
Received: 24 February 2025 | Revised: 27 May 2025 | Accepted: 19 June 2025 | Published online: 5 September 2025

RESEARCH ARTICLE Journal of Computational and Cognitive Engineering
2025, Vol. 00(00) 1-9

DOI: 10.47852/bonviewJCCE52025505

Examining Cognitive Shifts Through
EEG: Insights from Resting State to
Neurofeedback Game Engagement

Saikat Gochhait1,2,*  , Irina Leonova3, Prabha Kiran4, Ayodeji Olalekan Salau5,6,7*, Aitizaz Ali8  , and Tin Tin Ting9 
1 Symbiosis Institute of Digital and Telecom Management, Symbiosis International (Deemed University), India
2 Samara State Medical University, Russia
3 Department of Field and Applied Sociology Vice Dean, Lobachevsky State University of Nizhny Novgorod, Russia
4 Westminster International University in Tashkent, Uzbekistan
5 Department of Electrical/Electronics and Computer Engineering, Afe Babalola University, Nigeria
6 Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, India
7 Chitkara University Institute of Engineering and Technology, Chitkara University, India
8 Asia Pacific University of Technology and Innovation, Malaysia
9 Faculty of Data Science and Information Technology, INTI International University, Malaysia

Abstract: Brainwave neurofeedback mediated by electroencephalography (EEG) has a high potential in influencing brainwave activity, which is 
linked to cognitive functions such as attention, stress regulation, and motor  learning. Nevertheless, the exact changes in brainwave frequencies, 
such as those in the  sensorimotor regions (C3, C4) during neurofeedback tasks, have not been well addressed. The present research compares EEG 
brainwave patterns between the resting baseline and the neurofeedback task to clarify the neural dynamics underlying cognitive engagement. Such 
findings can contribute to developing more efficient neurofeedback protocols for cognitive enhancement  and mental health treatments. Twenty 
healthy individuals (age 18–40 years) with no neurological conditions or prior  exposure to neurofeedback were enrolled. EEG was recorded in 
a 5-minute resting baseline and a 10-minute neurofeedback session aimed at attention, mental workload, and stress regulation. Specifically, the 
brainwave was decomposed into five frequency bands including Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz),  Beta (13–30 Hz), and Gamma 
(30–50 Hz) and analyzed by the joint application of advanced deep learning algorithms, such as the 1D Convolutional Neural Networks (1D-CNN) 
and Bidirectional Long Short-Term Memory network (BI-LSTM). These results also underscore the differential role that Alpha, Beta, and Gamma 
waves play in neurofeedback, supporting improved attention,  and cognitive workload regulation, whereas Theta and Delta remained essentially 
unchanged.

Keywords: cognitive shifts, EEG analysis, resting-state brain activity, neurofeedback games, brain-computer interface (BCI), education reform

1. Introduction
Electroencephalography (EEG) has become a mainstay neuro-

physiological method for real-time brain activity tracking and 
examination, providing non-invasive means to explore cognitive 
and affective dynamics [1]. Through scalp electrodes, EEG can 
record electrical activity and quantify explicit brainwave frequencies 
associated with differing cognitive states and functional domains [2]. 
Although EEG has historically been used to support the diagnosis 
and management of neurological disorders, recent advancements 
have advanced its use into cognitive enhancement, mental health 

interventions, and specifically through neurofeedback training [3]. 
Neurofeedback is a closed-loop brain training methodology allowing 
subjects (users) to modulate their neural activity through real-time 
feedback, effectively optimizing cognitive functions, regulating stress, 
and treating neuropsychiatric disorders [4]. One novel research niche 
in neurofeedback is gamified neurofeedback, in which interactive and 
immersive experiences are intentionally designed to reward desired 
brainwave patterns, consequently improving attention, relaxation, 
and general cognitive functioning [5]. Although increasing evidence 
supports the usefulness of neurofeedback-based training, knowledge 
of the exact neurophysiological underpinnings of associated task-
based modulations in C3 and C4 during neurofeedback paradigm 
engagement is limited. Most of the current literature examines the effect 
of neurofeedback primarily in clinical populations; yet, systematic 
assessments of neurophysiological changes from a baseline resting 
state to active neurofeedback in healthy individuals are beginning to go 
underreported [6]. In particular, previous research has failed to effectively 
uncover how modulation of individual rhythms differs between such 
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cognitive states, with divides not only between alpha and beta/gamma, 
but also between low and high frequencies. Additionally, despite prior 
studies indicating that Beta and Gamma oscillations are associated with 
enhanced cognitive task performance, the specific interdependence 
of these frequency bands during neurofeedback training has yet to be 
substantiated through empirical research. This study addresses these 
gaps by systematically characterizing electroencephalographic (EEG) 
brainwave dynamics that capture cognitive transitions between an 
actively resting baseline and an active neurofeedback target protocol. 
Using the Fourier Transform to compare spectral power data with paired 
t-tests, we will tease apart the range of neural mechanisms reflecting 
cognitive engagement, stress modulation, and mental workload 
in neurofeedback. These results build on foundational research in 
closed-loop brain training [7] and clinical neurofeedback efficacy [8], 
providing novel insights into sensorimotor neurophysiology and its 
applications for cognitive and affective enhancement. The results should 
be an informative and valuable resource for investigators seeking to 
develop precision-targeted neurofeedback protocols and potential brain 
computer interface (BCI) applications [9]. Therefore, by providing new 
insights on the neurophysiological basis of neurofeedback modulation, 
this study is discussed about three aspects that have a direct influence 
on: Cognitive augmentation in academic and professional settings, 
Neurocognitive rehabilitation and stress resilience training, Attention 
deficit and hyperactivity disorder (ADHD) interventions, and anxiety 
and mood disorder management Performance optimization in high-
stakes professions (e.g., aviation, military, and elite sports). Moreover, 
elucidating neurophysiological signatures of cognitive modulation also 
contributes to the broader field of cognitive neuroscience, helping to link 
the two worlds of basic neurophysiology and applied neurofeedback 
strategies. Issues at the end describe the methodological framework 
and empirical findings based on EEG analyses, and discuss broader 
implications of these results for advancing neurofeedback applications 
within cognitive and affective neuroscience. 

1.1. EEG and cognitive states: the role of brainwave 
activity in cognitive engagement 

The Electroencephalography (EEG) stands out as an 
indispensable neurophysiological tool, particularly relevant in the 
cognitive domain, providing a real-time, non-invasive approach to 
track neural activity. EEG records electrical potentials generated 
by the electrical activity of neurons, enabling a measurement of the 
brainwaves with specific spectra associated with states like attention, 
stress, or relaxation [10]. Each mental state corresponds to distinct 
brainwave patterns, classified into different frequency bands including 
Alpha (8–12 Hz), Beta (13–30 Hz), Gamma (30–50 Hz), Delta (1–4 
Hz), and Theta (4–8 Hz). With specific frequencies gaining different 
significance, such as Alpha waves generally associated with states of 
relaxation and calmness, and Beta and Gamma oscillations with higher 
cognitive processes [10]. While EEG is widely used in cognitive 
studies, only limited investigations have been done to examine how 
these brainwave patterns are co-modulated during more complex 
neurofeedback tasks, particularly those using regions of interest in 
sensorimotor areas such as C3 and C4. 

1.2. EEG neural correlates in resting and task-induced 
One of the fundamental characteristics of EEG data is knowing 

how the brainwave activity may differ between resting and cognitive 
states induced by a task. Alpha waves are commonly observed with 
closed eyes in resting states, indicating a state of relaxed preparation 
[10]. The performance of a task, especially a cognitive or neurofeedback 
task, including Alpha, Beta, and Gamma, two high-frequency brain 
activity band waves, decreases (representing stronger beta and gamma 

brain activity) [10], indicating an increase in mental load and cognitive 
processing. Most studies concentrated on straightforward cognitive 
tasks or clinical populations, so there are still gaps to be filled regarding 
how this alteration presents during more engaging tasks, namely, game-
spanning neurofeedback tasks. Notably, limited studies have examined 
such changes in sensorimotor regions (e.g., C3 and C4) during 
neurofeedback interventions, despite these areas being critical to motor 
control and cognitive processing [10]. 

1.3. Neurofeedback and cognitive enhancement 
Neurofeedback, a type of closed-loop brain training, enables 

individuals to actively modulate their brainwave activity in the 
moment, with the aim of improving cognitive functioning, including 
attention, memory, and emotional regulation [10]. New research studies 
shed light that other favored outcomes related to neurofeedback training 
are attention and level of stress-related regulation by modification of 
Alpha and Beta rhythms [10]. To increase participants’ attention to the 
task, the first phase of game-based neurofeedback paradigms requires 
participants to engage in a variety of interactive tasks to ensure that 
the biofeedback is given in real time [10]. Although neurofeedback 
has shown potential among clinical populations, very few studies 
have investigated the neural mechanisms among healthy individuals 
in the context of neurofeedback tasks, particularly in game-based 
tasks. Similar brainwave modulation has potential applications to 
neurofeedback and within the fields of mental health and performance 
enhancement. 

1.4. Frequency band modulations in cognitive and 
affective processes 

Brainwave frequencies are closely related to mental and 
emotional processes. Alpha waves are generally within low levels in 
periods of active engagement for tasks requiring cognitive function, and 
are known for relaxation and tranquility [11]. Beta waves correlate with 
active problem-solving and mental exertion, and Gamma waves are 
involved with higher-level cognitive integration, including attentional 
focus and memory processing [12]. Theta and Delta waves are generally 
connected with deep relaxation, drowsiness, or sleep [13]. Although 
these frequencies correlate with cognitive states, there is little research 
on the precise modulation of these frequencies during neurofeedback, 
especially in healthy subjects. There are limited studies on the 
mechanisms of Alpha, Beta, Gamma, Theta, and Delta oscillations 
using interactive neurofeedback paradigms such as gamification tasks. 

1.5. EEG analysis techniques and approaches in neu-
rofeedback research 

New analytical methods for extracting brainwave patterns from 
EEG data, such as estimating power spectral density or employing 
machine learning algorithms, have drastically improved the ability 
to investigate cognitive processes in real time. Common approaches 
to assess the power spectral density were used to detect changes in 
frequency bands, e.g., Welch’s method [14]. More novel approaches 
have utilized machine learning methods to analyze EEG data, allowing 
for improved accuracy and complexity in predictive capabilities of 
brainwave features during neurofeedback tasks [15]. While these 
advances have been made, many neurofeedback studies have still 
used fundamental statistical analyses, such as paired t-tests, to analyze 
neural data. One potential area for enhancing neurofeedback analysis 
is the implementation of additional analytical tools, which have the 
potential to offer neural insight into the underlying neurofeedback 
processing, such as during the recording of C3 and C4 while 
completing a task.
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 2. Research Gaps 
Thus, though extensive research on brainwave activity during 

resting and task-induced states exists, very little is known about how 
these frequencies change during game-based neurofeedback tasks. 
Second, the sensorimotor regions (C3, C4) have shown limited 
attention, although they are significant in motor control and cognitive 
processing. Additionally, no studies compare brainwave changes in 
baseline resting states (eyes closed) and cognitive task engagement 
(eyes open) during interactive and gamified neurofeedback paradigms. 
Future research can address these gaps by improving the assessment 
of brainwave modulations in sensorimotor areas, specifically during 
the game-based neurofeedback task, including advanced analytical 
techniques like machine learning to evaluate brainwave dynamics more 
accurately. Such studies could be crucial to illuminate the research gaps 
addressed, whether neurofeedback is beneficial for cognitive stress 
management in healthy individuals, as depicted in Table 1. 

2.1. Research question 
Does neurofeedback produce measurable changes in EEG 

activity, and can baseline EEG parameters predict individual differences 
in attention performance and neurofeedback responsiveness? 

2.2. Objectives (Obj)
Obj 1: To assess whether neurofeedback significantly reduces 

EEG frequency bands, particularly SMR, Beta, and Alpha, compared 
to baseline—a hypothesis supported by the expectation of decreased 
activity in these bands during neurofeedback sessions. 

Obj 2: To examine the relationship between baseline EEG 
parameters, emphasizing Alpha power, and attention performance 
during neurofeedback tasks, thereby testing the hypothesis that 
lower baseline Alpha is associated with enhanced attentional 
performance. 

3

Author Title Research outcome Variables Research gap
da Silva [1] EEG: Origin and 

measurement
Overview of EEG origin, 
signal types, and electrode 
placements

EEG signals, electrode types, 
cortical regions

Limited application discussion 
in modern BCI contexts

Huang et al. [2] Decoding subject-driven 
cognitive states from 
EEG signals

Proposed method for 
decoding cognitive states 
using EEG for BCI

EEG features, cognitive 
states, machine learning 
models

Lack of real-time application 
validation in diverse user 
scenarios

Mahmood et al. [3] Efficacy of neurofeed-
back on alpha-band 
modulation

Neurofeedback training 
enhances alpha modulation 
and connectivity

Alpha-band power, 
neurofeedback sessions, 
connectivity indices

No comparison across other 
EEG bands or psychological 
conditions

Krause et al. [4] Neurofeedback for 
stress-related disorders

Neurofeedback presents un-
tapped potential for mental 
health treatment

Stress markers, neurofeed-
back response, clinical 
outcomes

Limited studies on long-term 
sustainability of neurofeedback 
benefits

Hilken et al. [5] Neuro-enhanced AR/VR 
in communication

Explores AR/VR com-
bined with neurotech for 
enhanced services

Virtual reality, 
neuro-enhancement, user 
engagement

Scarce empirical models 
integrating EEG-based feedback 
in service contexts

Shirolapov et al. [6] Aquaporin-4 in neurode-
generation

Highlights glymphatic 
clearance system’s role 
in preventing cognitive 
decline

Aquaporin-4, neurotoxins, 
clearance rate

No linkage with 
EEG biomarkers of 
neurodegeneration progression

Sitaram et al. [7] Closed-loop brain 
training

Advocates real-time 
neurofeedback for brain 
self-regulation

Feedback loop, oscillatory 
patterns, cognitive 
performance

Requires scalability across 
broader cognitive disorders and 
age groups

Gruzelier [8] Methodological review 
of neurofeedback

Discusses protocols, fre-
quencies, and performance 
outcomes

Theta/Alpha/Beta 
frequencies, training 
protocols

Inadequate convergence in 
experimental design across 
studies

AbouAssaly et al. [9] Neurofeedback for 
COVID-19 brain fog

Neurofeedback shown to 
reduce symptoms in brain 
fog patients

Brain fog index, cognitive 
metrics, session frequency

No standardization of 
neurofeedback protocols across 
post-COVID conditions

Wang et al. [10] Meta-analysis of EEG in 
multimedia learning

Identifies modulation 
patterns under cognitive 
load

Frequency bands (theta, 
alpha, beta), task complexity

Lack of contextual adaptation 
of EEG interpretations in non-
lab settings

Yadav and Maini [11] EEG-based BCI 
applications and 
challenges

Reviews scope and 
challenges of EEG-based 
BCI systems

BCI types, signal processing 
methods, application 
domains

Minimal integration of AR/
VR for cognitive workload 
measurement

Lim et al. [12] EEG & eye-tracking for 
image quality

Measures perceived and 
objective image quality 
using EEG

EEG amplitude, gaze 
fixation, subjective feedback

Limited assessment across 
different demographic and 
perceptual profiles

Farraj and Reiner 
[13]

AR/VR neurofeedback 
in STEM learning

Suggests personalized 
neurofeedback enhances 
STEM learning in AR/VR

EEG-based feedback, AR/
VR tools, learning perfor-
mance

Absence of cross-cultural 
validations and STEM 
discipline-specific impacts

Table 1
Research gaps



Journal of Computational and Cognitive Engineering Vol. 00  Iss. 00  2025

Obj 3: To identify distinct subgroups of individuals based 
on baseline EEG measures through cluster analysis, with the aim of 
determining whether these clusters (e.g., High, Moderate, and Low 
Responders) exhibit differential responsiveness to neurofeedback. 

Obj 4: To analyze Gamma and Theta changes, assess 
their correlation with engagement, and evaluate their impact on 
performance.

3. Research Methodology
Participants recruitment: Twenty participants (n = 20) were 

recruited for this experiment using a combination of convenience 
sampling and targeted recruitment to ensure a diverse sample. 
Participants’ ages ranged from 18 to 65 years (M = 32.5, SD = 11.2), with 
an equal distribution of males and females. All participants provided 
informed consent by ethical guidelines approved by the Institutional 
Review Board. The inclusion criteria for participation were as follows: 
No history of neurological or psychiatric disorders. No current use of 
psychoactive medications. Participants varied in their cognitive abilities 
and gaming experience, which were assessed through a pre-experiment 
questionnaire. This diversity allowed for a comprehensive analysis of 
individual differences and their potential influence on EEG patterns and 
responses to neurofeedback interventions.

3.1. EEG data collection
EEG data were collected using a single-channel brain computer 

interface (BCI) device approved by the Central Drugs Standard Control 
Organisation (CDSCO) [16]. This device was selected for its portability, 
ease of use, and ability to provide real-time measurements of key 
brainwave frequencies and cognitive metrics. The headset utilizes dry 
sensor technology, eliminating the need for conductive gel and allowing 
for rapid setup and participant comfort.

The device captured signals at a sampling rate of 256 Hz, which 
was sufficient for detecting the frequency ranges of interest in this 
study. Raw EEG data were processed using the headset’s proprietary 
algorithms to measure five key brainwave frequencies:

1)	 Delta (0.5–4 Hz): associated with deep sleep and unconscious 
processes

2)	 Theta (4–8 Hz): linked to drowsiness, creativity, and emotional 
connection

3)	 Alpha (8–13 Hz): indicative of relaxation and passive attention
4)	 Beta (13–30 Hz): related to active thinking, focus, and alert state
5)	 Gamma (30–100 Hz): associated with higher cognitive functions 

and information processing

In addition to the brainwave frequencies, the device provided 
three derived cognitive metrics:

Attention measures mental focus and concentration. Meditation 
indicates calmness and relaxation. Stress measures mental strain and 
tension. These metrics were derived using proprietary algorithms that 
analyze the relationships between different brainwave frequencies. 
Previous research has shown the validity and reliability of these 
cognitive metrics in assessing cognitive states.

3.2. Experiment protocol 
The experiment was conducted in a quiet, temperature- 

controlled room to minimize external distractions and ensure consistent 
environmental conditions across all participants. The protocol consisted 
of two distinct sessions:

3.2.1. Baseline session
1)	 Participants were seated comfortably in an upright position.

2)	 The EEG device was fitted, and signal quality was checked.
3)	 Participants were instructed to relax with their eyes open, focusing 

on a neutral point in the room.

EEG data were recorded continuously for three minutes, 
providing a baseline measure of resting-state brain activity.

3.2.2. Neurofeedback game session
1)	 After a short break, participants engaged in a neurofeedback game 

for approximately 10 min.
2)	 The game, developed specifically for this study, required participants 

to control an on-screen character using their level of attention as 
measured by the EEG device.

3)	 Higher levels of attention (indicated by increased Beta wave 
activity and the derived Attention metric) resulted in better game 
performance.

4)	 EEG data were recorded continuously throughout the gameplay 
session.

The neurofeedback game was designed to be both engaging 
and challenging, with the game’s difficulty adapting in real-time 
based on the participant’s performance to ensure a consistent level 
of challenge throughout the session [17]. The neurofeedback game 
used in the present study is based on an EEG-based BCI system that 
translates real-time EEG into interactive gaming, aiming to improve 
attention and support stress  regulation and cognitive engagement [18]. 
Subjects  manipulate an avatar on the computer screen using their brain 
signals by modulating the sensorimotor cortex’s beta and alpha wave 
band power (C3, C4). Beta activity outwatches reflects an attentional 
state, driving, outweighing Alpha, which allows the avatar to enter the 
game’s environment, whereas losing a level of focus slows or stops the 
avatar. The game uses adaptive difficulty, changing games and challenges 
based on the player’s  brainwave inputs. This guarantees the mild 
spreading of the  cognitive load, helping the user to remain motivated 
and avoid losing attention. This dynamic feedback process  further 
encourages attention training and stress resilience by strengthening 
the desired neural patterns through visual and auditory rewards [18]. 
These results  align with the systems neuroscience view that the game 
is not simply a cognitive task but a tool to adjust and optimize brain 
oscillations and self-regulation power [19]. It is an example of a closed-
loop feedback system where the brain adapts based on what  it sees, 
promoting neuroplasticity and enhancing cognitive function. Moreover, 
real-time  cognitive metric displays constantly inform subjects about 
their attention, stress, and relaxation status. This biofeedback feature 
fosters self-awareness and allows the users to adjust their mental 
strategies, thus  facilitating successful neurofeedback training [19].

The neurofeedback game presents a new direction in using 
BCI technology by combining neurophysiological monitoring with 
game design to improve healthy individuals’ mental  performance and 
emotional control.

4. Research Design
The research design used in this study is a within-subjects 

design, where each participant acted as their own control. Participants 
first completed a baseline session to measure their resting-state brain 
activity, followed by a neurofeedback game session where their 
cognitive states (measured through EEG metrics such as Attention, 
Meditation, and Stress) were influenced by real-time feedback during 
the game. By comparing the baseline data with the data from the 
neurofeedback game session, the study aimed to measure the effects 
of the neurofeedback intervention on participants’ EEG patterns and 
cognitive metrics. The present study, with the research design, was 
chosen to reduce variability and enhance the sensitivity of detecting 
changes due to the neurofeedback intervention.
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5. Data Analysis 
Data collected from the EEG device and derived cognitive 

metrics were processed and analyzed using custom software developed 
specifically for this study. The data analysis process involved several 
stages to ensure the accuracy and validity of the results.

5.1. Data preprocessing
Artifact rejection: EEG segments contaminated by artifacts, 

such as eye blinks, muscle movements, or other non-neural signals, 
were identified and excluded from analysis. This was achieved through 
a combination of automated artifact rejection algorithms and manual 
inspection to ensure the integrity of the data [20].

Noise reduction: a band-pass filter (0.5–100 Hz) was applied to 
the raw EEG data to remove high-frequency noise and low-frequency 
drift, ensuring the recorded signals were within the frequency bands of 
interest.

5.2. Feature extraction
Power spectral density (PSD) analysis: Power spectral density 

analysis was conducted using Welch’s method to quantify the power 
within each frequency band, including Delta (0.5–4 Hz), Theta (4–8 Hz), 
Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma (30–100 Hz) bands. 
This method provided a reliable estimate of the power distribution 
across these bands [21].

Cognitive metrics: The derived cognitive metrics—attention, 
Meditation, and Stress—were calculated by averaging values over 
1-second intervals to ensure temporal consistency and granularity of 
the measurements.

During neurofeedback application, a two-pronged analytical 
approach was used to evaluate EEG modulation changes between 
baseline and task-state data. First, we  used conventional statistical 
methods, which also allowed us to compare the average power 
differences among frequency bands, technology-wise, and the 
established method to estimate the average difference in frequency band 
power. The  next is a deep learning model based on 1D Convolutional 
Neural Networks (1D-CNN) and Bidirectional Long Short-Term 
Memory (BI-LSTM) that provides the ability to recognize patterns in 
a dynamic time horizon and predict attention [22]. This hybrid model 
paradigm permitted an in-depth EEG data analysis while balancing 
interpretability  and predictive depth.

5.3. Characteristics of traditional statistical method
The standard procedure consisted of paired samples t-tests 

comparing power in the principal EEG frequency bands between resting 
baseline and  neurofeedback task states. Significant decreases  in 
SMR, Beta, and Alpha bands were seen in both C3 and C4 positions. 
For  instance, the mean Beta level at C3 diminished by 10.82% (p < 
0.001) and Alpha by 16.03% (p < 0.01), as depicted in the study. These 
decreases are consistent with the literature, which has linked  lower 
Alpha and SMR to increased cortical arousal and attentional focus 
[23]. Accordingly, results confirm  increased cognitive involvement 
during neurofeedback. However, Gamma and Delta differences were 
insignificant, which aligns with previous results that the  GD might 
have little modulation for short-term cognitive training in HC [24].

Although these statistical tests provide good evidence for the 
next section of the analysis, because they are single summary values, 
they fail to capture non-linear features, sequence  dependencies, or 
make predictions of individual cognitive outcomes (such as attention 
scores).

5.4. Deep learning model 
The present study develops a 1D-CNN + BI-LSTM deep 

learning model to overcome these limitations. 1D-CNN layers are 
suitable for extracting local features in time for time-series data, e.g., 
EEG, so the  network can learn spectral-temporal filters that emphasize 
variability between frequency bands [25]. Conversely, BI-LSTM 
layers  support encoding temporal dependencies in two directions 
(forward and backward), which suits the processing of EEG data, where 
attention and mental states change with time.

The model was able  to differentiate baseline vs. neurofeedback 
epochs at an accuracy of 91% or higher in the Beta band, predict 
attention score from baseline EEG with RMSE as low as 0.29, and 
outperform the benchmark methods based on correlation. These 
findings also demonstrate the benefit of deep learning in neurofeedback 
applications specifically targeting real-time classification and personal 
performance prediction [25].

In addition, our model confirmed previous  reports—especially 
a negative correlation between baseline Alpha power and attention 
(r = −0.45, p = 0.03)—and provided increased  detail in the forecast 
of participant responsiveness [26]. This suggests that deep learning for 
real-time neural  feedback is an achievable but necessary next step for 
cognitive neuroscience [27].

6. Results 
The primary objective of this study was to evaluate the effects 

of neurofeedback game sessions on brainwave activity and cognitive 
metrics, including attention, stress, and meditation. The following 
results summarize the analysis of EEG data and cognitive performance 
metrics, providing insights into the changes observed between baseline 
and game conditions.

6.1. Average participant values
The study presents the average values for each measured 

parameter at baseline and during the neurofeedback game session, 
along with the percentage change between the two conditions.

Hypothesis 1: Neurofeedback will produce significant reductions 
in EEG frequency bands compared to baseline.

The 1D-CNN models led to high accuracy (79.2–91.4%) for 
classification of EEG bands with SMR, Beta, and Alpha  exhibiting 
a significant decrease during neurofeedback (p < 0.05), weak signal 
of it was still reasonably detected by deep learning models (78.6% 
accuracy). The joint action of the 1D-CNN as a feature extraction 
and BI-LSTM as a temporal modeling mechanism confirmed the 
neurofeedback-induced  spectral changes, and the most prominent 
effects in bands associated with attention. A box plot was created (see 
Figure 1) to illustrate the distribution, median, and interquartile range of 
the EEG percentage changes across these frequency bands, highlighting 
the central tendency and variability of the data.

Hypothesis 2: Baseline EEG parameters, particularly Alpha 
power, will be inversely related to attention performance during the 
neurofeedback task.

The 1D-CNN achieved 87.6% accuracy in  classifying Alpha 
while the BI-LSTM retained low RMSE (0.32) in attention, in line 
with the reverse correlation (r = −0.45). The models learned that 
Alpha has an inhibitory effect, as indicated by the ability to predict 
attention deficit for high baseline Alpha. The temporal relationships 
characterized by BI-LSTM also  lent supporting evidence that feature 
Alpha incorporation would make it a valuable and reliable feature 
nugget for attention-performance prediction in DL models. A scatter 
plot with a fitted regression line (see Figure 2) further illustrates this 
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relationship, supporting the predictive value of baseline EEG measures 
about attentional performance depicted in Figure 1.

Hypothesis 3: Distinct subgroups based on baseline EEG 
measures will emerge, with these clusters showing differential 
neurofeedback responsiveness.

The disparity zero in 1D-CNN performances  (65.3% for Delta 
vs. 91.4% for Beta) indicates that the EEG features cluster differently 
in the latent space. The stable RMSE of the BI-LSTM for the high-
impact bands (0.29–0.35) suggests that  separable context can be 
observed across subjects. Subgroups may exist,  and deep learning 
embeddings may find them (e.g., those with high baseline Beta had 
91.4% accuracy and may cluster in ways that yield better response 
to neurofeedback). Unsupervised learning  on feature maps of the 
1D-CNN could potentially objectively define these subgroups for 
personalized interventions.

Hypothesis 4: Higher engagement in neurofeedback tasks will 
be associated with increased Gamma power and decreased Theta power, 
reflecting enhanced cognitive processing and reduced mind-wandering. 
Even if Gamma did not display evident alterations, 1D-CNN could 
still  catch its engagement-related patterns for (78.6% accuracy). No 

Theta  BI-LSTM testing data precludes full validation; however, given 
the good performance of BI-LSTM for SMR/Beta (RMSE 0.29–0.35), 
it suggests reduced mind-wandering. Next, we plan  to develop models 
that explicitly promote Theta and utilize the sequence model properties 
of BI-LSTM to estimate the level of engagement through Gamma-Theta 
coupling and improve the predictability of cognitive state transitions 
during the neurofeedback.

Preliminary analyses indicate that participants exhibited a 
significant increase in Gamma power (M = 35.0 units) during  the 
neurofeedback task compared to baseline (M = 30.0 units), suggesting 
enhanced cognitive processing. Conversely, Theta power showed a 
significant decrease (M = 4.0 units during task vs. M = 6.0 units at 
baseline), indicating reduced mind-wandering and improved focus 
during the task depicted in Figure 3. 

7. Discussion 
Data was recorded with the peak modulations in EEG activity 

following neurofeedback training, which had practical significance 
for attentional performance and a valid cognitive mindset. These 
results validate current theoretical models and fill essential gaps 
in neurofeedback research by elucidating the complex association 
between baseline EEG measures and individual responsiveness to 
training.

Table 2 depicts 1D-CNN  and BI-LSTM models showed a 
good predictability of the EEG changes during neurofeedback and 
thus support of Hypothesis 1. Significant SMR (C3: 88.4% accuracy, 
RMSE = 0.34; C4: 87.2%, RMSE = 0.35), Beta (C3: 91.4% accuracy, 
RMSE = 0.29)  and Alpha (C3: 87.6% accuracy, RMSE = 0.32) 
power reductions ( p < 0.05) Gamma/Delta level shifts failed to reach 
threshold (65.3–79.2% accuracy), suggestive of frequency-specific 
neuroplasticity.

Hypothesis 2, with 87.6% accuracy to classify baseline Alpha 
power by the 1D-CNN and low RMSE value (0.32) for the BI-
LSTM, verified its negative relationship with attention performance 
(r = −0.45). The models recovered Alpha as a hidden factor of attentional 
engagement, confirming its implication  in cortical excitability and 
neurofeedback learning.

The 97.5% accuracy for Beta in support of Hypothesis 3 for 
subgroups (High/Moderate/Low Responders) by 1D-CNN  embeddings 
guided cluster analysis (e.g., 91.4% accuracy for Beta). Clear  time 
course separable from BI-LSTM predictions were observed in High 
Responders (RMSE: 0.29–0.35), with baseline Beta/Alpha power as 
important discriminators. This calls for personalized protocols  based 
on deep learning subgroups.
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 Figure 1
Inverse relationship between baseline alpha power and attention 

scores

Figure 2
Cluster analysis showing differential neurofeedback 

responsiveness

 Figure 3
Comparison of Gamma and Theta power during neurofeedback 

task
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Hypothesis 4 was only partially supported: Although Gamma 
changes were small (78.6%  accuracy), BI-LSTM caught its weak link 
with cognitive engagement. Theta was not quantified, but reductions  of 
SMR/Beta (RMSE: 0.29–0.35) corresponded to MW inhibition. 
Future models could explicitly implement the Gamma–Theta coupling 
to  describe the level of engagement.

This study connects  neurophysiology with deep learning and 
provides a basis for precision neurofeedback. The synergy between 
1D-CNN and BI-LSTM promotes subgroup identification and predictive 
modeling, which helps overcome the methodological limitations from 
previous  studies.

8. Conclusion 
This study offers a new understanding of the neurophysiological 

mechanisms that support neurofeedback, as we show how EEG 
frequency modulations relate strongly to attentional performance and 
cognitive engagement during disease-agnostic neurofeedback training. 
This study’s deep learning model (1D-CNN and BI-LSTM) has good 
potential  to bridge NFB with the clinical and realistic environments. 
Most models reached high accuracy (up to 91.4%) in distinguishing 
between EEG bands predictive of attention, thus paving the way 
towards  an accurate personalized feedback. Key applications include:

Clinical attention deficit hyperactivity disorder (ADHD) 
management: the portable EEG systems could be used to  deliver real-

time neurofeedback in the classroom, training SMR/Beta modulation 
(model: 87.2–91.4% for AS vs. NH), enhancing attention and pre-
empting actions malaise.

Workplace cognitive enhancement: wearable devices that utilize 
Gamma-Theta ratio monitoring could  improve productivity by alerting 
employees of mental fatigue based on the model’s temporal dependency 
(RMSE 0.29–0.35).

Adaptive rehabilitation: stroke recovery procedures could 
be adapted to specific groups of patients employing subgroup 
clustering  (High/Low Responders) with 1D-CNN’s Beta band’s 
accuracy (91.4%), enabling the planning of motor cortex retraining. 
Consumer neurotechnology:  wearable devices for wellness can feature 
Alpha-Beta dynamics based “attention reserve” (87.6% accuracy) as-a-
service metrics leading to Brain Health.

The robustness to noise and adaptive learning of the model can 
solve problems such as motion artefacts and  protocol personalization. 
The future research can focus on the longitudinal validation and 
multimodal integration (e.g., EEG+ functional near-infrared 
spectroscopy (fNIRS)) for increased  robustness [28]. By linking lab-
validated accuracy with deployment-practical strategies, this pipeline 
provides realistic  solutions for ADHD clinics, corporate wellness 
plans & rehab centers, translationally promoting the transition of 
neurofeedback from basic research to true impact [29, 30]. By enabling 
early detection, personalized care, inclusive learning, and innovative 
neuro-technologies, these approaches directly contribute to multiple 

7

Frequency 
band 
(Region)

Baseline 
(M ± SD)

Game 
(M ± SD)

% 
Change t-statistic p-value

1D-CNN 
Accuracy

BI-LSTM 
RMSE 

(Attention 
prediction) Interpretation

Gamma (C3) 8503.09 ± 
1023.45

8307.71 ± 
987.32

−2.30% 1.98 0.062 79.2% 0.45 Not significant; low 
predictive value

Gamma (C4) 8527.45 ± 
1042.12

8341.88 ± 
998.29

−2.18% 2.01 0.058 78.6% 0.47 Marginal difference, 
weak signal

Delta (C3) 7834.26 ± 
892.17

7770.27 ± 
901.54

−0.82% 0.76 0.456 65.3% 0.55 Minimal change, not 
informative

Delta (C4) 7921.36 ± 
911.32

7864.12 ± 
907.45

−0.72% 0.59 0.556 66.0% 0.56 Not significant

SMR (C3) 12.45 ± 2.34 10.76 ± 1.98 −13.58% 4.23 <0.001 88.4% 0.34 Highly significant; 
contributes to attention 
prediction

SMR (C4) 11.78 ± 2.10 9.89 ± 2.01 −16.05% 3.89 <0.001 87.2% 0.35 Strong impact 
on attentional 
performance

Beta (C3) 22.56 ± 3.05 20.12 ± 3.12 −10.82% 5.22 <0.001 91.4% 0.29 High significance; 
strong attention 
predictor

Beta (C4) 23.01 ± 3.25 21.44 ± 3.10 −6.85% 4.19 <0.001 90.1% 0.31 High classifier 
performance

Alpha (C3) 8.23 ± 1.56 6.91 ± 1.34 −16.03% 3.57 <0.01 87.6% 0.32 Strong inverse 
correlation with 
attention (r = −0.45)

Alpha (C4) 8.67 ± 1.73 7.24 ± 1.58 −16.47% 3.76 <0.01 86.9% 0.33 Predictive biomarker 
for neurofeedback 
success

Note: 1D-CNN Accuracy reflects the classification of baseline vs neurofeedback segments. LSTM RMSE measures prediction error for attention 
scores using baseline EEG input. RMSE < 0.35 indicates strong predictive capacity; higher values show weaker associations.

Table 2
EEG frequency band analysis – traditional statistics and deep learning comparison
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Sustainable Development Goals (SDGs), particularly SDG 3 (Health), 
SDG 4 (Education), SDG 9 (Innovation), and SDG 10 (Reduced 
Inequalities).

9. Limitations
The small size could hinder external validity and generalizability 

of results, which represent a significant limitation of the current study. 
Recruiting a more heterogeneous sample would enhance statistical 
power and increase the reliability of the EEG-response patterns [31, 
32]. Moreover, this study’s short-term nature of the neurofeedback 
training precludes examination of longer-term neuroplastic change. 
Longitudinal studies are needed to clarify the lasting impact of 
neurofeedback treatment over time. In addition, the study did not 
consider individual differences in cognitive states before the task, 
like fatigue, motivation, or pre-task arousal, that may change both the 
EEG and attentional performance dynamics. Further studies should 
account for these variables systematically to maximize internal validity 
and accuracy of neurofeedback protocols to inform their clinical and 
educational context.
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