nl ®g,
q=1

\/1 - ngilg.éitgn (1 - (H;:waq)2>

ngi,g..gi,gn\/l - H;:1 (1 n <Uiq)2>’
H1§i1§4..§il§n\/1 N H

Then, we find

1< < ¢ <i < é
1 1 n o;
C = f1 = = = 1 lq

\/1 - <H1§i1< <ij<n (1 - (H;,
= (H1§i1§‘.,§it<n\/1 ; 1 1 (
(H1gi1§..gi,<n\/l ; 1 1 (‘%)2))62

SEMSM ) (ay, &, ... ,4,) =

1- (1 B < 1< oS <n
1

t 2\\a \*

(\/1 ngilg.gi,gn<l - (Hq:Lwiq) ))L") )

S R TS T
\/ (- (TLes e - TT (= ()))%)

It is very easy to show that the SFMSM operator has properties:

- (1 (Mo T
VT
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Property 1. (Idempotency). If all &4(q=1,2,3,---,n) are

equal,i.e. & = &, Vg, then SFMSM (&, &,, ..., &,)

a.

Proof: Since @ = (w;,1;, ;) based on Theorem 1, we have

(- ([t (H;ﬂ%y))é){ <1 ATz a1 - <wa>”)£s,)a
o= [y (- e/ TE0 @9 | = G

w (17 (HISH <1,<n\/ -TI - e )7)

SEMSM! (&,

=
&

E
|

(Moo= (=),
Ve (- (M - 0 1)),

w (- (1 (1- W)

= (wa,Da Va)
The proof is completed. Pro;)f: /Si;cg ]:/,2<1 7;{{ i C(;),q’]/f 1//<q i/ Wg’xgqg wt’}?,then we .il.ave
.. N wg > g 20, ¥, <Y, <0, ¥, <Y, <0. By the supposition,
Prqperty 2. (C0m~mutat1V1ty). Leta,(q=1,2,3,---,n) beacol- VL g(i=1,2,---,mj=1,2,-- k), then we find
lection of SFVs, a',(q=1,2,3,--

a,(q=1,2,3,---,n), then t t ¢ 2 t o4 \2?
i Hq:lwiq z Hq:lwiq =1- (Hq:lwiq> =1- (H wiq)

q=1

-,n) be any arrangement of

SFMSMt(dlv&b e 7&;1) - SFMSM(q)(d,ha,b T d,n)
Proof: Since o/;(q=1,2,3,---,n) is any permutation of &,

(q=1,2,3,---,n), based on the definition of SFMSM in equation = ng‘g__é,k<n(l - (H‘ o, )2) < H1<,-.< <,k<n(1 - (H‘Flw’f,)z)
(5), we have

o~ (e ()

P i< ) )
= SFMSM® (& |, &5, - - -, & ¢ 2\ |
g it {( ([ (L)) )

So, it is complete. Likewise, we have

Property 3. (Monotonicity). Leta,, &' ;(q = 1,2,3, -

, 1) be two < :>1_( )z<1_(,>z

collections of SFVs, If o, > &', 1, g 0, ¥, < qu for all q, then 9, =04, %) = T,
t 2 t 2

SFMSMt(&h&ZW"?dn) 2 SFMSM(t)(d,b&/Zv'"75[/71) 1= Hq:l (ljiq) s1 7H‘Fl (U,i’7>
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# (e aien( - T (= () ) < (M (- T (0 () )
= (1 B (ngilgN.gqgn(l - H;:1 (1 - (IJiq>2

)
< (- ([Letecen (0= TLA (= (0)))
)
)

= \/(1 Hlsng...s:}gn(l B H;:1 (1 - (%)2
A0 (e (- TEL (- (52)))%)

And

h< vy =1 () 1= ()

= 1-TL () < - T ()’

(Moo TL (1= (1))

< (Moo (- TL (- (90)))

(1 (e (- TL - (1))

< (1= (M-I (1= (7))
VO (e (0TI (1 ()

A0 (M (T (- (7))

(g=1,2,3,---,n) be a
g S0 ¥y <Yy, for all

Property 4. (Boundedness). Let ~q,
collection of SFVs, and let w, > a)’q,

q, and
@~ =min &, = | min  max, max
q 9w, 9 " q 't
&t = max @, = | max min min
q AT A
Then,

= < SEMSMW (&, &y, -, &,) < &+

Proof: From the property 1 and 3, we have

SEMSM"W(&,,é,, - - -, &,) > SEMSM® (&~ ,a~, -+, ) =&

SEMSM® (&;,,, - - -, &,) < SEMSM® (at,a*, -, a") =a*

Thus, the proof is completed.
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Lemma 1. (Maclaurin inequality). Let a,(z =1,2,---,n)isaset
with positive real values and fork = 1,2,---,n. So,
MSM<1>(a1,a2, a,) > MSM® (ay, ay, - - - .ty,) > - 2MSM<">
(a1, 0y, - - .c,,) with equivalence if and only if o) = o, = -+ = o,
Lemma 2. Let @ >0,8>00t=1,2,---,m), and

m —

_ B, =1, then

H:nzl(at)ﬂl < Z?:lafﬂf

With equality if and only if o, =y = --- = m.
Proof: Its proof is simple.
Theorem 2. Given that the SFVs, &(i=1,2,3,---,n) and

t=1,2,---,n, the SFMSM is said to be monotonically decreased
if it depends upon parameter t.

Proof. From Theorem 3.1.2, we can have

SEMSM (&, 5, - - -, &,) =

(- (- (T )
\/ 1= (1= (Tee e (0 - TL (- (n,.q)Z))ﬁ){
\/1 B (1 B (nglg“.g,}gno - H;Zl(

Let

fl) = <\/1 - (ngilss‘,Sn(l - (H:Flw"q)Z))é
10 =\1~ (1~ ([T O T (- (1))
g(t) = \/ 1= (1= (Teyecrn (0~ T

Firstly, we will prove f(t) is monotonically decreasing with the
parameter t. From Lemma 1 and 2, we can have

fi)= W 1= (e (1 (H;_lw,,qy))ﬂi

- (\/1 a le:ag..g,gn(l - (H;lwiq)z)c;)%
=(1- (- Y ([T e))
B (Zlgilgmgirgn (H; L ,) Ct>

After that, we will prove it by the contradiction method. Assume

that f(t) is monotonically increasing. So,
f(n)>f(n+1)>--->f(1) Also, since
1 2 _\11 n .

)=z <Zl<i,< <it<n( 9= 1wfq> Cl) = Zi:lw’zn' Then, it

follows that

Z, i =

n) > (1)
(H, o) >

<Zl<z <.<i<n <H; 1 1,) M

Z 1a),n Now by the elementary
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1
mean inequality (Pecaric et al., 2005), (H:’: 1a)f>” < Z:’:]w?n. It
is very easy to see that it contradicts inequality. So, f(¢) is monoton-
ically decreasing. Likewise, h(t) and g(t) can also be proved mono-
tonically increasing.
From the score purpose of SFVs,

s(t) = (f2(1) — g()r* (1)

Forany t € [1,n], and t € Z, we can get

s(t+1) —s(t)

=[Pt +1) —g(t+ D (t+ 1)) — (£2(1) — g (Hr*(1))]
=[PPt +1) = (1) + (O (t) — g (t+ DrX(t+1))]
1) +£(t)

_ (f((f+1)—f(t))(f(
1

+(g(t)r(t) Dr(t+1))(g(0)r(t) + g(t + Dr(t+ 1))

Since the function is monotonically decreasing with the respect to the
parameter t, so( f(t + 1) — f(¢)) < 0; the function g(¢) is monoton-
ically increasing with the respect to the parameter t, so we can imply

(g(k)r(t) — g(k + 1)r(t+ 1)) < 0. Based on the above result, we
have

s(k+1) — s(k)

(f+1) = fO)(f(E+1) +f(8))
+(g(O)r(t) — glt+ Dr(t+1))
(8(O)r(t) + gt + Dr(t+ 1))

So, s(t+1) < s(t), V t, and the SFMSM are also monotonically
decreasing with the respect to the parameter t. Hence, Theorem is
completed.

After that, we will talk about some special cases of the SFMSM
operator concerning the parameter t.

As t = 1, the SFMSM operator reduces to the spherical fuzzy
average operator as below:

<0

&y) =

(\/1 - <H1§i1§n<1 - ( ;:10)1"1)2))%}1)“7
N

SEMSM™M (&, &,, ...,

&&

1 (a0 - @)’
I ..,

ngi, <n (i)

(leti; = i)

1

\/1 B <H1§i15n(1 - (“’il)z))i
- H:l:l(l.]i)%
1w

Now we take t = 2,

SEMSM®) (&, ,@,,...,d4,) =

(/' [ (- () )) )
N N N (R )
V= (= (s (- TE (= (9)))))
(1= (M0 €

B (Hliilﬁlzin(l - (1

-G
V- (-

(TLcs e 0= (0= ) (1= (8)9) )77

(\/1 - (Hzaizzlil#iz(l - (wi,wiz)Z))m>

1- <1 - (HZ.,-FI,-I#ZQ —(1-

% (1 (L 0 (= ) 0= (0)) 7))

2 \:
(\/1 11 iy =1i,#i, (1 - (a)il wiz)z))"(n%J) ’
1= ( ( i = 1'1%'2 ( N

-
Ji= (=00

= SFBM(ét, &, ..., @,)

271



Journal of Computational and Cognitive Engineering Vol. 2

Iss. 4 2023

When t = n, the SFMSM operator decreases to the SF geometric mean operator as below:

(%—(nlgmxl—<n;:1wz-q>2>>é>a

\/1 17 H1<11<12<n 1-

(-1
V(- (M (- TT
% 1= (1= (IT (o)

Dk

<H?=1w">;

:\/1 (1= (=TI (1 -

(gl> >>L> (letiy = i) =

Jr- (L0 - @)

Example 1. Let &, = (0.4,0.7,0.3),&, = (0.5,0.4,0.2),&; =
(0.8,0.3,0.5), and &4 = (0.6,0.3,0.4) are four SFVs. Now we take
the SFMSM operator to evaluate the four SFVs, take T = 2,

& & = (044 % 0.5,1/0.72 + 0.4 — 0.72 x 0.42,1/0.3> +0.22 — 0.3% x 0.22)
= (0.20,0.76,0.36)

& ® &, = (044 x 0.8,1/0.72 + 0.3% — 0.72 x 0.32,/0.32 + 0.5* — 0.3? x 0.52)
= (0.32,0.73,0.56)

@ ®a, = (0.4 % 0.6,1/0.72 +0.32 — 0.72 x 0.3%,1/0.3> + 0.4 — 0.3% x 0.42)
= (0.24,0.73,0.49)

@ ® & = (045 % 0.8,1/0.4% +0.32 — 0.42 x 0.3%,1/0.22 + 0.5 — 0.22 x 0.52)
= (0.40,0.49,0.53)

&y @y = (045 x 0.6,1/0.42 + 0.3 — 0.42 x 0.3%,1/0.2 + 0.4 — 0.2? x 0.42)
= (0.30,0.49,0.44)

@ ®ay, = (0.8 % 0.6,1/0.32 +0.32 — 0.3% x 0.32,1/0.5? + 0.4 — 0.5? x 0,42)
= (0.48,0.41,0.61)

By Equation, we get

SEMSM®@ (&1, @5, &5,6) = (c® 1 < iy < i, < n(&;, ®a;)C})1
= (0.58,0.43,0.49)

4. New Weighted MSM Based on SFS

It is cleared from Section 3 that the SFMSM operator does not
take the weight of the combined arguments into account. However,
the weights of the features produce a significant part in the
progression of aggregation in many real-world circumstances,
particularly when making decisions based on various attributes.
We will put out the SFWMSM operator in the manner as follows
to get over SFMSM’s drawback.
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L
C

Ve 00T - ()

). Y- (o -won)

Definition 11. Let d, n) be a collec-

= (wcpnqqu)(q: 172,...,

tion of SFVs, w= (w,w,,---,w,) is a weight vector of
&,(q=1,2,---,n), andw; > 0, Z;’:lwq =1.1f
1< <..<i,<n Q; (a,q)w"i

. So, the SFMSM

SEMSM,,() (al S, a,,) -
is known as the SFWMSM operator.

By the operations of SFVs established in chapter 2, we also can
develop the following Theorem.

Theorem 3. Suppose that 1 <t < n(t € Z) and &,
(g=1,2,...,
weight vector of &,(q=1,2, -

= (“’m Ng> Wq)

n) be a collection of SFVs, w = (wy, w,, -+, w,) isa
,n), andw, >0, Z;’zlwq =1
Then, the grouped value by using the SFWMSM is also an SFV, and

SEMSM,, (&, &, - - -

\/1 B (Hlsils“gz}gno - (H;:1 <a),~q)w”f)2)>é
o [ RO
<H1§i1§“'§t}§n\/l - H;Zl (1 -

Proof: By the working rules of SFVs, we use

T, (o)™ 1 - TT (0

\/1—H;:1<1

AR
()
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Therefore,

SEMSM,, ) (&,,&, -, &,) =

(Moo TG ()
(M TG ()

Then, we also can debate certain distinct cases of the SFWMSM
operator concerning the parameter T.

As t =1, the SFWMSM operator decreases in the following
shape:

SEMSM,, () (@, &y, - - -, &) =
\/1 - (H1§i1§n<1 - (H:11=1 (a)il)wll)z))c_lb
(Hlfhén\/l -1L.. - (nil)z)wflﬁ
(ngi,gn\/l - ;:1(1 - (w,-l)z)wu>ﬁ

Il
=]
n
IA
2
=

\
Seo—
X
—~

—_

[

—~
=
~

[

~
3z
—

When t = 2, the SFWMSM operator decreases to the SFBM oper-
ator as below:

SEMSM®) (&, &5, ..., &,) =

- SFMSM(&I,&27...76[")

When t=mn, SFMSM decreases to the SFWGM operator
as follows:
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Example 2. Let & = (0.4,0.7,0.3),&, = (0.5,0.4,0.2), 63 =
(0.2,0.3,0.5),and &, = (0.6,0.3,0.4) be four SFVs, w= (0.2,
0.1,0.3,0.4) is the weight of &;(i=1,2,3,4). Now we apply
SFWMSM to find the four SFVs. Without any hesitation,
Take t = 2,

0.4°2 x 0.5%1, /1 —

V11—

= (0.78,0.38,0.15)

(1—-0.72)92 x (1 — 0.4%)°T,
(@)% @ (&)™ = ( )

1 _ 032 0.2 X (1 _0.22)0.1

~0.3%)03
03
—0.3%)01
0.4

1-0.42)% x (1-0.3%)%2,
—0. 22 0.1 X ( _0.52)0.3

0.4%2 x 0.2°1 /1 — (1 —-0.7%)%% x (1
(@)% @ @) = o ol
V1i- 1—03202><(1—0.52)

= (0.51,0.39,0.32)

0.4%2 x 0.6%4, /1 — (1 —0.72)"2 x (1
(@)% 5 (@) = Y Tl
V11— 032°2><(1—0.42)

= (0‘68,0.40,0.29)

5101 6 (50103 — 0.5 x 0.203, \/1—
(@)™ ® (&) < Jis

= (0.58,0.21,0‘29)

0. 0. 2)0.1 20.:
(@) ® (@) = 0.5%1 % 0.6%4, /1 — (1 — 0.42)%T x (1 —0.3%)%4,
V1= (10250 x (1 -0.42)%4

=(0.76,0.23,0.27)
— 0_32)0.4~
0.42)04

0.2%% x 0.6™4, /1 — (1 —0.3%)% x (1
(6[3)0'3 ® ((5[4)0'4 — \/ ) (
V1i-(1-0. 52 03 % (1—
= (0.50,0.25,0.38)

We get

1<i << <n((@)" © (@,)")

SFMS(Z) (&17&2>&3>&4) = Cz
4

= (0.81,0.21,0.25)
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5. Model for DM with Multiple Attributes Using
Spherical Fuzzy Information

We will use the SFWMSM operator to MADM with SF
material. The subsequent norms are used to symbolize MADM
problems for possible assessment of clothes with SF material.
Assume that is a set of alternatives and G = {G,,G,, -+, G,} be
the set of attributes. Let w = (wy, w,, - - -, w,,)* is taken as a weight

nz 1w—l

is the SF information

vector of attributes, and w, € [0,1],9 = 1,2,

Assumeas E = (g,), == <a),~q,13,~q, vf"q)mxn
matrix, and w;, shows the degree of alternative satisfies attribute
G, assumed by the choice creator, 0;, shows abstinence behavior
of alternative about attribute G,, lffiq shows the degree of alter-

native satisfies the attribute G, assumed by the choice creator,

o, €[01],m, € 0,11, €01, () + (1) + (w,)" <
1, i=12,---,nq=12,...,n

In the following, we put on the SFWMSM operator to the
MADM problems for possible assessment of clothes with SF
information.

Step 1: Utilize the data from matrix E and the SFWMSM operators

& = (w;,1;, ;) = SFWMSM,,® (2 ¢, - -, &

(\/1 (i (- (T ) ™))
O ([T (0TI (o))
\/1 (- (Do (- TT (1 (0 )7))))

m) of the attributes

To arise the whole liking values é(i = 1,2, - - -,

Step 2: Determine scores S(¢;)(i = 1,2,---,m) of all SF values
~ei(i=1,2,---,m) for ordering every alternative and find out
better one(s). In case we found the same two scores S(&;)
and S (eq), then we will evaluate accuracy degrees H(E;)
and H (' ) correspondingly, and then, we will rank the alternatives
according to the accuracy degrees H(e;) and H(&,).

Step 3: Order entire alternatives and pick the finest out of them
according to the S(g;)(i =1,2,---,m).

Step 4: End.

6. Illustrative Example and Comparative Analysis

Here we perform a numerical example by using SF data to show
the formula offered in this paper. There are five members of the
alternatives for selection. The members select four characteristics
of clothes (1)G; is the thread of clothes, (2)G, is the design of clothes,
(3)G; is the color of clothes, (4)G, is normal in range. The five mem-
bers of the alternatives will be judged by utilizing SF material from
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the choice maker under the same characteristics which have the
weighting vector w = (0.2,0.1,0.3,0.4) as mentioned below.

(0.4,0.3,0.2),(0.3,0.5,0.7), (0.2,0.3,0.6), (0.4,0.2,0.3)
(0.6,0.3,0.4), (0.3,0.5,0.2), (0.5,0.4,0.3), (0.4,0.6,0.4)
E={(0.4,0.2,0.3),(0.4,0.1,0.6), (0.3,0.5,0.1), (0.6,0.4,0.2)
(0.2,0.3,0.6), (0.3,0.7,0.4), (0.4,0.2,0.4), (0.5,0.3,0.7)
(0.6,0.3,0.2),(0.5,0.4,0.1), (0.5,0.4,0.5), (0.4,0.2,0.6)

In the following, we put on the scheme of assessment of five possible
alternatives.

Step 1: We did practice the data assumed in the matrix E and put on
SFWMSM to discover the ideals of ¢; of the alternatives (Assume
that t = 2):
&, = (0.7659,0.11502,0.2307),
é, = (0.8307,0.2373,0.1753),
& = (0.8196,0.1758,0.1360),
2, = (0.7847,0.1761,0.2915),
&5 = (0.8452,0.1562,0.2115)

Step 2: Find scores $(¢;)(i = 1,2, -,
ues &(i=1,2,---,5).

5) of all spherical fuzzy val-

Step 3: Order all the values according to the scores.

In Table 1, we obtain the scores of the alternatives and find the best
out of them. As we take T = 1, we find the alternate is best, and for
T = 2, is also best, and for T' = 3, is also best, and for T = 4, is the

best alternate. From here we can see that with different values of T,
we found different best alternatives. To replicate the effect of altered
values of constraint T, we practice them in our suggested technique
for ordering the alternatives. The outcome is graphically represented
in Figure 1. Graph of the obtained ranking at the different values of
parameter T are shown in Figure 1.

By Figure 1, it can be seen that the constraint T varies according
to the choice creator’s liking, and the standing outcomes are a little
bit altered, which displays that the SFWMSM operator can reveal the
choice creator’s liking.

6.1. Comparative analysis

Now we relate our suggested technique with spherical fuzzy
weighted aggregation (SFWA) (Ahmmad et al, 2021) and
spherical fuzzy weighted geometric (SFWQ), operators as below:

Definition 12. Let &, = (wg, 1y, V) (q = 1,2,...,n) be a collec-
tion of SFVs, w = (wy,w,,--,w,) is taken as the weight vector

of &,(¢=1,2,---,n), and w, >0, Z;’=lwq = 1. Then,
SFWA, (@, ,) = ( T2 () T, (0™
\/1 —1 17 nlI) )Wv?
SEWG, (&), s, ..., @y) =
\/1 1_ ‘/’q) )

By utilizing the data of matrix E, we find the scores of alternatives
in Table 2 and give the orders in Table 3. Outcomes are graphically
represented in Figure 2. From Figure 2, the comparison between dif-
ferent AOs can be noted. The ranking of the alternatives obtained

Table 1
Score value of the SFWMSM and ranking of the alternate
Ranking
=1 0.6186 0.7074 0.6909 0.6319 0.7373 As = Ay = As = Ay - A
T=2 0.5854 0.6882 0.6715 0.6104 0.7123 As = Ay = As = Ay - Ay
T=3 0.5703 0.6770 0.6626 0.6041 0.6953 As = Ay = As = Ay = A
T=4 0.9653 0.9390 0.9477 0.9401 0.9284 A=Ay = Ay - Ay - As
Figure 1
Graphical representation of SFWMSM operator at different values of parameter
1.2
1
0.8
0.6
0.4
0.2
0
t=1 t=2 t=3 t=4

HAl mA2

A3 A4 mAS
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Table 2
Score function of the alternatives obtained by different AOs
SFWA SFWG
0.1186 0.0982
0.0269 0.1915
0.2163 0.1854
0.2283 0.1018
0.1515 0.2061
Table 3
Ranking the above values obtained by different AOs
Ordering
SFWA A4 = A3 = A5 = Al - A2
SFWG As = Ay = Ay = Ay = A,
Figure 2
Figure of score values obtained from SFWA and SFWG
operator
0.25
0.2
0.15
0.1
0.05 I
0

SFWA
BAl mA2 mA3

SFWG
A4 m A5

from SFWA and SFWG operators is shown graphically. It can be
noted that is the best alternative obtained from SFWG operator
and is the best alternative obtained from SFWA operator.

7. Conclusions

In this study, we extended the MSM operator to the framework
of the SFS. Consequently, a family of the AOs which includes the
SFMSM and SFWMSM operators is developed. Some basic
properties of the proposed AOs are investigated. The proposed
AOs are applied to the MADM problem using spherical fuzzy
information in this research. Then,

1. The obtained results have been observed at different values of the
parameter involved and found that the variation of the parameter
does not affect the ranking.

2. The obtained results from the proposed AOs are compared with
some existing AOs and found that the obtained results are
significant and the most generalized form if the existing AOs.

3. The comparison and the variation of the ranking results are
tabulated and represented graphically. We aim to extend the
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MSM to frameworks defined in Akram and Khan (2021),
Akram and Naz (2019), and Al-Quran (2021).
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